Linux Audio

Check our new training course

Loading...
v4.10.11
  1/* SCTP kernel implementation
  2 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
  3 *
  4 * This file is part of the SCTP kernel implementation
  5 *
  6 * This SCTP implementation is free software;
  7 * you can redistribute it and/or modify it under the terms of
  8 * the GNU General Public License as published by
  9 * the Free Software Foundation; either version 2, or (at your option)
 10 * any later version.
 11 *
 12 * This SCTP implementation is distributed in the hope that it
 13 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
 14 *                 ************************
 15 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 16 * See the GNU General Public License for more details.
 17 *
 18 * You should have received a copy of the GNU General Public License
 19 * along with GNU CC; see the file COPYING.  If not, see
 20 * <http://www.gnu.org/licenses/>.
 21 *
 22 * Please send any bug reports or fixes you make to the
 23 * email address(es):
 24 *    lksctp developers <linux-sctp@vger.kernel.org>
 25 *
 26 * Written or modified by:
 27 *   Vlad Yasevich     <vladislav.yasevich@hp.com>
 28 */
 29
 30#include <crypto/hash.h>
 31#include <linux/slab.h>
 32#include <linux/types.h>
 33#include <linux/scatterlist.h>
 34#include <net/sctp/sctp.h>
 35#include <net/sctp/auth.h>
 36
 37static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
 38	{
 39		/* id 0 is reserved.  as all 0 */
 40		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
 41	},
 42	{
 43		.hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
 44		.hmac_name = "hmac(sha1)",
 45		.hmac_len = SCTP_SHA1_SIG_SIZE,
 46	},
 47	{
 48		/* id 2 is reserved as well */
 49		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
 50	},
 51#if IS_ENABLED(CONFIG_CRYPTO_SHA256)
 52	{
 53		.hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
 54		.hmac_name = "hmac(sha256)",
 55		.hmac_len = SCTP_SHA256_SIG_SIZE,
 56	}
 57#endif
 58};
 59
 60
 61void sctp_auth_key_put(struct sctp_auth_bytes *key)
 62{
 63	if (!key)
 64		return;
 65
 66	if (atomic_dec_and_test(&key->refcnt)) {
 67		kzfree(key);
 68		SCTP_DBG_OBJCNT_DEC(keys);
 69	}
 70}
 71
 72/* Create a new key structure of a given length */
 73static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
 74{
 75	struct sctp_auth_bytes *key;
 76
 77	/* Verify that we are not going to overflow INT_MAX */
 78	if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes)))
 79		return NULL;
 80
 81	/* Allocate the shared key */
 82	key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
 83	if (!key)
 84		return NULL;
 85
 86	key->len = key_len;
 87	atomic_set(&key->refcnt, 1);
 88	SCTP_DBG_OBJCNT_INC(keys);
 89
 90	return key;
 91}
 92
 93/* Create a new shared key container with a give key id */
 94struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
 95{
 96	struct sctp_shared_key *new;
 97
 98	/* Allocate the shared key container */
 99	new = kzalloc(sizeof(struct sctp_shared_key), gfp);
100	if (!new)
101		return NULL;
102
103	INIT_LIST_HEAD(&new->key_list);
 
104	new->key_id = key_id;
105
106	return new;
107}
108
109/* Free the shared key structure */
110static void sctp_auth_shkey_free(struct sctp_shared_key *sh_key)
111{
112	BUG_ON(!list_empty(&sh_key->key_list));
113	sctp_auth_key_put(sh_key->key);
114	sh_key->key = NULL;
115	kfree(sh_key);
116}
117
 
 
 
 
 
 
 
 
 
 
 
118/* Destroy the entire key list.  This is done during the
119 * associon and endpoint free process.
120 */
121void sctp_auth_destroy_keys(struct list_head *keys)
122{
123	struct sctp_shared_key *ep_key;
124	struct sctp_shared_key *tmp;
125
126	if (list_empty(keys))
127		return;
128
129	key_for_each_safe(ep_key, tmp, keys) {
130		list_del_init(&ep_key->key_list);
131		sctp_auth_shkey_free(ep_key);
132	}
133}
134
135/* Compare two byte vectors as numbers.  Return values
136 * are:
137 * 	  0 - vectors are equal
138 * 	< 0 - vector 1 is smaller than vector2
139 * 	> 0 - vector 1 is greater than vector2
140 *
141 * Algorithm is:
142 * 	This is performed by selecting the numerically smaller key vector...
143 *	If the key vectors are equal as numbers but differ in length ...
144 *	the shorter vector is considered smaller
145 *
146 * Examples (with small values):
147 * 	000123456789 > 123456789 (first number is longer)
148 * 	000123456789 < 234567891 (second number is larger numerically)
149 * 	123456789 > 2345678 	 (first number is both larger & longer)
150 */
151static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
152			      struct sctp_auth_bytes *vector2)
153{
154	int diff;
155	int i;
156	const __u8 *longer;
157
158	diff = vector1->len - vector2->len;
159	if (diff) {
160		longer = (diff > 0) ? vector1->data : vector2->data;
161
162		/* Check to see if the longer number is
163		 * lead-zero padded.  If it is not, it
164		 * is automatically larger numerically.
165		 */
166		for (i = 0; i < abs(diff); i++) {
167			if (longer[i] != 0)
168				return diff;
169		}
170	}
171
172	/* lengths are the same, compare numbers */
173	return memcmp(vector1->data, vector2->data, vector1->len);
174}
175
176/*
177 * Create a key vector as described in SCTP-AUTH, Section 6.1
178 *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
179 *    parameter sent by each endpoint are concatenated as byte vectors.
180 *    These parameters include the parameter type, parameter length, and
181 *    the parameter value, but padding is omitted; all padding MUST be
182 *    removed from this concatenation before proceeding with further
183 *    computation of keys.  Parameters which were not sent are simply
184 *    omitted from the concatenation process.  The resulting two vectors
185 *    are called the two key vectors.
186 */
187static struct sctp_auth_bytes *sctp_auth_make_key_vector(
188			sctp_random_param_t *random,
189			sctp_chunks_param_t *chunks,
190			sctp_hmac_algo_param_t *hmacs,
191			gfp_t gfp)
192{
193	struct sctp_auth_bytes *new;
194	__u32	len;
195	__u32	offset = 0;
196	__u16	random_len, hmacs_len, chunks_len = 0;
197
198	random_len = ntohs(random->param_hdr.length);
199	hmacs_len = ntohs(hmacs->param_hdr.length);
200	if (chunks)
201		chunks_len = ntohs(chunks->param_hdr.length);
202
203	len = random_len + hmacs_len + chunks_len;
204
205	new = sctp_auth_create_key(len, gfp);
206	if (!new)
207		return NULL;
208
209	memcpy(new->data, random, random_len);
210	offset += random_len;
211
212	if (chunks) {
213		memcpy(new->data + offset, chunks, chunks_len);
214		offset += chunks_len;
215	}
216
217	memcpy(new->data + offset, hmacs, hmacs_len);
218
219	return new;
220}
221
222
223/* Make a key vector based on our local parameters */
224static struct sctp_auth_bytes *sctp_auth_make_local_vector(
225				    const struct sctp_association *asoc,
226				    gfp_t gfp)
227{
228	return sctp_auth_make_key_vector(
229				    (sctp_random_param_t *)asoc->c.auth_random,
230				    (sctp_chunks_param_t *)asoc->c.auth_chunks,
231				    (sctp_hmac_algo_param_t *)asoc->c.auth_hmacs,
232				    gfp);
233}
234
235/* Make a key vector based on peer's parameters */
236static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
237				    const struct sctp_association *asoc,
238				    gfp_t gfp)
239{
240	return sctp_auth_make_key_vector(asoc->peer.peer_random,
241					 asoc->peer.peer_chunks,
242					 asoc->peer.peer_hmacs,
243					 gfp);
244}
245
246
247/* Set the value of the association shared key base on the parameters
248 * given.  The algorithm is:
249 *    From the endpoint pair shared keys and the key vectors the
250 *    association shared keys are computed.  This is performed by selecting
251 *    the numerically smaller key vector and concatenating it to the
252 *    endpoint pair shared key, and then concatenating the numerically
253 *    larger key vector to that.  The result of the concatenation is the
254 *    association shared key.
255 */
256static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
257			struct sctp_shared_key *ep_key,
258			struct sctp_auth_bytes *first_vector,
259			struct sctp_auth_bytes *last_vector,
260			gfp_t gfp)
261{
262	struct sctp_auth_bytes *secret;
263	__u32 offset = 0;
264	__u32 auth_len;
265
266	auth_len = first_vector->len + last_vector->len;
267	if (ep_key->key)
268		auth_len += ep_key->key->len;
269
270	secret = sctp_auth_create_key(auth_len, gfp);
271	if (!secret)
272		return NULL;
273
274	if (ep_key->key) {
275		memcpy(secret->data, ep_key->key->data, ep_key->key->len);
276		offset += ep_key->key->len;
277	}
278
279	memcpy(secret->data + offset, first_vector->data, first_vector->len);
280	offset += first_vector->len;
281
282	memcpy(secret->data + offset, last_vector->data, last_vector->len);
283
284	return secret;
285}
286
287/* Create an association shared key.  Follow the algorithm
288 * described in SCTP-AUTH, Section 6.1
289 */
290static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
291				 const struct sctp_association *asoc,
292				 struct sctp_shared_key *ep_key,
293				 gfp_t gfp)
294{
295	struct sctp_auth_bytes *local_key_vector;
296	struct sctp_auth_bytes *peer_key_vector;
297	struct sctp_auth_bytes	*first_vector,
298				*last_vector;
299	struct sctp_auth_bytes	*secret = NULL;
300	int	cmp;
301
302
303	/* Now we need to build the key vectors
304	 * SCTP-AUTH , Section 6.1
305	 *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
306	 *    parameter sent by each endpoint are concatenated as byte vectors.
307	 *    These parameters include the parameter type, parameter length, and
308	 *    the parameter value, but padding is omitted; all padding MUST be
309	 *    removed from this concatenation before proceeding with further
310	 *    computation of keys.  Parameters which were not sent are simply
311	 *    omitted from the concatenation process.  The resulting two vectors
312	 *    are called the two key vectors.
313	 */
314
315	local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
316	peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
317
318	if (!peer_key_vector || !local_key_vector)
319		goto out;
320
321	/* Figure out the order in which the key_vectors will be
322	 * added to the endpoint shared key.
323	 * SCTP-AUTH, Section 6.1:
324	 *   This is performed by selecting the numerically smaller key
325	 *   vector and concatenating it to the endpoint pair shared
326	 *   key, and then concatenating the numerically larger key
327	 *   vector to that.  If the key vectors are equal as numbers
328	 *   but differ in length, then the concatenation order is the
329	 *   endpoint shared key, followed by the shorter key vector,
330	 *   followed by the longer key vector.  Otherwise, the key
331	 *   vectors are identical, and may be concatenated to the
332	 *   endpoint pair key in any order.
333	 */
334	cmp = sctp_auth_compare_vectors(local_key_vector,
335					peer_key_vector);
336	if (cmp < 0) {
337		first_vector = local_key_vector;
338		last_vector = peer_key_vector;
339	} else {
340		first_vector = peer_key_vector;
341		last_vector = local_key_vector;
342	}
343
344	secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
345					    gfp);
346out:
347	sctp_auth_key_put(local_key_vector);
348	sctp_auth_key_put(peer_key_vector);
349
350	return secret;
351}
352
353/*
354 * Populate the association overlay list with the list
355 * from the endpoint.
356 */
357int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
358				struct sctp_association *asoc,
359				gfp_t gfp)
360{
361	struct sctp_shared_key *sh_key;
362	struct sctp_shared_key *new;
363
364	BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
365
366	key_for_each(sh_key, &ep->endpoint_shared_keys) {
367		new = sctp_auth_shkey_create(sh_key->key_id, gfp);
368		if (!new)
369			goto nomem;
370
371		new->key = sh_key->key;
372		sctp_auth_key_hold(new->key);
373		list_add(&new->key_list, &asoc->endpoint_shared_keys);
374	}
375
376	return 0;
377
378nomem:
379	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
380	return -ENOMEM;
381}
382
383
384/* Public interface to create the association shared key.
385 * See code above for the algorithm.
386 */
387int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
388{
389	struct sctp_auth_bytes	*secret;
390	struct sctp_shared_key *ep_key;
391	struct sctp_chunk *chunk;
392
393	/* If we don't support AUTH, or peer is not capable
394	 * we don't need to do anything.
395	 */
396	if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
397		return 0;
398
399	/* If the key_id is non-zero and we couldn't find an
400	 * endpoint pair shared key, we can't compute the
401	 * secret.
402	 * For key_id 0, endpoint pair shared key is a NULL key.
403	 */
404	ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
405	BUG_ON(!ep_key);
406
407	secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
408	if (!secret)
409		return -ENOMEM;
410
411	sctp_auth_key_put(asoc->asoc_shared_key);
412	asoc->asoc_shared_key = secret;
 
413
414	/* Update send queue in case any chunk already in there now
415	 * needs authenticating
416	 */
417	list_for_each_entry(chunk, &asoc->outqueue.out_chunk_list, list) {
418		if (sctp_auth_send_cid(chunk->chunk_hdr->type, asoc))
419			chunk->auth = 1;
 
 
 
 
 
420	}
421
422	return 0;
423}
424
425
426/* Find the endpoint pair shared key based on the key_id */
427struct sctp_shared_key *sctp_auth_get_shkey(
428				const struct sctp_association *asoc,
429				__u16 key_id)
430{
431	struct sctp_shared_key *key;
432
433	/* First search associations set of endpoint pair shared keys */
434	key_for_each(key, &asoc->endpoint_shared_keys) {
435		if (key->key_id == key_id)
436			return key;
 
 
 
437	}
438
439	return NULL;
440}
441
442/*
443 * Initialize all the possible digest transforms that we can use.  Right now
444 * now, the supported digests are SHA1 and SHA256.  We do this here once
445 * because of the restrictiong that transforms may only be allocated in
446 * user context.  This forces us to pre-allocated all possible transforms
447 * at the endpoint init time.
448 */
449int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
450{
451	struct crypto_shash *tfm = NULL;
452	__u16   id;
453
454	/* If AUTH extension is disabled, we are done */
455	if (!ep->auth_enable) {
456		ep->auth_hmacs = NULL;
457		return 0;
458	}
459
460	/* If the transforms are already allocated, we are done */
461	if (ep->auth_hmacs)
462		return 0;
463
464	/* Allocated the array of pointers to transorms */
465	ep->auth_hmacs = kzalloc(sizeof(struct crypto_shash *) *
466				 SCTP_AUTH_NUM_HMACS, gfp);
467	if (!ep->auth_hmacs)
468		return -ENOMEM;
469
470	for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
471
472		/* See is we support the id.  Supported IDs have name and
473		 * length fields set, so that we can allocated and use
474		 * them.  We can safely just check for name, for without the
475		 * name, we can't allocate the TFM.
476		 */
477		if (!sctp_hmac_list[id].hmac_name)
478			continue;
479
480		/* If this TFM has been allocated, we are all set */
481		if (ep->auth_hmacs[id])
482			continue;
483
484		/* Allocate the ID */
485		tfm = crypto_alloc_shash(sctp_hmac_list[id].hmac_name, 0, 0);
486		if (IS_ERR(tfm))
487			goto out_err;
488
489		ep->auth_hmacs[id] = tfm;
490	}
491
492	return 0;
493
494out_err:
495	/* Clean up any successful allocations */
496	sctp_auth_destroy_hmacs(ep->auth_hmacs);
497	return -ENOMEM;
498}
499
500/* Destroy the hmac tfm array */
501void sctp_auth_destroy_hmacs(struct crypto_shash *auth_hmacs[])
502{
503	int i;
504
505	if (!auth_hmacs)
506		return;
507
508	for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++) {
509		crypto_free_shash(auth_hmacs[i]);
510	}
511	kfree(auth_hmacs);
512}
513
514
515struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
516{
517	return &sctp_hmac_list[hmac_id];
518}
519
520/* Get an hmac description information that we can use to build
521 * the AUTH chunk
522 */
523struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
524{
525	struct sctp_hmac_algo_param *hmacs;
526	__u16 n_elt;
527	__u16 id = 0;
528	int i;
529
530	/* If we have a default entry, use it */
531	if (asoc->default_hmac_id)
532		return &sctp_hmac_list[asoc->default_hmac_id];
533
534	/* Since we do not have a default entry, find the first entry
535	 * we support and return that.  Do not cache that id.
536	 */
537	hmacs = asoc->peer.peer_hmacs;
538	if (!hmacs)
539		return NULL;
540
541	n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
 
542	for (i = 0; i < n_elt; i++) {
543		id = ntohs(hmacs->hmac_ids[i]);
544
545		/* Check the id is in the supported range. And
546		 * see if we support the id.  Supported IDs have name and
547		 * length fields set, so that we can allocate and use
548		 * them.  We can safely just check for name, for without the
549		 * name, we can't allocate the TFM.
550		 */
551		if (id > SCTP_AUTH_HMAC_ID_MAX ||
552		    !sctp_hmac_list[id].hmac_name) {
553			id = 0;
554			continue;
555		}
556
557		break;
558	}
559
560	if (id == 0)
561		return NULL;
562
563	return &sctp_hmac_list[id];
564}
565
566static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
567{
568	int  found = 0;
569	int  i;
570
571	for (i = 0; i < n_elts; i++) {
572		if (hmac_id == hmacs[i]) {
573			found = 1;
574			break;
575		}
576	}
577
578	return found;
579}
580
581/* See if the HMAC_ID is one that we claim as supported */
582int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
583				    __be16 hmac_id)
584{
585	struct sctp_hmac_algo_param *hmacs;
586	__u16 n_elt;
587
588	if (!asoc)
589		return 0;
590
591	hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
592	n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
 
593
594	return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
595}
596
597
598/* Cache the default HMAC id.  This to follow this text from SCTP-AUTH:
599 * Section 6.1:
600 *   The receiver of a HMAC-ALGO parameter SHOULD use the first listed
601 *   algorithm it supports.
602 */
603void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
604				     struct sctp_hmac_algo_param *hmacs)
605{
606	struct sctp_endpoint *ep;
607	__u16   id;
608	int	i;
609	int	n_params;
610
611	/* if the default id is already set, use it */
612	if (asoc->default_hmac_id)
613		return;
614
615	n_params = (ntohs(hmacs->param_hdr.length)
616				- sizeof(sctp_paramhdr_t)) >> 1;
617	ep = asoc->ep;
618	for (i = 0; i < n_params; i++) {
619		id = ntohs(hmacs->hmac_ids[i]);
620
621		/* Check the id is in the supported range */
622		if (id > SCTP_AUTH_HMAC_ID_MAX)
623			continue;
624
625		/* If this TFM has been allocated, use this id */
626		if (ep->auth_hmacs[id]) {
627			asoc->default_hmac_id = id;
628			break;
629		}
630	}
631}
632
633
634/* Check to see if the given chunk is supposed to be authenticated */
635static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param)
636{
637	unsigned short len;
638	int found = 0;
639	int i;
640
641	if (!param || param->param_hdr.length == 0)
642		return 0;
643
644	len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t);
645
646	/* SCTP-AUTH, Section 3.2
647	 *    The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
648	 *    chunks MUST NOT be listed in the CHUNKS parameter.  However, if
649	 *    a CHUNKS parameter is received then the types for INIT, INIT-ACK,
650	 *    SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
651	 */
652	for (i = 0; !found && i < len; i++) {
653		switch (param->chunks[i]) {
654		case SCTP_CID_INIT:
655		case SCTP_CID_INIT_ACK:
656		case SCTP_CID_SHUTDOWN_COMPLETE:
657		case SCTP_CID_AUTH:
658			break;
659
660		default:
661			if (param->chunks[i] == chunk)
662				found = 1;
663			break;
664		}
665	}
666
667	return found;
668}
669
670/* Check if peer requested that this chunk is authenticated */
671int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
672{
673	if (!asoc)
674		return 0;
675
676	if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
677		return 0;
678
679	return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
680}
681
682/* Check if we requested that peer authenticate this chunk. */
683int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
684{
685	if (!asoc)
686		return 0;
687
688	if (!asoc->ep->auth_enable)
689		return 0;
690
691	return __sctp_auth_cid(chunk,
692			      (struct sctp_chunks_param *)asoc->c.auth_chunks);
693}
694
695/* SCTP-AUTH: Section 6.2:
696 *    The sender MUST calculate the MAC as described in RFC2104 [2] using
697 *    the hash function H as described by the MAC Identifier and the shared
698 *    association key K based on the endpoint pair shared key described by
699 *    the shared key identifier.  The 'data' used for the computation of
700 *    the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
701 *    zero (as shown in Figure 6) followed by all chunks that are placed
702 *    after the AUTH chunk in the SCTP packet.
703 */
704void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
705			      struct sk_buff *skb,
706			      struct sctp_auth_chunk *auth,
707			      gfp_t gfp)
708{
709	struct crypto_shash *tfm;
710	struct sctp_auth_bytes *asoc_key;
 
711	__u16 key_id, hmac_id;
712	__u8 *digest;
713	unsigned char *end;
714	int free_key = 0;
 
715
716	/* Extract the info we need:
717	 * - hmac id
718	 * - key id
719	 */
720	key_id = ntohs(auth->auth_hdr.shkey_id);
721	hmac_id = ntohs(auth->auth_hdr.hmac_id);
722
723	if (key_id == asoc->active_key_id)
724		asoc_key = asoc->asoc_shared_key;
725	else {
726		struct sctp_shared_key *ep_key;
727
728		ep_key = sctp_auth_get_shkey(asoc, key_id);
729		if (!ep_key)
730			return;
731
732		asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
733		if (!asoc_key)
734			return;
735
736		free_key = 1;
737	}
738
739	/* set up scatter list */
740	end = skb_tail_pointer(skb);
741
742	tfm = asoc->ep->auth_hmacs[hmac_id];
743
744	digest = auth->auth_hdr.hmac;
745	if (crypto_shash_setkey(tfm, &asoc_key->data[0], asoc_key->len))
746		goto free;
747
748	{
749		SHASH_DESC_ON_STACK(desc, tfm);
750
751		desc->tfm = tfm;
752		desc->flags = 0;
753		crypto_shash_digest(desc, (u8 *)auth,
754				    end - (unsigned char *)auth, digest);
755		shash_desc_zero(desc);
756	}
757
758free:
759	if (free_key)
760		sctp_auth_key_put(asoc_key);
761}
762
763/* API Helpers */
764
765/* Add a chunk to the endpoint authenticated chunk list */
766int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
767{
768	struct sctp_chunks_param *p = ep->auth_chunk_list;
769	__u16 nchunks;
770	__u16 param_len;
771
772	/* If this chunk is already specified, we are done */
773	if (__sctp_auth_cid(chunk_id, p))
774		return 0;
775
776	/* Check if we can add this chunk to the array */
777	param_len = ntohs(p->param_hdr.length);
778	nchunks = param_len - sizeof(sctp_paramhdr_t);
779	if (nchunks == SCTP_NUM_CHUNK_TYPES)
780		return -EINVAL;
781
782	p->chunks[nchunks] = chunk_id;
783	p->param_hdr.length = htons(param_len + 1);
784	return 0;
785}
786
787/* Add hmac identifires to the endpoint list of supported hmac ids */
788int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
789			   struct sctp_hmacalgo *hmacs)
790{
791	int has_sha1 = 0;
792	__u16 id;
793	int i;
794
795	/* Scan the list looking for unsupported id.  Also make sure that
796	 * SHA1 is specified.
797	 */
798	for (i = 0; i < hmacs->shmac_num_idents; i++) {
799		id = hmacs->shmac_idents[i];
800
801		if (id > SCTP_AUTH_HMAC_ID_MAX)
802			return -EOPNOTSUPP;
803
804		if (SCTP_AUTH_HMAC_ID_SHA1 == id)
805			has_sha1 = 1;
806
807		if (!sctp_hmac_list[id].hmac_name)
808			return -EOPNOTSUPP;
809	}
810
811	if (!has_sha1)
812		return -EINVAL;
813
814	for (i = 0; i < hmacs->shmac_num_idents; i++)
815		ep->auth_hmacs_list->hmac_ids[i] = htons(hmacs->shmac_idents[i]);
816	ep->auth_hmacs_list->param_hdr.length = htons(sizeof(sctp_paramhdr_t) +
817				hmacs->shmac_num_idents * sizeof(__u16));
 
 
818	return 0;
819}
820
821/* Set a new shared key on either endpoint or association.  If the
822 * the key with a same ID already exists, replace the key (remove the
823 * old key and add a new one).
824 */
825int sctp_auth_set_key(struct sctp_endpoint *ep,
826		      struct sctp_association *asoc,
827		      struct sctp_authkey *auth_key)
828{
829	struct sctp_shared_key *cur_key = NULL;
830	struct sctp_auth_bytes *key;
831	struct list_head *sh_keys;
832	int replace = 0;
833
834	/* Try to find the given key id to see if
835	 * we are doing a replace, or adding a new key
836	 */
837	if (asoc)
838		sh_keys = &asoc->endpoint_shared_keys;
839	else
840		sh_keys = &ep->endpoint_shared_keys;
841
842	key_for_each(cur_key, sh_keys) {
843		if (cur_key->key_id == auth_key->sca_keynumber) {
844			replace = 1;
845			break;
846		}
847	}
848
849	/* If we are not replacing a key id, we need to allocate
850	 * a shared key.
851	 */
852	if (!replace) {
853		cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber,
854						 GFP_KERNEL);
855		if (!cur_key)
856			return -ENOMEM;
857	}
858
859	/* Create a new key data based on the info passed in */
860	key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
861	if (!key)
862		goto nomem;
 
 
863
864	memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
 
865
866	/* If we are replacing, remove the old keys data from the
867	 * key id.  If we are adding new key id, add it to the
868	 * list.
869	 */
870	if (replace)
871		sctp_auth_key_put(cur_key->key);
872	else
873		list_add(&cur_key->key_list, sh_keys);
874
875	cur_key->key = key;
876	return 0;
877nomem:
878	if (!replace)
879		sctp_auth_shkey_free(cur_key);
880
881	return -ENOMEM;
882}
883
884int sctp_auth_set_active_key(struct sctp_endpoint *ep,
885			     struct sctp_association *asoc,
886			     __u16  key_id)
887{
888	struct sctp_shared_key *key;
889	struct list_head *sh_keys;
890	int found = 0;
891
892	/* The key identifier MUST correst to an existing key */
893	if (asoc)
894		sh_keys = &asoc->endpoint_shared_keys;
895	else
896		sh_keys = &ep->endpoint_shared_keys;
897
898	key_for_each(key, sh_keys) {
899		if (key->key_id == key_id) {
900			found = 1;
901			break;
902		}
903	}
904
905	if (!found)
906		return -EINVAL;
907
908	if (asoc) {
909		asoc->active_key_id = key_id;
910		sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
911	} else
912		ep->active_key_id = key_id;
913
914	return 0;
915}
916
917int sctp_auth_del_key_id(struct sctp_endpoint *ep,
918			 struct sctp_association *asoc,
919			 __u16  key_id)
920{
921	struct sctp_shared_key *key;
922	struct list_head *sh_keys;
923	int found = 0;
924
925	/* The key identifier MUST NOT be the current active key
926	 * The key identifier MUST correst to an existing key
927	 */
928	if (asoc) {
929		if (asoc->active_key_id == key_id)
930			return -EINVAL;
931
932		sh_keys = &asoc->endpoint_shared_keys;
933	} else {
934		if (ep->active_key_id == key_id)
935			return -EINVAL;
936
937		sh_keys = &ep->endpoint_shared_keys;
938	}
939
940	key_for_each(key, sh_keys) {
941		if (key->key_id == key_id) {
942			found = 1;
943			break;
944		}
945	}
946
947	if (!found)
948		return -EINVAL;
949
950	/* Delete the shared key */
951	list_del_init(&key->key_list);
952	sctp_auth_shkey_free(key);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
953
954	return 0;
955}
v4.17
   1/* SCTP kernel implementation
   2 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
   3 *
   4 * This file is part of the SCTP kernel implementation
   5 *
   6 * This SCTP implementation is free software;
   7 * you can redistribute it and/or modify it under the terms of
   8 * the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2, or (at your option)
  10 * any later version.
  11 *
  12 * This SCTP implementation is distributed in the hope that it
  13 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
  14 *                 ************************
  15 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  16 * See the GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with GNU CC; see the file COPYING.  If not, see
  20 * <http://www.gnu.org/licenses/>.
  21 *
  22 * Please send any bug reports or fixes you make to the
  23 * email address(es):
  24 *    lksctp developers <linux-sctp@vger.kernel.org>
  25 *
  26 * Written or modified by:
  27 *   Vlad Yasevich     <vladislav.yasevich@hp.com>
  28 */
  29
  30#include <crypto/hash.h>
  31#include <linux/slab.h>
  32#include <linux/types.h>
  33#include <linux/scatterlist.h>
  34#include <net/sctp/sctp.h>
  35#include <net/sctp/auth.h>
  36
  37static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
  38	{
  39		/* id 0 is reserved.  as all 0 */
  40		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
  41	},
  42	{
  43		.hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
  44		.hmac_name = "hmac(sha1)",
  45		.hmac_len = SCTP_SHA1_SIG_SIZE,
  46	},
  47	{
  48		/* id 2 is reserved as well */
  49		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
  50	},
  51#if IS_ENABLED(CONFIG_CRYPTO_SHA256)
  52	{
  53		.hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
  54		.hmac_name = "hmac(sha256)",
  55		.hmac_len = SCTP_SHA256_SIG_SIZE,
  56	}
  57#endif
  58};
  59
  60
  61void sctp_auth_key_put(struct sctp_auth_bytes *key)
  62{
  63	if (!key)
  64		return;
  65
  66	if (refcount_dec_and_test(&key->refcnt)) {
  67		kzfree(key);
  68		SCTP_DBG_OBJCNT_DEC(keys);
  69	}
  70}
  71
  72/* Create a new key structure of a given length */
  73static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
  74{
  75	struct sctp_auth_bytes *key;
  76
  77	/* Verify that we are not going to overflow INT_MAX */
  78	if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes)))
  79		return NULL;
  80
  81	/* Allocate the shared key */
  82	key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
  83	if (!key)
  84		return NULL;
  85
  86	key->len = key_len;
  87	refcount_set(&key->refcnt, 1);
  88	SCTP_DBG_OBJCNT_INC(keys);
  89
  90	return key;
  91}
  92
  93/* Create a new shared key container with a give key id */
  94struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
  95{
  96	struct sctp_shared_key *new;
  97
  98	/* Allocate the shared key container */
  99	new = kzalloc(sizeof(struct sctp_shared_key), gfp);
 100	if (!new)
 101		return NULL;
 102
 103	INIT_LIST_HEAD(&new->key_list);
 104	refcount_set(&new->refcnt, 1);
 105	new->key_id = key_id;
 106
 107	return new;
 108}
 109
 110/* Free the shared key structure */
 111static void sctp_auth_shkey_destroy(struct sctp_shared_key *sh_key)
 112{
 113	BUG_ON(!list_empty(&sh_key->key_list));
 114	sctp_auth_key_put(sh_key->key);
 115	sh_key->key = NULL;
 116	kfree(sh_key);
 117}
 118
 119void sctp_auth_shkey_release(struct sctp_shared_key *sh_key)
 120{
 121	if (refcount_dec_and_test(&sh_key->refcnt))
 122		sctp_auth_shkey_destroy(sh_key);
 123}
 124
 125void sctp_auth_shkey_hold(struct sctp_shared_key *sh_key)
 126{
 127	refcount_inc(&sh_key->refcnt);
 128}
 129
 130/* Destroy the entire key list.  This is done during the
 131 * associon and endpoint free process.
 132 */
 133void sctp_auth_destroy_keys(struct list_head *keys)
 134{
 135	struct sctp_shared_key *ep_key;
 136	struct sctp_shared_key *tmp;
 137
 138	if (list_empty(keys))
 139		return;
 140
 141	key_for_each_safe(ep_key, tmp, keys) {
 142		list_del_init(&ep_key->key_list);
 143		sctp_auth_shkey_release(ep_key);
 144	}
 145}
 146
 147/* Compare two byte vectors as numbers.  Return values
 148 * are:
 149 * 	  0 - vectors are equal
 150 * 	< 0 - vector 1 is smaller than vector2
 151 * 	> 0 - vector 1 is greater than vector2
 152 *
 153 * Algorithm is:
 154 * 	This is performed by selecting the numerically smaller key vector...
 155 *	If the key vectors are equal as numbers but differ in length ...
 156 *	the shorter vector is considered smaller
 157 *
 158 * Examples (with small values):
 159 * 	000123456789 > 123456789 (first number is longer)
 160 * 	000123456789 < 234567891 (second number is larger numerically)
 161 * 	123456789 > 2345678 	 (first number is both larger & longer)
 162 */
 163static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
 164			      struct sctp_auth_bytes *vector2)
 165{
 166	int diff;
 167	int i;
 168	const __u8 *longer;
 169
 170	diff = vector1->len - vector2->len;
 171	if (diff) {
 172		longer = (diff > 0) ? vector1->data : vector2->data;
 173
 174		/* Check to see if the longer number is
 175		 * lead-zero padded.  If it is not, it
 176		 * is automatically larger numerically.
 177		 */
 178		for (i = 0; i < abs(diff); i++) {
 179			if (longer[i] != 0)
 180				return diff;
 181		}
 182	}
 183
 184	/* lengths are the same, compare numbers */
 185	return memcmp(vector1->data, vector2->data, vector1->len);
 186}
 187
 188/*
 189 * Create a key vector as described in SCTP-AUTH, Section 6.1
 190 *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
 191 *    parameter sent by each endpoint are concatenated as byte vectors.
 192 *    These parameters include the parameter type, parameter length, and
 193 *    the parameter value, but padding is omitted; all padding MUST be
 194 *    removed from this concatenation before proceeding with further
 195 *    computation of keys.  Parameters which were not sent are simply
 196 *    omitted from the concatenation process.  The resulting two vectors
 197 *    are called the two key vectors.
 198 */
 199static struct sctp_auth_bytes *sctp_auth_make_key_vector(
 200			struct sctp_random_param *random,
 201			struct sctp_chunks_param *chunks,
 202			struct sctp_hmac_algo_param *hmacs,
 203			gfp_t gfp)
 204{
 205	struct sctp_auth_bytes *new;
 206	__u32	len;
 207	__u32	offset = 0;
 208	__u16	random_len, hmacs_len, chunks_len = 0;
 209
 210	random_len = ntohs(random->param_hdr.length);
 211	hmacs_len = ntohs(hmacs->param_hdr.length);
 212	if (chunks)
 213		chunks_len = ntohs(chunks->param_hdr.length);
 214
 215	len = random_len + hmacs_len + chunks_len;
 216
 217	new = sctp_auth_create_key(len, gfp);
 218	if (!new)
 219		return NULL;
 220
 221	memcpy(new->data, random, random_len);
 222	offset += random_len;
 223
 224	if (chunks) {
 225		memcpy(new->data + offset, chunks, chunks_len);
 226		offset += chunks_len;
 227	}
 228
 229	memcpy(new->data + offset, hmacs, hmacs_len);
 230
 231	return new;
 232}
 233
 234
 235/* Make a key vector based on our local parameters */
 236static struct sctp_auth_bytes *sctp_auth_make_local_vector(
 237				    const struct sctp_association *asoc,
 238				    gfp_t gfp)
 239{
 240	return sctp_auth_make_key_vector(
 241			(struct sctp_random_param *)asoc->c.auth_random,
 242			(struct sctp_chunks_param *)asoc->c.auth_chunks,
 243			(struct sctp_hmac_algo_param *)asoc->c.auth_hmacs, gfp);
 
 244}
 245
 246/* Make a key vector based on peer's parameters */
 247static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
 248				    const struct sctp_association *asoc,
 249				    gfp_t gfp)
 250{
 251	return sctp_auth_make_key_vector(asoc->peer.peer_random,
 252					 asoc->peer.peer_chunks,
 253					 asoc->peer.peer_hmacs,
 254					 gfp);
 255}
 256
 257
 258/* Set the value of the association shared key base on the parameters
 259 * given.  The algorithm is:
 260 *    From the endpoint pair shared keys and the key vectors the
 261 *    association shared keys are computed.  This is performed by selecting
 262 *    the numerically smaller key vector and concatenating it to the
 263 *    endpoint pair shared key, and then concatenating the numerically
 264 *    larger key vector to that.  The result of the concatenation is the
 265 *    association shared key.
 266 */
 267static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
 268			struct sctp_shared_key *ep_key,
 269			struct sctp_auth_bytes *first_vector,
 270			struct sctp_auth_bytes *last_vector,
 271			gfp_t gfp)
 272{
 273	struct sctp_auth_bytes *secret;
 274	__u32 offset = 0;
 275	__u32 auth_len;
 276
 277	auth_len = first_vector->len + last_vector->len;
 278	if (ep_key->key)
 279		auth_len += ep_key->key->len;
 280
 281	secret = sctp_auth_create_key(auth_len, gfp);
 282	if (!secret)
 283		return NULL;
 284
 285	if (ep_key->key) {
 286		memcpy(secret->data, ep_key->key->data, ep_key->key->len);
 287		offset += ep_key->key->len;
 288	}
 289
 290	memcpy(secret->data + offset, first_vector->data, first_vector->len);
 291	offset += first_vector->len;
 292
 293	memcpy(secret->data + offset, last_vector->data, last_vector->len);
 294
 295	return secret;
 296}
 297
 298/* Create an association shared key.  Follow the algorithm
 299 * described in SCTP-AUTH, Section 6.1
 300 */
 301static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
 302				 const struct sctp_association *asoc,
 303				 struct sctp_shared_key *ep_key,
 304				 gfp_t gfp)
 305{
 306	struct sctp_auth_bytes *local_key_vector;
 307	struct sctp_auth_bytes *peer_key_vector;
 308	struct sctp_auth_bytes	*first_vector,
 309				*last_vector;
 310	struct sctp_auth_bytes	*secret = NULL;
 311	int	cmp;
 312
 313
 314	/* Now we need to build the key vectors
 315	 * SCTP-AUTH , Section 6.1
 316	 *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
 317	 *    parameter sent by each endpoint are concatenated as byte vectors.
 318	 *    These parameters include the parameter type, parameter length, and
 319	 *    the parameter value, but padding is omitted; all padding MUST be
 320	 *    removed from this concatenation before proceeding with further
 321	 *    computation of keys.  Parameters which were not sent are simply
 322	 *    omitted from the concatenation process.  The resulting two vectors
 323	 *    are called the two key vectors.
 324	 */
 325
 326	local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
 327	peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
 328
 329	if (!peer_key_vector || !local_key_vector)
 330		goto out;
 331
 332	/* Figure out the order in which the key_vectors will be
 333	 * added to the endpoint shared key.
 334	 * SCTP-AUTH, Section 6.1:
 335	 *   This is performed by selecting the numerically smaller key
 336	 *   vector and concatenating it to the endpoint pair shared
 337	 *   key, and then concatenating the numerically larger key
 338	 *   vector to that.  If the key vectors are equal as numbers
 339	 *   but differ in length, then the concatenation order is the
 340	 *   endpoint shared key, followed by the shorter key vector,
 341	 *   followed by the longer key vector.  Otherwise, the key
 342	 *   vectors are identical, and may be concatenated to the
 343	 *   endpoint pair key in any order.
 344	 */
 345	cmp = sctp_auth_compare_vectors(local_key_vector,
 346					peer_key_vector);
 347	if (cmp < 0) {
 348		first_vector = local_key_vector;
 349		last_vector = peer_key_vector;
 350	} else {
 351		first_vector = peer_key_vector;
 352		last_vector = local_key_vector;
 353	}
 354
 355	secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
 356					    gfp);
 357out:
 358	sctp_auth_key_put(local_key_vector);
 359	sctp_auth_key_put(peer_key_vector);
 360
 361	return secret;
 362}
 363
 364/*
 365 * Populate the association overlay list with the list
 366 * from the endpoint.
 367 */
 368int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
 369				struct sctp_association *asoc,
 370				gfp_t gfp)
 371{
 372	struct sctp_shared_key *sh_key;
 373	struct sctp_shared_key *new;
 374
 375	BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
 376
 377	key_for_each(sh_key, &ep->endpoint_shared_keys) {
 378		new = sctp_auth_shkey_create(sh_key->key_id, gfp);
 379		if (!new)
 380			goto nomem;
 381
 382		new->key = sh_key->key;
 383		sctp_auth_key_hold(new->key);
 384		list_add(&new->key_list, &asoc->endpoint_shared_keys);
 385	}
 386
 387	return 0;
 388
 389nomem:
 390	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
 391	return -ENOMEM;
 392}
 393
 394
 395/* Public interface to create the association shared key.
 396 * See code above for the algorithm.
 397 */
 398int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
 399{
 400	struct sctp_auth_bytes	*secret;
 401	struct sctp_shared_key *ep_key;
 402	struct sctp_chunk *chunk;
 403
 404	/* If we don't support AUTH, or peer is not capable
 405	 * we don't need to do anything.
 406	 */
 407	if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
 408		return 0;
 409
 410	/* If the key_id is non-zero and we couldn't find an
 411	 * endpoint pair shared key, we can't compute the
 412	 * secret.
 413	 * For key_id 0, endpoint pair shared key is a NULL key.
 414	 */
 415	ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
 416	BUG_ON(!ep_key);
 417
 418	secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
 419	if (!secret)
 420		return -ENOMEM;
 421
 422	sctp_auth_key_put(asoc->asoc_shared_key);
 423	asoc->asoc_shared_key = secret;
 424	asoc->shkey = ep_key;
 425
 426	/* Update send queue in case any chunk already in there now
 427	 * needs authenticating
 428	 */
 429	list_for_each_entry(chunk, &asoc->outqueue.out_chunk_list, list) {
 430		if (sctp_auth_send_cid(chunk->chunk_hdr->type, asoc)) {
 431			chunk->auth = 1;
 432			if (!chunk->shkey) {
 433				chunk->shkey = asoc->shkey;
 434				sctp_auth_shkey_hold(chunk->shkey);
 435			}
 436		}
 437	}
 438
 439	return 0;
 440}
 441
 442
 443/* Find the endpoint pair shared key based on the key_id */
 444struct sctp_shared_key *sctp_auth_get_shkey(
 445				const struct sctp_association *asoc,
 446				__u16 key_id)
 447{
 448	struct sctp_shared_key *key;
 449
 450	/* First search associations set of endpoint pair shared keys */
 451	key_for_each(key, &asoc->endpoint_shared_keys) {
 452		if (key->key_id == key_id) {
 453			if (!key->deactivated)
 454				return key;
 455			break;
 456		}
 457	}
 458
 459	return NULL;
 460}
 461
 462/*
 463 * Initialize all the possible digest transforms that we can use.  Right now
 464 * now, the supported digests are SHA1 and SHA256.  We do this here once
 465 * because of the restrictiong that transforms may only be allocated in
 466 * user context.  This forces us to pre-allocated all possible transforms
 467 * at the endpoint init time.
 468 */
 469int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
 470{
 471	struct crypto_shash *tfm = NULL;
 472	__u16   id;
 473
 474	/* If AUTH extension is disabled, we are done */
 475	if (!ep->auth_enable) {
 476		ep->auth_hmacs = NULL;
 477		return 0;
 478	}
 479
 480	/* If the transforms are already allocated, we are done */
 481	if (ep->auth_hmacs)
 482		return 0;
 483
 484	/* Allocated the array of pointers to transorms */
 485	ep->auth_hmacs = kzalloc(sizeof(struct crypto_shash *) *
 486				 SCTP_AUTH_NUM_HMACS, gfp);
 487	if (!ep->auth_hmacs)
 488		return -ENOMEM;
 489
 490	for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
 491
 492		/* See is we support the id.  Supported IDs have name and
 493		 * length fields set, so that we can allocated and use
 494		 * them.  We can safely just check for name, for without the
 495		 * name, we can't allocate the TFM.
 496		 */
 497		if (!sctp_hmac_list[id].hmac_name)
 498			continue;
 499
 500		/* If this TFM has been allocated, we are all set */
 501		if (ep->auth_hmacs[id])
 502			continue;
 503
 504		/* Allocate the ID */
 505		tfm = crypto_alloc_shash(sctp_hmac_list[id].hmac_name, 0, 0);
 506		if (IS_ERR(tfm))
 507			goto out_err;
 508
 509		ep->auth_hmacs[id] = tfm;
 510	}
 511
 512	return 0;
 513
 514out_err:
 515	/* Clean up any successful allocations */
 516	sctp_auth_destroy_hmacs(ep->auth_hmacs);
 517	return -ENOMEM;
 518}
 519
 520/* Destroy the hmac tfm array */
 521void sctp_auth_destroy_hmacs(struct crypto_shash *auth_hmacs[])
 522{
 523	int i;
 524
 525	if (!auth_hmacs)
 526		return;
 527
 528	for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++) {
 529		crypto_free_shash(auth_hmacs[i]);
 530	}
 531	kfree(auth_hmacs);
 532}
 533
 534
 535struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
 536{
 537	return &sctp_hmac_list[hmac_id];
 538}
 539
 540/* Get an hmac description information that we can use to build
 541 * the AUTH chunk
 542 */
 543struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
 544{
 545	struct sctp_hmac_algo_param *hmacs;
 546	__u16 n_elt;
 547	__u16 id = 0;
 548	int i;
 549
 550	/* If we have a default entry, use it */
 551	if (asoc->default_hmac_id)
 552		return &sctp_hmac_list[asoc->default_hmac_id];
 553
 554	/* Since we do not have a default entry, find the first entry
 555	 * we support and return that.  Do not cache that id.
 556	 */
 557	hmacs = asoc->peer.peer_hmacs;
 558	if (!hmacs)
 559		return NULL;
 560
 561	n_elt = (ntohs(hmacs->param_hdr.length) -
 562		 sizeof(struct sctp_paramhdr)) >> 1;
 563	for (i = 0; i < n_elt; i++) {
 564		id = ntohs(hmacs->hmac_ids[i]);
 565
 566		/* Check the id is in the supported range. And
 567		 * see if we support the id.  Supported IDs have name and
 568		 * length fields set, so that we can allocate and use
 569		 * them.  We can safely just check for name, for without the
 570		 * name, we can't allocate the TFM.
 571		 */
 572		if (id > SCTP_AUTH_HMAC_ID_MAX ||
 573		    !sctp_hmac_list[id].hmac_name) {
 574			id = 0;
 575			continue;
 576		}
 577
 578		break;
 579	}
 580
 581	if (id == 0)
 582		return NULL;
 583
 584	return &sctp_hmac_list[id];
 585}
 586
 587static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
 588{
 589	int  found = 0;
 590	int  i;
 591
 592	for (i = 0; i < n_elts; i++) {
 593		if (hmac_id == hmacs[i]) {
 594			found = 1;
 595			break;
 596		}
 597	}
 598
 599	return found;
 600}
 601
 602/* See if the HMAC_ID is one that we claim as supported */
 603int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
 604				    __be16 hmac_id)
 605{
 606	struct sctp_hmac_algo_param *hmacs;
 607	__u16 n_elt;
 608
 609	if (!asoc)
 610		return 0;
 611
 612	hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
 613	n_elt = (ntohs(hmacs->param_hdr.length) -
 614		 sizeof(struct sctp_paramhdr)) >> 1;
 615
 616	return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
 617}
 618
 619
 620/* Cache the default HMAC id.  This to follow this text from SCTP-AUTH:
 621 * Section 6.1:
 622 *   The receiver of a HMAC-ALGO parameter SHOULD use the first listed
 623 *   algorithm it supports.
 624 */
 625void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
 626				     struct sctp_hmac_algo_param *hmacs)
 627{
 628	struct sctp_endpoint *ep;
 629	__u16   id;
 630	int	i;
 631	int	n_params;
 632
 633	/* if the default id is already set, use it */
 634	if (asoc->default_hmac_id)
 635		return;
 636
 637	n_params = (ntohs(hmacs->param_hdr.length) -
 638		    sizeof(struct sctp_paramhdr)) >> 1;
 639	ep = asoc->ep;
 640	for (i = 0; i < n_params; i++) {
 641		id = ntohs(hmacs->hmac_ids[i]);
 642
 643		/* Check the id is in the supported range */
 644		if (id > SCTP_AUTH_HMAC_ID_MAX)
 645			continue;
 646
 647		/* If this TFM has been allocated, use this id */
 648		if (ep->auth_hmacs[id]) {
 649			asoc->default_hmac_id = id;
 650			break;
 651		}
 652	}
 653}
 654
 655
 656/* Check to see if the given chunk is supposed to be authenticated */
 657static int __sctp_auth_cid(enum sctp_cid chunk, struct sctp_chunks_param *param)
 658{
 659	unsigned short len;
 660	int found = 0;
 661	int i;
 662
 663	if (!param || param->param_hdr.length == 0)
 664		return 0;
 665
 666	len = ntohs(param->param_hdr.length) - sizeof(struct sctp_paramhdr);
 667
 668	/* SCTP-AUTH, Section 3.2
 669	 *    The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
 670	 *    chunks MUST NOT be listed in the CHUNKS parameter.  However, if
 671	 *    a CHUNKS parameter is received then the types for INIT, INIT-ACK,
 672	 *    SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
 673	 */
 674	for (i = 0; !found && i < len; i++) {
 675		switch (param->chunks[i]) {
 676		case SCTP_CID_INIT:
 677		case SCTP_CID_INIT_ACK:
 678		case SCTP_CID_SHUTDOWN_COMPLETE:
 679		case SCTP_CID_AUTH:
 680			break;
 681
 682		default:
 683			if (param->chunks[i] == chunk)
 684				found = 1;
 685			break;
 686		}
 687	}
 688
 689	return found;
 690}
 691
 692/* Check if peer requested that this chunk is authenticated */
 693int sctp_auth_send_cid(enum sctp_cid chunk, const struct sctp_association *asoc)
 694{
 695	if (!asoc)
 696		return 0;
 697
 698	if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
 699		return 0;
 700
 701	return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
 702}
 703
 704/* Check if we requested that peer authenticate this chunk. */
 705int sctp_auth_recv_cid(enum sctp_cid chunk, const struct sctp_association *asoc)
 706{
 707	if (!asoc)
 708		return 0;
 709
 710	if (!asoc->ep->auth_enable)
 711		return 0;
 712
 713	return __sctp_auth_cid(chunk,
 714			      (struct sctp_chunks_param *)asoc->c.auth_chunks);
 715}
 716
 717/* SCTP-AUTH: Section 6.2:
 718 *    The sender MUST calculate the MAC as described in RFC2104 [2] using
 719 *    the hash function H as described by the MAC Identifier and the shared
 720 *    association key K based on the endpoint pair shared key described by
 721 *    the shared key identifier.  The 'data' used for the computation of
 722 *    the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
 723 *    zero (as shown in Figure 6) followed by all chunks that are placed
 724 *    after the AUTH chunk in the SCTP packet.
 725 */
 726void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
 727			      struct sk_buff *skb, struct sctp_auth_chunk *auth,
 728			      struct sctp_shared_key *ep_key, gfp_t gfp)
 
 729{
 
 730	struct sctp_auth_bytes *asoc_key;
 731	struct crypto_shash *tfm;
 732	__u16 key_id, hmac_id;
 
 733	unsigned char *end;
 734	int free_key = 0;
 735	__u8 *digest;
 736
 737	/* Extract the info we need:
 738	 * - hmac id
 739	 * - key id
 740	 */
 741	key_id = ntohs(auth->auth_hdr.shkey_id);
 742	hmac_id = ntohs(auth->auth_hdr.hmac_id);
 743
 744	if (key_id == asoc->active_key_id)
 745		asoc_key = asoc->asoc_shared_key;
 746	else {
 747		/* ep_key can't be NULL here */
 
 
 
 
 
 748		asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
 749		if (!asoc_key)
 750			return;
 751
 752		free_key = 1;
 753	}
 754
 755	/* set up scatter list */
 756	end = skb_tail_pointer(skb);
 757
 758	tfm = asoc->ep->auth_hmacs[hmac_id];
 759
 760	digest = auth->auth_hdr.hmac;
 761	if (crypto_shash_setkey(tfm, &asoc_key->data[0], asoc_key->len))
 762		goto free;
 763
 764	{
 765		SHASH_DESC_ON_STACK(desc, tfm);
 766
 767		desc->tfm = tfm;
 768		desc->flags = 0;
 769		crypto_shash_digest(desc, (u8 *)auth,
 770				    end - (unsigned char *)auth, digest);
 771		shash_desc_zero(desc);
 772	}
 773
 774free:
 775	if (free_key)
 776		sctp_auth_key_put(asoc_key);
 777}
 778
 779/* API Helpers */
 780
 781/* Add a chunk to the endpoint authenticated chunk list */
 782int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
 783{
 784	struct sctp_chunks_param *p = ep->auth_chunk_list;
 785	__u16 nchunks;
 786	__u16 param_len;
 787
 788	/* If this chunk is already specified, we are done */
 789	if (__sctp_auth_cid(chunk_id, p))
 790		return 0;
 791
 792	/* Check if we can add this chunk to the array */
 793	param_len = ntohs(p->param_hdr.length);
 794	nchunks = param_len - sizeof(struct sctp_paramhdr);
 795	if (nchunks == SCTP_NUM_CHUNK_TYPES)
 796		return -EINVAL;
 797
 798	p->chunks[nchunks] = chunk_id;
 799	p->param_hdr.length = htons(param_len + 1);
 800	return 0;
 801}
 802
 803/* Add hmac identifires to the endpoint list of supported hmac ids */
 804int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
 805			   struct sctp_hmacalgo *hmacs)
 806{
 807	int has_sha1 = 0;
 808	__u16 id;
 809	int i;
 810
 811	/* Scan the list looking for unsupported id.  Also make sure that
 812	 * SHA1 is specified.
 813	 */
 814	for (i = 0; i < hmacs->shmac_num_idents; i++) {
 815		id = hmacs->shmac_idents[i];
 816
 817		if (id > SCTP_AUTH_HMAC_ID_MAX)
 818			return -EOPNOTSUPP;
 819
 820		if (SCTP_AUTH_HMAC_ID_SHA1 == id)
 821			has_sha1 = 1;
 822
 823		if (!sctp_hmac_list[id].hmac_name)
 824			return -EOPNOTSUPP;
 825	}
 826
 827	if (!has_sha1)
 828		return -EINVAL;
 829
 830	for (i = 0; i < hmacs->shmac_num_idents; i++)
 831		ep->auth_hmacs_list->hmac_ids[i] =
 832				htons(hmacs->shmac_idents[i]);
 833	ep->auth_hmacs_list->param_hdr.length =
 834			htons(sizeof(struct sctp_paramhdr) +
 835			hmacs->shmac_num_idents * sizeof(__u16));
 836	return 0;
 837}
 838
 839/* Set a new shared key on either endpoint or association.  If the
 840 * the key with a same ID already exists, replace the key (remove the
 841 * old key and add a new one).
 842 */
 843int sctp_auth_set_key(struct sctp_endpoint *ep,
 844		      struct sctp_association *asoc,
 845		      struct sctp_authkey *auth_key)
 846{
 847	struct sctp_shared_key *cur_key, *shkey;
 848	struct sctp_auth_bytes *key;
 849	struct list_head *sh_keys;
 850	int replace = 0;
 851
 852	/* Try to find the given key id to see if
 853	 * we are doing a replace, or adding a new key
 854	 */
 855	if (asoc)
 856		sh_keys = &asoc->endpoint_shared_keys;
 857	else
 858		sh_keys = &ep->endpoint_shared_keys;
 859
 860	key_for_each(shkey, sh_keys) {
 861		if (shkey->key_id == auth_key->sca_keynumber) {
 862			replace = 1;
 863			break;
 864		}
 865	}
 866
 867	cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber, GFP_KERNEL);
 868	if (!cur_key)
 869		return -ENOMEM;
 
 
 
 
 
 
 870
 871	/* Create a new key data based on the info passed in */
 872	key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
 873	if (!key) {
 874		kfree(cur_key);
 875		return -ENOMEM;
 876	}
 877
 878	memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
 879	cur_key->key = key;
 880
 881	if (replace) {
 882		list_del_init(&shkey->key_list);
 883		sctp_auth_shkey_release(shkey);
 884	}
 885	list_add(&cur_key->key_list, sh_keys);
 
 
 
 886
 
 887	return 0;
 
 
 
 
 
 888}
 889
 890int sctp_auth_set_active_key(struct sctp_endpoint *ep,
 891			     struct sctp_association *asoc,
 892			     __u16  key_id)
 893{
 894	struct sctp_shared_key *key;
 895	struct list_head *sh_keys;
 896	int found = 0;
 897
 898	/* The key identifier MUST correst to an existing key */
 899	if (asoc)
 900		sh_keys = &asoc->endpoint_shared_keys;
 901	else
 902		sh_keys = &ep->endpoint_shared_keys;
 903
 904	key_for_each(key, sh_keys) {
 905		if (key->key_id == key_id) {
 906			found = 1;
 907			break;
 908		}
 909	}
 910
 911	if (!found || key->deactivated)
 912		return -EINVAL;
 913
 914	if (asoc) {
 915		asoc->active_key_id = key_id;
 916		sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
 917	} else
 918		ep->active_key_id = key_id;
 919
 920	return 0;
 921}
 922
 923int sctp_auth_del_key_id(struct sctp_endpoint *ep,
 924			 struct sctp_association *asoc,
 925			 __u16  key_id)
 926{
 927	struct sctp_shared_key *key;
 928	struct list_head *sh_keys;
 929	int found = 0;
 930
 931	/* The key identifier MUST NOT be the current active key
 932	 * The key identifier MUST correst to an existing key
 933	 */
 934	if (asoc) {
 935		if (asoc->active_key_id == key_id)
 936			return -EINVAL;
 937
 938		sh_keys = &asoc->endpoint_shared_keys;
 939	} else {
 940		if (ep->active_key_id == key_id)
 941			return -EINVAL;
 942
 943		sh_keys = &ep->endpoint_shared_keys;
 944	}
 945
 946	key_for_each(key, sh_keys) {
 947		if (key->key_id == key_id) {
 948			found = 1;
 949			break;
 950		}
 951	}
 952
 953	if (!found)
 954		return -EINVAL;
 955
 956	/* Delete the shared key */
 957	list_del_init(&key->key_list);
 958	sctp_auth_shkey_release(key);
 959
 960	return 0;
 961}
 962
 963int sctp_auth_deact_key_id(struct sctp_endpoint *ep,
 964			   struct sctp_association *asoc, __u16  key_id)
 965{
 966	struct sctp_shared_key *key;
 967	struct list_head *sh_keys;
 968	int found = 0;
 969
 970	/* The key identifier MUST NOT be the current active key
 971	 * The key identifier MUST correst to an existing key
 972	 */
 973	if (asoc) {
 974		if (asoc->active_key_id == key_id)
 975			return -EINVAL;
 976
 977		sh_keys = &asoc->endpoint_shared_keys;
 978	} else {
 979		if (ep->active_key_id == key_id)
 980			return -EINVAL;
 981
 982		sh_keys = &ep->endpoint_shared_keys;
 983	}
 984
 985	key_for_each(key, sh_keys) {
 986		if (key->key_id == key_id) {
 987			found = 1;
 988			break;
 989		}
 990	}
 991
 992	if (!found)
 993		return -EINVAL;
 994
 995	/* refcnt == 1 and !list_empty mean it's not being used anywhere
 996	 * and deactivated will be set, so it's time to notify userland
 997	 * that this shkey can be freed.
 998	 */
 999	if (asoc && !list_empty(&key->key_list) &&
1000	    refcount_read(&key->refcnt) == 1) {
1001		struct sctp_ulpevent *ev;
1002
1003		ev = sctp_ulpevent_make_authkey(asoc, key->key_id,
1004						SCTP_AUTH_FREE_KEY, GFP_KERNEL);
1005		if (ev)
1006			asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
1007	}
1008
1009	key->deactivated = 1;
1010
1011	return 0;
1012}