Linux Audio

Check our new training course

Loading...
v4.10.11
  1/*
  2 * Alarmtimer interface
  3 *
  4 * This interface provides a timer which is similarto hrtimers,
  5 * but triggers a RTC alarm if the box is suspend.
  6 *
  7 * This interface is influenced by the Android RTC Alarm timer
  8 * interface.
  9 *
 10 * Copyright (C) 2010 IBM Corperation
 11 *
 12 * Author: John Stultz <john.stultz@linaro.org>
 13 *
 14 * This program is free software; you can redistribute it and/or modify
 15 * it under the terms of the GNU General Public License version 2 as
 16 * published by the Free Software Foundation.
 17 */
 18#include <linux/time.h>
 19#include <linux/hrtimer.h>
 20#include <linux/timerqueue.h>
 21#include <linux/rtc.h>
 
 
 22#include <linux/alarmtimer.h>
 23#include <linux/mutex.h>
 24#include <linux/platform_device.h>
 25#include <linux/posix-timers.h>
 26#include <linux/workqueue.h>
 27#include <linux/freezer.h>
 
 
 
 
 28
 29#define CREATE_TRACE_POINTS
 30#include <trace/events/alarmtimer.h>
 31
 32/**
 33 * struct alarm_base - Alarm timer bases
 34 * @lock:		Lock for syncrhonized access to the base
 35 * @timerqueue:		Timerqueue head managing the list of events
 36 * @gettime:		Function to read the time correlating to the base
 37 * @base_clockid:	clockid for the base
 38 */
 39static struct alarm_base {
 40	spinlock_t		lock;
 41	struct timerqueue_head	timerqueue;
 42	ktime_t			(*gettime)(void);
 43	clockid_t		base_clockid;
 44} alarm_bases[ALARM_NUMTYPE];
 45
 
 46/* freezer information to handle clock_nanosleep triggered wakeups */
 47static enum alarmtimer_type freezer_alarmtype;
 48static ktime_t freezer_expires;
 49static ktime_t freezer_delta;
 50static DEFINE_SPINLOCK(freezer_delta_lock);
 
 51
 
 52static struct wakeup_source *ws;
 53
 54#ifdef CONFIG_RTC_CLASS
 55/* rtc timer and device for setting alarm wakeups at suspend */
 56static struct rtc_timer		rtctimer;
 57static struct rtc_device	*rtcdev;
 58static DEFINE_SPINLOCK(rtcdev_lock);
 59
 60/**
 61 * alarmtimer_get_rtcdev - Return selected rtcdevice
 62 *
 63 * This function returns the rtc device to use for wakealarms.
 64 * If one has not already been chosen, it checks to see if a
 65 * functional rtc device is available.
 66 */
 67struct rtc_device *alarmtimer_get_rtcdev(void)
 68{
 69	unsigned long flags;
 70	struct rtc_device *ret;
 71
 72	spin_lock_irqsave(&rtcdev_lock, flags);
 73	ret = rtcdev;
 74	spin_unlock_irqrestore(&rtcdev_lock, flags);
 75
 76	return ret;
 77}
 78EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
 79
 80static int alarmtimer_rtc_add_device(struct device *dev,
 81				struct class_interface *class_intf)
 82{
 83	unsigned long flags;
 84	struct rtc_device *rtc = to_rtc_device(dev);
 
 85
 86	if (rtcdev)
 87		return -EBUSY;
 88
 89	if (!rtc->ops->set_alarm)
 90		return -1;
 91	if (!device_may_wakeup(rtc->dev.parent))
 92		return -1;
 93
 
 
 94	spin_lock_irqsave(&rtcdev_lock, flags);
 95	if (!rtcdev) {
 
 
 
 
 
 96		rtcdev = rtc;
 97		/* hold a reference so it doesn't go away */
 98		get_device(dev);
 
 
 99	}
100	spin_unlock_irqrestore(&rtcdev_lock, flags);
 
 
 
101	return 0;
102}
103
104static inline void alarmtimer_rtc_timer_init(void)
105{
106	rtc_timer_init(&rtctimer, NULL, NULL);
107}
108
109static struct class_interface alarmtimer_rtc_interface = {
110	.add_dev = &alarmtimer_rtc_add_device,
111};
112
113static int alarmtimer_rtc_interface_setup(void)
114{
115	alarmtimer_rtc_interface.class = rtc_class;
116	return class_interface_register(&alarmtimer_rtc_interface);
117}
118static void alarmtimer_rtc_interface_remove(void)
119{
120	class_interface_unregister(&alarmtimer_rtc_interface);
121}
122#else
123struct rtc_device *alarmtimer_get_rtcdev(void)
124{
125	return NULL;
126}
127#define rtcdev (NULL)
128static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
129static inline void alarmtimer_rtc_interface_remove(void) { }
130static inline void alarmtimer_rtc_timer_init(void) { }
131#endif
132
133/**
134 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
135 * @base: pointer to the base where the timer is being run
136 * @alarm: pointer to alarm being enqueued.
137 *
138 * Adds alarm to a alarm_base timerqueue
139 *
140 * Must hold base->lock when calling.
141 */
142static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
143{
144	if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
145		timerqueue_del(&base->timerqueue, &alarm->node);
146
147	timerqueue_add(&base->timerqueue, &alarm->node);
148	alarm->state |= ALARMTIMER_STATE_ENQUEUED;
149}
150
151/**
152 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
153 * @base: pointer to the base where the timer is running
154 * @alarm: pointer to alarm being removed
155 *
156 * Removes alarm to a alarm_base timerqueue
157 *
158 * Must hold base->lock when calling.
159 */
160static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
161{
162	if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
163		return;
164
165	timerqueue_del(&base->timerqueue, &alarm->node);
166	alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
167}
168
169
170/**
171 * alarmtimer_fired - Handles alarm hrtimer being fired.
172 * @timer: pointer to hrtimer being run
173 *
174 * When a alarm timer fires, this runs through the timerqueue to
175 * see which alarms expired, and runs those. If there are more alarm
176 * timers queued for the future, we set the hrtimer to fire when
177 * when the next future alarm timer expires.
178 */
179static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
180{
181	struct alarm *alarm = container_of(timer, struct alarm, timer);
182	struct alarm_base *base = &alarm_bases[alarm->type];
183	unsigned long flags;
184	int ret = HRTIMER_NORESTART;
185	int restart = ALARMTIMER_NORESTART;
186
187	spin_lock_irqsave(&base->lock, flags);
188	alarmtimer_dequeue(base, alarm);
189	spin_unlock_irqrestore(&base->lock, flags);
190
191	if (alarm->function)
192		restart = alarm->function(alarm, base->gettime());
193
194	spin_lock_irqsave(&base->lock, flags);
195	if (restart != ALARMTIMER_NORESTART) {
196		hrtimer_set_expires(&alarm->timer, alarm->node.expires);
197		alarmtimer_enqueue(base, alarm);
198		ret = HRTIMER_RESTART;
199	}
200	spin_unlock_irqrestore(&base->lock, flags);
201
202	trace_alarmtimer_fired(alarm, base->gettime());
203	return ret;
204
205}
206
207ktime_t alarm_expires_remaining(const struct alarm *alarm)
208{
209	struct alarm_base *base = &alarm_bases[alarm->type];
210	return ktime_sub(alarm->node.expires, base->gettime());
211}
212EXPORT_SYMBOL_GPL(alarm_expires_remaining);
213
214#ifdef CONFIG_RTC_CLASS
215/**
216 * alarmtimer_suspend - Suspend time callback
217 * @dev: unused
218 * @state: unused
219 *
220 * When we are going into suspend, we look through the bases
221 * to see which is the soonest timer to expire. We then
222 * set an rtc timer to fire that far into the future, which
223 * will wake us from suspend.
224 */
225static int alarmtimer_suspend(struct device *dev)
226{
227	ktime_t min, now, expires;
228	int i, ret, type;
229	struct rtc_device *rtc;
230	unsigned long flags;
231	struct rtc_time tm;
232
233	spin_lock_irqsave(&freezer_delta_lock, flags);
234	min = freezer_delta;
235	expires = freezer_expires;
236	type = freezer_alarmtype;
237	freezer_delta = 0;
238	spin_unlock_irqrestore(&freezer_delta_lock, flags);
239
240	rtc = alarmtimer_get_rtcdev();
241	/* If we have no rtcdev, just return */
242	if (!rtc)
243		return 0;
244
245	/* Find the soonest timer to expire*/
246	for (i = 0; i < ALARM_NUMTYPE; i++) {
247		struct alarm_base *base = &alarm_bases[i];
248		struct timerqueue_node *next;
249		ktime_t delta;
250
251		spin_lock_irqsave(&base->lock, flags);
252		next = timerqueue_getnext(&base->timerqueue);
253		spin_unlock_irqrestore(&base->lock, flags);
254		if (!next)
255			continue;
256		delta = ktime_sub(next->expires, base->gettime());
257		if (!min || (delta < min)) {
258			expires = next->expires;
259			min = delta;
260			type = i;
261		}
262	}
263	if (min == 0)
264		return 0;
265
266	if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
267		__pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
268		return -EBUSY;
269	}
270
271	trace_alarmtimer_suspend(expires, type);
272
273	/* Setup an rtc timer to fire that far in the future */
274	rtc_timer_cancel(rtc, &rtctimer);
275	rtc_read_time(rtc, &tm);
276	now = rtc_tm_to_ktime(tm);
277	now = ktime_add(now, min);
278
279	/* Set alarm, if in the past reject suspend briefly to handle */
280	ret = rtc_timer_start(rtc, &rtctimer, now, 0);
281	if (ret < 0)
282		__pm_wakeup_event(ws, MSEC_PER_SEC);
283	return ret;
284}
285
286static int alarmtimer_resume(struct device *dev)
287{
288	struct rtc_device *rtc;
289
290	rtc = alarmtimer_get_rtcdev();
291	if (rtc)
292		rtc_timer_cancel(rtc, &rtctimer);
293	return 0;
294}
295
296#else
297static int alarmtimer_suspend(struct device *dev)
298{
299	return 0;
300}
301
302static int alarmtimer_resume(struct device *dev)
303{
304	return 0;
305}
306#endif
307
308static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
 
 
309{
310	struct alarm_base *base;
311	unsigned long flags;
312	ktime_t delta;
313
314	switch(type) {
315	case ALARM_REALTIME:
316		base = &alarm_bases[ALARM_REALTIME];
317		type = ALARM_REALTIME_FREEZER;
318		break;
319	case ALARM_BOOTTIME:
320		base = &alarm_bases[ALARM_BOOTTIME];
321		type = ALARM_BOOTTIME_FREEZER;
322		break;
323	default:
324		WARN_ONCE(1, "Invalid alarm type: %d\n", type);
325		return;
326	}
327
328	delta = ktime_sub(absexp, base->gettime());
329
330	spin_lock_irqsave(&freezer_delta_lock, flags);
331	if (!freezer_delta || (delta < freezer_delta)) {
332		freezer_delta = delta;
333		freezer_expires = absexp;
334		freezer_alarmtype = type;
335	}
336	spin_unlock_irqrestore(&freezer_delta_lock, flags);
337}
338
339
340/**
341 * alarm_init - Initialize an alarm structure
342 * @alarm: ptr to alarm to be initialized
343 * @type: the type of the alarm
344 * @function: callback that is run when the alarm fires
345 */
346void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
347		enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
348{
349	timerqueue_init(&alarm->node);
350	hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
351			HRTIMER_MODE_ABS);
352	alarm->timer.function = alarmtimer_fired;
353	alarm->function = function;
354	alarm->type = type;
355	alarm->state = ALARMTIMER_STATE_INACTIVE;
356}
357EXPORT_SYMBOL_GPL(alarm_init);
358
359/**
360 * alarm_start - Sets an absolute alarm to fire
361 * @alarm: ptr to alarm to set
362 * @start: time to run the alarm
363 */
364void alarm_start(struct alarm *alarm, ktime_t start)
365{
366	struct alarm_base *base = &alarm_bases[alarm->type];
367	unsigned long flags;
368
369	spin_lock_irqsave(&base->lock, flags);
370	alarm->node.expires = start;
371	alarmtimer_enqueue(base, alarm);
372	hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
373	spin_unlock_irqrestore(&base->lock, flags);
374
375	trace_alarmtimer_start(alarm, base->gettime());
376}
377EXPORT_SYMBOL_GPL(alarm_start);
378
379/**
380 * alarm_start_relative - Sets a relative alarm to fire
381 * @alarm: ptr to alarm to set
382 * @start: time relative to now to run the alarm
383 */
384void alarm_start_relative(struct alarm *alarm, ktime_t start)
385{
386	struct alarm_base *base = &alarm_bases[alarm->type];
387
388	start = ktime_add(start, base->gettime());
389	alarm_start(alarm, start);
390}
391EXPORT_SYMBOL_GPL(alarm_start_relative);
392
393void alarm_restart(struct alarm *alarm)
394{
395	struct alarm_base *base = &alarm_bases[alarm->type];
396	unsigned long flags;
397
398	spin_lock_irqsave(&base->lock, flags);
399	hrtimer_set_expires(&alarm->timer, alarm->node.expires);
400	hrtimer_restart(&alarm->timer);
401	alarmtimer_enqueue(base, alarm);
402	spin_unlock_irqrestore(&base->lock, flags);
403}
404EXPORT_SYMBOL_GPL(alarm_restart);
405
406/**
407 * alarm_try_to_cancel - Tries to cancel an alarm timer
408 * @alarm: ptr to alarm to be canceled
409 *
410 * Returns 1 if the timer was canceled, 0 if it was not running,
411 * and -1 if the callback was running
412 */
413int alarm_try_to_cancel(struct alarm *alarm)
414{
415	struct alarm_base *base = &alarm_bases[alarm->type];
416	unsigned long flags;
417	int ret;
418
419	spin_lock_irqsave(&base->lock, flags);
420	ret = hrtimer_try_to_cancel(&alarm->timer);
421	if (ret >= 0)
422		alarmtimer_dequeue(base, alarm);
423	spin_unlock_irqrestore(&base->lock, flags);
424
425	trace_alarmtimer_cancel(alarm, base->gettime());
426	return ret;
427}
428EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
429
430
431/**
432 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
433 * @alarm: ptr to alarm to be canceled
434 *
435 * Returns 1 if the timer was canceled, 0 if it was not active.
436 */
437int alarm_cancel(struct alarm *alarm)
438{
439	for (;;) {
440		int ret = alarm_try_to_cancel(alarm);
441		if (ret >= 0)
442			return ret;
443		cpu_relax();
444	}
445}
446EXPORT_SYMBOL_GPL(alarm_cancel);
447
448
449u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
450{
451	u64 overrun = 1;
452	ktime_t delta;
453
454	delta = ktime_sub(now, alarm->node.expires);
455
456	if (delta < 0)
457		return 0;
458
459	if (unlikely(delta >= interval)) {
460		s64 incr = ktime_to_ns(interval);
461
462		overrun = ktime_divns(delta, incr);
463
464		alarm->node.expires = ktime_add_ns(alarm->node.expires,
465							incr*overrun);
466
467		if (alarm->node.expires > now)
468			return overrun;
469		/*
470		 * This (and the ktime_add() below) is the
471		 * correction for exact:
472		 */
473		overrun++;
474	}
475
476	alarm->node.expires = ktime_add(alarm->node.expires, interval);
477	return overrun;
478}
479EXPORT_SYMBOL_GPL(alarm_forward);
480
481u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
482{
483	struct alarm_base *base = &alarm_bases[alarm->type];
484
485	return alarm_forward(alarm, base->gettime(), interval);
486}
487EXPORT_SYMBOL_GPL(alarm_forward_now);
488
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
489
490/**
491 * clock2alarm - helper that converts from clockid to alarmtypes
492 * @clockid: clockid.
493 */
494static enum alarmtimer_type clock2alarm(clockid_t clockid)
495{
496	if (clockid == CLOCK_REALTIME_ALARM)
497		return ALARM_REALTIME;
498	if (clockid == CLOCK_BOOTTIME_ALARM)
499		return ALARM_BOOTTIME;
500	return -1;
501}
502
503/**
504 * alarm_handle_timer - Callback for posix timers
505 * @alarm: alarm that fired
506 *
507 * Posix timer callback for expired alarm timers.
508 */
509static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
510							ktime_t now)
511{
512	unsigned long flags;
513	struct k_itimer *ptr = container_of(alarm, struct k_itimer,
514						it.alarm.alarmtimer);
515	enum alarmtimer_restart result = ALARMTIMER_NORESTART;
 
 
516
517	spin_lock_irqsave(&ptr->it_lock, flags);
518	if ((ptr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) {
519		if (IS_ENABLED(CONFIG_POSIX_TIMERS) &&
520		    posix_timer_event(ptr, 0) != 0)
521			ptr->it_overrun++;
522	}
523
524	/* Re-add periodic timers */
525	if (ptr->it.alarm.interval) {
526		ptr->it_overrun += alarm_forward(alarm, now,
527						ptr->it.alarm.interval);
 
 
 
 
 
 
 
 
528		result = ALARMTIMER_RESTART;
529	}
530	spin_unlock_irqrestore(&ptr->it_lock, flags);
531
532	return result;
533}
534
535/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
536 * alarm_clock_getres - posix getres interface
537 * @which_clock: clockid
538 * @tp: timespec to fill
539 *
540 * Returns the granularity of underlying alarm base clock
541 */
542static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp)
543{
544	if (!alarmtimer_get_rtcdev())
545		return -EINVAL;
546
547	tp->tv_sec = 0;
548	tp->tv_nsec = hrtimer_resolution;
549	return 0;
550}
551
552/**
553 * alarm_clock_get - posix clock_get interface
554 * @which_clock: clockid
555 * @tp: timespec to fill.
556 *
557 * Provides the underlying alarm base time.
558 */
559static int alarm_clock_get(clockid_t which_clock, struct timespec *tp)
560{
561	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
562
563	if (!alarmtimer_get_rtcdev())
564		return -EINVAL;
565
566	*tp = ktime_to_timespec(base->gettime());
567	return 0;
568}
569
570/**
571 * alarm_timer_create - posix timer_create interface
572 * @new_timer: k_itimer pointer to manage
573 *
574 * Initializes the k_itimer structure.
575 */
576static int alarm_timer_create(struct k_itimer *new_timer)
577{
578	enum  alarmtimer_type type;
579
580	if (!alarmtimer_get_rtcdev())
581		return -ENOTSUPP;
582
583	if (!capable(CAP_WAKE_ALARM))
584		return -EPERM;
585
586	type = clock2alarm(new_timer->it_clock);
587	alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
588	return 0;
589}
590
591/**
592 * alarm_timer_get - posix timer_get interface
593 * @new_timer: k_itimer pointer
594 * @cur_setting: itimerspec data to fill
595 *
596 * Copies out the current itimerspec data
597 */
598static void alarm_timer_get(struct k_itimer *timr,
599				struct itimerspec *cur_setting)
600{
601	ktime_t relative_expiry_time =
602		alarm_expires_remaining(&(timr->it.alarm.alarmtimer));
603
604	if (ktime_to_ns(relative_expiry_time) > 0) {
605		cur_setting->it_value = ktime_to_timespec(relative_expiry_time);
606	} else {
607		cur_setting->it_value.tv_sec = 0;
608		cur_setting->it_value.tv_nsec = 0;
609	}
610
611	cur_setting->it_interval = ktime_to_timespec(timr->it.alarm.interval);
612}
613
614/**
615 * alarm_timer_del - posix timer_del interface
616 * @timr: k_itimer pointer to be deleted
617 *
618 * Cancels any programmed alarms for the given timer.
619 */
620static int alarm_timer_del(struct k_itimer *timr)
621{
622	if (!rtcdev)
623		return -ENOTSUPP;
624
625	if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
626		return TIMER_RETRY;
627
628	return 0;
629}
630
631/**
632 * alarm_timer_set - posix timer_set interface
633 * @timr: k_itimer pointer to be deleted
634 * @flags: timer flags
635 * @new_setting: itimerspec to be used
636 * @old_setting: itimerspec being replaced
637 *
638 * Sets the timer to new_setting, and starts the timer.
639 */
640static int alarm_timer_set(struct k_itimer *timr, int flags,
641				struct itimerspec *new_setting,
642				struct itimerspec *old_setting)
643{
644	ktime_t exp;
645
646	if (!rtcdev)
647		return -ENOTSUPP;
648
649	if (flags & ~TIMER_ABSTIME)
650		return -EINVAL;
651
652	if (old_setting)
653		alarm_timer_get(timr, old_setting);
654
655	/* If the timer was already set, cancel it */
656	if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
657		return TIMER_RETRY;
658
659	/* start the timer */
660	timr->it.alarm.interval = timespec_to_ktime(new_setting->it_interval);
661	exp = timespec_to_ktime(new_setting->it_value);
662	/* Convert (if necessary) to absolute time */
663	if (flags != TIMER_ABSTIME) {
664		ktime_t now;
665
666		now = alarm_bases[timr->it.alarm.alarmtimer.type].gettime();
667		exp = ktime_add(now, exp);
668	}
669
670	alarm_start(&timr->it.alarm.alarmtimer, exp);
671	return 0;
672}
673
674/**
675 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
676 * @alarm: ptr to alarm that fired
677 *
678 * Wakes up the task that set the alarmtimer
679 */
680static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
681								ktime_t now)
682{
683	struct task_struct *task = (struct task_struct *)alarm->data;
684
685	alarm->data = NULL;
686	if (task)
687		wake_up_process(task);
688	return ALARMTIMER_NORESTART;
689}
690
691/**
692 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
693 * @alarm: ptr to alarmtimer
694 * @absexp: absolute expiration time
695 *
696 * Sets the alarm timer and sleeps until it is fired or interrupted.
697 */
698static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp)
 
699{
 
700	alarm->data = (void *)current;
701	do {
702		set_current_state(TASK_INTERRUPTIBLE);
703		alarm_start(alarm, absexp);
704		if (likely(alarm->data))
705			schedule();
706
707		alarm_cancel(alarm);
708	} while (alarm->data && !signal_pending(current));
709
710	__set_current_state(TASK_RUNNING);
711
712	return (alarm->data == NULL);
713}
714
715
716/**
717 * update_rmtp - Update remaining timespec value
718 * @exp: expiration time
719 * @type: timer type
720 * @rmtp: user pointer to remaining timepsec value
721 *
722 * Helper function that fills in rmtp value with time between
723 * now and the exp value
724 */
725static int update_rmtp(ktime_t exp, enum  alarmtimer_type type,
726			struct timespec __user *rmtp)
727{
728	struct timespec rmt;
729	ktime_t rem;
730
731	rem = ktime_sub(exp, alarm_bases[type].gettime());
 
 
 
 
 
732
733	if (rem <= 0)
734		return 0;
735	rmt = ktime_to_timespec(rem);
736
737	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
738		return -EFAULT;
 
739
740	return 1;
 
 
 
741
 
 
 
 
 
 
 
742}
743
744/**
745 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
746 * @restart: ptr to restart block
747 *
748 * Handles restarted clock_nanosleep calls
749 */
750static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
751{
752	enum  alarmtimer_type type = restart->nanosleep.clockid;
753	ktime_t exp;
754	struct timespec __user  *rmtp;
755	struct alarm alarm;
756	int ret = 0;
757
758	exp = restart->nanosleep.expires;
759	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
760
761	if (alarmtimer_do_nsleep(&alarm, exp))
762		goto out;
763
764	if (freezing(current))
765		alarmtimer_freezerset(exp, type);
766
767	rmtp = restart->nanosleep.rmtp;
768	if (rmtp) {
769		ret = update_rmtp(exp, type, rmtp);
770		if (ret <= 0)
771			goto out;
772	}
773
774
775	/* The other values in restart are already filled in */
776	ret = -ERESTART_RESTARTBLOCK;
777out:
778	return ret;
779}
780
781/**
782 * alarm_timer_nsleep - alarmtimer nanosleep
783 * @which_clock: clockid
784 * @flags: determins abstime or relative
785 * @tsreq: requested sleep time (abs or rel)
786 * @rmtp: remaining sleep time saved
787 *
788 * Handles clock_nanosleep calls against _ALARM clockids
789 */
790static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
791		     struct timespec *tsreq, struct timespec __user *rmtp)
792{
793	enum  alarmtimer_type type = clock2alarm(which_clock);
 
794	struct alarm alarm;
795	ktime_t exp;
796	int ret = 0;
797	struct restart_block *restart;
798
799	if (!alarmtimer_get_rtcdev())
800		return -ENOTSUPP;
801
802	if (flags & ~TIMER_ABSTIME)
803		return -EINVAL;
804
805	if (!capable(CAP_WAKE_ALARM))
806		return -EPERM;
807
808	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
809
810	exp = timespec_to_ktime(*tsreq);
811	/* Convert (if necessary) to absolute time */
812	if (flags != TIMER_ABSTIME) {
813		ktime_t now = alarm_bases[type].gettime();
814		exp = ktime_add(now, exp);
815	}
816
817	if (alarmtimer_do_nsleep(&alarm, exp))
818		goto out;
819
820	if (freezing(current))
821		alarmtimer_freezerset(exp, type);
822
823	/* abs timers don't set remaining time or restart */
824	if (flags == TIMER_ABSTIME) {
825		ret = -ERESTARTNOHAND;
826		goto out;
827	}
828
829	if (rmtp) {
830		ret = update_rmtp(exp, type, rmtp);
831		if (ret <= 0)
832			goto out;
833	}
834
835	restart = &current->restart_block;
836	restart->fn = alarm_timer_nsleep_restart;
837	restart->nanosleep.clockid = type;
838	restart->nanosleep.expires = exp;
839	restart->nanosleep.rmtp = rmtp;
840	ret = -ERESTART_RESTARTBLOCK;
841
842out:
843	return ret;
844}
845
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
846
847/* Suspend hook structures */
848static const struct dev_pm_ops alarmtimer_pm_ops = {
849	.suspend = alarmtimer_suspend,
850	.resume = alarmtimer_resume,
851};
852
853static struct platform_driver alarmtimer_driver = {
854	.driver = {
855		.name = "alarmtimer",
856		.pm = &alarmtimer_pm_ops,
857	}
858};
859
860/**
861 * alarmtimer_init - Initialize alarm timer code
862 *
863 * This function initializes the alarm bases and registers
864 * the posix clock ids.
865 */
866static int __init alarmtimer_init(void)
867{
868	struct platform_device *pdev;
869	int error = 0;
870	int i;
871	struct k_clock alarm_clock = {
872		.clock_getres	= alarm_clock_getres,
873		.clock_get	= alarm_clock_get,
874		.timer_create	= alarm_timer_create,
875		.timer_set	= alarm_timer_set,
876		.timer_del	= alarm_timer_del,
877		.timer_get	= alarm_timer_get,
878		.nsleep		= alarm_timer_nsleep,
879	};
880
881	alarmtimer_rtc_timer_init();
882
883	if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
884		posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock);
885		posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock);
886	}
887
888	/* Initialize alarm bases */
889	alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
890	alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
891	alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
892	alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
893	for (i = 0; i < ALARM_NUMTYPE; i++) {
894		timerqueue_init_head(&alarm_bases[i].timerqueue);
895		spin_lock_init(&alarm_bases[i].lock);
896	}
897
898	error = alarmtimer_rtc_interface_setup();
899	if (error)
900		return error;
901
902	error = platform_driver_register(&alarmtimer_driver);
903	if (error)
904		goto out_if;
905
906	pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
907	if (IS_ERR(pdev)) {
908		error = PTR_ERR(pdev);
909		goto out_drv;
910	}
911	ws = wakeup_source_register("alarmtimer");
912	return 0;
913
914out_drv:
915	platform_driver_unregister(&alarmtimer_driver);
916out_if:
917	alarmtimer_rtc_interface_remove();
918	return error;
919}
920device_initcall(alarmtimer_init);
v4.17
  1/*
  2 * Alarmtimer interface
  3 *
  4 * This interface provides a timer which is similarto hrtimers,
  5 * but triggers a RTC alarm if the box is suspend.
  6 *
  7 * This interface is influenced by the Android RTC Alarm timer
  8 * interface.
  9 *
 10 * Copyright (C) 2010 IBM Corperation
 11 *
 12 * Author: John Stultz <john.stultz@linaro.org>
 13 *
 14 * This program is free software; you can redistribute it and/or modify
 15 * it under the terms of the GNU General Public License version 2 as
 16 * published by the Free Software Foundation.
 17 */
 18#include <linux/time.h>
 19#include <linux/hrtimer.h>
 20#include <linux/timerqueue.h>
 21#include <linux/rtc.h>
 22#include <linux/sched/signal.h>
 23#include <linux/sched/debug.h>
 24#include <linux/alarmtimer.h>
 25#include <linux/mutex.h>
 26#include <linux/platform_device.h>
 27#include <linux/posix-timers.h>
 28#include <linux/workqueue.h>
 29#include <linux/freezer.h>
 30#include <linux/compat.h>
 31#include <linux/module.h>
 32
 33#include "posix-timers.h"
 34
 35#define CREATE_TRACE_POINTS
 36#include <trace/events/alarmtimer.h>
 37
 38/**
 39 * struct alarm_base - Alarm timer bases
 40 * @lock:		Lock for syncrhonized access to the base
 41 * @timerqueue:		Timerqueue head managing the list of events
 42 * @gettime:		Function to read the time correlating to the base
 43 * @base_clockid:	clockid for the base
 44 */
 45static struct alarm_base {
 46	spinlock_t		lock;
 47	struct timerqueue_head	timerqueue;
 48	ktime_t			(*gettime)(void);
 49	clockid_t		base_clockid;
 50} alarm_bases[ALARM_NUMTYPE];
 51
 52#if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
 53/* freezer information to handle clock_nanosleep triggered wakeups */
 54static enum alarmtimer_type freezer_alarmtype;
 55static ktime_t freezer_expires;
 56static ktime_t freezer_delta;
 57static DEFINE_SPINLOCK(freezer_delta_lock);
 58#endif
 59
 60#ifdef CONFIG_RTC_CLASS
 61static struct wakeup_source *ws;
 62
 
 63/* rtc timer and device for setting alarm wakeups at suspend */
 64static struct rtc_timer		rtctimer;
 65static struct rtc_device	*rtcdev;
 66static DEFINE_SPINLOCK(rtcdev_lock);
 67
 68/**
 69 * alarmtimer_get_rtcdev - Return selected rtcdevice
 70 *
 71 * This function returns the rtc device to use for wakealarms.
 72 * If one has not already been chosen, it checks to see if a
 73 * functional rtc device is available.
 74 */
 75struct rtc_device *alarmtimer_get_rtcdev(void)
 76{
 77	unsigned long flags;
 78	struct rtc_device *ret;
 79
 80	spin_lock_irqsave(&rtcdev_lock, flags);
 81	ret = rtcdev;
 82	spin_unlock_irqrestore(&rtcdev_lock, flags);
 83
 84	return ret;
 85}
 86EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
 87
 88static int alarmtimer_rtc_add_device(struct device *dev,
 89				struct class_interface *class_intf)
 90{
 91	unsigned long flags;
 92	struct rtc_device *rtc = to_rtc_device(dev);
 93	struct wakeup_source *__ws;
 94
 95	if (rtcdev)
 96		return -EBUSY;
 97
 98	if (!rtc->ops->set_alarm)
 99		return -1;
100	if (!device_may_wakeup(rtc->dev.parent))
101		return -1;
102
103	__ws = wakeup_source_register("alarmtimer");
104
105	spin_lock_irqsave(&rtcdev_lock, flags);
106	if (!rtcdev) {
107		if (!try_module_get(rtc->owner)) {
108			spin_unlock_irqrestore(&rtcdev_lock, flags);
109			return -1;
110		}
111
112		rtcdev = rtc;
113		/* hold a reference so it doesn't go away */
114		get_device(dev);
115		ws = __ws;
116		__ws = NULL;
117	}
118	spin_unlock_irqrestore(&rtcdev_lock, flags);
119
120	wakeup_source_unregister(__ws);
121
122	return 0;
123}
124
125static inline void alarmtimer_rtc_timer_init(void)
126{
127	rtc_timer_init(&rtctimer, NULL, NULL);
128}
129
130static struct class_interface alarmtimer_rtc_interface = {
131	.add_dev = &alarmtimer_rtc_add_device,
132};
133
134static int alarmtimer_rtc_interface_setup(void)
135{
136	alarmtimer_rtc_interface.class = rtc_class;
137	return class_interface_register(&alarmtimer_rtc_interface);
138}
139static void alarmtimer_rtc_interface_remove(void)
140{
141	class_interface_unregister(&alarmtimer_rtc_interface);
142}
143#else
144struct rtc_device *alarmtimer_get_rtcdev(void)
145{
146	return NULL;
147}
148#define rtcdev (NULL)
149static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
150static inline void alarmtimer_rtc_interface_remove(void) { }
151static inline void alarmtimer_rtc_timer_init(void) { }
152#endif
153
154/**
155 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
156 * @base: pointer to the base where the timer is being run
157 * @alarm: pointer to alarm being enqueued.
158 *
159 * Adds alarm to a alarm_base timerqueue
160 *
161 * Must hold base->lock when calling.
162 */
163static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
164{
165	if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
166		timerqueue_del(&base->timerqueue, &alarm->node);
167
168	timerqueue_add(&base->timerqueue, &alarm->node);
169	alarm->state |= ALARMTIMER_STATE_ENQUEUED;
170}
171
172/**
173 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
174 * @base: pointer to the base where the timer is running
175 * @alarm: pointer to alarm being removed
176 *
177 * Removes alarm to a alarm_base timerqueue
178 *
179 * Must hold base->lock when calling.
180 */
181static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
182{
183	if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
184		return;
185
186	timerqueue_del(&base->timerqueue, &alarm->node);
187	alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
188}
189
190
191/**
192 * alarmtimer_fired - Handles alarm hrtimer being fired.
193 * @timer: pointer to hrtimer being run
194 *
195 * When a alarm timer fires, this runs through the timerqueue to
196 * see which alarms expired, and runs those. If there are more alarm
197 * timers queued for the future, we set the hrtimer to fire when
198 * when the next future alarm timer expires.
199 */
200static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
201{
202	struct alarm *alarm = container_of(timer, struct alarm, timer);
203	struct alarm_base *base = &alarm_bases[alarm->type];
204	unsigned long flags;
205	int ret = HRTIMER_NORESTART;
206	int restart = ALARMTIMER_NORESTART;
207
208	spin_lock_irqsave(&base->lock, flags);
209	alarmtimer_dequeue(base, alarm);
210	spin_unlock_irqrestore(&base->lock, flags);
211
212	if (alarm->function)
213		restart = alarm->function(alarm, base->gettime());
214
215	spin_lock_irqsave(&base->lock, flags);
216	if (restart != ALARMTIMER_NORESTART) {
217		hrtimer_set_expires(&alarm->timer, alarm->node.expires);
218		alarmtimer_enqueue(base, alarm);
219		ret = HRTIMER_RESTART;
220	}
221	spin_unlock_irqrestore(&base->lock, flags);
222
223	trace_alarmtimer_fired(alarm, base->gettime());
224	return ret;
225
226}
227
228ktime_t alarm_expires_remaining(const struct alarm *alarm)
229{
230	struct alarm_base *base = &alarm_bases[alarm->type];
231	return ktime_sub(alarm->node.expires, base->gettime());
232}
233EXPORT_SYMBOL_GPL(alarm_expires_remaining);
234
235#ifdef CONFIG_RTC_CLASS
236/**
237 * alarmtimer_suspend - Suspend time callback
238 * @dev: unused
239 * @state: unused
240 *
241 * When we are going into suspend, we look through the bases
242 * to see which is the soonest timer to expire. We then
243 * set an rtc timer to fire that far into the future, which
244 * will wake us from suspend.
245 */
246static int alarmtimer_suspend(struct device *dev)
247{
248	ktime_t min, now, expires;
249	int i, ret, type;
250	struct rtc_device *rtc;
251	unsigned long flags;
252	struct rtc_time tm;
253
254	spin_lock_irqsave(&freezer_delta_lock, flags);
255	min = freezer_delta;
256	expires = freezer_expires;
257	type = freezer_alarmtype;
258	freezer_delta = 0;
259	spin_unlock_irqrestore(&freezer_delta_lock, flags);
260
261	rtc = alarmtimer_get_rtcdev();
262	/* If we have no rtcdev, just return */
263	if (!rtc)
264		return 0;
265
266	/* Find the soonest timer to expire*/
267	for (i = 0; i < ALARM_NUMTYPE; i++) {
268		struct alarm_base *base = &alarm_bases[i];
269		struct timerqueue_node *next;
270		ktime_t delta;
271
272		spin_lock_irqsave(&base->lock, flags);
273		next = timerqueue_getnext(&base->timerqueue);
274		spin_unlock_irqrestore(&base->lock, flags);
275		if (!next)
276			continue;
277		delta = ktime_sub(next->expires, base->gettime());
278		if (!min || (delta < min)) {
279			expires = next->expires;
280			min = delta;
281			type = i;
282		}
283	}
284	if (min == 0)
285		return 0;
286
287	if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
288		__pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
289		return -EBUSY;
290	}
291
292	trace_alarmtimer_suspend(expires, type);
293
294	/* Setup an rtc timer to fire that far in the future */
295	rtc_timer_cancel(rtc, &rtctimer);
296	rtc_read_time(rtc, &tm);
297	now = rtc_tm_to_ktime(tm);
298	now = ktime_add(now, min);
299
300	/* Set alarm, if in the past reject suspend briefly to handle */
301	ret = rtc_timer_start(rtc, &rtctimer, now, 0);
302	if (ret < 0)
303		__pm_wakeup_event(ws, MSEC_PER_SEC);
304	return ret;
305}
306
307static int alarmtimer_resume(struct device *dev)
308{
309	struct rtc_device *rtc;
310
311	rtc = alarmtimer_get_rtcdev();
312	if (rtc)
313		rtc_timer_cancel(rtc, &rtctimer);
314	return 0;
315}
316
317#else
318static int alarmtimer_suspend(struct device *dev)
319{
320	return 0;
321}
322
323static int alarmtimer_resume(struct device *dev)
324{
325	return 0;
326}
327#endif
328
329static void
330__alarm_init(struct alarm *alarm, enum alarmtimer_type type,
331	     enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
332{
333	timerqueue_init(&alarm->node);
334	alarm->timer.function = alarmtimer_fired;
335	alarm->function = function;
336	alarm->type = type;
337	alarm->state = ALARMTIMER_STATE_INACTIVE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
338}
339
 
340/**
341 * alarm_init - Initialize an alarm structure
342 * @alarm: ptr to alarm to be initialized
343 * @type: the type of the alarm
344 * @function: callback that is run when the alarm fires
345 */
346void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
347		enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
348{
 
349	hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
350		     HRTIMER_MODE_ABS);
351	__alarm_init(alarm, type, function);
 
 
 
352}
353EXPORT_SYMBOL_GPL(alarm_init);
354
355/**
356 * alarm_start - Sets an absolute alarm to fire
357 * @alarm: ptr to alarm to set
358 * @start: time to run the alarm
359 */
360void alarm_start(struct alarm *alarm, ktime_t start)
361{
362	struct alarm_base *base = &alarm_bases[alarm->type];
363	unsigned long flags;
364
365	spin_lock_irqsave(&base->lock, flags);
366	alarm->node.expires = start;
367	alarmtimer_enqueue(base, alarm);
368	hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
369	spin_unlock_irqrestore(&base->lock, flags);
370
371	trace_alarmtimer_start(alarm, base->gettime());
372}
373EXPORT_SYMBOL_GPL(alarm_start);
374
375/**
376 * alarm_start_relative - Sets a relative alarm to fire
377 * @alarm: ptr to alarm to set
378 * @start: time relative to now to run the alarm
379 */
380void alarm_start_relative(struct alarm *alarm, ktime_t start)
381{
382	struct alarm_base *base = &alarm_bases[alarm->type];
383
384	start = ktime_add_safe(start, base->gettime());
385	alarm_start(alarm, start);
386}
387EXPORT_SYMBOL_GPL(alarm_start_relative);
388
389void alarm_restart(struct alarm *alarm)
390{
391	struct alarm_base *base = &alarm_bases[alarm->type];
392	unsigned long flags;
393
394	spin_lock_irqsave(&base->lock, flags);
395	hrtimer_set_expires(&alarm->timer, alarm->node.expires);
396	hrtimer_restart(&alarm->timer);
397	alarmtimer_enqueue(base, alarm);
398	spin_unlock_irqrestore(&base->lock, flags);
399}
400EXPORT_SYMBOL_GPL(alarm_restart);
401
402/**
403 * alarm_try_to_cancel - Tries to cancel an alarm timer
404 * @alarm: ptr to alarm to be canceled
405 *
406 * Returns 1 if the timer was canceled, 0 if it was not running,
407 * and -1 if the callback was running
408 */
409int alarm_try_to_cancel(struct alarm *alarm)
410{
411	struct alarm_base *base = &alarm_bases[alarm->type];
412	unsigned long flags;
413	int ret;
414
415	spin_lock_irqsave(&base->lock, flags);
416	ret = hrtimer_try_to_cancel(&alarm->timer);
417	if (ret >= 0)
418		alarmtimer_dequeue(base, alarm);
419	spin_unlock_irqrestore(&base->lock, flags);
420
421	trace_alarmtimer_cancel(alarm, base->gettime());
422	return ret;
423}
424EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
425
426
427/**
428 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
429 * @alarm: ptr to alarm to be canceled
430 *
431 * Returns 1 if the timer was canceled, 0 if it was not active.
432 */
433int alarm_cancel(struct alarm *alarm)
434{
435	for (;;) {
436		int ret = alarm_try_to_cancel(alarm);
437		if (ret >= 0)
438			return ret;
439		cpu_relax();
440	}
441}
442EXPORT_SYMBOL_GPL(alarm_cancel);
443
444
445u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
446{
447	u64 overrun = 1;
448	ktime_t delta;
449
450	delta = ktime_sub(now, alarm->node.expires);
451
452	if (delta < 0)
453		return 0;
454
455	if (unlikely(delta >= interval)) {
456		s64 incr = ktime_to_ns(interval);
457
458		overrun = ktime_divns(delta, incr);
459
460		alarm->node.expires = ktime_add_ns(alarm->node.expires,
461							incr*overrun);
462
463		if (alarm->node.expires > now)
464			return overrun;
465		/*
466		 * This (and the ktime_add() below) is the
467		 * correction for exact:
468		 */
469		overrun++;
470	}
471
472	alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
473	return overrun;
474}
475EXPORT_SYMBOL_GPL(alarm_forward);
476
477u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
478{
479	struct alarm_base *base = &alarm_bases[alarm->type];
480
481	return alarm_forward(alarm, base->gettime(), interval);
482}
483EXPORT_SYMBOL_GPL(alarm_forward_now);
484
485#ifdef CONFIG_POSIX_TIMERS
486
487static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
488{
489	struct alarm_base *base;
490	unsigned long flags;
491	ktime_t delta;
492
493	switch(type) {
494	case ALARM_REALTIME:
495		base = &alarm_bases[ALARM_REALTIME];
496		type = ALARM_REALTIME_FREEZER;
497		break;
498	case ALARM_BOOTTIME:
499		base = &alarm_bases[ALARM_BOOTTIME];
500		type = ALARM_BOOTTIME_FREEZER;
501		break;
502	default:
503		WARN_ONCE(1, "Invalid alarm type: %d\n", type);
504		return;
505	}
506
507	delta = ktime_sub(absexp, base->gettime());
508
509	spin_lock_irqsave(&freezer_delta_lock, flags);
510	if (!freezer_delta || (delta < freezer_delta)) {
511		freezer_delta = delta;
512		freezer_expires = absexp;
513		freezer_alarmtype = type;
514	}
515	spin_unlock_irqrestore(&freezer_delta_lock, flags);
516}
517
518/**
519 * clock2alarm - helper that converts from clockid to alarmtypes
520 * @clockid: clockid.
521 */
522static enum alarmtimer_type clock2alarm(clockid_t clockid)
523{
524	if (clockid == CLOCK_REALTIME_ALARM)
525		return ALARM_REALTIME;
526	if (clockid == CLOCK_BOOTTIME_ALARM)
527		return ALARM_BOOTTIME;
528	return -1;
529}
530
531/**
532 * alarm_handle_timer - Callback for posix timers
533 * @alarm: alarm that fired
534 *
535 * Posix timer callback for expired alarm timers.
536 */
537static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
538							ktime_t now)
539{
 
540	struct k_itimer *ptr = container_of(alarm, struct k_itimer,
541					    it.alarm.alarmtimer);
542	enum alarmtimer_restart result = ALARMTIMER_NORESTART;
543	unsigned long flags;
544	int si_private = 0;
545
546	spin_lock_irqsave(&ptr->it_lock, flags);
 
 
 
 
 
547
548	ptr->it_active = 0;
549	if (ptr->it_interval)
550		si_private = ++ptr->it_requeue_pending;
551
552	if (posix_timer_event(ptr, si_private) && ptr->it_interval) {
553		/*
554		 * Handle ignored signals and rearm the timer. This will go
555		 * away once we handle ignored signals proper.
556		 */
557		ptr->it_overrun += alarm_forward_now(alarm, ptr->it_interval);
558		++ptr->it_requeue_pending;
559		ptr->it_active = 1;
560		result = ALARMTIMER_RESTART;
561	}
562	spin_unlock_irqrestore(&ptr->it_lock, flags);
563
564	return result;
565}
566
567/**
568 * alarm_timer_rearm - Posix timer callback for rearming timer
569 * @timr:	Pointer to the posixtimer data struct
570 */
571static void alarm_timer_rearm(struct k_itimer *timr)
572{
573	struct alarm *alarm = &timr->it.alarm.alarmtimer;
574
575	timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
576	alarm_start(alarm, alarm->node.expires);
577}
578
579/**
580 * alarm_timer_forward - Posix timer callback for forwarding timer
581 * @timr:	Pointer to the posixtimer data struct
582 * @now:	Current time to forward the timer against
583 */
584static int alarm_timer_forward(struct k_itimer *timr, ktime_t now)
585{
586	struct alarm *alarm = &timr->it.alarm.alarmtimer;
587
588	return (int) alarm_forward(alarm, timr->it_interval, now);
589}
590
591/**
592 * alarm_timer_remaining - Posix timer callback to retrieve remaining time
593 * @timr:	Pointer to the posixtimer data struct
594 * @now:	Current time to calculate against
595 */
596static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
597{
598	struct alarm *alarm = &timr->it.alarm.alarmtimer;
599
600	return ktime_sub(now, alarm->node.expires);
601}
602
603/**
604 * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
605 * @timr:	Pointer to the posixtimer data struct
606 */
607static int alarm_timer_try_to_cancel(struct k_itimer *timr)
608{
609	return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
610}
611
612/**
613 * alarm_timer_arm - Posix timer callback to arm a timer
614 * @timr:	Pointer to the posixtimer data struct
615 * @expires:	The new expiry time
616 * @absolute:	Expiry value is absolute time
617 * @sigev_none:	Posix timer does not deliver signals
618 */
619static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
620			    bool absolute, bool sigev_none)
621{
622	struct alarm *alarm = &timr->it.alarm.alarmtimer;
623	struct alarm_base *base = &alarm_bases[alarm->type];
624
625	if (!absolute)
626		expires = ktime_add_safe(expires, base->gettime());
627	if (sigev_none)
628		alarm->node.expires = expires;
629	else
630		alarm_start(&timr->it.alarm.alarmtimer, expires);
631}
632
633/**
634 * alarm_clock_getres - posix getres interface
635 * @which_clock: clockid
636 * @tp: timespec to fill
637 *
638 * Returns the granularity of underlying alarm base clock
639 */
640static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
641{
642	if (!alarmtimer_get_rtcdev())
643		return -EINVAL;
644
645	tp->tv_sec = 0;
646	tp->tv_nsec = hrtimer_resolution;
647	return 0;
648}
649
650/**
651 * alarm_clock_get - posix clock_get interface
652 * @which_clock: clockid
653 * @tp: timespec to fill.
654 *
655 * Provides the underlying alarm base time.
656 */
657static int alarm_clock_get(clockid_t which_clock, struct timespec64 *tp)
658{
659	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
660
661	if (!alarmtimer_get_rtcdev())
662		return -EINVAL;
663
664	*tp = ktime_to_timespec64(base->gettime());
665	return 0;
666}
667
668/**
669 * alarm_timer_create - posix timer_create interface
670 * @new_timer: k_itimer pointer to manage
671 *
672 * Initializes the k_itimer structure.
673 */
674static int alarm_timer_create(struct k_itimer *new_timer)
675{
676	enum  alarmtimer_type type;
677
678	if (!alarmtimer_get_rtcdev())
679		return -ENOTSUPP;
680
681	if (!capable(CAP_WAKE_ALARM))
682		return -EPERM;
683
684	type = clock2alarm(new_timer->it_clock);
685	alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
686	return 0;
687}
688
689/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
690 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
691 * @alarm: ptr to alarm that fired
692 *
693 * Wakes up the task that set the alarmtimer
694 */
695static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
696								ktime_t now)
697{
698	struct task_struct *task = (struct task_struct *)alarm->data;
699
700	alarm->data = NULL;
701	if (task)
702		wake_up_process(task);
703	return ALARMTIMER_NORESTART;
704}
705
706/**
707 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
708 * @alarm: ptr to alarmtimer
709 * @absexp: absolute expiration time
710 *
711 * Sets the alarm timer and sleeps until it is fired or interrupted.
712 */
713static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
714				enum alarmtimer_type type)
715{
716	struct restart_block *restart;
717	alarm->data = (void *)current;
718	do {
719		set_current_state(TASK_INTERRUPTIBLE);
720		alarm_start(alarm, absexp);
721		if (likely(alarm->data))
722			schedule();
723
724		alarm_cancel(alarm);
725	} while (alarm->data && !signal_pending(current));
726
727	__set_current_state(TASK_RUNNING);
728
729	destroy_hrtimer_on_stack(&alarm->timer);
 
 
730
731	if (!alarm->data)
732		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
733
734	if (freezing(current))
735		alarmtimer_freezerset(absexp, type);
736	restart = &current->restart_block;
737	if (restart->nanosleep.type != TT_NONE) {
738		struct timespec64 rmt;
739		ktime_t rem;
740
741		rem = ktime_sub(absexp, alarm_bases[type].gettime());
 
 
742
743		if (rem <= 0)
744			return 0;
745		rmt = ktime_to_timespec64(rem);
746
747		return nanosleep_copyout(restart, &rmt);
748	}
749	return -ERESTART_RESTARTBLOCK;
750}
751
752static void
753alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
754		    enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
755{
756	hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid,
757			      HRTIMER_MODE_ABS);
758	__alarm_init(alarm, type, function);
759}
760
761/**
762 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
763 * @restart: ptr to restart block
764 *
765 * Handles restarted clock_nanosleep calls
766 */
767static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
768{
769	enum  alarmtimer_type type = restart->nanosleep.clockid;
770	ktime_t exp = restart->nanosleep.expires;
 
771	struct alarm alarm;
 
 
 
 
 
 
 
772
773	alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
 
 
 
 
 
 
 
 
774
775	return alarmtimer_do_nsleep(&alarm, exp, type);
 
 
 
 
776}
777
778/**
779 * alarm_timer_nsleep - alarmtimer nanosleep
780 * @which_clock: clockid
781 * @flags: determins abstime or relative
782 * @tsreq: requested sleep time (abs or rel)
783 * @rmtp: remaining sleep time saved
784 *
785 * Handles clock_nanosleep calls against _ALARM clockids
786 */
787static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
788			      const struct timespec64 *tsreq)
789{
790	enum  alarmtimer_type type = clock2alarm(which_clock);
791	struct restart_block *restart = &current->restart_block;
792	struct alarm alarm;
793	ktime_t exp;
794	int ret = 0;
 
795
796	if (!alarmtimer_get_rtcdev())
797		return -ENOTSUPP;
798
799	if (flags & ~TIMER_ABSTIME)
800		return -EINVAL;
801
802	if (!capable(CAP_WAKE_ALARM))
803		return -EPERM;
804
805	alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
806
807	exp = timespec64_to_ktime(*tsreq);
808	/* Convert (if necessary) to absolute time */
809	if (flags != TIMER_ABSTIME) {
810		ktime_t now = alarm_bases[type].gettime();
811		exp = ktime_add(now, exp);
812	}
813
814	ret = alarmtimer_do_nsleep(&alarm, exp, type);
815	if (ret != -ERESTART_RESTARTBLOCK)
816		return ret;
 
 
817
818	/* abs timers don't set remaining time or restart */
819	if (flags == TIMER_ABSTIME)
820		return -ERESTARTNOHAND;
 
 
821
 
 
 
 
 
 
 
822	restart->fn = alarm_timer_nsleep_restart;
823	restart->nanosleep.clockid = type;
824	restart->nanosleep.expires = exp;
 
 
 
 
825	return ret;
826}
827
828const struct k_clock alarm_clock = {
829	.clock_getres		= alarm_clock_getres,
830	.clock_get		= alarm_clock_get,
831	.timer_create		= alarm_timer_create,
832	.timer_set		= common_timer_set,
833	.timer_del		= common_timer_del,
834	.timer_get		= common_timer_get,
835	.timer_arm		= alarm_timer_arm,
836	.timer_rearm		= alarm_timer_rearm,
837	.timer_forward		= alarm_timer_forward,
838	.timer_remaining	= alarm_timer_remaining,
839	.timer_try_to_cancel	= alarm_timer_try_to_cancel,
840	.nsleep			= alarm_timer_nsleep,
841};
842#endif /* CONFIG_POSIX_TIMERS */
843
844
845/* Suspend hook structures */
846static const struct dev_pm_ops alarmtimer_pm_ops = {
847	.suspend = alarmtimer_suspend,
848	.resume = alarmtimer_resume,
849};
850
851static struct platform_driver alarmtimer_driver = {
852	.driver = {
853		.name = "alarmtimer",
854		.pm = &alarmtimer_pm_ops,
855	}
856};
857
858/**
859 * alarmtimer_init - Initialize alarm timer code
860 *
861 * This function initializes the alarm bases and registers
862 * the posix clock ids.
863 */
864static int __init alarmtimer_init(void)
865{
866	struct platform_device *pdev;
867	int error = 0;
868	int i;
 
 
 
 
 
 
 
 
 
869
870	alarmtimer_rtc_timer_init();
871
 
 
 
 
 
872	/* Initialize alarm bases */
873	alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
874	alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
875	alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
876	alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
877	for (i = 0; i < ALARM_NUMTYPE; i++) {
878		timerqueue_init_head(&alarm_bases[i].timerqueue);
879		spin_lock_init(&alarm_bases[i].lock);
880	}
881
882	error = alarmtimer_rtc_interface_setup();
883	if (error)
884		return error;
885
886	error = platform_driver_register(&alarmtimer_driver);
887	if (error)
888		goto out_if;
889
890	pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
891	if (IS_ERR(pdev)) {
892		error = PTR_ERR(pdev);
893		goto out_drv;
894	}
 
895	return 0;
896
897out_drv:
898	platform_driver_unregister(&alarmtimer_driver);
899out_if:
900	alarmtimer_rtc_interface_remove();
901	return error;
902}
903device_initcall(alarmtimer_init);