Loading...
1/*
2 * Copyright (C) 2012 Fusion-io All rights reserved.
3 * Copyright (C) 2012 Intel Corp. All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
18 */
19#include <linux/sched.h>
20#include <linux/wait.h>
21#include <linux/bio.h>
22#include <linux/slab.h>
23#include <linux/buffer_head.h>
24#include <linux/blkdev.h>
25#include <linux/random.h>
26#include <linux/iocontext.h>
27#include <linux/capability.h>
28#include <linux/ratelimit.h>
29#include <linux/kthread.h>
30#include <linux/raid/pq.h>
31#include <linux/hash.h>
32#include <linux/list_sort.h>
33#include <linux/raid/xor.h>
34#include <linux/vmalloc.h>
35#include <asm/div64.h>
36#include "ctree.h"
37#include "extent_map.h"
38#include "disk-io.h"
39#include "transaction.h"
40#include "print-tree.h"
41#include "volumes.h"
42#include "raid56.h"
43#include "async-thread.h"
44#include "check-integrity.h"
45#include "rcu-string.h"
46
47/* set when additional merges to this rbio are not allowed */
48#define RBIO_RMW_LOCKED_BIT 1
49
50/*
51 * set when this rbio is sitting in the hash, but it is just a cache
52 * of past RMW
53 */
54#define RBIO_CACHE_BIT 2
55
56/*
57 * set when it is safe to trust the stripe_pages for caching
58 */
59#define RBIO_CACHE_READY_BIT 3
60
61#define RBIO_CACHE_SIZE 1024
62
63enum btrfs_rbio_ops {
64 BTRFS_RBIO_WRITE,
65 BTRFS_RBIO_READ_REBUILD,
66 BTRFS_RBIO_PARITY_SCRUB,
67 BTRFS_RBIO_REBUILD_MISSING,
68};
69
70struct btrfs_raid_bio {
71 struct btrfs_fs_info *fs_info;
72 struct btrfs_bio *bbio;
73
74 /* while we're doing rmw on a stripe
75 * we put it into a hash table so we can
76 * lock the stripe and merge more rbios
77 * into it.
78 */
79 struct list_head hash_list;
80
81 /*
82 * LRU list for the stripe cache
83 */
84 struct list_head stripe_cache;
85
86 /*
87 * for scheduling work in the helper threads
88 */
89 struct btrfs_work work;
90
91 /*
92 * bio list and bio_list_lock are used
93 * to add more bios into the stripe
94 * in hopes of avoiding the full rmw
95 */
96 struct bio_list bio_list;
97 spinlock_t bio_list_lock;
98
99 /* also protected by the bio_list_lock, the
100 * plug list is used by the plugging code
101 * to collect partial bios while plugged. The
102 * stripe locking code also uses it to hand off
103 * the stripe lock to the next pending IO
104 */
105 struct list_head plug_list;
106
107 /*
108 * flags that tell us if it is safe to
109 * merge with this bio
110 */
111 unsigned long flags;
112
113 /* size of each individual stripe on disk */
114 int stripe_len;
115
116 /* number of data stripes (no p/q) */
117 int nr_data;
118
119 int real_stripes;
120
121 int stripe_npages;
122 /*
123 * set if we're doing a parity rebuild
124 * for a read from higher up, which is handled
125 * differently from a parity rebuild as part of
126 * rmw
127 */
128 enum btrfs_rbio_ops operation;
129
130 /* first bad stripe */
131 int faila;
132
133 /* second bad stripe (for raid6 use) */
134 int failb;
135
136 int scrubp;
137 /*
138 * number of pages needed to represent the full
139 * stripe
140 */
141 int nr_pages;
142
143 /*
144 * size of all the bios in the bio_list. This
145 * helps us decide if the rbio maps to a full
146 * stripe or not
147 */
148 int bio_list_bytes;
149
150 int generic_bio_cnt;
151
152 atomic_t refs;
153
154 atomic_t stripes_pending;
155
156 atomic_t error;
157 /*
158 * these are two arrays of pointers. We allocate the
159 * rbio big enough to hold them both and setup their
160 * locations when the rbio is allocated
161 */
162
163 /* pointers to pages that we allocated for
164 * reading/writing stripes directly from the disk (including P/Q)
165 */
166 struct page **stripe_pages;
167
168 /*
169 * pointers to the pages in the bio_list. Stored
170 * here for faster lookup
171 */
172 struct page **bio_pages;
173
174 /*
175 * bitmap to record which horizontal stripe has data
176 */
177 unsigned long *dbitmap;
178};
179
180static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
181static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
182static void rmw_work(struct btrfs_work *work);
183static void read_rebuild_work(struct btrfs_work *work);
184static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
185static void async_read_rebuild(struct btrfs_raid_bio *rbio);
186static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
187static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
188static void __free_raid_bio(struct btrfs_raid_bio *rbio);
189static void index_rbio_pages(struct btrfs_raid_bio *rbio);
190static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
191
192static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
193 int need_check);
194static void async_scrub_parity(struct btrfs_raid_bio *rbio);
195
196/*
197 * the stripe hash table is used for locking, and to collect
198 * bios in hopes of making a full stripe
199 */
200int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
201{
202 struct btrfs_stripe_hash_table *table;
203 struct btrfs_stripe_hash_table *x;
204 struct btrfs_stripe_hash *cur;
205 struct btrfs_stripe_hash *h;
206 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
207 int i;
208 int table_size;
209
210 if (info->stripe_hash_table)
211 return 0;
212
213 /*
214 * The table is large, starting with order 4 and can go as high as
215 * order 7 in case lock debugging is turned on.
216 *
217 * Try harder to allocate and fallback to vmalloc to lower the chance
218 * of a failing mount.
219 */
220 table_size = sizeof(*table) + sizeof(*h) * num_entries;
221 table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
222 if (!table) {
223 table = vzalloc(table_size);
224 if (!table)
225 return -ENOMEM;
226 }
227
228 spin_lock_init(&table->cache_lock);
229 INIT_LIST_HEAD(&table->stripe_cache);
230
231 h = table->table;
232
233 for (i = 0; i < num_entries; i++) {
234 cur = h + i;
235 INIT_LIST_HEAD(&cur->hash_list);
236 spin_lock_init(&cur->lock);
237 init_waitqueue_head(&cur->wait);
238 }
239
240 x = cmpxchg(&info->stripe_hash_table, NULL, table);
241 if (x)
242 kvfree(x);
243 return 0;
244}
245
246/*
247 * caching an rbio means to copy anything from the
248 * bio_pages array into the stripe_pages array. We
249 * use the page uptodate bit in the stripe cache array
250 * to indicate if it has valid data
251 *
252 * once the caching is done, we set the cache ready
253 * bit.
254 */
255static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
256{
257 int i;
258 char *s;
259 char *d;
260 int ret;
261
262 ret = alloc_rbio_pages(rbio);
263 if (ret)
264 return;
265
266 for (i = 0; i < rbio->nr_pages; i++) {
267 if (!rbio->bio_pages[i])
268 continue;
269
270 s = kmap(rbio->bio_pages[i]);
271 d = kmap(rbio->stripe_pages[i]);
272
273 memcpy(d, s, PAGE_SIZE);
274
275 kunmap(rbio->bio_pages[i]);
276 kunmap(rbio->stripe_pages[i]);
277 SetPageUptodate(rbio->stripe_pages[i]);
278 }
279 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
280}
281
282/*
283 * we hash on the first logical address of the stripe
284 */
285static int rbio_bucket(struct btrfs_raid_bio *rbio)
286{
287 u64 num = rbio->bbio->raid_map[0];
288
289 /*
290 * we shift down quite a bit. We're using byte
291 * addressing, and most of the lower bits are zeros.
292 * This tends to upset hash_64, and it consistently
293 * returns just one or two different values.
294 *
295 * shifting off the lower bits fixes things.
296 */
297 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
298}
299
300/*
301 * stealing an rbio means taking all the uptodate pages from the stripe
302 * array in the source rbio and putting them into the destination rbio
303 */
304static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
305{
306 int i;
307 struct page *s;
308 struct page *d;
309
310 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
311 return;
312
313 for (i = 0; i < dest->nr_pages; i++) {
314 s = src->stripe_pages[i];
315 if (!s || !PageUptodate(s)) {
316 continue;
317 }
318
319 d = dest->stripe_pages[i];
320 if (d)
321 __free_page(d);
322
323 dest->stripe_pages[i] = s;
324 src->stripe_pages[i] = NULL;
325 }
326}
327
328/*
329 * merging means we take the bio_list from the victim and
330 * splice it into the destination. The victim should
331 * be discarded afterwards.
332 *
333 * must be called with dest->rbio_list_lock held
334 */
335static void merge_rbio(struct btrfs_raid_bio *dest,
336 struct btrfs_raid_bio *victim)
337{
338 bio_list_merge(&dest->bio_list, &victim->bio_list);
339 dest->bio_list_bytes += victim->bio_list_bytes;
340 dest->generic_bio_cnt += victim->generic_bio_cnt;
341 bio_list_init(&victim->bio_list);
342}
343
344/*
345 * used to prune items that are in the cache. The caller
346 * must hold the hash table lock.
347 */
348static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
349{
350 int bucket = rbio_bucket(rbio);
351 struct btrfs_stripe_hash_table *table;
352 struct btrfs_stripe_hash *h;
353 int freeit = 0;
354
355 /*
356 * check the bit again under the hash table lock.
357 */
358 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
359 return;
360
361 table = rbio->fs_info->stripe_hash_table;
362 h = table->table + bucket;
363
364 /* hold the lock for the bucket because we may be
365 * removing it from the hash table
366 */
367 spin_lock(&h->lock);
368
369 /*
370 * hold the lock for the bio list because we need
371 * to make sure the bio list is empty
372 */
373 spin_lock(&rbio->bio_list_lock);
374
375 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
376 list_del_init(&rbio->stripe_cache);
377 table->cache_size -= 1;
378 freeit = 1;
379
380 /* if the bio list isn't empty, this rbio is
381 * still involved in an IO. We take it out
382 * of the cache list, and drop the ref that
383 * was held for the list.
384 *
385 * If the bio_list was empty, we also remove
386 * the rbio from the hash_table, and drop
387 * the corresponding ref
388 */
389 if (bio_list_empty(&rbio->bio_list)) {
390 if (!list_empty(&rbio->hash_list)) {
391 list_del_init(&rbio->hash_list);
392 atomic_dec(&rbio->refs);
393 BUG_ON(!list_empty(&rbio->plug_list));
394 }
395 }
396 }
397
398 spin_unlock(&rbio->bio_list_lock);
399 spin_unlock(&h->lock);
400
401 if (freeit)
402 __free_raid_bio(rbio);
403}
404
405/*
406 * prune a given rbio from the cache
407 */
408static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
409{
410 struct btrfs_stripe_hash_table *table;
411 unsigned long flags;
412
413 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
414 return;
415
416 table = rbio->fs_info->stripe_hash_table;
417
418 spin_lock_irqsave(&table->cache_lock, flags);
419 __remove_rbio_from_cache(rbio);
420 spin_unlock_irqrestore(&table->cache_lock, flags);
421}
422
423/*
424 * remove everything in the cache
425 */
426static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
427{
428 struct btrfs_stripe_hash_table *table;
429 unsigned long flags;
430 struct btrfs_raid_bio *rbio;
431
432 table = info->stripe_hash_table;
433
434 spin_lock_irqsave(&table->cache_lock, flags);
435 while (!list_empty(&table->stripe_cache)) {
436 rbio = list_entry(table->stripe_cache.next,
437 struct btrfs_raid_bio,
438 stripe_cache);
439 __remove_rbio_from_cache(rbio);
440 }
441 spin_unlock_irqrestore(&table->cache_lock, flags);
442}
443
444/*
445 * remove all cached entries and free the hash table
446 * used by unmount
447 */
448void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
449{
450 if (!info->stripe_hash_table)
451 return;
452 btrfs_clear_rbio_cache(info);
453 kvfree(info->stripe_hash_table);
454 info->stripe_hash_table = NULL;
455}
456
457/*
458 * insert an rbio into the stripe cache. It
459 * must have already been prepared by calling
460 * cache_rbio_pages
461 *
462 * If this rbio was already cached, it gets
463 * moved to the front of the lru.
464 *
465 * If the size of the rbio cache is too big, we
466 * prune an item.
467 */
468static void cache_rbio(struct btrfs_raid_bio *rbio)
469{
470 struct btrfs_stripe_hash_table *table;
471 unsigned long flags;
472
473 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
474 return;
475
476 table = rbio->fs_info->stripe_hash_table;
477
478 spin_lock_irqsave(&table->cache_lock, flags);
479 spin_lock(&rbio->bio_list_lock);
480
481 /* bump our ref if we were not in the list before */
482 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
483 atomic_inc(&rbio->refs);
484
485 if (!list_empty(&rbio->stripe_cache)){
486 list_move(&rbio->stripe_cache, &table->stripe_cache);
487 } else {
488 list_add(&rbio->stripe_cache, &table->stripe_cache);
489 table->cache_size += 1;
490 }
491
492 spin_unlock(&rbio->bio_list_lock);
493
494 if (table->cache_size > RBIO_CACHE_SIZE) {
495 struct btrfs_raid_bio *found;
496
497 found = list_entry(table->stripe_cache.prev,
498 struct btrfs_raid_bio,
499 stripe_cache);
500
501 if (found != rbio)
502 __remove_rbio_from_cache(found);
503 }
504
505 spin_unlock_irqrestore(&table->cache_lock, flags);
506}
507
508/*
509 * helper function to run the xor_blocks api. It is only
510 * able to do MAX_XOR_BLOCKS at a time, so we need to
511 * loop through.
512 */
513static void run_xor(void **pages, int src_cnt, ssize_t len)
514{
515 int src_off = 0;
516 int xor_src_cnt = 0;
517 void *dest = pages[src_cnt];
518
519 while(src_cnt > 0) {
520 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
521 xor_blocks(xor_src_cnt, len, dest, pages + src_off);
522
523 src_cnt -= xor_src_cnt;
524 src_off += xor_src_cnt;
525 }
526}
527
528/*
529 * returns true if the bio list inside this rbio
530 * covers an entire stripe (no rmw required).
531 * Must be called with the bio list lock held, or
532 * at a time when you know it is impossible to add
533 * new bios into the list
534 */
535static int __rbio_is_full(struct btrfs_raid_bio *rbio)
536{
537 unsigned long size = rbio->bio_list_bytes;
538 int ret = 1;
539
540 if (size != rbio->nr_data * rbio->stripe_len)
541 ret = 0;
542
543 BUG_ON(size > rbio->nr_data * rbio->stripe_len);
544 return ret;
545}
546
547static int rbio_is_full(struct btrfs_raid_bio *rbio)
548{
549 unsigned long flags;
550 int ret;
551
552 spin_lock_irqsave(&rbio->bio_list_lock, flags);
553 ret = __rbio_is_full(rbio);
554 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
555 return ret;
556}
557
558/*
559 * returns 1 if it is safe to merge two rbios together.
560 * The merging is safe if the two rbios correspond to
561 * the same stripe and if they are both going in the same
562 * direction (read vs write), and if neither one is
563 * locked for final IO
564 *
565 * The caller is responsible for locking such that
566 * rmw_locked is safe to test
567 */
568static int rbio_can_merge(struct btrfs_raid_bio *last,
569 struct btrfs_raid_bio *cur)
570{
571 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
572 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
573 return 0;
574
575 /*
576 * we can't merge with cached rbios, since the
577 * idea is that when we merge the destination
578 * rbio is going to run our IO for us. We can
579 * steal from cached rbios though, other functions
580 * handle that.
581 */
582 if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
583 test_bit(RBIO_CACHE_BIT, &cur->flags))
584 return 0;
585
586 if (last->bbio->raid_map[0] !=
587 cur->bbio->raid_map[0])
588 return 0;
589
590 /* we can't merge with different operations */
591 if (last->operation != cur->operation)
592 return 0;
593 /*
594 * We've need read the full stripe from the drive.
595 * check and repair the parity and write the new results.
596 *
597 * We're not allowed to add any new bios to the
598 * bio list here, anyone else that wants to
599 * change this stripe needs to do their own rmw.
600 */
601 if (last->operation == BTRFS_RBIO_PARITY_SCRUB ||
602 cur->operation == BTRFS_RBIO_PARITY_SCRUB)
603 return 0;
604
605 if (last->operation == BTRFS_RBIO_REBUILD_MISSING ||
606 cur->operation == BTRFS_RBIO_REBUILD_MISSING)
607 return 0;
608
609 return 1;
610}
611
612static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
613 int index)
614{
615 return stripe * rbio->stripe_npages + index;
616}
617
618/*
619 * these are just the pages from the rbio array, not from anything
620 * the FS sent down to us
621 */
622static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
623 int index)
624{
625 return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
626}
627
628/*
629 * helper to index into the pstripe
630 */
631static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
632{
633 return rbio_stripe_page(rbio, rbio->nr_data, index);
634}
635
636/*
637 * helper to index into the qstripe, returns null
638 * if there is no qstripe
639 */
640static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
641{
642 if (rbio->nr_data + 1 == rbio->real_stripes)
643 return NULL;
644 return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
645}
646
647/*
648 * The first stripe in the table for a logical address
649 * has the lock. rbios are added in one of three ways:
650 *
651 * 1) Nobody has the stripe locked yet. The rbio is given
652 * the lock and 0 is returned. The caller must start the IO
653 * themselves.
654 *
655 * 2) Someone has the stripe locked, but we're able to merge
656 * with the lock owner. The rbio is freed and the IO will
657 * start automatically along with the existing rbio. 1 is returned.
658 *
659 * 3) Someone has the stripe locked, but we're not able to merge.
660 * The rbio is added to the lock owner's plug list, or merged into
661 * an rbio already on the plug list. When the lock owner unlocks,
662 * the next rbio on the list is run and the IO is started automatically.
663 * 1 is returned
664 *
665 * If we return 0, the caller still owns the rbio and must continue with
666 * IO submission. If we return 1, the caller must assume the rbio has
667 * already been freed.
668 */
669static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
670{
671 int bucket = rbio_bucket(rbio);
672 struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
673 struct btrfs_raid_bio *cur;
674 struct btrfs_raid_bio *pending;
675 unsigned long flags;
676 DEFINE_WAIT(wait);
677 struct btrfs_raid_bio *freeit = NULL;
678 struct btrfs_raid_bio *cache_drop = NULL;
679 int ret = 0;
680 int walk = 0;
681
682 spin_lock_irqsave(&h->lock, flags);
683 list_for_each_entry(cur, &h->hash_list, hash_list) {
684 walk++;
685 if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
686 spin_lock(&cur->bio_list_lock);
687
688 /* can we steal this cached rbio's pages? */
689 if (bio_list_empty(&cur->bio_list) &&
690 list_empty(&cur->plug_list) &&
691 test_bit(RBIO_CACHE_BIT, &cur->flags) &&
692 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
693 list_del_init(&cur->hash_list);
694 atomic_dec(&cur->refs);
695
696 steal_rbio(cur, rbio);
697 cache_drop = cur;
698 spin_unlock(&cur->bio_list_lock);
699
700 goto lockit;
701 }
702
703 /* can we merge into the lock owner? */
704 if (rbio_can_merge(cur, rbio)) {
705 merge_rbio(cur, rbio);
706 spin_unlock(&cur->bio_list_lock);
707 freeit = rbio;
708 ret = 1;
709 goto out;
710 }
711
712
713 /*
714 * we couldn't merge with the running
715 * rbio, see if we can merge with the
716 * pending ones. We don't have to
717 * check for rmw_locked because there
718 * is no way they are inside finish_rmw
719 * right now
720 */
721 list_for_each_entry(pending, &cur->plug_list,
722 plug_list) {
723 if (rbio_can_merge(pending, rbio)) {
724 merge_rbio(pending, rbio);
725 spin_unlock(&cur->bio_list_lock);
726 freeit = rbio;
727 ret = 1;
728 goto out;
729 }
730 }
731
732 /* no merging, put us on the tail of the plug list,
733 * our rbio will be started with the currently
734 * running rbio unlocks
735 */
736 list_add_tail(&rbio->plug_list, &cur->plug_list);
737 spin_unlock(&cur->bio_list_lock);
738 ret = 1;
739 goto out;
740 }
741 }
742lockit:
743 atomic_inc(&rbio->refs);
744 list_add(&rbio->hash_list, &h->hash_list);
745out:
746 spin_unlock_irqrestore(&h->lock, flags);
747 if (cache_drop)
748 remove_rbio_from_cache(cache_drop);
749 if (freeit)
750 __free_raid_bio(freeit);
751 return ret;
752}
753
754/*
755 * called as rmw or parity rebuild is completed. If the plug list has more
756 * rbios waiting for this stripe, the next one on the list will be started
757 */
758static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
759{
760 int bucket;
761 struct btrfs_stripe_hash *h;
762 unsigned long flags;
763 int keep_cache = 0;
764
765 bucket = rbio_bucket(rbio);
766 h = rbio->fs_info->stripe_hash_table->table + bucket;
767
768 if (list_empty(&rbio->plug_list))
769 cache_rbio(rbio);
770
771 spin_lock_irqsave(&h->lock, flags);
772 spin_lock(&rbio->bio_list_lock);
773
774 if (!list_empty(&rbio->hash_list)) {
775 /*
776 * if we're still cached and there is no other IO
777 * to perform, just leave this rbio here for others
778 * to steal from later
779 */
780 if (list_empty(&rbio->plug_list) &&
781 test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
782 keep_cache = 1;
783 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
784 BUG_ON(!bio_list_empty(&rbio->bio_list));
785 goto done;
786 }
787
788 list_del_init(&rbio->hash_list);
789 atomic_dec(&rbio->refs);
790
791 /*
792 * we use the plug list to hold all the rbios
793 * waiting for the chance to lock this stripe.
794 * hand the lock over to one of them.
795 */
796 if (!list_empty(&rbio->plug_list)) {
797 struct btrfs_raid_bio *next;
798 struct list_head *head = rbio->plug_list.next;
799
800 next = list_entry(head, struct btrfs_raid_bio,
801 plug_list);
802
803 list_del_init(&rbio->plug_list);
804
805 list_add(&next->hash_list, &h->hash_list);
806 atomic_inc(&next->refs);
807 spin_unlock(&rbio->bio_list_lock);
808 spin_unlock_irqrestore(&h->lock, flags);
809
810 if (next->operation == BTRFS_RBIO_READ_REBUILD)
811 async_read_rebuild(next);
812 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
813 steal_rbio(rbio, next);
814 async_read_rebuild(next);
815 } else if (next->operation == BTRFS_RBIO_WRITE) {
816 steal_rbio(rbio, next);
817 async_rmw_stripe(next);
818 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
819 steal_rbio(rbio, next);
820 async_scrub_parity(next);
821 }
822
823 goto done_nolock;
824 /*
825 * The barrier for this waitqueue_active is not needed,
826 * we're protected by h->lock and can't miss a wakeup.
827 */
828 } else if (waitqueue_active(&h->wait)) {
829 spin_unlock(&rbio->bio_list_lock);
830 spin_unlock_irqrestore(&h->lock, flags);
831 wake_up(&h->wait);
832 goto done_nolock;
833 }
834 }
835done:
836 spin_unlock(&rbio->bio_list_lock);
837 spin_unlock_irqrestore(&h->lock, flags);
838
839done_nolock:
840 if (!keep_cache)
841 remove_rbio_from_cache(rbio);
842}
843
844static void __free_raid_bio(struct btrfs_raid_bio *rbio)
845{
846 int i;
847
848 WARN_ON(atomic_read(&rbio->refs) < 0);
849 if (!atomic_dec_and_test(&rbio->refs))
850 return;
851
852 WARN_ON(!list_empty(&rbio->stripe_cache));
853 WARN_ON(!list_empty(&rbio->hash_list));
854 WARN_ON(!bio_list_empty(&rbio->bio_list));
855
856 for (i = 0; i < rbio->nr_pages; i++) {
857 if (rbio->stripe_pages[i]) {
858 __free_page(rbio->stripe_pages[i]);
859 rbio->stripe_pages[i] = NULL;
860 }
861 }
862
863 btrfs_put_bbio(rbio->bbio);
864 kfree(rbio);
865}
866
867static void free_raid_bio(struct btrfs_raid_bio *rbio)
868{
869 unlock_stripe(rbio);
870 __free_raid_bio(rbio);
871}
872
873/*
874 * this frees the rbio and runs through all the bios in the
875 * bio_list and calls end_io on them
876 */
877static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err)
878{
879 struct bio *cur = bio_list_get(&rbio->bio_list);
880 struct bio *next;
881
882 if (rbio->generic_bio_cnt)
883 btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
884
885 free_raid_bio(rbio);
886
887 while (cur) {
888 next = cur->bi_next;
889 cur->bi_next = NULL;
890 cur->bi_error = err;
891 bio_endio(cur);
892 cur = next;
893 }
894}
895
896/*
897 * end io function used by finish_rmw. When we finally
898 * get here, we've written a full stripe
899 */
900static void raid_write_end_io(struct bio *bio)
901{
902 struct btrfs_raid_bio *rbio = bio->bi_private;
903 int err = bio->bi_error;
904 int max_errors;
905
906 if (err)
907 fail_bio_stripe(rbio, bio);
908
909 bio_put(bio);
910
911 if (!atomic_dec_and_test(&rbio->stripes_pending))
912 return;
913
914 err = 0;
915
916 /* OK, we have read all the stripes we need to. */
917 max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
918 0 : rbio->bbio->max_errors;
919 if (atomic_read(&rbio->error) > max_errors)
920 err = -EIO;
921
922 rbio_orig_end_io(rbio, err);
923}
924
925/*
926 * the read/modify/write code wants to use the original bio for
927 * any pages it included, and then use the rbio for everything
928 * else. This function decides if a given index (stripe number)
929 * and page number in that stripe fall inside the original bio
930 * or the rbio.
931 *
932 * if you set bio_list_only, you'll get a NULL back for any ranges
933 * that are outside the bio_list
934 *
935 * This doesn't take any refs on anything, you get a bare page pointer
936 * and the caller must bump refs as required.
937 *
938 * You must call index_rbio_pages once before you can trust
939 * the answers from this function.
940 */
941static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
942 int index, int pagenr, int bio_list_only)
943{
944 int chunk_page;
945 struct page *p = NULL;
946
947 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
948
949 spin_lock_irq(&rbio->bio_list_lock);
950 p = rbio->bio_pages[chunk_page];
951 spin_unlock_irq(&rbio->bio_list_lock);
952
953 if (p || bio_list_only)
954 return p;
955
956 return rbio->stripe_pages[chunk_page];
957}
958
959/*
960 * number of pages we need for the entire stripe across all the
961 * drives
962 */
963static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
964{
965 return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
966}
967
968/*
969 * allocation and initial setup for the btrfs_raid_bio. Not
970 * this does not allocate any pages for rbio->pages.
971 */
972static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
973 struct btrfs_bio *bbio,
974 u64 stripe_len)
975{
976 struct btrfs_raid_bio *rbio;
977 int nr_data = 0;
978 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
979 int num_pages = rbio_nr_pages(stripe_len, real_stripes);
980 int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
981 void *p;
982
983 rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
984 DIV_ROUND_UP(stripe_npages, BITS_PER_LONG) *
985 sizeof(long), GFP_NOFS);
986 if (!rbio)
987 return ERR_PTR(-ENOMEM);
988
989 bio_list_init(&rbio->bio_list);
990 INIT_LIST_HEAD(&rbio->plug_list);
991 spin_lock_init(&rbio->bio_list_lock);
992 INIT_LIST_HEAD(&rbio->stripe_cache);
993 INIT_LIST_HEAD(&rbio->hash_list);
994 rbio->bbio = bbio;
995 rbio->fs_info = fs_info;
996 rbio->stripe_len = stripe_len;
997 rbio->nr_pages = num_pages;
998 rbio->real_stripes = real_stripes;
999 rbio->stripe_npages = stripe_npages;
1000 rbio->faila = -1;
1001 rbio->failb = -1;
1002 atomic_set(&rbio->refs, 1);
1003 atomic_set(&rbio->error, 0);
1004 atomic_set(&rbio->stripes_pending, 0);
1005
1006 /*
1007 * the stripe_pages and bio_pages array point to the extra
1008 * memory we allocated past the end of the rbio
1009 */
1010 p = rbio + 1;
1011 rbio->stripe_pages = p;
1012 rbio->bio_pages = p + sizeof(struct page *) * num_pages;
1013 rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
1014
1015 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1016 nr_data = real_stripes - 1;
1017 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1018 nr_data = real_stripes - 2;
1019 else
1020 BUG();
1021
1022 rbio->nr_data = nr_data;
1023 return rbio;
1024}
1025
1026/* allocate pages for all the stripes in the bio, including parity */
1027static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1028{
1029 int i;
1030 struct page *page;
1031
1032 for (i = 0; i < rbio->nr_pages; i++) {
1033 if (rbio->stripe_pages[i])
1034 continue;
1035 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1036 if (!page)
1037 return -ENOMEM;
1038 rbio->stripe_pages[i] = page;
1039 }
1040 return 0;
1041}
1042
1043/* only allocate pages for p/q stripes */
1044static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1045{
1046 int i;
1047 struct page *page;
1048
1049 i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
1050
1051 for (; i < rbio->nr_pages; i++) {
1052 if (rbio->stripe_pages[i])
1053 continue;
1054 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1055 if (!page)
1056 return -ENOMEM;
1057 rbio->stripe_pages[i] = page;
1058 }
1059 return 0;
1060}
1061
1062/*
1063 * add a single page from a specific stripe into our list of bios for IO
1064 * this will try to merge into existing bios if possible, and returns
1065 * zero if all went well.
1066 */
1067static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1068 struct bio_list *bio_list,
1069 struct page *page,
1070 int stripe_nr,
1071 unsigned long page_index,
1072 unsigned long bio_max_len)
1073{
1074 struct bio *last = bio_list->tail;
1075 u64 last_end = 0;
1076 int ret;
1077 struct bio *bio;
1078 struct btrfs_bio_stripe *stripe;
1079 u64 disk_start;
1080
1081 stripe = &rbio->bbio->stripes[stripe_nr];
1082 disk_start = stripe->physical + (page_index << PAGE_SHIFT);
1083
1084 /* if the device is missing, just fail this stripe */
1085 if (!stripe->dev->bdev)
1086 return fail_rbio_index(rbio, stripe_nr);
1087
1088 /* see if we can add this page onto our existing bio */
1089 if (last) {
1090 last_end = (u64)last->bi_iter.bi_sector << 9;
1091 last_end += last->bi_iter.bi_size;
1092
1093 /*
1094 * we can't merge these if they are from different
1095 * devices or if they are not contiguous
1096 */
1097 if (last_end == disk_start && stripe->dev->bdev &&
1098 !last->bi_error &&
1099 last->bi_bdev == stripe->dev->bdev) {
1100 ret = bio_add_page(last, page, PAGE_SIZE, 0);
1101 if (ret == PAGE_SIZE)
1102 return 0;
1103 }
1104 }
1105
1106 /* put a new bio on the list */
1107 bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1);
1108 if (!bio)
1109 return -ENOMEM;
1110
1111 bio->bi_iter.bi_size = 0;
1112 bio->bi_bdev = stripe->dev->bdev;
1113 bio->bi_iter.bi_sector = disk_start >> 9;
1114
1115 bio_add_page(bio, page, PAGE_SIZE, 0);
1116 bio_list_add(bio_list, bio);
1117 return 0;
1118}
1119
1120/*
1121 * while we're doing the read/modify/write cycle, we could
1122 * have errors in reading pages off the disk. This checks
1123 * for errors and if we're not able to read the page it'll
1124 * trigger parity reconstruction. The rmw will be finished
1125 * after we've reconstructed the failed stripes
1126 */
1127static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1128{
1129 if (rbio->faila >= 0 || rbio->failb >= 0) {
1130 BUG_ON(rbio->faila == rbio->real_stripes - 1);
1131 __raid56_parity_recover(rbio);
1132 } else {
1133 finish_rmw(rbio);
1134 }
1135}
1136
1137/*
1138 * helper function to walk our bio list and populate the bio_pages array with
1139 * the result. This seems expensive, but it is faster than constantly
1140 * searching through the bio list as we setup the IO in finish_rmw or stripe
1141 * reconstruction.
1142 *
1143 * This must be called before you trust the answers from page_in_rbio
1144 */
1145static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1146{
1147 struct bio *bio;
1148 struct bio_vec *bvec;
1149 u64 start;
1150 unsigned long stripe_offset;
1151 unsigned long page_index;
1152 int i;
1153
1154 spin_lock_irq(&rbio->bio_list_lock);
1155 bio_list_for_each(bio, &rbio->bio_list) {
1156 start = (u64)bio->bi_iter.bi_sector << 9;
1157 stripe_offset = start - rbio->bbio->raid_map[0];
1158 page_index = stripe_offset >> PAGE_SHIFT;
1159
1160 bio_for_each_segment_all(bvec, bio, i)
1161 rbio->bio_pages[page_index + i] = bvec->bv_page;
1162 }
1163 spin_unlock_irq(&rbio->bio_list_lock);
1164}
1165
1166/*
1167 * this is called from one of two situations. We either
1168 * have a full stripe from the higher layers, or we've read all
1169 * the missing bits off disk.
1170 *
1171 * This will calculate the parity and then send down any
1172 * changed blocks.
1173 */
1174static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1175{
1176 struct btrfs_bio *bbio = rbio->bbio;
1177 void *pointers[rbio->real_stripes];
1178 int nr_data = rbio->nr_data;
1179 int stripe;
1180 int pagenr;
1181 int p_stripe = -1;
1182 int q_stripe = -1;
1183 struct bio_list bio_list;
1184 struct bio *bio;
1185 int ret;
1186
1187 bio_list_init(&bio_list);
1188
1189 if (rbio->real_stripes - rbio->nr_data == 1) {
1190 p_stripe = rbio->real_stripes - 1;
1191 } else if (rbio->real_stripes - rbio->nr_data == 2) {
1192 p_stripe = rbio->real_stripes - 2;
1193 q_stripe = rbio->real_stripes - 1;
1194 } else {
1195 BUG();
1196 }
1197
1198 /* at this point we either have a full stripe,
1199 * or we've read the full stripe from the drive.
1200 * recalculate the parity and write the new results.
1201 *
1202 * We're not allowed to add any new bios to the
1203 * bio list here, anyone else that wants to
1204 * change this stripe needs to do their own rmw.
1205 */
1206 spin_lock_irq(&rbio->bio_list_lock);
1207 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1208 spin_unlock_irq(&rbio->bio_list_lock);
1209
1210 atomic_set(&rbio->error, 0);
1211
1212 /*
1213 * now that we've set rmw_locked, run through the
1214 * bio list one last time and map the page pointers
1215 *
1216 * We don't cache full rbios because we're assuming
1217 * the higher layers are unlikely to use this area of
1218 * the disk again soon. If they do use it again,
1219 * hopefully they will send another full bio.
1220 */
1221 index_rbio_pages(rbio);
1222 if (!rbio_is_full(rbio))
1223 cache_rbio_pages(rbio);
1224 else
1225 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1226
1227 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1228 struct page *p;
1229 /* first collect one page from each data stripe */
1230 for (stripe = 0; stripe < nr_data; stripe++) {
1231 p = page_in_rbio(rbio, stripe, pagenr, 0);
1232 pointers[stripe] = kmap(p);
1233 }
1234
1235 /* then add the parity stripe */
1236 p = rbio_pstripe_page(rbio, pagenr);
1237 SetPageUptodate(p);
1238 pointers[stripe++] = kmap(p);
1239
1240 if (q_stripe != -1) {
1241
1242 /*
1243 * raid6, add the qstripe and call the
1244 * library function to fill in our p/q
1245 */
1246 p = rbio_qstripe_page(rbio, pagenr);
1247 SetPageUptodate(p);
1248 pointers[stripe++] = kmap(p);
1249
1250 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1251 pointers);
1252 } else {
1253 /* raid5 */
1254 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
1255 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
1256 }
1257
1258
1259 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1260 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1261 }
1262
1263 /*
1264 * time to start writing. Make bios for everything from the
1265 * higher layers (the bio_list in our rbio) and our p/q. Ignore
1266 * everything else.
1267 */
1268 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1269 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1270 struct page *page;
1271 if (stripe < rbio->nr_data) {
1272 page = page_in_rbio(rbio, stripe, pagenr, 1);
1273 if (!page)
1274 continue;
1275 } else {
1276 page = rbio_stripe_page(rbio, stripe, pagenr);
1277 }
1278
1279 ret = rbio_add_io_page(rbio, &bio_list,
1280 page, stripe, pagenr, rbio->stripe_len);
1281 if (ret)
1282 goto cleanup;
1283 }
1284 }
1285
1286 if (likely(!bbio->num_tgtdevs))
1287 goto write_data;
1288
1289 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1290 if (!bbio->tgtdev_map[stripe])
1291 continue;
1292
1293 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1294 struct page *page;
1295 if (stripe < rbio->nr_data) {
1296 page = page_in_rbio(rbio, stripe, pagenr, 1);
1297 if (!page)
1298 continue;
1299 } else {
1300 page = rbio_stripe_page(rbio, stripe, pagenr);
1301 }
1302
1303 ret = rbio_add_io_page(rbio, &bio_list, page,
1304 rbio->bbio->tgtdev_map[stripe],
1305 pagenr, rbio->stripe_len);
1306 if (ret)
1307 goto cleanup;
1308 }
1309 }
1310
1311write_data:
1312 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1313 BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1314
1315 while (1) {
1316 bio = bio_list_pop(&bio_list);
1317 if (!bio)
1318 break;
1319
1320 bio->bi_private = rbio;
1321 bio->bi_end_io = raid_write_end_io;
1322 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1323
1324 submit_bio(bio);
1325 }
1326 return;
1327
1328cleanup:
1329 rbio_orig_end_io(rbio, -EIO);
1330}
1331
1332/*
1333 * helper to find the stripe number for a given bio. Used to figure out which
1334 * stripe has failed. This expects the bio to correspond to a physical disk,
1335 * so it looks up based on physical sector numbers.
1336 */
1337static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1338 struct bio *bio)
1339{
1340 u64 physical = bio->bi_iter.bi_sector;
1341 u64 stripe_start;
1342 int i;
1343 struct btrfs_bio_stripe *stripe;
1344
1345 physical <<= 9;
1346
1347 for (i = 0; i < rbio->bbio->num_stripes; i++) {
1348 stripe = &rbio->bbio->stripes[i];
1349 stripe_start = stripe->physical;
1350 if (physical >= stripe_start &&
1351 physical < stripe_start + rbio->stripe_len &&
1352 bio->bi_bdev == stripe->dev->bdev) {
1353 return i;
1354 }
1355 }
1356 return -1;
1357}
1358
1359/*
1360 * helper to find the stripe number for a given
1361 * bio (before mapping). Used to figure out which stripe has
1362 * failed. This looks up based on logical block numbers.
1363 */
1364static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1365 struct bio *bio)
1366{
1367 u64 logical = bio->bi_iter.bi_sector;
1368 u64 stripe_start;
1369 int i;
1370
1371 logical <<= 9;
1372
1373 for (i = 0; i < rbio->nr_data; i++) {
1374 stripe_start = rbio->bbio->raid_map[i];
1375 if (logical >= stripe_start &&
1376 logical < stripe_start + rbio->stripe_len) {
1377 return i;
1378 }
1379 }
1380 return -1;
1381}
1382
1383/*
1384 * returns -EIO if we had too many failures
1385 */
1386static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1387{
1388 unsigned long flags;
1389 int ret = 0;
1390
1391 spin_lock_irqsave(&rbio->bio_list_lock, flags);
1392
1393 /* we already know this stripe is bad, move on */
1394 if (rbio->faila == failed || rbio->failb == failed)
1395 goto out;
1396
1397 if (rbio->faila == -1) {
1398 /* first failure on this rbio */
1399 rbio->faila = failed;
1400 atomic_inc(&rbio->error);
1401 } else if (rbio->failb == -1) {
1402 /* second failure on this rbio */
1403 rbio->failb = failed;
1404 atomic_inc(&rbio->error);
1405 } else {
1406 ret = -EIO;
1407 }
1408out:
1409 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1410
1411 return ret;
1412}
1413
1414/*
1415 * helper to fail a stripe based on a physical disk
1416 * bio.
1417 */
1418static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1419 struct bio *bio)
1420{
1421 int failed = find_bio_stripe(rbio, bio);
1422
1423 if (failed < 0)
1424 return -EIO;
1425
1426 return fail_rbio_index(rbio, failed);
1427}
1428
1429/*
1430 * this sets each page in the bio uptodate. It should only be used on private
1431 * rbio pages, nothing that comes in from the higher layers
1432 */
1433static void set_bio_pages_uptodate(struct bio *bio)
1434{
1435 struct bio_vec *bvec;
1436 int i;
1437
1438 bio_for_each_segment_all(bvec, bio, i)
1439 SetPageUptodate(bvec->bv_page);
1440}
1441
1442/*
1443 * end io for the read phase of the rmw cycle. All the bios here are physical
1444 * stripe bios we've read from the disk so we can recalculate the parity of the
1445 * stripe.
1446 *
1447 * This will usually kick off finish_rmw once all the bios are read in, but it
1448 * may trigger parity reconstruction if we had any errors along the way
1449 */
1450static void raid_rmw_end_io(struct bio *bio)
1451{
1452 struct btrfs_raid_bio *rbio = bio->bi_private;
1453
1454 if (bio->bi_error)
1455 fail_bio_stripe(rbio, bio);
1456 else
1457 set_bio_pages_uptodate(bio);
1458
1459 bio_put(bio);
1460
1461 if (!atomic_dec_and_test(&rbio->stripes_pending))
1462 return;
1463
1464 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1465 goto cleanup;
1466
1467 /*
1468 * this will normally call finish_rmw to start our write
1469 * but if there are any failed stripes we'll reconstruct
1470 * from parity first
1471 */
1472 validate_rbio_for_rmw(rbio);
1473 return;
1474
1475cleanup:
1476
1477 rbio_orig_end_io(rbio, -EIO);
1478}
1479
1480static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1481{
1482 btrfs_init_work(&rbio->work, btrfs_rmw_helper, rmw_work, NULL, NULL);
1483 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
1484}
1485
1486static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1487{
1488 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1489 read_rebuild_work, NULL, NULL);
1490
1491 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
1492}
1493
1494/*
1495 * the stripe must be locked by the caller. It will
1496 * unlock after all the writes are done
1497 */
1498static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1499{
1500 int bios_to_read = 0;
1501 struct bio_list bio_list;
1502 int ret;
1503 int pagenr;
1504 int stripe;
1505 struct bio *bio;
1506
1507 bio_list_init(&bio_list);
1508
1509 ret = alloc_rbio_pages(rbio);
1510 if (ret)
1511 goto cleanup;
1512
1513 index_rbio_pages(rbio);
1514
1515 atomic_set(&rbio->error, 0);
1516 /*
1517 * build a list of bios to read all the missing parts of this
1518 * stripe
1519 */
1520 for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1521 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1522 struct page *page;
1523 /*
1524 * we want to find all the pages missing from
1525 * the rbio and read them from the disk. If
1526 * page_in_rbio finds a page in the bio list
1527 * we don't need to read it off the stripe.
1528 */
1529 page = page_in_rbio(rbio, stripe, pagenr, 1);
1530 if (page)
1531 continue;
1532
1533 page = rbio_stripe_page(rbio, stripe, pagenr);
1534 /*
1535 * the bio cache may have handed us an uptodate
1536 * page. If so, be happy and use it
1537 */
1538 if (PageUptodate(page))
1539 continue;
1540
1541 ret = rbio_add_io_page(rbio, &bio_list, page,
1542 stripe, pagenr, rbio->stripe_len);
1543 if (ret)
1544 goto cleanup;
1545 }
1546 }
1547
1548 bios_to_read = bio_list_size(&bio_list);
1549 if (!bios_to_read) {
1550 /*
1551 * this can happen if others have merged with
1552 * us, it means there is nothing left to read.
1553 * But if there are missing devices it may not be
1554 * safe to do the full stripe write yet.
1555 */
1556 goto finish;
1557 }
1558
1559 /*
1560 * the bbio may be freed once we submit the last bio. Make sure
1561 * not to touch it after that
1562 */
1563 atomic_set(&rbio->stripes_pending, bios_to_read);
1564 while (1) {
1565 bio = bio_list_pop(&bio_list);
1566 if (!bio)
1567 break;
1568
1569 bio->bi_private = rbio;
1570 bio->bi_end_io = raid_rmw_end_io;
1571 bio_set_op_attrs(bio, REQ_OP_READ, 0);
1572
1573 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
1574
1575 submit_bio(bio);
1576 }
1577 /* the actual write will happen once the reads are done */
1578 return 0;
1579
1580cleanup:
1581 rbio_orig_end_io(rbio, -EIO);
1582 return -EIO;
1583
1584finish:
1585 validate_rbio_for_rmw(rbio);
1586 return 0;
1587}
1588
1589/*
1590 * if the upper layers pass in a full stripe, we thank them by only allocating
1591 * enough pages to hold the parity, and sending it all down quickly.
1592 */
1593static int full_stripe_write(struct btrfs_raid_bio *rbio)
1594{
1595 int ret;
1596
1597 ret = alloc_rbio_parity_pages(rbio);
1598 if (ret) {
1599 __free_raid_bio(rbio);
1600 return ret;
1601 }
1602
1603 ret = lock_stripe_add(rbio);
1604 if (ret == 0)
1605 finish_rmw(rbio);
1606 return 0;
1607}
1608
1609/*
1610 * partial stripe writes get handed over to async helpers.
1611 * We're really hoping to merge a few more writes into this
1612 * rbio before calculating new parity
1613 */
1614static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1615{
1616 int ret;
1617
1618 ret = lock_stripe_add(rbio);
1619 if (ret == 0)
1620 async_rmw_stripe(rbio);
1621 return 0;
1622}
1623
1624/*
1625 * sometimes while we were reading from the drive to
1626 * recalculate parity, enough new bios come into create
1627 * a full stripe. So we do a check here to see if we can
1628 * go directly to finish_rmw
1629 */
1630static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1631{
1632 /* head off into rmw land if we don't have a full stripe */
1633 if (!rbio_is_full(rbio))
1634 return partial_stripe_write(rbio);
1635 return full_stripe_write(rbio);
1636}
1637
1638/*
1639 * We use plugging call backs to collect full stripes.
1640 * Any time we get a partial stripe write while plugged
1641 * we collect it into a list. When the unplug comes down,
1642 * we sort the list by logical block number and merge
1643 * everything we can into the same rbios
1644 */
1645struct btrfs_plug_cb {
1646 struct blk_plug_cb cb;
1647 struct btrfs_fs_info *info;
1648 struct list_head rbio_list;
1649 struct btrfs_work work;
1650};
1651
1652/*
1653 * rbios on the plug list are sorted for easier merging.
1654 */
1655static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1656{
1657 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1658 plug_list);
1659 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1660 plug_list);
1661 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1662 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1663
1664 if (a_sector < b_sector)
1665 return -1;
1666 if (a_sector > b_sector)
1667 return 1;
1668 return 0;
1669}
1670
1671static void run_plug(struct btrfs_plug_cb *plug)
1672{
1673 struct btrfs_raid_bio *cur;
1674 struct btrfs_raid_bio *last = NULL;
1675
1676 /*
1677 * sort our plug list then try to merge
1678 * everything we can in hopes of creating full
1679 * stripes.
1680 */
1681 list_sort(NULL, &plug->rbio_list, plug_cmp);
1682 while (!list_empty(&plug->rbio_list)) {
1683 cur = list_entry(plug->rbio_list.next,
1684 struct btrfs_raid_bio, plug_list);
1685 list_del_init(&cur->plug_list);
1686
1687 if (rbio_is_full(cur)) {
1688 /* we have a full stripe, send it down */
1689 full_stripe_write(cur);
1690 continue;
1691 }
1692 if (last) {
1693 if (rbio_can_merge(last, cur)) {
1694 merge_rbio(last, cur);
1695 __free_raid_bio(cur);
1696 continue;
1697
1698 }
1699 __raid56_parity_write(last);
1700 }
1701 last = cur;
1702 }
1703 if (last) {
1704 __raid56_parity_write(last);
1705 }
1706 kfree(plug);
1707}
1708
1709/*
1710 * if the unplug comes from schedule, we have to push the
1711 * work off to a helper thread
1712 */
1713static void unplug_work(struct btrfs_work *work)
1714{
1715 struct btrfs_plug_cb *plug;
1716 plug = container_of(work, struct btrfs_plug_cb, work);
1717 run_plug(plug);
1718}
1719
1720static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1721{
1722 struct btrfs_plug_cb *plug;
1723 plug = container_of(cb, struct btrfs_plug_cb, cb);
1724
1725 if (from_schedule) {
1726 btrfs_init_work(&plug->work, btrfs_rmw_helper,
1727 unplug_work, NULL, NULL);
1728 btrfs_queue_work(plug->info->rmw_workers,
1729 &plug->work);
1730 return;
1731 }
1732 run_plug(plug);
1733}
1734
1735/*
1736 * our main entry point for writes from the rest of the FS.
1737 */
1738int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
1739 struct btrfs_bio *bbio, u64 stripe_len)
1740{
1741 struct btrfs_raid_bio *rbio;
1742 struct btrfs_plug_cb *plug = NULL;
1743 struct blk_plug_cb *cb;
1744 int ret;
1745
1746 rbio = alloc_rbio(fs_info, bbio, stripe_len);
1747 if (IS_ERR(rbio)) {
1748 btrfs_put_bbio(bbio);
1749 return PTR_ERR(rbio);
1750 }
1751 bio_list_add(&rbio->bio_list, bio);
1752 rbio->bio_list_bytes = bio->bi_iter.bi_size;
1753 rbio->operation = BTRFS_RBIO_WRITE;
1754
1755 btrfs_bio_counter_inc_noblocked(fs_info);
1756 rbio->generic_bio_cnt = 1;
1757
1758 /*
1759 * don't plug on full rbios, just get them out the door
1760 * as quickly as we can
1761 */
1762 if (rbio_is_full(rbio)) {
1763 ret = full_stripe_write(rbio);
1764 if (ret)
1765 btrfs_bio_counter_dec(fs_info);
1766 return ret;
1767 }
1768
1769 cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
1770 if (cb) {
1771 plug = container_of(cb, struct btrfs_plug_cb, cb);
1772 if (!plug->info) {
1773 plug->info = fs_info;
1774 INIT_LIST_HEAD(&plug->rbio_list);
1775 }
1776 list_add_tail(&rbio->plug_list, &plug->rbio_list);
1777 ret = 0;
1778 } else {
1779 ret = __raid56_parity_write(rbio);
1780 if (ret)
1781 btrfs_bio_counter_dec(fs_info);
1782 }
1783 return ret;
1784}
1785
1786/*
1787 * all parity reconstruction happens here. We've read in everything
1788 * we can find from the drives and this does the heavy lifting of
1789 * sorting the good from the bad.
1790 */
1791static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1792{
1793 int pagenr, stripe;
1794 void **pointers;
1795 int faila = -1, failb = -1;
1796 struct page *page;
1797 int err;
1798 int i;
1799
1800 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1801 if (!pointers) {
1802 err = -ENOMEM;
1803 goto cleanup_io;
1804 }
1805
1806 faila = rbio->faila;
1807 failb = rbio->failb;
1808
1809 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1810 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1811 spin_lock_irq(&rbio->bio_list_lock);
1812 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1813 spin_unlock_irq(&rbio->bio_list_lock);
1814 }
1815
1816 index_rbio_pages(rbio);
1817
1818 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1819 /*
1820 * Now we just use bitmap to mark the horizontal stripes in
1821 * which we have data when doing parity scrub.
1822 */
1823 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1824 !test_bit(pagenr, rbio->dbitmap))
1825 continue;
1826
1827 /* setup our array of pointers with pages
1828 * from each stripe
1829 */
1830 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1831 /*
1832 * if we're rebuilding a read, we have to use
1833 * pages from the bio list
1834 */
1835 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1836 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1837 (stripe == faila || stripe == failb)) {
1838 page = page_in_rbio(rbio, stripe, pagenr, 0);
1839 } else {
1840 page = rbio_stripe_page(rbio, stripe, pagenr);
1841 }
1842 pointers[stripe] = kmap(page);
1843 }
1844
1845 /* all raid6 handling here */
1846 if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1847 /*
1848 * single failure, rebuild from parity raid5
1849 * style
1850 */
1851 if (failb < 0) {
1852 if (faila == rbio->nr_data) {
1853 /*
1854 * Just the P stripe has failed, without
1855 * a bad data or Q stripe.
1856 * TODO, we should redo the xor here.
1857 */
1858 err = -EIO;
1859 goto cleanup;
1860 }
1861 /*
1862 * a single failure in raid6 is rebuilt
1863 * in the pstripe code below
1864 */
1865 goto pstripe;
1866 }
1867
1868 /* make sure our ps and qs are in order */
1869 if (faila > failb) {
1870 int tmp = failb;
1871 failb = faila;
1872 faila = tmp;
1873 }
1874
1875 /* if the q stripe is failed, do a pstripe reconstruction
1876 * from the xors.
1877 * If both the q stripe and the P stripe are failed, we're
1878 * here due to a crc mismatch and we can't give them the
1879 * data they want
1880 */
1881 if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1882 if (rbio->bbio->raid_map[faila] ==
1883 RAID5_P_STRIPE) {
1884 err = -EIO;
1885 goto cleanup;
1886 }
1887 /*
1888 * otherwise we have one bad data stripe and
1889 * a good P stripe. raid5!
1890 */
1891 goto pstripe;
1892 }
1893
1894 if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1895 raid6_datap_recov(rbio->real_stripes,
1896 PAGE_SIZE, faila, pointers);
1897 } else {
1898 raid6_2data_recov(rbio->real_stripes,
1899 PAGE_SIZE, faila, failb,
1900 pointers);
1901 }
1902 } else {
1903 void *p;
1904
1905 /* rebuild from P stripe here (raid5 or raid6) */
1906 BUG_ON(failb != -1);
1907pstripe:
1908 /* Copy parity block into failed block to start with */
1909 memcpy(pointers[faila],
1910 pointers[rbio->nr_data],
1911 PAGE_SIZE);
1912
1913 /* rearrange the pointer array */
1914 p = pointers[faila];
1915 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1916 pointers[stripe] = pointers[stripe + 1];
1917 pointers[rbio->nr_data - 1] = p;
1918
1919 /* xor in the rest */
1920 run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
1921 }
1922 /* if we're doing this rebuild as part of an rmw, go through
1923 * and set all of our private rbio pages in the
1924 * failed stripes as uptodate. This way finish_rmw will
1925 * know they can be trusted. If this was a read reconstruction,
1926 * other endio functions will fiddle the uptodate bits
1927 */
1928 if (rbio->operation == BTRFS_RBIO_WRITE) {
1929 for (i = 0; i < rbio->stripe_npages; i++) {
1930 if (faila != -1) {
1931 page = rbio_stripe_page(rbio, faila, i);
1932 SetPageUptodate(page);
1933 }
1934 if (failb != -1) {
1935 page = rbio_stripe_page(rbio, failb, i);
1936 SetPageUptodate(page);
1937 }
1938 }
1939 }
1940 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1941 /*
1942 * if we're rebuilding a read, we have to use
1943 * pages from the bio list
1944 */
1945 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1946 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1947 (stripe == faila || stripe == failb)) {
1948 page = page_in_rbio(rbio, stripe, pagenr, 0);
1949 } else {
1950 page = rbio_stripe_page(rbio, stripe, pagenr);
1951 }
1952 kunmap(page);
1953 }
1954 }
1955
1956 err = 0;
1957cleanup:
1958 kfree(pointers);
1959
1960cleanup_io:
1961 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1962 if (err == 0)
1963 cache_rbio_pages(rbio);
1964 else
1965 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1966
1967 rbio_orig_end_io(rbio, err);
1968 } else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1969 rbio_orig_end_io(rbio, err);
1970 } else if (err == 0) {
1971 rbio->faila = -1;
1972 rbio->failb = -1;
1973
1974 if (rbio->operation == BTRFS_RBIO_WRITE)
1975 finish_rmw(rbio);
1976 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
1977 finish_parity_scrub(rbio, 0);
1978 else
1979 BUG();
1980 } else {
1981 rbio_orig_end_io(rbio, err);
1982 }
1983}
1984
1985/*
1986 * This is called only for stripes we've read from disk to
1987 * reconstruct the parity.
1988 */
1989static void raid_recover_end_io(struct bio *bio)
1990{
1991 struct btrfs_raid_bio *rbio = bio->bi_private;
1992
1993 /*
1994 * we only read stripe pages off the disk, set them
1995 * up to date if there were no errors
1996 */
1997 if (bio->bi_error)
1998 fail_bio_stripe(rbio, bio);
1999 else
2000 set_bio_pages_uptodate(bio);
2001 bio_put(bio);
2002
2003 if (!atomic_dec_and_test(&rbio->stripes_pending))
2004 return;
2005
2006 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2007 rbio_orig_end_io(rbio, -EIO);
2008 else
2009 __raid_recover_end_io(rbio);
2010}
2011
2012/*
2013 * reads everything we need off the disk to reconstruct
2014 * the parity. endio handlers trigger final reconstruction
2015 * when the IO is done.
2016 *
2017 * This is used both for reads from the higher layers and for
2018 * parity construction required to finish a rmw cycle.
2019 */
2020static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2021{
2022 int bios_to_read = 0;
2023 struct bio_list bio_list;
2024 int ret;
2025 int pagenr;
2026 int stripe;
2027 struct bio *bio;
2028
2029 bio_list_init(&bio_list);
2030
2031 ret = alloc_rbio_pages(rbio);
2032 if (ret)
2033 goto cleanup;
2034
2035 atomic_set(&rbio->error, 0);
2036
2037 /*
2038 * read everything that hasn't failed. Thanks to the
2039 * stripe cache, it is possible that some or all of these
2040 * pages are going to be uptodate.
2041 */
2042 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2043 if (rbio->faila == stripe || rbio->failb == stripe) {
2044 atomic_inc(&rbio->error);
2045 continue;
2046 }
2047
2048 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2049 struct page *p;
2050
2051 /*
2052 * the rmw code may have already read this
2053 * page in
2054 */
2055 p = rbio_stripe_page(rbio, stripe, pagenr);
2056 if (PageUptodate(p))
2057 continue;
2058
2059 ret = rbio_add_io_page(rbio, &bio_list,
2060 rbio_stripe_page(rbio, stripe, pagenr),
2061 stripe, pagenr, rbio->stripe_len);
2062 if (ret < 0)
2063 goto cleanup;
2064 }
2065 }
2066
2067 bios_to_read = bio_list_size(&bio_list);
2068 if (!bios_to_read) {
2069 /*
2070 * we might have no bios to read just because the pages
2071 * were up to date, or we might have no bios to read because
2072 * the devices were gone.
2073 */
2074 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2075 __raid_recover_end_io(rbio);
2076 goto out;
2077 } else {
2078 goto cleanup;
2079 }
2080 }
2081
2082 /*
2083 * the bbio may be freed once we submit the last bio. Make sure
2084 * not to touch it after that
2085 */
2086 atomic_set(&rbio->stripes_pending, bios_to_read);
2087 while (1) {
2088 bio = bio_list_pop(&bio_list);
2089 if (!bio)
2090 break;
2091
2092 bio->bi_private = rbio;
2093 bio->bi_end_io = raid_recover_end_io;
2094 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2095
2096 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2097
2098 submit_bio(bio);
2099 }
2100out:
2101 return 0;
2102
2103cleanup:
2104 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2105 rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2106 rbio_orig_end_io(rbio, -EIO);
2107 return -EIO;
2108}
2109
2110/*
2111 * the main entry point for reads from the higher layers. This
2112 * is really only called when the normal read path had a failure,
2113 * so we assume the bio they send down corresponds to a failed part
2114 * of the drive.
2115 */
2116int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
2117 struct btrfs_bio *bbio, u64 stripe_len,
2118 int mirror_num, int generic_io)
2119{
2120 struct btrfs_raid_bio *rbio;
2121 int ret;
2122
2123 rbio = alloc_rbio(fs_info, bbio, stripe_len);
2124 if (IS_ERR(rbio)) {
2125 if (generic_io)
2126 btrfs_put_bbio(bbio);
2127 return PTR_ERR(rbio);
2128 }
2129
2130 rbio->operation = BTRFS_RBIO_READ_REBUILD;
2131 bio_list_add(&rbio->bio_list, bio);
2132 rbio->bio_list_bytes = bio->bi_iter.bi_size;
2133
2134 rbio->faila = find_logical_bio_stripe(rbio, bio);
2135 if (rbio->faila == -1) {
2136 btrfs_warn(fs_info,
2137 "%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
2138 __func__, (u64)bio->bi_iter.bi_sector << 9,
2139 (u64)bio->bi_iter.bi_size, bbio->map_type);
2140 if (generic_io)
2141 btrfs_put_bbio(bbio);
2142 kfree(rbio);
2143 return -EIO;
2144 }
2145
2146 if (generic_io) {
2147 btrfs_bio_counter_inc_noblocked(fs_info);
2148 rbio->generic_bio_cnt = 1;
2149 } else {
2150 btrfs_get_bbio(bbio);
2151 }
2152
2153 /*
2154 * reconstruct from the q stripe if they are
2155 * asking for mirror 3
2156 */
2157 if (mirror_num == 3)
2158 rbio->failb = rbio->real_stripes - 2;
2159
2160 ret = lock_stripe_add(rbio);
2161
2162 /*
2163 * __raid56_parity_recover will end the bio with
2164 * any errors it hits. We don't want to return
2165 * its error value up the stack because our caller
2166 * will end up calling bio_endio with any nonzero
2167 * return
2168 */
2169 if (ret == 0)
2170 __raid56_parity_recover(rbio);
2171 /*
2172 * our rbio has been added to the list of
2173 * rbios that will be handled after the
2174 * currently lock owner is done
2175 */
2176 return 0;
2177
2178}
2179
2180static void rmw_work(struct btrfs_work *work)
2181{
2182 struct btrfs_raid_bio *rbio;
2183
2184 rbio = container_of(work, struct btrfs_raid_bio, work);
2185 raid56_rmw_stripe(rbio);
2186}
2187
2188static void read_rebuild_work(struct btrfs_work *work)
2189{
2190 struct btrfs_raid_bio *rbio;
2191
2192 rbio = container_of(work, struct btrfs_raid_bio, work);
2193 __raid56_parity_recover(rbio);
2194}
2195
2196/*
2197 * The following code is used to scrub/replace the parity stripe
2198 *
2199 * Note: We need make sure all the pages that add into the scrub/replace
2200 * raid bio are correct and not be changed during the scrub/replace. That
2201 * is those pages just hold metadata or file data with checksum.
2202 */
2203
2204struct btrfs_raid_bio *
2205raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2206 struct btrfs_bio *bbio, u64 stripe_len,
2207 struct btrfs_device *scrub_dev,
2208 unsigned long *dbitmap, int stripe_nsectors)
2209{
2210 struct btrfs_raid_bio *rbio;
2211 int i;
2212
2213 rbio = alloc_rbio(fs_info, bbio, stripe_len);
2214 if (IS_ERR(rbio))
2215 return NULL;
2216 bio_list_add(&rbio->bio_list, bio);
2217 /*
2218 * This is a special bio which is used to hold the completion handler
2219 * and make the scrub rbio is similar to the other types
2220 */
2221 ASSERT(!bio->bi_iter.bi_size);
2222 rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2223
2224 for (i = 0; i < rbio->real_stripes; i++) {
2225 if (bbio->stripes[i].dev == scrub_dev) {
2226 rbio->scrubp = i;
2227 break;
2228 }
2229 }
2230
2231 /* Now we just support the sectorsize equals to page size */
2232 ASSERT(fs_info->sectorsize == PAGE_SIZE);
2233 ASSERT(rbio->stripe_npages == stripe_nsectors);
2234 bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2235
2236 return rbio;
2237}
2238
2239/* Used for both parity scrub and missing. */
2240void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2241 u64 logical)
2242{
2243 int stripe_offset;
2244 int index;
2245
2246 ASSERT(logical >= rbio->bbio->raid_map[0]);
2247 ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2248 rbio->stripe_len * rbio->nr_data);
2249 stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2250 index = stripe_offset >> PAGE_SHIFT;
2251 rbio->bio_pages[index] = page;
2252}
2253
2254/*
2255 * We just scrub the parity that we have correct data on the same horizontal,
2256 * so we needn't allocate all pages for all the stripes.
2257 */
2258static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2259{
2260 int i;
2261 int bit;
2262 int index;
2263 struct page *page;
2264
2265 for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2266 for (i = 0; i < rbio->real_stripes; i++) {
2267 index = i * rbio->stripe_npages + bit;
2268 if (rbio->stripe_pages[index])
2269 continue;
2270
2271 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2272 if (!page)
2273 return -ENOMEM;
2274 rbio->stripe_pages[index] = page;
2275 }
2276 }
2277 return 0;
2278}
2279
2280static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2281 int need_check)
2282{
2283 struct btrfs_bio *bbio = rbio->bbio;
2284 void *pointers[rbio->real_stripes];
2285 DECLARE_BITMAP(pbitmap, rbio->stripe_npages);
2286 int nr_data = rbio->nr_data;
2287 int stripe;
2288 int pagenr;
2289 int p_stripe = -1;
2290 int q_stripe = -1;
2291 struct page *p_page = NULL;
2292 struct page *q_page = NULL;
2293 struct bio_list bio_list;
2294 struct bio *bio;
2295 int is_replace = 0;
2296 int ret;
2297
2298 bio_list_init(&bio_list);
2299
2300 if (rbio->real_stripes - rbio->nr_data == 1) {
2301 p_stripe = rbio->real_stripes - 1;
2302 } else if (rbio->real_stripes - rbio->nr_data == 2) {
2303 p_stripe = rbio->real_stripes - 2;
2304 q_stripe = rbio->real_stripes - 1;
2305 } else {
2306 BUG();
2307 }
2308
2309 if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2310 is_replace = 1;
2311 bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2312 }
2313
2314 /*
2315 * Because the higher layers(scrubber) are unlikely to
2316 * use this area of the disk again soon, so don't cache
2317 * it.
2318 */
2319 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2320
2321 if (!need_check)
2322 goto writeback;
2323
2324 p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2325 if (!p_page)
2326 goto cleanup;
2327 SetPageUptodate(p_page);
2328
2329 if (q_stripe != -1) {
2330 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2331 if (!q_page) {
2332 __free_page(p_page);
2333 goto cleanup;
2334 }
2335 SetPageUptodate(q_page);
2336 }
2337
2338 atomic_set(&rbio->error, 0);
2339
2340 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2341 struct page *p;
2342 void *parity;
2343 /* first collect one page from each data stripe */
2344 for (stripe = 0; stripe < nr_data; stripe++) {
2345 p = page_in_rbio(rbio, stripe, pagenr, 0);
2346 pointers[stripe] = kmap(p);
2347 }
2348
2349 /* then add the parity stripe */
2350 pointers[stripe++] = kmap(p_page);
2351
2352 if (q_stripe != -1) {
2353
2354 /*
2355 * raid6, add the qstripe and call the
2356 * library function to fill in our p/q
2357 */
2358 pointers[stripe++] = kmap(q_page);
2359
2360 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2361 pointers);
2362 } else {
2363 /* raid5 */
2364 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
2365 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2366 }
2367
2368 /* Check scrubbing parity and repair it */
2369 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2370 parity = kmap(p);
2371 if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2372 memcpy(parity, pointers[rbio->scrubp], PAGE_SIZE);
2373 else
2374 /* Parity is right, needn't writeback */
2375 bitmap_clear(rbio->dbitmap, pagenr, 1);
2376 kunmap(p);
2377
2378 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
2379 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2380 }
2381
2382 __free_page(p_page);
2383 if (q_page)
2384 __free_page(q_page);
2385
2386writeback:
2387 /*
2388 * time to start writing. Make bios for everything from the
2389 * higher layers (the bio_list in our rbio) and our p/q. Ignore
2390 * everything else.
2391 */
2392 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2393 struct page *page;
2394
2395 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2396 ret = rbio_add_io_page(rbio, &bio_list,
2397 page, rbio->scrubp, pagenr, rbio->stripe_len);
2398 if (ret)
2399 goto cleanup;
2400 }
2401
2402 if (!is_replace)
2403 goto submit_write;
2404
2405 for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2406 struct page *page;
2407
2408 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2409 ret = rbio_add_io_page(rbio, &bio_list, page,
2410 bbio->tgtdev_map[rbio->scrubp],
2411 pagenr, rbio->stripe_len);
2412 if (ret)
2413 goto cleanup;
2414 }
2415
2416submit_write:
2417 nr_data = bio_list_size(&bio_list);
2418 if (!nr_data) {
2419 /* Every parity is right */
2420 rbio_orig_end_io(rbio, 0);
2421 return;
2422 }
2423
2424 atomic_set(&rbio->stripes_pending, nr_data);
2425
2426 while (1) {
2427 bio = bio_list_pop(&bio_list);
2428 if (!bio)
2429 break;
2430
2431 bio->bi_private = rbio;
2432 bio->bi_end_io = raid_write_end_io;
2433 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2434
2435 submit_bio(bio);
2436 }
2437 return;
2438
2439cleanup:
2440 rbio_orig_end_io(rbio, -EIO);
2441}
2442
2443static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2444{
2445 if (stripe >= 0 && stripe < rbio->nr_data)
2446 return 1;
2447 return 0;
2448}
2449
2450/*
2451 * While we're doing the parity check and repair, we could have errors
2452 * in reading pages off the disk. This checks for errors and if we're
2453 * not able to read the page it'll trigger parity reconstruction. The
2454 * parity scrub will be finished after we've reconstructed the failed
2455 * stripes
2456 */
2457static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2458{
2459 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2460 goto cleanup;
2461
2462 if (rbio->faila >= 0 || rbio->failb >= 0) {
2463 int dfail = 0, failp = -1;
2464
2465 if (is_data_stripe(rbio, rbio->faila))
2466 dfail++;
2467 else if (is_parity_stripe(rbio->faila))
2468 failp = rbio->faila;
2469
2470 if (is_data_stripe(rbio, rbio->failb))
2471 dfail++;
2472 else if (is_parity_stripe(rbio->failb))
2473 failp = rbio->failb;
2474
2475 /*
2476 * Because we can not use a scrubbing parity to repair
2477 * the data, so the capability of the repair is declined.
2478 * (In the case of RAID5, we can not repair anything)
2479 */
2480 if (dfail > rbio->bbio->max_errors - 1)
2481 goto cleanup;
2482
2483 /*
2484 * If all data is good, only parity is correctly, just
2485 * repair the parity.
2486 */
2487 if (dfail == 0) {
2488 finish_parity_scrub(rbio, 0);
2489 return;
2490 }
2491
2492 /*
2493 * Here means we got one corrupted data stripe and one
2494 * corrupted parity on RAID6, if the corrupted parity
2495 * is scrubbing parity, luckily, use the other one to repair
2496 * the data, or we can not repair the data stripe.
2497 */
2498 if (failp != rbio->scrubp)
2499 goto cleanup;
2500
2501 __raid_recover_end_io(rbio);
2502 } else {
2503 finish_parity_scrub(rbio, 1);
2504 }
2505 return;
2506
2507cleanup:
2508 rbio_orig_end_io(rbio, -EIO);
2509}
2510
2511/*
2512 * end io for the read phase of the rmw cycle. All the bios here are physical
2513 * stripe bios we've read from the disk so we can recalculate the parity of the
2514 * stripe.
2515 *
2516 * This will usually kick off finish_rmw once all the bios are read in, but it
2517 * may trigger parity reconstruction if we had any errors along the way
2518 */
2519static void raid56_parity_scrub_end_io(struct bio *bio)
2520{
2521 struct btrfs_raid_bio *rbio = bio->bi_private;
2522
2523 if (bio->bi_error)
2524 fail_bio_stripe(rbio, bio);
2525 else
2526 set_bio_pages_uptodate(bio);
2527
2528 bio_put(bio);
2529
2530 if (!atomic_dec_and_test(&rbio->stripes_pending))
2531 return;
2532
2533 /*
2534 * this will normally call finish_rmw to start our write
2535 * but if there are any failed stripes we'll reconstruct
2536 * from parity first
2537 */
2538 validate_rbio_for_parity_scrub(rbio);
2539}
2540
2541static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2542{
2543 int bios_to_read = 0;
2544 struct bio_list bio_list;
2545 int ret;
2546 int pagenr;
2547 int stripe;
2548 struct bio *bio;
2549
2550 ret = alloc_rbio_essential_pages(rbio);
2551 if (ret)
2552 goto cleanup;
2553
2554 bio_list_init(&bio_list);
2555
2556 atomic_set(&rbio->error, 0);
2557 /*
2558 * build a list of bios to read all the missing parts of this
2559 * stripe
2560 */
2561 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2562 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2563 struct page *page;
2564 /*
2565 * we want to find all the pages missing from
2566 * the rbio and read them from the disk. If
2567 * page_in_rbio finds a page in the bio list
2568 * we don't need to read it off the stripe.
2569 */
2570 page = page_in_rbio(rbio, stripe, pagenr, 1);
2571 if (page)
2572 continue;
2573
2574 page = rbio_stripe_page(rbio, stripe, pagenr);
2575 /*
2576 * the bio cache may have handed us an uptodate
2577 * page. If so, be happy and use it
2578 */
2579 if (PageUptodate(page))
2580 continue;
2581
2582 ret = rbio_add_io_page(rbio, &bio_list, page,
2583 stripe, pagenr, rbio->stripe_len);
2584 if (ret)
2585 goto cleanup;
2586 }
2587 }
2588
2589 bios_to_read = bio_list_size(&bio_list);
2590 if (!bios_to_read) {
2591 /*
2592 * this can happen if others have merged with
2593 * us, it means there is nothing left to read.
2594 * But if there are missing devices it may not be
2595 * safe to do the full stripe write yet.
2596 */
2597 goto finish;
2598 }
2599
2600 /*
2601 * the bbio may be freed once we submit the last bio. Make sure
2602 * not to touch it after that
2603 */
2604 atomic_set(&rbio->stripes_pending, bios_to_read);
2605 while (1) {
2606 bio = bio_list_pop(&bio_list);
2607 if (!bio)
2608 break;
2609
2610 bio->bi_private = rbio;
2611 bio->bi_end_io = raid56_parity_scrub_end_io;
2612 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2613
2614 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2615
2616 submit_bio(bio);
2617 }
2618 /* the actual write will happen once the reads are done */
2619 return;
2620
2621cleanup:
2622 rbio_orig_end_io(rbio, -EIO);
2623 return;
2624
2625finish:
2626 validate_rbio_for_parity_scrub(rbio);
2627}
2628
2629static void scrub_parity_work(struct btrfs_work *work)
2630{
2631 struct btrfs_raid_bio *rbio;
2632
2633 rbio = container_of(work, struct btrfs_raid_bio, work);
2634 raid56_parity_scrub_stripe(rbio);
2635}
2636
2637static void async_scrub_parity(struct btrfs_raid_bio *rbio)
2638{
2639 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2640 scrub_parity_work, NULL, NULL);
2641
2642 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2643}
2644
2645void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2646{
2647 if (!lock_stripe_add(rbio))
2648 async_scrub_parity(rbio);
2649}
2650
2651/* The following code is used for dev replace of a missing RAID 5/6 device. */
2652
2653struct btrfs_raid_bio *
2654raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2655 struct btrfs_bio *bbio, u64 length)
2656{
2657 struct btrfs_raid_bio *rbio;
2658
2659 rbio = alloc_rbio(fs_info, bbio, length);
2660 if (IS_ERR(rbio))
2661 return NULL;
2662
2663 rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2664 bio_list_add(&rbio->bio_list, bio);
2665 /*
2666 * This is a special bio which is used to hold the completion handler
2667 * and make the scrub rbio is similar to the other types
2668 */
2669 ASSERT(!bio->bi_iter.bi_size);
2670
2671 rbio->faila = find_logical_bio_stripe(rbio, bio);
2672 if (rbio->faila == -1) {
2673 BUG();
2674 kfree(rbio);
2675 return NULL;
2676 }
2677
2678 return rbio;
2679}
2680
2681static void missing_raid56_work(struct btrfs_work *work)
2682{
2683 struct btrfs_raid_bio *rbio;
2684
2685 rbio = container_of(work, struct btrfs_raid_bio, work);
2686 __raid56_parity_recover(rbio);
2687}
2688
2689static void async_missing_raid56(struct btrfs_raid_bio *rbio)
2690{
2691 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2692 missing_raid56_work, NULL, NULL);
2693
2694 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2695}
2696
2697void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2698{
2699 if (!lock_stripe_add(rbio))
2700 async_missing_raid56(rbio);
2701}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2012 Fusion-io All rights reserved.
4 * Copyright (C) 2012 Intel Corp. All rights reserved.
5 */
6
7#include <linux/sched.h>
8#include <linux/wait.h>
9#include <linux/bio.h>
10#include <linux/slab.h>
11#include <linux/buffer_head.h>
12#include <linux/blkdev.h>
13#include <linux/random.h>
14#include <linux/iocontext.h>
15#include <linux/capability.h>
16#include <linux/ratelimit.h>
17#include <linux/kthread.h>
18#include <linux/raid/pq.h>
19#include <linux/hash.h>
20#include <linux/list_sort.h>
21#include <linux/raid/xor.h>
22#include <linux/mm.h>
23#include <asm/div64.h>
24#include "ctree.h"
25#include "extent_map.h"
26#include "disk-io.h"
27#include "transaction.h"
28#include "print-tree.h"
29#include "volumes.h"
30#include "raid56.h"
31#include "async-thread.h"
32#include "check-integrity.h"
33#include "rcu-string.h"
34
35/* set when additional merges to this rbio are not allowed */
36#define RBIO_RMW_LOCKED_BIT 1
37
38/*
39 * set when this rbio is sitting in the hash, but it is just a cache
40 * of past RMW
41 */
42#define RBIO_CACHE_BIT 2
43
44/*
45 * set when it is safe to trust the stripe_pages for caching
46 */
47#define RBIO_CACHE_READY_BIT 3
48
49#define RBIO_CACHE_SIZE 1024
50
51enum btrfs_rbio_ops {
52 BTRFS_RBIO_WRITE,
53 BTRFS_RBIO_READ_REBUILD,
54 BTRFS_RBIO_PARITY_SCRUB,
55 BTRFS_RBIO_REBUILD_MISSING,
56};
57
58struct btrfs_raid_bio {
59 struct btrfs_fs_info *fs_info;
60 struct btrfs_bio *bbio;
61
62 /* while we're doing rmw on a stripe
63 * we put it into a hash table so we can
64 * lock the stripe and merge more rbios
65 * into it.
66 */
67 struct list_head hash_list;
68
69 /*
70 * LRU list for the stripe cache
71 */
72 struct list_head stripe_cache;
73
74 /*
75 * for scheduling work in the helper threads
76 */
77 struct btrfs_work work;
78
79 /*
80 * bio list and bio_list_lock are used
81 * to add more bios into the stripe
82 * in hopes of avoiding the full rmw
83 */
84 struct bio_list bio_list;
85 spinlock_t bio_list_lock;
86
87 /* also protected by the bio_list_lock, the
88 * plug list is used by the plugging code
89 * to collect partial bios while plugged. The
90 * stripe locking code also uses it to hand off
91 * the stripe lock to the next pending IO
92 */
93 struct list_head plug_list;
94
95 /*
96 * flags that tell us if it is safe to
97 * merge with this bio
98 */
99 unsigned long flags;
100
101 /* size of each individual stripe on disk */
102 int stripe_len;
103
104 /* number of data stripes (no p/q) */
105 int nr_data;
106
107 int real_stripes;
108
109 int stripe_npages;
110 /*
111 * set if we're doing a parity rebuild
112 * for a read from higher up, which is handled
113 * differently from a parity rebuild as part of
114 * rmw
115 */
116 enum btrfs_rbio_ops operation;
117
118 /* first bad stripe */
119 int faila;
120
121 /* second bad stripe (for raid6 use) */
122 int failb;
123
124 int scrubp;
125 /*
126 * number of pages needed to represent the full
127 * stripe
128 */
129 int nr_pages;
130
131 /*
132 * size of all the bios in the bio_list. This
133 * helps us decide if the rbio maps to a full
134 * stripe or not
135 */
136 int bio_list_bytes;
137
138 int generic_bio_cnt;
139
140 refcount_t refs;
141
142 atomic_t stripes_pending;
143
144 atomic_t error;
145 /*
146 * these are two arrays of pointers. We allocate the
147 * rbio big enough to hold them both and setup their
148 * locations when the rbio is allocated
149 */
150
151 /* pointers to pages that we allocated for
152 * reading/writing stripes directly from the disk (including P/Q)
153 */
154 struct page **stripe_pages;
155
156 /*
157 * pointers to the pages in the bio_list. Stored
158 * here for faster lookup
159 */
160 struct page **bio_pages;
161
162 /*
163 * bitmap to record which horizontal stripe has data
164 */
165 unsigned long *dbitmap;
166};
167
168static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
169static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
170static void rmw_work(struct btrfs_work *work);
171static void read_rebuild_work(struct btrfs_work *work);
172static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
173static void async_read_rebuild(struct btrfs_raid_bio *rbio);
174static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
175static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
176static void __free_raid_bio(struct btrfs_raid_bio *rbio);
177static void index_rbio_pages(struct btrfs_raid_bio *rbio);
178static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
179
180static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
181 int need_check);
182static void async_scrub_parity(struct btrfs_raid_bio *rbio);
183
184/*
185 * the stripe hash table is used for locking, and to collect
186 * bios in hopes of making a full stripe
187 */
188int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
189{
190 struct btrfs_stripe_hash_table *table;
191 struct btrfs_stripe_hash_table *x;
192 struct btrfs_stripe_hash *cur;
193 struct btrfs_stripe_hash *h;
194 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
195 int i;
196 int table_size;
197
198 if (info->stripe_hash_table)
199 return 0;
200
201 /*
202 * The table is large, starting with order 4 and can go as high as
203 * order 7 in case lock debugging is turned on.
204 *
205 * Try harder to allocate and fallback to vmalloc to lower the chance
206 * of a failing mount.
207 */
208 table_size = sizeof(*table) + sizeof(*h) * num_entries;
209 table = kvzalloc(table_size, GFP_KERNEL);
210 if (!table)
211 return -ENOMEM;
212
213 spin_lock_init(&table->cache_lock);
214 INIT_LIST_HEAD(&table->stripe_cache);
215
216 h = table->table;
217
218 for (i = 0; i < num_entries; i++) {
219 cur = h + i;
220 INIT_LIST_HEAD(&cur->hash_list);
221 spin_lock_init(&cur->lock);
222 }
223
224 x = cmpxchg(&info->stripe_hash_table, NULL, table);
225 if (x)
226 kvfree(x);
227 return 0;
228}
229
230/*
231 * caching an rbio means to copy anything from the
232 * bio_pages array into the stripe_pages array. We
233 * use the page uptodate bit in the stripe cache array
234 * to indicate if it has valid data
235 *
236 * once the caching is done, we set the cache ready
237 * bit.
238 */
239static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
240{
241 int i;
242 char *s;
243 char *d;
244 int ret;
245
246 ret = alloc_rbio_pages(rbio);
247 if (ret)
248 return;
249
250 for (i = 0; i < rbio->nr_pages; i++) {
251 if (!rbio->bio_pages[i])
252 continue;
253
254 s = kmap(rbio->bio_pages[i]);
255 d = kmap(rbio->stripe_pages[i]);
256
257 memcpy(d, s, PAGE_SIZE);
258
259 kunmap(rbio->bio_pages[i]);
260 kunmap(rbio->stripe_pages[i]);
261 SetPageUptodate(rbio->stripe_pages[i]);
262 }
263 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
264}
265
266/*
267 * we hash on the first logical address of the stripe
268 */
269static int rbio_bucket(struct btrfs_raid_bio *rbio)
270{
271 u64 num = rbio->bbio->raid_map[0];
272
273 /*
274 * we shift down quite a bit. We're using byte
275 * addressing, and most of the lower bits are zeros.
276 * This tends to upset hash_64, and it consistently
277 * returns just one or two different values.
278 *
279 * shifting off the lower bits fixes things.
280 */
281 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
282}
283
284/*
285 * stealing an rbio means taking all the uptodate pages from the stripe
286 * array in the source rbio and putting them into the destination rbio
287 */
288static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
289{
290 int i;
291 struct page *s;
292 struct page *d;
293
294 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
295 return;
296
297 for (i = 0; i < dest->nr_pages; i++) {
298 s = src->stripe_pages[i];
299 if (!s || !PageUptodate(s)) {
300 continue;
301 }
302
303 d = dest->stripe_pages[i];
304 if (d)
305 __free_page(d);
306
307 dest->stripe_pages[i] = s;
308 src->stripe_pages[i] = NULL;
309 }
310}
311
312/*
313 * merging means we take the bio_list from the victim and
314 * splice it into the destination. The victim should
315 * be discarded afterwards.
316 *
317 * must be called with dest->rbio_list_lock held
318 */
319static void merge_rbio(struct btrfs_raid_bio *dest,
320 struct btrfs_raid_bio *victim)
321{
322 bio_list_merge(&dest->bio_list, &victim->bio_list);
323 dest->bio_list_bytes += victim->bio_list_bytes;
324 dest->generic_bio_cnt += victim->generic_bio_cnt;
325 bio_list_init(&victim->bio_list);
326}
327
328/*
329 * used to prune items that are in the cache. The caller
330 * must hold the hash table lock.
331 */
332static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
333{
334 int bucket = rbio_bucket(rbio);
335 struct btrfs_stripe_hash_table *table;
336 struct btrfs_stripe_hash *h;
337 int freeit = 0;
338
339 /*
340 * check the bit again under the hash table lock.
341 */
342 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
343 return;
344
345 table = rbio->fs_info->stripe_hash_table;
346 h = table->table + bucket;
347
348 /* hold the lock for the bucket because we may be
349 * removing it from the hash table
350 */
351 spin_lock(&h->lock);
352
353 /*
354 * hold the lock for the bio list because we need
355 * to make sure the bio list is empty
356 */
357 spin_lock(&rbio->bio_list_lock);
358
359 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
360 list_del_init(&rbio->stripe_cache);
361 table->cache_size -= 1;
362 freeit = 1;
363
364 /* if the bio list isn't empty, this rbio is
365 * still involved in an IO. We take it out
366 * of the cache list, and drop the ref that
367 * was held for the list.
368 *
369 * If the bio_list was empty, we also remove
370 * the rbio from the hash_table, and drop
371 * the corresponding ref
372 */
373 if (bio_list_empty(&rbio->bio_list)) {
374 if (!list_empty(&rbio->hash_list)) {
375 list_del_init(&rbio->hash_list);
376 refcount_dec(&rbio->refs);
377 BUG_ON(!list_empty(&rbio->plug_list));
378 }
379 }
380 }
381
382 spin_unlock(&rbio->bio_list_lock);
383 spin_unlock(&h->lock);
384
385 if (freeit)
386 __free_raid_bio(rbio);
387}
388
389/*
390 * prune a given rbio from the cache
391 */
392static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
393{
394 struct btrfs_stripe_hash_table *table;
395 unsigned long flags;
396
397 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
398 return;
399
400 table = rbio->fs_info->stripe_hash_table;
401
402 spin_lock_irqsave(&table->cache_lock, flags);
403 __remove_rbio_from_cache(rbio);
404 spin_unlock_irqrestore(&table->cache_lock, flags);
405}
406
407/*
408 * remove everything in the cache
409 */
410static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
411{
412 struct btrfs_stripe_hash_table *table;
413 unsigned long flags;
414 struct btrfs_raid_bio *rbio;
415
416 table = info->stripe_hash_table;
417
418 spin_lock_irqsave(&table->cache_lock, flags);
419 while (!list_empty(&table->stripe_cache)) {
420 rbio = list_entry(table->stripe_cache.next,
421 struct btrfs_raid_bio,
422 stripe_cache);
423 __remove_rbio_from_cache(rbio);
424 }
425 spin_unlock_irqrestore(&table->cache_lock, flags);
426}
427
428/*
429 * remove all cached entries and free the hash table
430 * used by unmount
431 */
432void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
433{
434 if (!info->stripe_hash_table)
435 return;
436 btrfs_clear_rbio_cache(info);
437 kvfree(info->stripe_hash_table);
438 info->stripe_hash_table = NULL;
439}
440
441/*
442 * insert an rbio into the stripe cache. It
443 * must have already been prepared by calling
444 * cache_rbio_pages
445 *
446 * If this rbio was already cached, it gets
447 * moved to the front of the lru.
448 *
449 * If the size of the rbio cache is too big, we
450 * prune an item.
451 */
452static void cache_rbio(struct btrfs_raid_bio *rbio)
453{
454 struct btrfs_stripe_hash_table *table;
455 unsigned long flags;
456
457 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
458 return;
459
460 table = rbio->fs_info->stripe_hash_table;
461
462 spin_lock_irqsave(&table->cache_lock, flags);
463 spin_lock(&rbio->bio_list_lock);
464
465 /* bump our ref if we were not in the list before */
466 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
467 refcount_inc(&rbio->refs);
468
469 if (!list_empty(&rbio->stripe_cache)){
470 list_move(&rbio->stripe_cache, &table->stripe_cache);
471 } else {
472 list_add(&rbio->stripe_cache, &table->stripe_cache);
473 table->cache_size += 1;
474 }
475
476 spin_unlock(&rbio->bio_list_lock);
477
478 if (table->cache_size > RBIO_CACHE_SIZE) {
479 struct btrfs_raid_bio *found;
480
481 found = list_entry(table->stripe_cache.prev,
482 struct btrfs_raid_bio,
483 stripe_cache);
484
485 if (found != rbio)
486 __remove_rbio_from_cache(found);
487 }
488
489 spin_unlock_irqrestore(&table->cache_lock, flags);
490}
491
492/*
493 * helper function to run the xor_blocks api. It is only
494 * able to do MAX_XOR_BLOCKS at a time, so we need to
495 * loop through.
496 */
497static void run_xor(void **pages, int src_cnt, ssize_t len)
498{
499 int src_off = 0;
500 int xor_src_cnt = 0;
501 void *dest = pages[src_cnt];
502
503 while(src_cnt > 0) {
504 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
505 xor_blocks(xor_src_cnt, len, dest, pages + src_off);
506
507 src_cnt -= xor_src_cnt;
508 src_off += xor_src_cnt;
509 }
510}
511
512/*
513 * returns true if the bio list inside this rbio
514 * covers an entire stripe (no rmw required).
515 * Must be called with the bio list lock held, or
516 * at a time when you know it is impossible to add
517 * new bios into the list
518 */
519static int __rbio_is_full(struct btrfs_raid_bio *rbio)
520{
521 unsigned long size = rbio->bio_list_bytes;
522 int ret = 1;
523
524 if (size != rbio->nr_data * rbio->stripe_len)
525 ret = 0;
526
527 BUG_ON(size > rbio->nr_data * rbio->stripe_len);
528 return ret;
529}
530
531static int rbio_is_full(struct btrfs_raid_bio *rbio)
532{
533 unsigned long flags;
534 int ret;
535
536 spin_lock_irqsave(&rbio->bio_list_lock, flags);
537 ret = __rbio_is_full(rbio);
538 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
539 return ret;
540}
541
542/*
543 * returns 1 if it is safe to merge two rbios together.
544 * The merging is safe if the two rbios correspond to
545 * the same stripe and if they are both going in the same
546 * direction (read vs write), and if neither one is
547 * locked for final IO
548 *
549 * The caller is responsible for locking such that
550 * rmw_locked is safe to test
551 */
552static int rbio_can_merge(struct btrfs_raid_bio *last,
553 struct btrfs_raid_bio *cur)
554{
555 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
556 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
557 return 0;
558
559 /*
560 * we can't merge with cached rbios, since the
561 * idea is that when we merge the destination
562 * rbio is going to run our IO for us. We can
563 * steal from cached rbios though, other functions
564 * handle that.
565 */
566 if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
567 test_bit(RBIO_CACHE_BIT, &cur->flags))
568 return 0;
569
570 if (last->bbio->raid_map[0] !=
571 cur->bbio->raid_map[0])
572 return 0;
573
574 /* we can't merge with different operations */
575 if (last->operation != cur->operation)
576 return 0;
577 /*
578 * We've need read the full stripe from the drive.
579 * check and repair the parity and write the new results.
580 *
581 * We're not allowed to add any new bios to the
582 * bio list here, anyone else that wants to
583 * change this stripe needs to do their own rmw.
584 */
585 if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
586 return 0;
587
588 if (last->operation == BTRFS_RBIO_REBUILD_MISSING)
589 return 0;
590
591 if (last->operation == BTRFS_RBIO_READ_REBUILD) {
592 int fa = last->faila;
593 int fb = last->failb;
594 int cur_fa = cur->faila;
595 int cur_fb = cur->failb;
596
597 if (last->faila >= last->failb) {
598 fa = last->failb;
599 fb = last->faila;
600 }
601
602 if (cur->faila >= cur->failb) {
603 cur_fa = cur->failb;
604 cur_fb = cur->faila;
605 }
606
607 if (fa != cur_fa || fb != cur_fb)
608 return 0;
609 }
610 return 1;
611}
612
613static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
614 int index)
615{
616 return stripe * rbio->stripe_npages + index;
617}
618
619/*
620 * these are just the pages from the rbio array, not from anything
621 * the FS sent down to us
622 */
623static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
624 int index)
625{
626 return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
627}
628
629/*
630 * helper to index into the pstripe
631 */
632static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
633{
634 return rbio_stripe_page(rbio, rbio->nr_data, index);
635}
636
637/*
638 * helper to index into the qstripe, returns null
639 * if there is no qstripe
640 */
641static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
642{
643 if (rbio->nr_data + 1 == rbio->real_stripes)
644 return NULL;
645 return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
646}
647
648/*
649 * The first stripe in the table for a logical address
650 * has the lock. rbios are added in one of three ways:
651 *
652 * 1) Nobody has the stripe locked yet. The rbio is given
653 * the lock and 0 is returned. The caller must start the IO
654 * themselves.
655 *
656 * 2) Someone has the stripe locked, but we're able to merge
657 * with the lock owner. The rbio is freed and the IO will
658 * start automatically along with the existing rbio. 1 is returned.
659 *
660 * 3) Someone has the stripe locked, but we're not able to merge.
661 * The rbio is added to the lock owner's plug list, or merged into
662 * an rbio already on the plug list. When the lock owner unlocks,
663 * the next rbio on the list is run and the IO is started automatically.
664 * 1 is returned
665 *
666 * If we return 0, the caller still owns the rbio and must continue with
667 * IO submission. If we return 1, the caller must assume the rbio has
668 * already been freed.
669 */
670static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
671{
672 int bucket = rbio_bucket(rbio);
673 struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
674 struct btrfs_raid_bio *cur;
675 struct btrfs_raid_bio *pending;
676 unsigned long flags;
677 struct btrfs_raid_bio *freeit = NULL;
678 struct btrfs_raid_bio *cache_drop = NULL;
679 int ret = 0;
680
681 spin_lock_irqsave(&h->lock, flags);
682 list_for_each_entry(cur, &h->hash_list, hash_list) {
683 if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
684 spin_lock(&cur->bio_list_lock);
685
686 /* can we steal this cached rbio's pages? */
687 if (bio_list_empty(&cur->bio_list) &&
688 list_empty(&cur->plug_list) &&
689 test_bit(RBIO_CACHE_BIT, &cur->flags) &&
690 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
691 list_del_init(&cur->hash_list);
692 refcount_dec(&cur->refs);
693
694 steal_rbio(cur, rbio);
695 cache_drop = cur;
696 spin_unlock(&cur->bio_list_lock);
697
698 goto lockit;
699 }
700
701 /* can we merge into the lock owner? */
702 if (rbio_can_merge(cur, rbio)) {
703 merge_rbio(cur, rbio);
704 spin_unlock(&cur->bio_list_lock);
705 freeit = rbio;
706 ret = 1;
707 goto out;
708 }
709
710
711 /*
712 * we couldn't merge with the running
713 * rbio, see if we can merge with the
714 * pending ones. We don't have to
715 * check for rmw_locked because there
716 * is no way they are inside finish_rmw
717 * right now
718 */
719 list_for_each_entry(pending, &cur->plug_list,
720 plug_list) {
721 if (rbio_can_merge(pending, rbio)) {
722 merge_rbio(pending, rbio);
723 spin_unlock(&cur->bio_list_lock);
724 freeit = rbio;
725 ret = 1;
726 goto out;
727 }
728 }
729
730 /* no merging, put us on the tail of the plug list,
731 * our rbio will be started with the currently
732 * running rbio unlocks
733 */
734 list_add_tail(&rbio->plug_list, &cur->plug_list);
735 spin_unlock(&cur->bio_list_lock);
736 ret = 1;
737 goto out;
738 }
739 }
740lockit:
741 refcount_inc(&rbio->refs);
742 list_add(&rbio->hash_list, &h->hash_list);
743out:
744 spin_unlock_irqrestore(&h->lock, flags);
745 if (cache_drop)
746 remove_rbio_from_cache(cache_drop);
747 if (freeit)
748 __free_raid_bio(freeit);
749 return ret;
750}
751
752/*
753 * called as rmw or parity rebuild is completed. If the plug list has more
754 * rbios waiting for this stripe, the next one on the list will be started
755 */
756static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
757{
758 int bucket;
759 struct btrfs_stripe_hash *h;
760 unsigned long flags;
761 int keep_cache = 0;
762
763 bucket = rbio_bucket(rbio);
764 h = rbio->fs_info->stripe_hash_table->table + bucket;
765
766 if (list_empty(&rbio->plug_list))
767 cache_rbio(rbio);
768
769 spin_lock_irqsave(&h->lock, flags);
770 spin_lock(&rbio->bio_list_lock);
771
772 if (!list_empty(&rbio->hash_list)) {
773 /*
774 * if we're still cached and there is no other IO
775 * to perform, just leave this rbio here for others
776 * to steal from later
777 */
778 if (list_empty(&rbio->plug_list) &&
779 test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
780 keep_cache = 1;
781 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
782 BUG_ON(!bio_list_empty(&rbio->bio_list));
783 goto done;
784 }
785
786 list_del_init(&rbio->hash_list);
787 refcount_dec(&rbio->refs);
788
789 /*
790 * we use the plug list to hold all the rbios
791 * waiting for the chance to lock this stripe.
792 * hand the lock over to one of them.
793 */
794 if (!list_empty(&rbio->plug_list)) {
795 struct btrfs_raid_bio *next;
796 struct list_head *head = rbio->plug_list.next;
797
798 next = list_entry(head, struct btrfs_raid_bio,
799 plug_list);
800
801 list_del_init(&rbio->plug_list);
802
803 list_add(&next->hash_list, &h->hash_list);
804 refcount_inc(&next->refs);
805 spin_unlock(&rbio->bio_list_lock);
806 spin_unlock_irqrestore(&h->lock, flags);
807
808 if (next->operation == BTRFS_RBIO_READ_REBUILD)
809 async_read_rebuild(next);
810 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
811 steal_rbio(rbio, next);
812 async_read_rebuild(next);
813 } else if (next->operation == BTRFS_RBIO_WRITE) {
814 steal_rbio(rbio, next);
815 async_rmw_stripe(next);
816 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
817 steal_rbio(rbio, next);
818 async_scrub_parity(next);
819 }
820
821 goto done_nolock;
822 }
823 }
824done:
825 spin_unlock(&rbio->bio_list_lock);
826 spin_unlock_irqrestore(&h->lock, flags);
827
828done_nolock:
829 if (!keep_cache)
830 remove_rbio_from_cache(rbio);
831}
832
833static void __free_raid_bio(struct btrfs_raid_bio *rbio)
834{
835 int i;
836
837 if (!refcount_dec_and_test(&rbio->refs))
838 return;
839
840 WARN_ON(!list_empty(&rbio->stripe_cache));
841 WARN_ON(!list_empty(&rbio->hash_list));
842 WARN_ON(!bio_list_empty(&rbio->bio_list));
843
844 for (i = 0; i < rbio->nr_pages; i++) {
845 if (rbio->stripe_pages[i]) {
846 __free_page(rbio->stripe_pages[i]);
847 rbio->stripe_pages[i] = NULL;
848 }
849 }
850
851 btrfs_put_bbio(rbio->bbio);
852 kfree(rbio);
853}
854
855static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
856{
857 struct bio *next;
858
859 while (cur) {
860 next = cur->bi_next;
861 cur->bi_next = NULL;
862 cur->bi_status = err;
863 bio_endio(cur);
864 cur = next;
865 }
866}
867
868/*
869 * this frees the rbio and runs through all the bios in the
870 * bio_list and calls end_io on them
871 */
872static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
873{
874 struct bio *cur = bio_list_get(&rbio->bio_list);
875 struct bio *extra;
876
877 if (rbio->generic_bio_cnt)
878 btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
879
880 /*
881 * At this moment, rbio->bio_list is empty, however since rbio does not
882 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
883 * hash list, rbio may be merged with others so that rbio->bio_list
884 * becomes non-empty.
885 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
886 * more and we can call bio_endio() on all queued bios.
887 */
888 unlock_stripe(rbio);
889 extra = bio_list_get(&rbio->bio_list);
890 __free_raid_bio(rbio);
891
892 rbio_endio_bio_list(cur, err);
893 if (extra)
894 rbio_endio_bio_list(extra, err);
895}
896
897/*
898 * end io function used by finish_rmw. When we finally
899 * get here, we've written a full stripe
900 */
901static void raid_write_end_io(struct bio *bio)
902{
903 struct btrfs_raid_bio *rbio = bio->bi_private;
904 blk_status_t err = bio->bi_status;
905 int max_errors;
906
907 if (err)
908 fail_bio_stripe(rbio, bio);
909
910 bio_put(bio);
911
912 if (!atomic_dec_and_test(&rbio->stripes_pending))
913 return;
914
915 err = BLK_STS_OK;
916
917 /* OK, we have read all the stripes we need to. */
918 max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
919 0 : rbio->bbio->max_errors;
920 if (atomic_read(&rbio->error) > max_errors)
921 err = BLK_STS_IOERR;
922
923 rbio_orig_end_io(rbio, err);
924}
925
926/*
927 * the read/modify/write code wants to use the original bio for
928 * any pages it included, and then use the rbio for everything
929 * else. This function decides if a given index (stripe number)
930 * and page number in that stripe fall inside the original bio
931 * or the rbio.
932 *
933 * if you set bio_list_only, you'll get a NULL back for any ranges
934 * that are outside the bio_list
935 *
936 * This doesn't take any refs on anything, you get a bare page pointer
937 * and the caller must bump refs as required.
938 *
939 * You must call index_rbio_pages once before you can trust
940 * the answers from this function.
941 */
942static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
943 int index, int pagenr, int bio_list_only)
944{
945 int chunk_page;
946 struct page *p = NULL;
947
948 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
949
950 spin_lock_irq(&rbio->bio_list_lock);
951 p = rbio->bio_pages[chunk_page];
952 spin_unlock_irq(&rbio->bio_list_lock);
953
954 if (p || bio_list_only)
955 return p;
956
957 return rbio->stripe_pages[chunk_page];
958}
959
960/*
961 * number of pages we need for the entire stripe across all the
962 * drives
963 */
964static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
965{
966 return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
967}
968
969/*
970 * allocation and initial setup for the btrfs_raid_bio. Not
971 * this does not allocate any pages for rbio->pages.
972 */
973static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
974 struct btrfs_bio *bbio,
975 u64 stripe_len)
976{
977 struct btrfs_raid_bio *rbio;
978 int nr_data = 0;
979 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
980 int num_pages = rbio_nr_pages(stripe_len, real_stripes);
981 int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
982 void *p;
983
984 rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
985 DIV_ROUND_UP(stripe_npages, BITS_PER_LONG) *
986 sizeof(long), GFP_NOFS);
987 if (!rbio)
988 return ERR_PTR(-ENOMEM);
989
990 bio_list_init(&rbio->bio_list);
991 INIT_LIST_HEAD(&rbio->plug_list);
992 spin_lock_init(&rbio->bio_list_lock);
993 INIT_LIST_HEAD(&rbio->stripe_cache);
994 INIT_LIST_HEAD(&rbio->hash_list);
995 rbio->bbio = bbio;
996 rbio->fs_info = fs_info;
997 rbio->stripe_len = stripe_len;
998 rbio->nr_pages = num_pages;
999 rbio->real_stripes = real_stripes;
1000 rbio->stripe_npages = stripe_npages;
1001 rbio->faila = -1;
1002 rbio->failb = -1;
1003 refcount_set(&rbio->refs, 1);
1004 atomic_set(&rbio->error, 0);
1005 atomic_set(&rbio->stripes_pending, 0);
1006
1007 /*
1008 * the stripe_pages and bio_pages array point to the extra
1009 * memory we allocated past the end of the rbio
1010 */
1011 p = rbio + 1;
1012 rbio->stripe_pages = p;
1013 rbio->bio_pages = p + sizeof(struct page *) * num_pages;
1014 rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
1015
1016 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1017 nr_data = real_stripes - 1;
1018 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1019 nr_data = real_stripes - 2;
1020 else
1021 BUG();
1022
1023 rbio->nr_data = nr_data;
1024 return rbio;
1025}
1026
1027/* allocate pages for all the stripes in the bio, including parity */
1028static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1029{
1030 int i;
1031 struct page *page;
1032
1033 for (i = 0; i < rbio->nr_pages; i++) {
1034 if (rbio->stripe_pages[i])
1035 continue;
1036 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1037 if (!page)
1038 return -ENOMEM;
1039 rbio->stripe_pages[i] = page;
1040 }
1041 return 0;
1042}
1043
1044/* only allocate pages for p/q stripes */
1045static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1046{
1047 int i;
1048 struct page *page;
1049
1050 i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
1051
1052 for (; i < rbio->nr_pages; i++) {
1053 if (rbio->stripe_pages[i])
1054 continue;
1055 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1056 if (!page)
1057 return -ENOMEM;
1058 rbio->stripe_pages[i] = page;
1059 }
1060 return 0;
1061}
1062
1063/*
1064 * add a single page from a specific stripe into our list of bios for IO
1065 * this will try to merge into existing bios if possible, and returns
1066 * zero if all went well.
1067 */
1068static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1069 struct bio_list *bio_list,
1070 struct page *page,
1071 int stripe_nr,
1072 unsigned long page_index,
1073 unsigned long bio_max_len)
1074{
1075 struct bio *last = bio_list->tail;
1076 u64 last_end = 0;
1077 int ret;
1078 struct bio *bio;
1079 struct btrfs_bio_stripe *stripe;
1080 u64 disk_start;
1081
1082 stripe = &rbio->bbio->stripes[stripe_nr];
1083 disk_start = stripe->physical + (page_index << PAGE_SHIFT);
1084
1085 /* if the device is missing, just fail this stripe */
1086 if (!stripe->dev->bdev)
1087 return fail_rbio_index(rbio, stripe_nr);
1088
1089 /* see if we can add this page onto our existing bio */
1090 if (last) {
1091 last_end = (u64)last->bi_iter.bi_sector << 9;
1092 last_end += last->bi_iter.bi_size;
1093
1094 /*
1095 * we can't merge these if they are from different
1096 * devices or if they are not contiguous
1097 */
1098 if (last_end == disk_start && stripe->dev->bdev &&
1099 !last->bi_status &&
1100 last->bi_disk == stripe->dev->bdev->bd_disk &&
1101 last->bi_partno == stripe->dev->bdev->bd_partno) {
1102 ret = bio_add_page(last, page, PAGE_SIZE, 0);
1103 if (ret == PAGE_SIZE)
1104 return 0;
1105 }
1106 }
1107
1108 /* put a new bio on the list */
1109 bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1);
1110 bio->bi_iter.bi_size = 0;
1111 bio_set_dev(bio, stripe->dev->bdev);
1112 bio->bi_iter.bi_sector = disk_start >> 9;
1113
1114 bio_add_page(bio, page, PAGE_SIZE, 0);
1115 bio_list_add(bio_list, bio);
1116 return 0;
1117}
1118
1119/*
1120 * while we're doing the read/modify/write cycle, we could
1121 * have errors in reading pages off the disk. This checks
1122 * for errors and if we're not able to read the page it'll
1123 * trigger parity reconstruction. The rmw will be finished
1124 * after we've reconstructed the failed stripes
1125 */
1126static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1127{
1128 if (rbio->faila >= 0 || rbio->failb >= 0) {
1129 BUG_ON(rbio->faila == rbio->real_stripes - 1);
1130 __raid56_parity_recover(rbio);
1131 } else {
1132 finish_rmw(rbio);
1133 }
1134}
1135
1136/*
1137 * helper function to walk our bio list and populate the bio_pages array with
1138 * the result. This seems expensive, but it is faster than constantly
1139 * searching through the bio list as we setup the IO in finish_rmw or stripe
1140 * reconstruction.
1141 *
1142 * This must be called before you trust the answers from page_in_rbio
1143 */
1144static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1145{
1146 struct bio *bio;
1147 u64 start;
1148 unsigned long stripe_offset;
1149 unsigned long page_index;
1150
1151 spin_lock_irq(&rbio->bio_list_lock);
1152 bio_list_for_each(bio, &rbio->bio_list) {
1153 struct bio_vec bvec;
1154 struct bvec_iter iter;
1155 int i = 0;
1156
1157 start = (u64)bio->bi_iter.bi_sector << 9;
1158 stripe_offset = start - rbio->bbio->raid_map[0];
1159 page_index = stripe_offset >> PAGE_SHIFT;
1160
1161 if (bio_flagged(bio, BIO_CLONED))
1162 bio->bi_iter = btrfs_io_bio(bio)->iter;
1163
1164 bio_for_each_segment(bvec, bio, iter) {
1165 rbio->bio_pages[page_index + i] = bvec.bv_page;
1166 i++;
1167 }
1168 }
1169 spin_unlock_irq(&rbio->bio_list_lock);
1170}
1171
1172/*
1173 * this is called from one of two situations. We either
1174 * have a full stripe from the higher layers, or we've read all
1175 * the missing bits off disk.
1176 *
1177 * This will calculate the parity and then send down any
1178 * changed blocks.
1179 */
1180static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1181{
1182 struct btrfs_bio *bbio = rbio->bbio;
1183 void *pointers[rbio->real_stripes];
1184 int nr_data = rbio->nr_data;
1185 int stripe;
1186 int pagenr;
1187 int p_stripe = -1;
1188 int q_stripe = -1;
1189 struct bio_list bio_list;
1190 struct bio *bio;
1191 int ret;
1192
1193 bio_list_init(&bio_list);
1194
1195 if (rbio->real_stripes - rbio->nr_data == 1) {
1196 p_stripe = rbio->real_stripes - 1;
1197 } else if (rbio->real_stripes - rbio->nr_data == 2) {
1198 p_stripe = rbio->real_stripes - 2;
1199 q_stripe = rbio->real_stripes - 1;
1200 } else {
1201 BUG();
1202 }
1203
1204 /* at this point we either have a full stripe,
1205 * or we've read the full stripe from the drive.
1206 * recalculate the parity and write the new results.
1207 *
1208 * We're not allowed to add any new bios to the
1209 * bio list here, anyone else that wants to
1210 * change this stripe needs to do their own rmw.
1211 */
1212 spin_lock_irq(&rbio->bio_list_lock);
1213 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1214 spin_unlock_irq(&rbio->bio_list_lock);
1215
1216 atomic_set(&rbio->error, 0);
1217
1218 /*
1219 * now that we've set rmw_locked, run through the
1220 * bio list one last time and map the page pointers
1221 *
1222 * We don't cache full rbios because we're assuming
1223 * the higher layers are unlikely to use this area of
1224 * the disk again soon. If they do use it again,
1225 * hopefully they will send another full bio.
1226 */
1227 index_rbio_pages(rbio);
1228 if (!rbio_is_full(rbio))
1229 cache_rbio_pages(rbio);
1230 else
1231 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1232
1233 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1234 struct page *p;
1235 /* first collect one page from each data stripe */
1236 for (stripe = 0; stripe < nr_data; stripe++) {
1237 p = page_in_rbio(rbio, stripe, pagenr, 0);
1238 pointers[stripe] = kmap(p);
1239 }
1240
1241 /* then add the parity stripe */
1242 p = rbio_pstripe_page(rbio, pagenr);
1243 SetPageUptodate(p);
1244 pointers[stripe++] = kmap(p);
1245
1246 if (q_stripe != -1) {
1247
1248 /*
1249 * raid6, add the qstripe and call the
1250 * library function to fill in our p/q
1251 */
1252 p = rbio_qstripe_page(rbio, pagenr);
1253 SetPageUptodate(p);
1254 pointers[stripe++] = kmap(p);
1255
1256 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1257 pointers);
1258 } else {
1259 /* raid5 */
1260 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
1261 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
1262 }
1263
1264
1265 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1266 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1267 }
1268
1269 /*
1270 * time to start writing. Make bios for everything from the
1271 * higher layers (the bio_list in our rbio) and our p/q. Ignore
1272 * everything else.
1273 */
1274 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1275 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1276 struct page *page;
1277 if (stripe < rbio->nr_data) {
1278 page = page_in_rbio(rbio, stripe, pagenr, 1);
1279 if (!page)
1280 continue;
1281 } else {
1282 page = rbio_stripe_page(rbio, stripe, pagenr);
1283 }
1284
1285 ret = rbio_add_io_page(rbio, &bio_list,
1286 page, stripe, pagenr, rbio->stripe_len);
1287 if (ret)
1288 goto cleanup;
1289 }
1290 }
1291
1292 if (likely(!bbio->num_tgtdevs))
1293 goto write_data;
1294
1295 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1296 if (!bbio->tgtdev_map[stripe])
1297 continue;
1298
1299 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1300 struct page *page;
1301 if (stripe < rbio->nr_data) {
1302 page = page_in_rbio(rbio, stripe, pagenr, 1);
1303 if (!page)
1304 continue;
1305 } else {
1306 page = rbio_stripe_page(rbio, stripe, pagenr);
1307 }
1308
1309 ret = rbio_add_io_page(rbio, &bio_list, page,
1310 rbio->bbio->tgtdev_map[stripe],
1311 pagenr, rbio->stripe_len);
1312 if (ret)
1313 goto cleanup;
1314 }
1315 }
1316
1317write_data:
1318 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1319 BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1320
1321 while (1) {
1322 bio = bio_list_pop(&bio_list);
1323 if (!bio)
1324 break;
1325
1326 bio->bi_private = rbio;
1327 bio->bi_end_io = raid_write_end_io;
1328 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1329
1330 submit_bio(bio);
1331 }
1332 return;
1333
1334cleanup:
1335 rbio_orig_end_io(rbio, BLK_STS_IOERR);
1336
1337 while ((bio = bio_list_pop(&bio_list)))
1338 bio_put(bio);
1339}
1340
1341/*
1342 * helper to find the stripe number for a given bio. Used to figure out which
1343 * stripe has failed. This expects the bio to correspond to a physical disk,
1344 * so it looks up based on physical sector numbers.
1345 */
1346static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1347 struct bio *bio)
1348{
1349 u64 physical = bio->bi_iter.bi_sector;
1350 u64 stripe_start;
1351 int i;
1352 struct btrfs_bio_stripe *stripe;
1353
1354 physical <<= 9;
1355
1356 for (i = 0; i < rbio->bbio->num_stripes; i++) {
1357 stripe = &rbio->bbio->stripes[i];
1358 stripe_start = stripe->physical;
1359 if (physical >= stripe_start &&
1360 physical < stripe_start + rbio->stripe_len &&
1361 stripe->dev->bdev &&
1362 bio->bi_disk == stripe->dev->bdev->bd_disk &&
1363 bio->bi_partno == stripe->dev->bdev->bd_partno) {
1364 return i;
1365 }
1366 }
1367 return -1;
1368}
1369
1370/*
1371 * helper to find the stripe number for a given
1372 * bio (before mapping). Used to figure out which stripe has
1373 * failed. This looks up based on logical block numbers.
1374 */
1375static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1376 struct bio *bio)
1377{
1378 u64 logical = bio->bi_iter.bi_sector;
1379 u64 stripe_start;
1380 int i;
1381
1382 logical <<= 9;
1383
1384 for (i = 0; i < rbio->nr_data; i++) {
1385 stripe_start = rbio->bbio->raid_map[i];
1386 if (logical >= stripe_start &&
1387 logical < stripe_start + rbio->stripe_len) {
1388 return i;
1389 }
1390 }
1391 return -1;
1392}
1393
1394/*
1395 * returns -EIO if we had too many failures
1396 */
1397static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1398{
1399 unsigned long flags;
1400 int ret = 0;
1401
1402 spin_lock_irqsave(&rbio->bio_list_lock, flags);
1403
1404 /* we already know this stripe is bad, move on */
1405 if (rbio->faila == failed || rbio->failb == failed)
1406 goto out;
1407
1408 if (rbio->faila == -1) {
1409 /* first failure on this rbio */
1410 rbio->faila = failed;
1411 atomic_inc(&rbio->error);
1412 } else if (rbio->failb == -1) {
1413 /* second failure on this rbio */
1414 rbio->failb = failed;
1415 atomic_inc(&rbio->error);
1416 } else {
1417 ret = -EIO;
1418 }
1419out:
1420 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1421
1422 return ret;
1423}
1424
1425/*
1426 * helper to fail a stripe based on a physical disk
1427 * bio.
1428 */
1429static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1430 struct bio *bio)
1431{
1432 int failed = find_bio_stripe(rbio, bio);
1433
1434 if (failed < 0)
1435 return -EIO;
1436
1437 return fail_rbio_index(rbio, failed);
1438}
1439
1440/*
1441 * this sets each page in the bio uptodate. It should only be used on private
1442 * rbio pages, nothing that comes in from the higher layers
1443 */
1444static void set_bio_pages_uptodate(struct bio *bio)
1445{
1446 struct bio_vec *bvec;
1447 int i;
1448
1449 ASSERT(!bio_flagged(bio, BIO_CLONED));
1450
1451 bio_for_each_segment_all(bvec, bio, i)
1452 SetPageUptodate(bvec->bv_page);
1453}
1454
1455/*
1456 * end io for the read phase of the rmw cycle. All the bios here are physical
1457 * stripe bios we've read from the disk so we can recalculate the parity of the
1458 * stripe.
1459 *
1460 * This will usually kick off finish_rmw once all the bios are read in, but it
1461 * may trigger parity reconstruction if we had any errors along the way
1462 */
1463static void raid_rmw_end_io(struct bio *bio)
1464{
1465 struct btrfs_raid_bio *rbio = bio->bi_private;
1466
1467 if (bio->bi_status)
1468 fail_bio_stripe(rbio, bio);
1469 else
1470 set_bio_pages_uptodate(bio);
1471
1472 bio_put(bio);
1473
1474 if (!atomic_dec_and_test(&rbio->stripes_pending))
1475 return;
1476
1477 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1478 goto cleanup;
1479
1480 /*
1481 * this will normally call finish_rmw to start our write
1482 * but if there are any failed stripes we'll reconstruct
1483 * from parity first
1484 */
1485 validate_rbio_for_rmw(rbio);
1486 return;
1487
1488cleanup:
1489
1490 rbio_orig_end_io(rbio, BLK_STS_IOERR);
1491}
1492
1493static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1494{
1495 btrfs_init_work(&rbio->work, btrfs_rmw_helper, rmw_work, NULL, NULL);
1496 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
1497}
1498
1499static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1500{
1501 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1502 read_rebuild_work, NULL, NULL);
1503
1504 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
1505}
1506
1507/*
1508 * the stripe must be locked by the caller. It will
1509 * unlock after all the writes are done
1510 */
1511static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1512{
1513 int bios_to_read = 0;
1514 struct bio_list bio_list;
1515 int ret;
1516 int pagenr;
1517 int stripe;
1518 struct bio *bio;
1519
1520 bio_list_init(&bio_list);
1521
1522 ret = alloc_rbio_pages(rbio);
1523 if (ret)
1524 goto cleanup;
1525
1526 index_rbio_pages(rbio);
1527
1528 atomic_set(&rbio->error, 0);
1529 /*
1530 * build a list of bios to read all the missing parts of this
1531 * stripe
1532 */
1533 for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1534 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1535 struct page *page;
1536 /*
1537 * we want to find all the pages missing from
1538 * the rbio and read them from the disk. If
1539 * page_in_rbio finds a page in the bio list
1540 * we don't need to read it off the stripe.
1541 */
1542 page = page_in_rbio(rbio, stripe, pagenr, 1);
1543 if (page)
1544 continue;
1545
1546 page = rbio_stripe_page(rbio, stripe, pagenr);
1547 /*
1548 * the bio cache may have handed us an uptodate
1549 * page. If so, be happy and use it
1550 */
1551 if (PageUptodate(page))
1552 continue;
1553
1554 ret = rbio_add_io_page(rbio, &bio_list, page,
1555 stripe, pagenr, rbio->stripe_len);
1556 if (ret)
1557 goto cleanup;
1558 }
1559 }
1560
1561 bios_to_read = bio_list_size(&bio_list);
1562 if (!bios_to_read) {
1563 /*
1564 * this can happen if others have merged with
1565 * us, it means there is nothing left to read.
1566 * But if there are missing devices it may not be
1567 * safe to do the full stripe write yet.
1568 */
1569 goto finish;
1570 }
1571
1572 /*
1573 * the bbio may be freed once we submit the last bio. Make sure
1574 * not to touch it after that
1575 */
1576 atomic_set(&rbio->stripes_pending, bios_to_read);
1577 while (1) {
1578 bio = bio_list_pop(&bio_list);
1579 if (!bio)
1580 break;
1581
1582 bio->bi_private = rbio;
1583 bio->bi_end_io = raid_rmw_end_io;
1584 bio_set_op_attrs(bio, REQ_OP_READ, 0);
1585
1586 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
1587
1588 submit_bio(bio);
1589 }
1590 /* the actual write will happen once the reads are done */
1591 return 0;
1592
1593cleanup:
1594 rbio_orig_end_io(rbio, BLK_STS_IOERR);
1595
1596 while ((bio = bio_list_pop(&bio_list)))
1597 bio_put(bio);
1598
1599 return -EIO;
1600
1601finish:
1602 validate_rbio_for_rmw(rbio);
1603 return 0;
1604}
1605
1606/*
1607 * if the upper layers pass in a full stripe, we thank them by only allocating
1608 * enough pages to hold the parity, and sending it all down quickly.
1609 */
1610static int full_stripe_write(struct btrfs_raid_bio *rbio)
1611{
1612 int ret;
1613
1614 ret = alloc_rbio_parity_pages(rbio);
1615 if (ret) {
1616 __free_raid_bio(rbio);
1617 return ret;
1618 }
1619
1620 ret = lock_stripe_add(rbio);
1621 if (ret == 0)
1622 finish_rmw(rbio);
1623 return 0;
1624}
1625
1626/*
1627 * partial stripe writes get handed over to async helpers.
1628 * We're really hoping to merge a few more writes into this
1629 * rbio before calculating new parity
1630 */
1631static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1632{
1633 int ret;
1634
1635 ret = lock_stripe_add(rbio);
1636 if (ret == 0)
1637 async_rmw_stripe(rbio);
1638 return 0;
1639}
1640
1641/*
1642 * sometimes while we were reading from the drive to
1643 * recalculate parity, enough new bios come into create
1644 * a full stripe. So we do a check here to see if we can
1645 * go directly to finish_rmw
1646 */
1647static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1648{
1649 /* head off into rmw land if we don't have a full stripe */
1650 if (!rbio_is_full(rbio))
1651 return partial_stripe_write(rbio);
1652 return full_stripe_write(rbio);
1653}
1654
1655/*
1656 * We use plugging call backs to collect full stripes.
1657 * Any time we get a partial stripe write while plugged
1658 * we collect it into a list. When the unplug comes down,
1659 * we sort the list by logical block number and merge
1660 * everything we can into the same rbios
1661 */
1662struct btrfs_plug_cb {
1663 struct blk_plug_cb cb;
1664 struct btrfs_fs_info *info;
1665 struct list_head rbio_list;
1666 struct btrfs_work work;
1667};
1668
1669/*
1670 * rbios on the plug list are sorted for easier merging.
1671 */
1672static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1673{
1674 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1675 plug_list);
1676 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1677 plug_list);
1678 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1679 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1680
1681 if (a_sector < b_sector)
1682 return -1;
1683 if (a_sector > b_sector)
1684 return 1;
1685 return 0;
1686}
1687
1688static void run_plug(struct btrfs_plug_cb *plug)
1689{
1690 struct btrfs_raid_bio *cur;
1691 struct btrfs_raid_bio *last = NULL;
1692
1693 /*
1694 * sort our plug list then try to merge
1695 * everything we can in hopes of creating full
1696 * stripes.
1697 */
1698 list_sort(NULL, &plug->rbio_list, plug_cmp);
1699 while (!list_empty(&plug->rbio_list)) {
1700 cur = list_entry(plug->rbio_list.next,
1701 struct btrfs_raid_bio, plug_list);
1702 list_del_init(&cur->plug_list);
1703
1704 if (rbio_is_full(cur)) {
1705 /* we have a full stripe, send it down */
1706 full_stripe_write(cur);
1707 continue;
1708 }
1709 if (last) {
1710 if (rbio_can_merge(last, cur)) {
1711 merge_rbio(last, cur);
1712 __free_raid_bio(cur);
1713 continue;
1714
1715 }
1716 __raid56_parity_write(last);
1717 }
1718 last = cur;
1719 }
1720 if (last) {
1721 __raid56_parity_write(last);
1722 }
1723 kfree(plug);
1724}
1725
1726/*
1727 * if the unplug comes from schedule, we have to push the
1728 * work off to a helper thread
1729 */
1730static void unplug_work(struct btrfs_work *work)
1731{
1732 struct btrfs_plug_cb *plug;
1733 plug = container_of(work, struct btrfs_plug_cb, work);
1734 run_plug(plug);
1735}
1736
1737static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1738{
1739 struct btrfs_plug_cb *plug;
1740 plug = container_of(cb, struct btrfs_plug_cb, cb);
1741
1742 if (from_schedule) {
1743 btrfs_init_work(&plug->work, btrfs_rmw_helper,
1744 unplug_work, NULL, NULL);
1745 btrfs_queue_work(plug->info->rmw_workers,
1746 &plug->work);
1747 return;
1748 }
1749 run_plug(plug);
1750}
1751
1752/*
1753 * our main entry point for writes from the rest of the FS.
1754 */
1755int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
1756 struct btrfs_bio *bbio, u64 stripe_len)
1757{
1758 struct btrfs_raid_bio *rbio;
1759 struct btrfs_plug_cb *plug = NULL;
1760 struct blk_plug_cb *cb;
1761 int ret;
1762
1763 rbio = alloc_rbio(fs_info, bbio, stripe_len);
1764 if (IS_ERR(rbio)) {
1765 btrfs_put_bbio(bbio);
1766 return PTR_ERR(rbio);
1767 }
1768 bio_list_add(&rbio->bio_list, bio);
1769 rbio->bio_list_bytes = bio->bi_iter.bi_size;
1770 rbio->operation = BTRFS_RBIO_WRITE;
1771
1772 btrfs_bio_counter_inc_noblocked(fs_info);
1773 rbio->generic_bio_cnt = 1;
1774
1775 /*
1776 * don't plug on full rbios, just get them out the door
1777 * as quickly as we can
1778 */
1779 if (rbio_is_full(rbio)) {
1780 ret = full_stripe_write(rbio);
1781 if (ret)
1782 btrfs_bio_counter_dec(fs_info);
1783 return ret;
1784 }
1785
1786 cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
1787 if (cb) {
1788 plug = container_of(cb, struct btrfs_plug_cb, cb);
1789 if (!plug->info) {
1790 plug->info = fs_info;
1791 INIT_LIST_HEAD(&plug->rbio_list);
1792 }
1793 list_add_tail(&rbio->plug_list, &plug->rbio_list);
1794 ret = 0;
1795 } else {
1796 ret = __raid56_parity_write(rbio);
1797 if (ret)
1798 btrfs_bio_counter_dec(fs_info);
1799 }
1800 return ret;
1801}
1802
1803/*
1804 * all parity reconstruction happens here. We've read in everything
1805 * we can find from the drives and this does the heavy lifting of
1806 * sorting the good from the bad.
1807 */
1808static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1809{
1810 int pagenr, stripe;
1811 void **pointers;
1812 int faila = -1, failb = -1;
1813 struct page *page;
1814 blk_status_t err;
1815 int i;
1816
1817 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1818 if (!pointers) {
1819 err = BLK_STS_RESOURCE;
1820 goto cleanup_io;
1821 }
1822
1823 faila = rbio->faila;
1824 failb = rbio->failb;
1825
1826 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1827 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1828 spin_lock_irq(&rbio->bio_list_lock);
1829 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1830 spin_unlock_irq(&rbio->bio_list_lock);
1831 }
1832
1833 index_rbio_pages(rbio);
1834
1835 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1836 /*
1837 * Now we just use bitmap to mark the horizontal stripes in
1838 * which we have data when doing parity scrub.
1839 */
1840 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1841 !test_bit(pagenr, rbio->dbitmap))
1842 continue;
1843
1844 /* setup our array of pointers with pages
1845 * from each stripe
1846 */
1847 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1848 /*
1849 * if we're rebuilding a read, we have to use
1850 * pages from the bio list
1851 */
1852 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1853 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1854 (stripe == faila || stripe == failb)) {
1855 page = page_in_rbio(rbio, stripe, pagenr, 0);
1856 } else {
1857 page = rbio_stripe_page(rbio, stripe, pagenr);
1858 }
1859 pointers[stripe] = kmap(page);
1860 }
1861
1862 /* all raid6 handling here */
1863 if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1864 /*
1865 * single failure, rebuild from parity raid5
1866 * style
1867 */
1868 if (failb < 0) {
1869 if (faila == rbio->nr_data) {
1870 /*
1871 * Just the P stripe has failed, without
1872 * a bad data or Q stripe.
1873 * TODO, we should redo the xor here.
1874 */
1875 err = BLK_STS_IOERR;
1876 goto cleanup;
1877 }
1878 /*
1879 * a single failure in raid6 is rebuilt
1880 * in the pstripe code below
1881 */
1882 goto pstripe;
1883 }
1884
1885 /* make sure our ps and qs are in order */
1886 if (faila > failb) {
1887 int tmp = failb;
1888 failb = faila;
1889 faila = tmp;
1890 }
1891
1892 /* if the q stripe is failed, do a pstripe reconstruction
1893 * from the xors.
1894 * If both the q stripe and the P stripe are failed, we're
1895 * here due to a crc mismatch and we can't give them the
1896 * data they want
1897 */
1898 if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1899 if (rbio->bbio->raid_map[faila] ==
1900 RAID5_P_STRIPE) {
1901 err = BLK_STS_IOERR;
1902 goto cleanup;
1903 }
1904 /*
1905 * otherwise we have one bad data stripe and
1906 * a good P stripe. raid5!
1907 */
1908 goto pstripe;
1909 }
1910
1911 if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1912 raid6_datap_recov(rbio->real_stripes,
1913 PAGE_SIZE, faila, pointers);
1914 } else {
1915 raid6_2data_recov(rbio->real_stripes,
1916 PAGE_SIZE, faila, failb,
1917 pointers);
1918 }
1919 } else {
1920 void *p;
1921
1922 /* rebuild from P stripe here (raid5 or raid6) */
1923 BUG_ON(failb != -1);
1924pstripe:
1925 /* Copy parity block into failed block to start with */
1926 memcpy(pointers[faila],
1927 pointers[rbio->nr_data],
1928 PAGE_SIZE);
1929
1930 /* rearrange the pointer array */
1931 p = pointers[faila];
1932 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1933 pointers[stripe] = pointers[stripe + 1];
1934 pointers[rbio->nr_data - 1] = p;
1935
1936 /* xor in the rest */
1937 run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
1938 }
1939 /* if we're doing this rebuild as part of an rmw, go through
1940 * and set all of our private rbio pages in the
1941 * failed stripes as uptodate. This way finish_rmw will
1942 * know they can be trusted. If this was a read reconstruction,
1943 * other endio functions will fiddle the uptodate bits
1944 */
1945 if (rbio->operation == BTRFS_RBIO_WRITE) {
1946 for (i = 0; i < rbio->stripe_npages; i++) {
1947 if (faila != -1) {
1948 page = rbio_stripe_page(rbio, faila, i);
1949 SetPageUptodate(page);
1950 }
1951 if (failb != -1) {
1952 page = rbio_stripe_page(rbio, failb, i);
1953 SetPageUptodate(page);
1954 }
1955 }
1956 }
1957 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1958 /*
1959 * if we're rebuilding a read, we have to use
1960 * pages from the bio list
1961 */
1962 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1963 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1964 (stripe == faila || stripe == failb)) {
1965 page = page_in_rbio(rbio, stripe, pagenr, 0);
1966 } else {
1967 page = rbio_stripe_page(rbio, stripe, pagenr);
1968 }
1969 kunmap(page);
1970 }
1971 }
1972
1973 err = BLK_STS_OK;
1974cleanup:
1975 kfree(pointers);
1976
1977cleanup_io:
1978 /*
1979 * Similar to READ_REBUILD, REBUILD_MISSING at this point also has a
1980 * valid rbio which is consistent with ondisk content, thus such a
1981 * valid rbio can be cached to avoid further disk reads.
1982 */
1983 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1984 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1985 /*
1986 * - In case of two failures, where rbio->failb != -1:
1987 *
1988 * Do not cache this rbio since the above read reconstruction
1989 * (raid6_datap_recov() or raid6_2data_recov()) may have
1990 * changed some content of stripes which are not identical to
1991 * on-disk content any more, otherwise, a later write/recover
1992 * may steal stripe_pages from this rbio and end up with
1993 * corruptions or rebuild failures.
1994 *
1995 * - In case of single failure, where rbio->failb == -1:
1996 *
1997 * Cache this rbio iff the above read reconstruction is
1998 * excuted without problems.
1999 */
2000 if (err == BLK_STS_OK && rbio->failb < 0)
2001 cache_rbio_pages(rbio);
2002 else
2003 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2004
2005 rbio_orig_end_io(rbio, err);
2006 } else if (err == BLK_STS_OK) {
2007 rbio->faila = -1;
2008 rbio->failb = -1;
2009
2010 if (rbio->operation == BTRFS_RBIO_WRITE)
2011 finish_rmw(rbio);
2012 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
2013 finish_parity_scrub(rbio, 0);
2014 else
2015 BUG();
2016 } else {
2017 rbio_orig_end_io(rbio, err);
2018 }
2019}
2020
2021/*
2022 * This is called only for stripes we've read from disk to
2023 * reconstruct the parity.
2024 */
2025static void raid_recover_end_io(struct bio *bio)
2026{
2027 struct btrfs_raid_bio *rbio = bio->bi_private;
2028
2029 /*
2030 * we only read stripe pages off the disk, set them
2031 * up to date if there were no errors
2032 */
2033 if (bio->bi_status)
2034 fail_bio_stripe(rbio, bio);
2035 else
2036 set_bio_pages_uptodate(bio);
2037 bio_put(bio);
2038
2039 if (!atomic_dec_and_test(&rbio->stripes_pending))
2040 return;
2041
2042 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2043 rbio_orig_end_io(rbio, BLK_STS_IOERR);
2044 else
2045 __raid_recover_end_io(rbio);
2046}
2047
2048/*
2049 * reads everything we need off the disk to reconstruct
2050 * the parity. endio handlers trigger final reconstruction
2051 * when the IO is done.
2052 *
2053 * This is used both for reads from the higher layers and for
2054 * parity construction required to finish a rmw cycle.
2055 */
2056static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2057{
2058 int bios_to_read = 0;
2059 struct bio_list bio_list;
2060 int ret;
2061 int pagenr;
2062 int stripe;
2063 struct bio *bio;
2064
2065 bio_list_init(&bio_list);
2066
2067 ret = alloc_rbio_pages(rbio);
2068 if (ret)
2069 goto cleanup;
2070
2071 atomic_set(&rbio->error, 0);
2072
2073 /*
2074 * read everything that hasn't failed. Thanks to the
2075 * stripe cache, it is possible that some or all of these
2076 * pages are going to be uptodate.
2077 */
2078 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2079 if (rbio->faila == stripe || rbio->failb == stripe) {
2080 atomic_inc(&rbio->error);
2081 continue;
2082 }
2083
2084 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2085 struct page *p;
2086
2087 /*
2088 * the rmw code may have already read this
2089 * page in
2090 */
2091 p = rbio_stripe_page(rbio, stripe, pagenr);
2092 if (PageUptodate(p))
2093 continue;
2094
2095 ret = rbio_add_io_page(rbio, &bio_list,
2096 rbio_stripe_page(rbio, stripe, pagenr),
2097 stripe, pagenr, rbio->stripe_len);
2098 if (ret < 0)
2099 goto cleanup;
2100 }
2101 }
2102
2103 bios_to_read = bio_list_size(&bio_list);
2104 if (!bios_to_read) {
2105 /*
2106 * we might have no bios to read just because the pages
2107 * were up to date, or we might have no bios to read because
2108 * the devices were gone.
2109 */
2110 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2111 __raid_recover_end_io(rbio);
2112 goto out;
2113 } else {
2114 goto cleanup;
2115 }
2116 }
2117
2118 /*
2119 * the bbio may be freed once we submit the last bio. Make sure
2120 * not to touch it after that
2121 */
2122 atomic_set(&rbio->stripes_pending, bios_to_read);
2123 while (1) {
2124 bio = bio_list_pop(&bio_list);
2125 if (!bio)
2126 break;
2127
2128 bio->bi_private = rbio;
2129 bio->bi_end_io = raid_recover_end_io;
2130 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2131
2132 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2133
2134 submit_bio(bio);
2135 }
2136out:
2137 return 0;
2138
2139cleanup:
2140 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2141 rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2142 rbio_orig_end_io(rbio, BLK_STS_IOERR);
2143
2144 while ((bio = bio_list_pop(&bio_list)))
2145 bio_put(bio);
2146
2147 return -EIO;
2148}
2149
2150/*
2151 * the main entry point for reads from the higher layers. This
2152 * is really only called when the normal read path had a failure,
2153 * so we assume the bio they send down corresponds to a failed part
2154 * of the drive.
2155 */
2156int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
2157 struct btrfs_bio *bbio, u64 stripe_len,
2158 int mirror_num, int generic_io)
2159{
2160 struct btrfs_raid_bio *rbio;
2161 int ret;
2162
2163 if (generic_io) {
2164 ASSERT(bbio->mirror_num == mirror_num);
2165 btrfs_io_bio(bio)->mirror_num = mirror_num;
2166 }
2167
2168 rbio = alloc_rbio(fs_info, bbio, stripe_len);
2169 if (IS_ERR(rbio)) {
2170 if (generic_io)
2171 btrfs_put_bbio(bbio);
2172 return PTR_ERR(rbio);
2173 }
2174
2175 rbio->operation = BTRFS_RBIO_READ_REBUILD;
2176 bio_list_add(&rbio->bio_list, bio);
2177 rbio->bio_list_bytes = bio->bi_iter.bi_size;
2178
2179 rbio->faila = find_logical_bio_stripe(rbio, bio);
2180 if (rbio->faila == -1) {
2181 btrfs_warn(fs_info,
2182 "%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
2183 __func__, (u64)bio->bi_iter.bi_sector << 9,
2184 (u64)bio->bi_iter.bi_size, bbio->map_type);
2185 if (generic_io)
2186 btrfs_put_bbio(bbio);
2187 kfree(rbio);
2188 return -EIO;
2189 }
2190
2191 if (generic_io) {
2192 btrfs_bio_counter_inc_noblocked(fs_info);
2193 rbio->generic_bio_cnt = 1;
2194 } else {
2195 btrfs_get_bbio(bbio);
2196 }
2197
2198 /*
2199 * Loop retry:
2200 * for 'mirror == 2', reconstruct from all other stripes.
2201 * for 'mirror_num > 2', select a stripe to fail on every retry.
2202 */
2203 if (mirror_num > 2) {
2204 /*
2205 * 'mirror == 3' is to fail the p stripe and
2206 * reconstruct from the q stripe. 'mirror > 3' is to
2207 * fail a data stripe and reconstruct from p+q stripe.
2208 */
2209 rbio->failb = rbio->real_stripes - (mirror_num - 1);
2210 ASSERT(rbio->failb > 0);
2211 if (rbio->failb <= rbio->faila)
2212 rbio->failb--;
2213 }
2214
2215 ret = lock_stripe_add(rbio);
2216
2217 /*
2218 * __raid56_parity_recover will end the bio with
2219 * any errors it hits. We don't want to return
2220 * its error value up the stack because our caller
2221 * will end up calling bio_endio with any nonzero
2222 * return
2223 */
2224 if (ret == 0)
2225 __raid56_parity_recover(rbio);
2226 /*
2227 * our rbio has been added to the list of
2228 * rbios that will be handled after the
2229 * currently lock owner is done
2230 */
2231 return 0;
2232
2233}
2234
2235static void rmw_work(struct btrfs_work *work)
2236{
2237 struct btrfs_raid_bio *rbio;
2238
2239 rbio = container_of(work, struct btrfs_raid_bio, work);
2240 raid56_rmw_stripe(rbio);
2241}
2242
2243static void read_rebuild_work(struct btrfs_work *work)
2244{
2245 struct btrfs_raid_bio *rbio;
2246
2247 rbio = container_of(work, struct btrfs_raid_bio, work);
2248 __raid56_parity_recover(rbio);
2249}
2250
2251/*
2252 * The following code is used to scrub/replace the parity stripe
2253 *
2254 * Caller must have already increased bio_counter for getting @bbio.
2255 *
2256 * Note: We need make sure all the pages that add into the scrub/replace
2257 * raid bio are correct and not be changed during the scrub/replace. That
2258 * is those pages just hold metadata or file data with checksum.
2259 */
2260
2261struct btrfs_raid_bio *
2262raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2263 struct btrfs_bio *bbio, u64 stripe_len,
2264 struct btrfs_device *scrub_dev,
2265 unsigned long *dbitmap, int stripe_nsectors)
2266{
2267 struct btrfs_raid_bio *rbio;
2268 int i;
2269
2270 rbio = alloc_rbio(fs_info, bbio, stripe_len);
2271 if (IS_ERR(rbio))
2272 return NULL;
2273 bio_list_add(&rbio->bio_list, bio);
2274 /*
2275 * This is a special bio which is used to hold the completion handler
2276 * and make the scrub rbio is similar to the other types
2277 */
2278 ASSERT(!bio->bi_iter.bi_size);
2279 rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2280
2281 /*
2282 * After mapping bbio with BTRFS_MAP_WRITE, parities have been sorted
2283 * to the end position, so this search can start from the first parity
2284 * stripe.
2285 */
2286 for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2287 if (bbio->stripes[i].dev == scrub_dev) {
2288 rbio->scrubp = i;
2289 break;
2290 }
2291 }
2292 ASSERT(i < rbio->real_stripes);
2293
2294 /* Now we just support the sectorsize equals to page size */
2295 ASSERT(fs_info->sectorsize == PAGE_SIZE);
2296 ASSERT(rbio->stripe_npages == stripe_nsectors);
2297 bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2298
2299 /*
2300 * We have already increased bio_counter when getting bbio, record it
2301 * so we can free it at rbio_orig_end_io().
2302 */
2303 rbio->generic_bio_cnt = 1;
2304
2305 return rbio;
2306}
2307
2308/* Used for both parity scrub and missing. */
2309void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2310 u64 logical)
2311{
2312 int stripe_offset;
2313 int index;
2314
2315 ASSERT(logical >= rbio->bbio->raid_map[0]);
2316 ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2317 rbio->stripe_len * rbio->nr_data);
2318 stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2319 index = stripe_offset >> PAGE_SHIFT;
2320 rbio->bio_pages[index] = page;
2321}
2322
2323/*
2324 * We just scrub the parity that we have correct data on the same horizontal,
2325 * so we needn't allocate all pages for all the stripes.
2326 */
2327static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2328{
2329 int i;
2330 int bit;
2331 int index;
2332 struct page *page;
2333
2334 for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2335 for (i = 0; i < rbio->real_stripes; i++) {
2336 index = i * rbio->stripe_npages + bit;
2337 if (rbio->stripe_pages[index])
2338 continue;
2339
2340 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2341 if (!page)
2342 return -ENOMEM;
2343 rbio->stripe_pages[index] = page;
2344 }
2345 }
2346 return 0;
2347}
2348
2349static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2350 int need_check)
2351{
2352 struct btrfs_bio *bbio = rbio->bbio;
2353 void *pointers[rbio->real_stripes];
2354 DECLARE_BITMAP(pbitmap, rbio->stripe_npages);
2355 int nr_data = rbio->nr_data;
2356 int stripe;
2357 int pagenr;
2358 int p_stripe = -1;
2359 int q_stripe = -1;
2360 struct page *p_page = NULL;
2361 struct page *q_page = NULL;
2362 struct bio_list bio_list;
2363 struct bio *bio;
2364 int is_replace = 0;
2365 int ret;
2366
2367 bio_list_init(&bio_list);
2368
2369 if (rbio->real_stripes - rbio->nr_data == 1) {
2370 p_stripe = rbio->real_stripes - 1;
2371 } else if (rbio->real_stripes - rbio->nr_data == 2) {
2372 p_stripe = rbio->real_stripes - 2;
2373 q_stripe = rbio->real_stripes - 1;
2374 } else {
2375 BUG();
2376 }
2377
2378 if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2379 is_replace = 1;
2380 bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2381 }
2382
2383 /*
2384 * Because the higher layers(scrubber) are unlikely to
2385 * use this area of the disk again soon, so don't cache
2386 * it.
2387 */
2388 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2389
2390 if (!need_check)
2391 goto writeback;
2392
2393 p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2394 if (!p_page)
2395 goto cleanup;
2396 SetPageUptodate(p_page);
2397
2398 if (q_stripe != -1) {
2399 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2400 if (!q_page) {
2401 __free_page(p_page);
2402 goto cleanup;
2403 }
2404 SetPageUptodate(q_page);
2405 }
2406
2407 atomic_set(&rbio->error, 0);
2408
2409 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2410 struct page *p;
2411 void *parity;
2412 /* first collect one page from each data stripe */
2413 for (stripe = 0; stripe < nr_data; stripe++) {
2414 p = page_in_rbio(rbio, stripe, pagenr, 0);
2415 pointers[stripe] = kmap(p);
2416 }
2417
2418 /* then add the parity stripe */
2419 pointers[stripe++] = kmap(p_page);
2420
2421 if (q_stripe != -1) {
2422
2423 /*
2424 * raid6, add the qstripe and call the
2425 * library function to fill in our p/q
2426 */
2427 pointers[stripe++] = kmap(q_page);
2428
2429 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2430 pointers);
2431 } else {
2432 /* raid5 */
2433 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
2434 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2435 }
2436
2437 /* Check scrubbing parity and repair it */
2438 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2439 parity = kmap(p);
2440 if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2441 memcpy(parity, pointers[rbio->scrubp], PAGE_SIZE);
2442 else
2443 /* Parity is right, needn't writeback */
2444 bitmap_clear(rbio->dbitmap, pagenr, 1);
2445 kunmap(p);
2446
2447 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
2448 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2449 }
2450
2451 __free_page(p_page);
2452 if (q_page)
2453 __free_page(q_page);
2454
2455writeback:
2456 /*
2457 * time to start writing. Make bios for everything from the
2458 * higher layers (the bio_list in our rbio) and our p/q. Ignore
2459 * everything else.
2460 */
2461 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2462 struct page *page;
2463
2464 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2465 ret = rbio_add_io_page(rbio, &bio_list,
2466 page, rbio->scrubp, pagenr, rbio->stripe_len);
2467 if (ret)
2468 goto cleanup;
2469 }
2470
2471 if (!is_replace)
2472 goto submit_write;
2473
2474 for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2475 struct page *page;
2476
2477 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2478 ret = rbio_add_io_page(rbio, &bio_list, page,
2479 bbio->tgtdev_map[rbio->scrubp],
2480 pagenr, rbio->stripe_len);
2481 if (ret)
2482 goto cleanup;
2483 }
2484
2485submit_write:
2486 nr_data = bio_list_size(&bio_list);
2487 if (!nr_data) {
2488 /* Every parity is right */
2489 rbio_orig_end_io(rbio, BLK_STS_OK);
2490 return;
2491 }
2492
2493 atomic_set(&rbio->stripes_pending, nr_data);
2494
2495 while (1) {
2496 bio = bio_list_pop(&bio_list);
2497 if (!bio)
2498 break;
2499
2500 bio->bi_private = rbio;
2501 bio->bi_end_io = raid_write_end_io;
2502 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2503
2504 submit_bio(bio);
2505 }
2506 return;
2507
2508cleanup:
2509 rbio_orig_end_io(rbio, BLK_STS_IOERR);
2510
2511 while ((bio = bio_list_pop(&bio_list)))
2512 bio_put(bio);
2513}
2514
2515static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2516{
2517 if (stripe >= 0 && stripe < rbio->nr_data)
2518 return 1;
2519 return 0;
2520}
2521
2522/*
2523 * While we're doing the parity check and repair, we could have errors
2524 * in reading pages off the disk. This checks for errors and if we're
2525 * not able to read the page it'll trigger parity reconstruction. The
2526 * parity scrub will be finished after we've reconstructed the failed
2527 * stripes
2528 */
2529static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2530{
2531 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2532 goto cleanup;
2533
2534 if (rbio->faila >= 0 || rbio->failb >= 0) {
2535 int dfail = 0, failp = -1;
2536
2537 if (is_data_stripe(rbio, rbio->faila))
2538 dfail++;
2539 else if (is_parity_stripe(rbio->faila))
2540 failp = rbio->faila;
2541
2542 if (is_data_stripe(rbio, rbio->failb))
2543 dfail++;
2544 else if (is_parity_stripe(rbio->failb))
2545 failp = rbio->failb;
2546
2547 /*
2548 * Because we can not use a scrubbing parity to repair
2549 * the data, so the capability of the repair is declined.
2550 * (In the case of RAID5, we can not repair anything)
2551 */
2552 if (dfail > rbio->bbio->max_errors - 1)
2553 goto cleanup;
2554
2555 /*
2556 * If all data is good, only parity is correctly, just
2557 * repair the parity.
2558 */
2559 if (dfail == 0) {
2560 finish_parity_scrub(rbio, 0);
2561 return;
2562 }
2563
2564 /*
2565 * Here means we got one corrupted data stripe and one
2566 * corrupted parity on RAID6, if the corrupted parity
2567 * is scrubbing parity, luckily, use the other one to repair
2568 * the data, or we can not repair the data stripe.
2569 */
2570 if (failp != rbio->scrubp)
2571 goto cleanup;
2572
2573 __raid_recover_end_io(rbio);
2574 } else {
2575 finish_parity_scrub(rbio, 1);
2576 }
2577 return;
2578
2579cleanup:
2580 rbio_orig_end_io(rbio, BLK_STS_IOERR);
2581}
2582
2583/*
2584 * end io for the read phase of the rmw cycle. All the bios here are physical
2585 * stripe bios we've read from the disk so we can recalculate the parity of the
2586 * stripe.
2587 *
2588 * This will usually kick off finish_rmw once all the bios are read in, but it
2589 * may trigger parity reconstruction if we had any errors along the way
2590 */
2591static void raid56_parity_scrub_end_io(struct bio *bio)
2592{
2593 struct btrfs_raid_bio *rbio = bio->bi_private;
2594
2595 if (bio->bi_status)
2596 fail_bio_stripe(rbio, bio);
2597 else
2598 set_bio_pages_uptodate(bio);
2599
2600 bio_put(bio);
2601
2602 if (!atomic_dec_and_test(&rbio->stripes_pending))
2603 return;
2604
2605 /*
2606 * this will normally call finish_rmw to start our write
2607 * but if there are any failed stripes we'll reconstruct
2608 * from parity first
2609 */
2610 validate_rbio_for_parity_scrub(rbio);
2611}
2612
2613static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2614{
2615 int bios_to_read = 0;
2616 struct bio_list bio_list;
2617 int ret;
2618 int pagenr;
2619 int stripe;
2620 struct bio *bio;
2621
2622 bio_list_init(&bio_list);
2623
2624 ret = alloc_rbio_essential_pages(rbio);
2625 if (ret)
2626 goto cleanup;
2627
2628 atomic_set(&rbio->error, 0);
2629 /*
2630 * build a list of bios to read all the missing parts of this
2631 * stripe
2632 */
2633 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2634 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2635 struct page *page;
2636 /*
2637 * we want to find all the pages missing from
2638 * the rbio and read them from the disk. If
2639 * page_in_rbio finds a page in the bio list
2640 * we don't need to read it off the stripe.
2641 */
2642 page = page_in_rbio(rbio, stripe, pagenr, 1);
2643 if (page)
2644 continue;
2645
2646 page = rbio_stripe_page(rbio, stripe, pagenr);
2647 /*
2648 * the bio cache may have handed us an uptodate
2649 * page. If so, be happy and use it
2650 */
2651 if (PageUptodate(page))
2652 continue;
2653
2654 ret = rbio_add_io_page(rbio, &bio_list, page,
2655 stripe, pagenr, rbio->stripe_len);
2656 if (ret)
2657 goto cleanup;
2658 }
2659 }
2660
2661 bios_to_read = bio_list_size(&bio_list);
2662 if (!bios_to_read) {
2663 /*
2664 * this can happen if others have merged with
2665 * us, it means there is nothing left to read.
2666 * But if there are missing devices it may not be
2667 * safe to do the full stripe write yet.
2668 */
2669 goto finish;
2670 }
2671
2672 /*
2673 * the bbio may be freed once we submit the last bio. Make sure
2674 * not to touch it after that
2675 */
2676 atomic_set(&rbio->stripes_pending, bios_to_read);
2677 while (1) {
2678 bio = bio_list_pop(&bio_list);
2679 if (!bio)
2680 break;
2681
2682 bio->bi_private = rbio;
2683 bio->bi_end_io = raid56_parity_scrub_end_io;
2684 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2685
2686 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2687
2688 submit_bio(bio);
2689 }
2690 /* the actual write will happen once the reads are done */
2691 return;
2692
2693cleanup:
2694 rbio_orig_end_io(rbio, BLK_STS_IOERR);
2695
2696 while ((bio = bio_list_pop(&bio_list)))
2697 bio_put(bio);
2698
2699 return;
2700
2701finish:
2702 validate_rbio_for_parity_scrub(rbio);
2703}
2704
2705static void scrub_parity_work(struct btrfs_work *work)
2706{
2707 struct btrfs_raid_bio *rbio;
2708
2709 rbio = container_of(work, struct btrfs_raid_bio, work);
2710 raid56_parity_scrub_stripe(rbio);
2711}
2712
2713static void async_scrub_parity(struct btrfs_raid_bio *rbio)
2714{
2715 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2716 scrub_parity_work, NULL, NULL);
2717
2718 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2719}
2720
2721void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2722{
2723 if (!lock_stripe_add(rbio))
2724 async_scrub_parity(rbio);
2725}
2726
2727/* The following code is used for dev replace of a missing RAID 5/6 device. */
2728
2729struct btrfs_raid_bio *
2730raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2731 struct btrfs_bio *bbio, u64 length)
2732{
2733 struct btrfs_raid_bio *rbio;
2734
2735 rbio = alloc_rbio(fs_info, bbio, length);
2736 if (IS_ERR(rbio))
2737 return NULL;
2738
2739 rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2740 bio_list_add(&rbio->bio_list, bio);
2741 /*
2742 * This is a special bio which is used to hold the completion handler
2743 * and make the scrub rbio is similar to the other types
2744 */
2745 ASSERT(!bio->bi_iter.bi_size);
2746
2747 rbio->faila = find_logical_bio_stripe(rbio, bio);
2748 if (rbio->faila == -1) {
2749 BUG();
2750 kfree(rbio);
2751 return NULL;
2752 }
2753
2754 /*
2755 * When we get bbio, we have already increased bio_counter, record it
2756 * so we can free it at rbio_orig_end_io()
2757 */
2758 rbio->generic_bio_cnt = 1;
2759
2760 return rbio;
2761}
2762
2763void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2764{
2765 if (!lock_stripe_add(rbio))
2766 async_read_rebuild(rbio);
2767}