Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1996, 1997, 1998, 1999, 2000, 03, 04 by Ralf Baechle
7 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
8 * Copyright (C) 2007 Maciej W. Rozycki
9 * Copyright (C) 2014, Imagination Technologies Ltd.
10 */
11#ifndef _ASM_UACCESS_H
12#define _ASM_UACCESS_H
13
14#include <linux/kernel.h>
15#include <linux/errno.h>
16#include <linux/thread_info.h>
17#include <linux/string.h>
18#include <asm/asm-eva.h>
19#include <asm/extable.h>
20
21/*
22 * The fs value determines whether argument validity checking should be
23 * performed or not. If get_fs() == USER_DS, checking is performed, with
24 * get_fs() == KERNEL_DS, checking is bypassed.
25 *
26 * For historical reasons, these macros are grossly misnamed.
27 */
28#ifdef CONFIG_32BIT
29
30#ifdef CONFIG_KVM_GUEST
31#define __UA_LIMIT 0x40000000UL
32#else
33#define __UA_LIMIT 0x80000000UL
34#endif
35
36#define __UA_ADDR ".word"
37#define __UA_LA "la"
38#define __UA_ADDU "addu"
39#define __UA_t0 "$8"
40#define __UA_t1 "$9"
41
42#endif /* CONFIG_32BIT */
43
44#ifdef CONFIG_64BIT
45
46extern u64 __ua_limit;
47
48#define __UA_LIMIT __ua_limit
49
50#define __UA_ADDR ".dword"
51#define __UA_LA "dla"
52#define __UA_ADDU "daddu"
53#define __UA_t0 "$12"
54#define __UA_t1 "$13"
55
56#endif /* CONFIG_64BIT */
57
58/*
59 * USER_DS is a bitmask that has the bits set that may not be set in a valid
60 * userspace address. Note that we limit 32-bit userspace to 0x7fff8000 but
61 * the arithmetic we're doing only works if the limit is a power of two, so
62 * we use 0x80000000 here on 32-bit kernels. If a process passes an invalid
63 * address in this range it's the process's problem, not ours :-)
64 */
65
66#ifdef CONFIG_KVM_GUEST
67#define KERNEL_DS ((mm_segment_t) { 0x80000000UL })
68#define USER_DS ((mm_segment_t) { 0xC0000000UL })
69#else
70#define KERNEL_DS ((mm_segment_t) { 0UL })
71#define USER_DS ((mm_segment_t) { __UA_LIMIT })
72#endif
73
74#define VERIFY_READ 0
75#define VERIFY_WRITE 1
76
77#define get_ds() (KERNEL_DS)
78#define get_fs() (current_thread_info()->addr_limit)
79#define set_fs(x) (current_thread_info()->addr_limit = (x))
80
81#define segment_eq(a, b) ((a).seg == (b).seg)
82
83/*
84 * eva_kernel_access() - determine whether kernel memory access on an EVA system
85 *
86 * Determines whether memory accesses should be performed to kernel memory
87 * on a system using Extended Virtual Addressing (EVA).
88 *
89 * Return: true if a kernel memory access on an EVA system, else false.
90 */
91static inline bool eva_kernel_access(void)
92{
93 if (!IS_ENABLED(CONFIG_EVA))
94 return false;
95
96 return segment_eq(get_fs(), get_ds());
97}
98
99/*
100 * Is a address valid? This does a straightforward calculation rather
101 * than tests.
102 *
103 * Address valid if:
104 * - "addr" doesn't have any high-bits set
105 * - AND "size" doesn't have any high-bits set
106 * - AND "addr+size" doesn't have any high-bits set
107 * - OR we are in kernel mode.
108 *
109 * __ua_size() is a trick to avoid runtime checking of positive constant
110 * sizes; for those we already know at compile time that the size is ok.
111 */
112#define __ua_size(size) \
113 ((__builtin_constant_p(size) && (signed long) (size) > 0) ? 0 : (size))
114
115/*
116 * access_ok: - Checks if a user space pointer is valid
117 * @type: Type of access: %VERIFY_READ or %VERIFY_WRITE. Note that
118 * %VERIFY_WRITE is a superset of %VERIFY_READ - if it is safe
119 * to write to a block, it is always safe to read from it.
120 * @addr: User space pointer to start of block to check
121 * @size: Size of block to check
122 *
123 * Context: User context only. This function may sleep if pagefaults are
124 * enabled.
125 *
126 * Checks if a pointer to a block of memory in user space is valid.
127 *
128 * Returns true (nonzero) if the memory block may be valid, false (zero)
129 * if it is definitely invalid.
130 *
131 * Note that, depending on architecture, this function probably just
132 * checks that the pointer is in the user space range - after calling
133 * this function, memory access functions may still return -EFAULT.
134 */
135
136#define __access_mask get_fs().seg
137
138#define __access_ok(addr, size, mask) \
139({ \
140 unsigned long __addr = (unsigned long) (addr); \
141 unsigned long __size = size; \
142 unsigned long __mask = mask; \
143 unsigned long __ok; \
144 \
145 __chk_user_ptr(addr); \
146 __ok = (signed long)(__mask & (__addr | (__addr + __size) | \
147 __ua_size(__size))); \
148 __ok == 0; \
149})
150
151#define access_ok(type, addr, size) \
152 likely(__access_ok((addr), (size), __access_mask))
153
154/*
155 * put_user: - Write a simple value into user space.
156 * @x: Value to copy to user space.
157 * @ptr: Destination address, in user space.
158 *
159 * Context: User context only. This function may sleep if pagefaults are
160 * enabled.
161 *
162 * This macro copies a single simple value from kernel space to user
163 * space. It supports simple types like char and int, but not larger
164 * data types like structures or arrays.
165 *
166 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
167 * to the result of dereferencing @ptr.
168 *
169 * Returns zero on success, or -EFAULT on error.
170 */
171#define put_user(x,ptr) \
172 __put_user_check((x), (ptr), sizeof(*(ptr)))
173
174/*
175 * get_user: - Get a simple variable from user space.
176 * @x: Variable to store result.
177 * @ptr: Source address, in user space.
178 *
179 * Context: User context only. This function may sleep if pagefaults are
180 * enabled.
181 *
182 * This macro copies a single simple variable from user space to kernel
183 * space. It supports simple types like char and int, but not larger
184 * data types like structures or arrays.
185 *
186 * @ptr must have pointer-to-simple-variable type, and the result of
187 * dereferencing @ptr must be assignable to @x without a cast.
188 *
189 * Returns zero on success, or -EFAULT on error.
190 * On error, the variable @x is set to zero.
191 */
192#define get_user(x,ptr) \
193 __get_user_check((x), (ptr), sizeof(*(ptr)))
194
195/*
196 * __put_user: - Write a simple value into user space, with less checking.
197 * @x: Value to copy to user space.
198 * @ptr: Destination address, in user space.
199 *
200 * Context: User context only. This function may sleep if pagefaults are
201 * enabled.
202 *
203 * This macro copies a single simple value from kernel space to user
204 * space. It supports simple types like char and int, but not larger
205 * data types like structures or arrays.
206 *
207 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
208 * to the result of dereferencing @ptr.
209 *
210 * Caller must check the pointer with access_ok() before calling this
211 * function.
212 *
213 * Returns zero on success, or -EFAULT on error.
214 */
215#define __put_user(x,ptr) \
216 __put_user_nocheck((x), (ptr), sizeof(*(ptr)))
217
218/*
219 * __get_user: - Get a simple variable from user space, with less checking.
220 * @x: Variable to store result.
221 * @ptr: Source address, in user space.
222 *
223 * Context: User context only. This function may sleep if pagefaults are
224 * enabled.
225 *
226 * This macro copies a single simple variable from user space to kernel
227 * space. It supports simple types like char and int, but not larger
228 * data types like structures or arrays.
229 *
230 * @ptr must have pointer-to-simple-variable type, and the result of
231 * dereferencing @ptr must be assignable to @x without a cast.
232 *
233 * Caller must check the pointer with access_ok() before calling this
234 * function.
235 *
236 * Returns zero on success, or -EFAULT on error.
237 * On error, the variable @x is set to zero.
238 */
239#define __get_user(x,ptr) \
240 __get_user_nocheck((x), (ptr), sizeof(*(ptr)))
241
242struct __large_struct { unsigned long buf[100]; };
243#define __m(x) (*(struct __large_struct __user *)(x))
244
245/*
246 * Yuck. We need two variants, one for 64bit operation and one
247 * for 32 bit mode and old iron.
248 */
249#ifndef CONFIG_EVA
250#define __get_kernel_common(val, size, ptr) __get_user_common(val, size, ptr)
251#else
252/*
253 * Kernel specific functions for EVA. We need to use normal load instructions
254 * to read data from kernel when operating in EVA mode. We use these macros to
255 * avoid redefining __get_user_asm for EVA.
256 */
257#undef _loadd
258#undef _loadw
259#undef _loadh
260#undef _loadb
261#ifdef CONFIG_32BIT
262#define _loadd _loadw
263#else
264#define _loadd(reg, addr) "ld " reg ", " addr
265#endif
266#define _loadw(reg, addr) "lw " reg ", " addr
267#define _loadh(reg, addr) "lh " reg ", " addr
268#define _loadb(reg, addr) "lb " reg ", " addr
269
270#define __get_kernel_common(val, size, ptr) \
271do { \
272 switch (size) { \
273 case 1: __get_data_asm(val, _loadb, ptr); break; \
274 case 2: __get_data_asm(val, _loadh, ptr); break; \
275 case 4: __get_data_asm(val, _loadw, ptr); break; \
276 case 8: __GET_DW(val, _loadd, ptr); break; \
277 default: __get_user_unknown(); break; \
278 } \
279} while (0)
280#endif
281
282#ifdef CONFIG_32BIT
283#define __GET_DW(val, insn, ptr) __get_data_asm_ll32(val, insn, ptr)
284#endif
285#ifdef CONFIG_64BIT
286#define __GET_DW(val, insn, ptr) __get_data_asm(val, insn, ptr)
287#endif
288
289extern void __get_user_unknown(void);
290
291#define __get_user_common(val, size, ptr) \
292do { \
293 switch (size) { \
294 case 1: __get_data_asm(val, user_lb, ptr); break; \
295 case 2: __get_data_asm(val, user_lh, ptr); break; \
296 case 4: __get_data_asm(val, user_lw, ptr); break; \
297 case 8: __GET_DW(val, user_ld, ptr); break; \
298 default: __get_user_unknown(); break; \
299 } \
300} while (0)
301
302#define __get_user_nocheck(x, ptr, size) \
303({ \
304 int __gu_err; \
305 \
306 if (eva_kernel_access()) { \
307 __get_kernel_common((x), size, ptr); \
308 } else { \
309 __chk_user_ptr(ptr); \
310 __get_user_common((x), size, ptr); \
311 } \
312 __gu_err; \
313})
314
315#define __get_user_check(x, ptr, size) \
316({ \
317 int __gu_err = -EFAULT; \
318 const __typeof__(*(ptr)) __user * __gu_ptr = (ptr); \
319 \
320 might_fault(); \
321 if (likely(access_ok(VERIFY_READ, __gu_ptr, size))) { \
322 if (eva_kernel_access()) \
323 __get_kernel_common((x), size, __gu_ptr); \
324 else \
325 __get_user_common((x), size, __gu_ptr); \
326 } else \
327 (x) = 0; \
328 \
329 __gu_err; \
330})
331
332#define __get_data_asm(val, insn, addr) \
333{ \
334 long __gu_tmp; \
335 \
336 __asm__ __volatile__( \
337 "1: "insn("%1", "%3")" \n" \
338 "2: \n" \
339 " .insn \n" \
340 " .section .fixup,\"ax\" \n" \
341 "3: li %0, %4 \n" \
342 " move %1, $0 \n" \
343 " j 2b \n" \
344 " .previous \n" \
345 " .section __ex_table,\"a\" \n" \
346 " "__UA_ADDR "\t1b, 3b \n" \
347 " .previous \n" \
348 : "=r" (__gu_err), "=r" (__gu_tmp) \
349 : "0" (0), "o" (__m(addr)), "i" (-EFAULT)); \
350 \
351 (val) = (__typeof__(*(addr))) __gu_tmp; \
352}
353
354/*
355 * Get a long long 64 using 32 bit registers.
356 */
357#define __get_data_asm_ll32(val, insn, addr) \
358{ \
359 union { \
360 unsigned long long l; \
361 __typeof__(*(addr)) t; \
362 } __gu_tmp; \
363 \
364 __asm__ __volatile__( \
365 "1: " insn("%1", "(%3)")" \n" \
366 "2: " insn("%D1", "4(%3)")" \n" \
367 "3: \n" \
368 " .insn \n" \
369 " .section .fixup,\"ax\" \n" \
370 "4: li %0, %4 \n" \
371 " move %1, $0 \n" \
372 " move %D1, $0 \n" \
373 " j 3b \n" \
374 " .previous \n" \
375 " .section __ex_table,\"a\" \n" \
376 " " __UA_ADDR " 1b, 4b \n" \
377 " " __UA_ADDR " 2b, 4b \n" \
378 " .previous \n" \
379 : "=r" (__gu_err), "=&r" (__gu_tmp.l) \
380 : "0" (0), "r" (addr), "i" (-EFAULT)); \
381 \
382 (val) = __gu_tmp.t; \
383}
384
385#ifndef CONFIG_EVA
386#define __put_kernel_common(ptr, size) __put_user_common(ptr, size)
387#else
388/*
389 * Kernel specific functions for EVA. We need to use normal load instructions
390 * to read data from kernel when operating in EVA mode. We use these macros to
391 * avoid redefining __get_data_asm for EVA.
392 */
393#undef _stored
394#undef _storew
395#undef _storeh
396#undef _storeb
397#ifdef CONFIG_32BIT
398#define _stored _storew
399#else
400#define _stored(reg, addr) "ld " reg ", " addr
401#endif
402
403#define _storew(reg, addr) "sw " reg ", " addr
404#define _storeh(reg, addr) "sh " reg ", " addr
405#define _storeb(reg, addr) "sb " reg ", " addr
406
407#define __put_kernel_common(ptr, size) \
408do { \
409 switch (size) { \
410 case 1: __put_data_asm(_storeb, ptr); break; \
411 case 2: __put_data_asm(_storeh, ptr); break; \
412 case 4: __put_data_asm(_storew, ptr); break; \
413 case 8: __PUT_DW(_stored, ptr); break; \
414 default: __put_user_unknown(); break; \
415 } \
416} while(0)
417#endif
418
419/*
420 * Yuck. We need two variants, one for 64bit operation and one
421 * for 32 bit mode and old iron.
422 */
423#ifdef CONFIG_32BIT
424#define __PUT_DW(insn, ptr) __put_data_asm_ll32(insn, ptr)
425#endif
426#ifdef CONFIG_64BIT
427#define __PUT_DW(insn, ptr) __put_data_asm(insn, ptr)
428#endif
429
430#define __put_user_common(ptr, size) \
431do { \
432 switch (size) { \
433 case 1: __put_data_asm(user_sb, ptr); break; \
434 case 2: __put_data_asm(user_sh, ptr); break; \
435 case 4: __put_data_asm(user_sw, ptr); break; \
436 case 8: __PUT_DW(user_sd, ptr); break; \
437 default: __put_user_unknown(); break; \
438 } \
439} while (0)
440
441#define __put_user_nocheck(x, ptr, size) \
442({ \
443 __typeof__(*(ptr)) __pu_val; \
444 int __pu_err = 0; \
445 \
446 __pu_val = (x); \
447 if (eva_kernel_access()) { \
448 __put_kernel_common(ptr, size); \
449 } else { \
450 __chk_user_ptr(ptr); \
451 __put_user_common(ptr, size); \
452 } \
453 __pu_err; \
454})
455
456#define __put_user_check(x, ptr, size) \
457({ \
458 __typeof__(*(ptr)) __user *__pu_addr = (ptr); \
459 __typeof__(*(ptr)) __pu_val = (x); \
460 int __pu_err = -EFAULT; \
461 \
462 might_fault(); \
463 if (likely(access_ok(VERIFY_WRITE, __pu_addr, size))) { \
464 if (eva_kernel_access()) \
465 __put_kernel_common(__pu_addr, size); \
466 else \
467 __put_user_common(__pu_addr, size); \
468 } \
469 \
470 __pu_err; \
471})
472
473#define __put_data_asm(insn, ptr) \
474{ \
475 __asm__ __volatile__( \
476 "1: "insn("%z2", "%3")" # __put_data_asm \n" \
477 "2: \n" \
478 " .insn \n" \
479 " .section .fixup,\"ax\" \n" \
480 "3: li %0, %4 \n" \
481 " j 2b \n" \
482 " .previous \n" \
483 " .section __ex_table,\"a\" \n" \
484 " " __UA_ADDR " 1b, 3b \n" \
485 " .previous \n" \
486 : "=r" (__pu_err) \
487 : "0" (0), "Jr" (__pu_val), "o" (__m(ptr)), \
488 "i" (-EFAULT)); \
489}
490
491#define __put_data_asm_ll32(insn, ptr) \
492{ \
493 __asm__ __volatile__( \
494 "1: "insn("%2", "(%3)")" # __put_data_asm_ll32 \n" \
495 "2: "insn("%D2", "4(%3)")" \n" \
496 "3: \n" \
497 " .insn \n" \
498 " .section .fixup,\"ax\" \n" \
499 "4: li %0, %4 \n" \
500 " j 3b \n" \
501 " .previous \n" \
502 " .section __ex_table,\"a\" \n" \
503 " " __UA_ADDR " 1b, 4b \n" \
504 " " __UA_ADDR " 2b, 4b \n" \
505 " .previous" \
506 : "=r" (__pu_err) \
507 : "0" (0), "r" (__pu_val), "r" (ptr), \
508 "i" (-EFAULT)); \
509}
510
511extern void __put_user_unknown(void);
512
513/*
514 * ul{b,h,w} are macros and there are no equivalent macros for EVA.
515 * EVA unaligned access is handled in the ADE exception handler.
516 */
517#ifndef CONFIG_EVA
518/*
519 * put_user_unaligned: - Write a simple value into user space.
520 * @x: Value to copy to user space.
521 * @ptr: Destination address, in user space.
522 *
523 * Context: User context only. This function may sleep if pagefaults are
524 * enabled.
525 *
526 * This macro copies a single simple value from kernel space to user
527 * space. It supports simple types like char and int, but not larger
528 * data types like structures or arrays.
529 *
530 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
531 * to the result of dereferencing @ptr.
532 *
533 * Returns zero on success, or -EFAULT on error.
534 */
535#define put_user_unaligned(x,ptr) \
536 __put_user_unaligned_check((x),(ptr),sizeof(*(ptr)))
537
538/*
539 * get_user_unaligned: - Get a simple variable from user space.
540 * @x: Variable to store result.
541 * @ptr: Source address, in user space.
542 *
543 * Context: User context only. This function may sleep if pagefaults are
544 * enabled.
545 *
546 * This macro copies a single simple variable from user space to kernel
547 * space. It supports simple types like char and int, but not larger
548 * data types like structures or arrays.
549 *
550 * @ptr must have pointer-to-simple-variable type, and the result of
551 * dereferencing @ptr must be assignable to @x without a cast.
552 *
553 * Returns zero on success, or -EFAULT on error.
554 * On error, the variable @x is set to zero.
555 */
556#define get_user_unaligned(x,ptr) \
557 __get_user_unaligned_check((x),(ptr),sizeof(*(ptr)))
558
559/*
560 * __put_user_unaligned: - Write a simple value into user space, with less checking.
561 * @x: Value to copy to user space.
562 * @ptr: Destination address, in user space.
563 *
564 * Context: User context only. This function may sleep if pagefaults are
565 * enabled.
566 *
567 * This macro copies a single simple value from kernel space to user
568 * space. It supports simple types like char and int, but not larger
569 * data types like structures or arrays.
570 *
571 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
572 * to the result of dereferencing @ptr.
573 *
574 * Caller must check the pointer with access_ok() before calling this
575 * function.
576 *
577 * Returns zero on success, or -EFAULT on error.
578 */
579#define __put_user_unaligned(x,ptr) \
580 __put_user_unaligned_nocheck((x),(ptr),sizeof(*(ptr)))
581
582/*
583 * __get_user_unaligned: - Get a simple variable from user space, with less checking.
584 * @x: Variable to store result.
585 * @ptr: Source address, in user space.
586 *
587 * Context: User context only. This function may sleep if pagefaults are
588 * enabled.
589 *
590 * This macro copies a single simple variable from user space to kernel
591 * space. It supports simple types like char and int, but not larger
592 * data types like structures or arrays.
593 *
594 * @ptr must have pointer-to-simple-variable type, and the result of
595 * dereferencing @ptr must be assignable to @x without a cast.
596 *
597 * Caller must check the pointer with access_ok() before calling this
598 * function.
599 *
600 * Returns zero on success, or -EFAULT on error.
601 * On error, the variable @x is set to zero.
602 */
603#define __get_user_unaligned(x,ptr) \
604 __get_user_unaligned_nocheck((x),(ptr),sizeof(*(ptr)))
605
606/*
607 * Yuck. We need two variants, one for 64bit operation and one
608 * for 32 bit mode and old iron.
609 */
610#ifdef CONFIG_32BIT
611#define __GET_USER_UNALIGNED_DW(val, ptr) \
612 __get_user_unaligned_asm_ll32(val, ptr)
613#endif
614#ifdef CONFIG_64BIT
615#define __GET_USER_UNALIGNED_DW(val, ptr) \
616 __get_user_unaligned_asm(val, "uld", ptr)
617#endif
618
619extern void __get_user_unaligned_unknown(void);
620
621#define __get_user_unaligned_common(val, size, ptr) \
622do { \
623 switch (size) { \
624 case 1: __get_data_asm(val, "lb", ptr); break; \
625 case 2: __get_data_unaligned_asm(val, "ulh", ptr); break; \
626 case 4: __get_data_unaligned_asm(val, "ulw", ptr); break; \
627 case 8: __GET_USER_UNALIGNED_DW(val, ptr); break; \
628 default: __get_user_unaligned_unknown(); break; \
629 } \
630} while (0)
631
632#define __get_user_unaligned_nocheck(x,ptr,size) \
633({ \
634 int __gu_err; \
635 \
636 __get_user_unaligned_common((x), size, ptr); \
637 __gu_err; \
638})
639
640#define __get_user_unaligned_check(x,ptr,size) \
641({ \
642 int __gu_err = -EFAULT; \
643 const __typeof__(*(ptr)) __user * __gu_ptr = (ptr); \
644 \
645 if (likely(access_ok(VERIFY_READ, __gu_ptr, size))) \
646 __get_user_unaligned_common((x), size, __gu_ptr); \
647 \
648 __gu_err; \
649})
650
651#define __get_data_unaligned_asm(val, insn, addr) \
652{ \
653 long __gu_tmp; \
654 \
655 __asm__ __volatile__( \
656 "1: " insn " %1, %3 \n" \
657 "2: \n" \
658 " .insn \n" \
659 " .section .fixup,\"ax\" \n" \
660 "3: li %0, %4 \n" \
661 " move %1, $0 \n" \
662 " j 2b \n" \
663 " .previous \n" \
664 " .section __ex_table,\"a\" \n" \
665 " "__UA_ADDR "\t1b, 3b \n" \
666 " "__UA_ADDR "\t1b + 4, 3b \n" \
667 " .previous \n" \
668 : "=r" (__gu_err), "=r" (__gu_tmp) \
669 : "0" (0), "o" (__m(addr)), "i" (-EFAULT)); \
670 \
671 (val) = (__typeof__(*(addr))) __gu_tmp; \
672}
673
674/*
675 * Get a long long 64 using 32 bit registers.
676 */
677#define __get_user_unaligned_asm_ll32(val, addr) \
678{ \
679 unsigned long long __gu_tmp; \
680 \
681 __asm__ __volatile__( \
682 "1: ulw %1, (%3) \n" \
683 "2: ulw %D1, 4(%3) \n" \
684 " move %0, $0 \n" \
685 "3: \n" \
686 " .insn \n" \
687 " .section .fixup,\"ax\" \n" \
688 "4: li %0, %4 \n" \
689 " move %1, $0 \n" \
690 " move %D1, $0 \n" \
691 " j 3b \n" \
692 " .previous \n" \
693 " .section __ex_table,\"a\" \n" \
694 " " __UA_ADDR " 1b, 4b \n" \
695 " " __UA_ADDR " 1b + 4, 4b \n" \
696 " " __UA_ADDR " 2b, 4b \n" \
697 " " __UA_ADDR " 2b + 4, 4b \n" \
698 " .previous \n" \
699 : "=r" (__gu_err), "=&r" (__gu_tmp) \
700 : "0" (0), "r" (addr), "i" (-EFAULT)); \
701 (val) = (__typeof__(*(addr))) __gu_tmp; \
702}
703
704/*
705 * Yuck. We need two variants, one for 64bit operation and one
706 * for 32 bit mode and old iron.
707 */
708#ifdef CONFIG_32BIT
709#define __PUT_USER_UNALIGNED_DW(ptr) __put_user_unaligned_asm_ll32(ptr)
710#endif
711#ifdef CONFIG_64BIT
712#define __PUT_USER_UNALIGNED_DW(ptr) __put_user_unaligned_asm("usd", ptr)
713#endif
714
715#define __put_user_unaligned_common(ptr, size) \
716do { \
717 switch (size) { \
718 case 1: __put_data_asm("sb", ptr); break; \
719 case 2: __put_user_unaligned_asm("ush", ptr); break; \
720 case 4: __put_user_unaligned_asm("usw", ptr); break; \
721 case 8: __PUT_USER_UNALIGNED_DW(ptr); break; \
722 default: __put_user_unaligned_unknown(); break; \
723} while (0)
724
725#define __put_user_unaligned_nocheck(x,ptr,size) \
726({ \
727 __typeof__(*(ptr)) __pu_val; \
728 int __pu_err = 0; \
729 \
730 __pu_val = (x); \
731 __put_user_unaligned_common(ptr, size); \
732 __pu_err; \
733})
734
735#define __put_user_unaligned_check(x,ptr,size) \
736({ \
737 __typeof__(*(ptr)) __user *__pu_addr = (ptr); \
738 __typeof__(*(ptr)) __pu_val = (x); \
739 int __pu_err = -EFAULT; \
740 \
741 if (likely(access_ok(VERIFY_WRITE, __pu_addr, size))) \
742 __put_user_unaligned_common(__pu_addr, size); \
743 \
744 __pu_err; \
745})
746
747#define __put_user_unaligned_asm(insn, ptr) \
748{ \
749 __asm__ __volatile__( \
750 "1: " insn " %z2, %3 # __put_user_unaligned_asm\n" \
751 "2: \n" \
752 " .insn \n" \
753 " .section .fixup,\"ax\" \n" \
754 "3: li %0, %4 \n" \
755 " j 2b \n" \
756 " .previous \n" \
757 " .section __ex_table,\"a\" \n" \
758 " " __UA_ADDR " 1b, 3b \n" \
759 " .previous \n" \
760 : "=r" (__pu_err) \
761 : "0" (0), "Jr" (__pu_val), "o" (__m(ptr)), \
762 "i" (-EFAULT)); \
763}
764
765#define __put_user_unaligned_asm_ll32(ptr) \
766{ \
767 __asm__ __volatile__( \
768 "1: sw %2, (%3) # __put_user_unaligned_asm_ll32 \n" \
769 "2: sw %D2, 4(%3) \n" \
770 "3: \n" \
771 " .insn \n" \
772 " .section .fixup,\"ax\" \n" \
773 "4: li %0, %4 \n" \
774 " j 3b \n" \
775 " .previous \n" \
776 " .section __ex_table,\"a\" \n" \
777 " " __UA_ADDR " 1b, 4b \n" \
778 " " __UA_ADDR " 1b + 4, 4b \n" \
779 " " __UA_ADDR " 2b, 4b \n" \
780 " " __UA_ADDR " 2b + 4, 4b \n" \
781 " .previous" \
782 : "=r" (__pu_err) \
783 : "0" (0), "r" (__pu_val), "r" (ptr), \
784 "i" (-EFAULT)); \
785}
786
787extern void __put_user_unaligned_unknown(void);
788#endif
789
790/*
791 * We're generating jump to subroutines which will be outside the range of
792 * jump instructions
793 */
794#ifdef MODULE
795#define __MODULE_JAL(destination) \
796 ".set\tnoat\n\t" \
797 __UA_LA "\t$1, " #destination "\n\t" \
798 "jalr\t$1\n\t" \
799 ".set\tat\n\t"
800#else
801#define __MODULE_JAL(destination) \
802 "jal\t" #destination "\n\t"
803#endif
804
805#if defined(CONFIG_CPU_DADDI_WORKAROUNDS) || (defined(CONFIG_EVA) && \
806 defined(CONFIG_CPU_HAS_PREFETCH))
807#define DADDI_SCRATCH "$3"
808#else
809#define DADDI_SCRATCH "$0"
810#endif
811
812extern size_t __copy_user(void *__to, const void *__from, size_t __n);
813
814#ifndef CONFIG_EVA
815#define __invoke_copy_to_user(to, from, n) \
816({ \
817 register void __user *__cu_to_r __asm__("$4"); \
818 register const void *__cu_from_r __asm__("$5"); \
819 register long __cu_len_r __asm__("$6"); \
820 \
821 __cu_to_r = (to); \
822 __cu_from_r = (from); \
823 __cu_len_r = (n); \
824 __asm__ __volatile__( \
825 __MODULE_JAL(__copy_user) \
826 : "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r) \
827 : \
828 : "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31", \
829 DADDI_SCRATCH, "memory"); \
830 __cu_len_r; \
831})
832
833#define __invoke_copy_to_kernel(to, from, n) \
834 __invoke_copy_to_user(to, from, n)
835
836#endif
837
838/*
839 * __copy_to_user: - Copy a block of data into user space, with less checking.
840 * @to: Destination address, in user space.
841 * @from: Source address, in kernel space.
842 * @n: Number of bytes to copy.
843 *
844 * Context: User context only. This function may sleep if pagefaults are
845 * enabled.
846 *
847 * Copy data from kernel space to user space. Caller must check
848 * the specified block with access_ok() before calling this function.
849 *
850 * Returns number of bytes that could not be copied.
851 * On success, this will be zero.
852 */
853#define __copy_to_user(to, from, n) \
854({ \
855 void __user *__cu_to; \
856 const void *__cu_from; \
857 long __cu_len; \
858 \
859 __cu_to = (to); \
860 __cu_from = (from); \
861 __cu_len = (n); \
862 \
863 check_object_size(__cu_from, __cu_len, true); \
864 might_fault(); \
865 \
866 if (eva_kernel_access()) \
867 __cu_len = __invoke_copy_to_kernel(__cu_to, __cu_from, \
868 __cu_len); \
869 else \
870 __cu_len = __invoke_copy_to_user(__cu_to, __cu_from, \
871 __cu_len); \
872 __cu_len; \
873})
874
875extern size_t __copy_user_inatomic(void *__to, const void *__from, size_t __n);
876
877#define __copy_to_user_inatomic(to, from, n) \
878({ \
879 void __user *__cu_to; \
880 const void *__cu_from; \
881 long __cu_len; \
882 \
883 __cu_to = (to); \
884 __cu_from = (from); \
885 __cu_len = (n); \
886 \
887 check_object_size(__cu_from, __cu_len, true); \
888 \
889 if (eva_kernel_access()) \
890 __cu_len = __invoke_copy_to_kernel(__cu_to, __cu_from, \
891 __cu_len); \
892 else \
893 __cu_len = __invoke_copy_to_user(__cu_to, __cu_from, \
894 __cu_len); \
895 __cu_len; \
896})
897
898#define __copy_from_user_inatomic(to, from, n) \
899({ \
900 void *__cu_to; \
901 const void __user *__cu_from; \
902 long __cu_len; \
903 \
904 __cu_to = (to); \
905 __cu_from = (from); \
906 __cu_len = (n); \
907 \
908 check_object_size(__cu_to, __cu_len, false); \
909 \
910 if (eva_kernel_access()) \
911 __cu_len = __invoke_copy_from_kernel_inatomic(__cu_to, \
912 __cu_from,\
913 __cu_len);\
914 else \
915 __cu_len = __invoke_copy_from_user_inatomic(__cu_to, \
916 __cu_from, \
917 __cu_len); \
918 __cu_len; \
919})
920
921/*
922 * copy_to_user: - Copy a block of data into user space.
923 * @to: Destination address, in user space.
924 * @from: Source address, in kernel space.
925 * @n: Number of bytes to copy.
926 *
927 * Context: User context only. This function may sleep if pagefaults are
928 * enabled.
929 *
930 * Copy data from kernel space to user space.
931 *
932 * Returns number of bytes that could not be copied.
933 * On success, this will be zero.
934 */
935#define copy_to_user(to, from, n) \
936({ \
937 void __user *__cu_to; \
938 const void *__cu_from; \
939 long __cu_len; \
940 \
941 __cu_to = (to); \
942 __cu_from = (from); \
943 __cu_len = (n); \
944 \
945 check_object_size(__cu_from, __cu_len, true); \
946 \
947 if (eva_kernel_access()) { \
948 __cu_len = __invoke_copy_to_kernel(__cu_to, \
949 __cu_from, \
950 __cu_len); \
951 } else { \
952 if (access_ok(VERIFY_WRITE, __cu_to, __cu_len)) { \
953 might_fault(); \
954 __cu_len = __invoke_copy_to_user(__cu_to, \
955 __cu_from, \
956 __cu_len); \
957 } \
958 } \
959 __cu_len; \
960})
961
962#ifndef CONFIG_EVA
963
964#define __invoke_copy_from_user(to, from, n) \
965({ \
966 register void *__cu_to_r __asm__("$4"); \
967 register const void __user *__cu_from_r __asm__("$5"); \
968 register long __cu_len_r __asm__("$6"); \
969 \
970 __cu_to_r = (to); \
971 __cu_from_r = (from); \
972 __cu_len_r = (n); \
973 __asm__ __volatile__( \
974 ".set\tnoreorder\n\t" \
975 __MODULE_JAL(__copy_user) \
976 ".set\tnoat\n\t" \
977 __UA_ADDU "\t$1, %1, %2\n\t" \
978 ".set\tat\n\t" \
979 ".set\treorder" \
980 : "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r) \
981 : \
982 : "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31", \
983 DADDI_SCRATCH, "memory"); \
984 __cu_len_r; \
985})
986
987#define __invoke_copy_from_kernel(to, from, n) \
988 __invoke_copy_from_user(to, from, n)
989
990/* For userland <-> userland operations */
991#define ___invoke_copy_in_user(to, from, n) \
992 __invoke_copy_from_user(to, from, n)
993
994/* For kernel <-> kernel operations */
995#define ___invoke_copy_in_kernel(to, from, n) \
996 __invoke_copy_from_user(to, from, n)
997
998#define __invoke_copy_from_user_inatomic(to, from, n) \
999({ \
1000 register void *__cu_to_r __asm__("$4"); \
1001 register const void __user *__cu_from_r __asm__("$5"); \
1002 register long __cu_len_r __asm__("$6"); \
1003 \
1004 __cu_to_r = (to); \
1005 __cu_from_r = (from); \
1006 __cu_len_r = (n); \
1007 __asm__ __volatile__( \
1008 ".set\tnoreorder\n\t" \
1009 __MODULE_JAL(__copy_user_inatomic) \
1010 ".set\tnoat\n\t" \
1011 __UA_ADDU "\t$1, %1, %2\n\t" \
1012 ".set\tat\n\t" \
1013 ".set\treorder" \
1014 : "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r) \
1015 : \
1016 : "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31", \
1017 DADDI_SCRATCH, "memory"); \
1018 __cu_len_r; \
1019})
1020
1021#define __invoke_copy_from_kernel_inatomic(to, from, n) \
1022 __invoke_copy_from_user_inatomic(to, from, n) \
1023
1024#else
1025
1026/* EVA specific functions */
1027
1028extern size_t __copy_user_inatomic_eva(void *__to, const void *__from,
1029 size_t __n);
1030extern size_t __copy_from_user_eva(void *__to, const void *__from,
1031 size_t __n);
1032extern size_t __copy_to_user_eva(void *__to, const void *__from,
1033 size_t __n);
1034extern size_t __copy_in_user_eva(void *__to, const void *__from, size_t __n);
1035
1036#define __invoke_copy_from_user_eva_generic(to, from, n, func_ptr) \
1037({ \
1038 register void *__cu_to_r __asm__("$4"); \
1039 register const void __user *__cu_from_r __asm__("$5"); \
1040 register long __cu_len_r __asm__("$6"); \
1041 \
1042 __cu_to_r = (to); \
1043 __cu_from_r = (from); \
1044 __cu_len_r = (n); \
1045 __asm__ __volatile__( \
1046 ".set\tnoreorder\n\t" \
1047 __MODULE_JAL(func_ptr) \
1048 ".set\tnoat\n\t" \
1049 __UA_ADDU "\t$1, %1, %2\n\t" \
1050 ".set\tat\n\t" \
1051 ".set\treorder" \
1052 : "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r) \
1053 : \
1054 : "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31", \
1055 DADDI_SCRATCH, "memory"); \
1056 __cu_len_r; \
1057})
1058
1059#define __invoke_copy_to_user_eva_generic(to, from, n, func_ptr) \
1060({ \
1061 register void *__cu_to_r __asm__("$4"); \
1062 register const void __user *__cu_from_r __asm__("$5"); \
1063 register long __cu_len_r __asm__("$6"); \
1064 \
1065 __cu_to_r = (to); \
1066 __cu_from_r = (from); \
1067 __cu_len_r = (n); \
1068 __asm__ __volatile__( \
1069 __MODULE_JAL(func_ptr) \
1070 : "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r) \
1071 : \
1072 : "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31", \
1073 DADDI_SCRATCH, "memory"); \
1074 __cu_len_r; \
1075})
1076
1077/*
1078 * Source or destination address is in userland. We need to go through
1079 * the TLB
1080 */
1081#define __invoke_copy_from_user(to, from, n) \
1082 __invoke_copy_from_user_eva_generic(to, from, n, __copy_from_user_eva)
1083
1084#define __invoke_copy_from_user_inatomic(to, from, n) \
1085 __invoke_copy_from_user_eva_generic(to, from, n, \
1086 __copy_user_inatomic_eva)
1087
1088#define __invoke_copy_to_user(to, from, n) \
1089 __invoke_copy_to_user_eva_generic(to, from, n, __copy_to_user_eva)
1090
1091#define ___invoke_copy_in_user(to, from, n) \
1092 __invoke_copy_from_user_eva_generic(to, from, n, __copy_in_user_eva)
1093
1094/*
1095 * Source or destination address in the kernel. We are not going through
1096 * the TLB
1097 */
1098#define __invoke_copy_from_kernel(to, from, n) \
1099 __invoke_copy_from_user_eva_generic(to, from, n, __copy_user)
1100
1101#define __invoke_copy_from_kernel_inatomic(to, from, n) \
1102 __invoke_copy_from_user_eva_generic(to, from, n, __copy_user_inatomic)
1103
1104#define __invoke_copy_to_kernel(to, from, n) \
1105 __invoke_copy_to_user_eva_generic(to, from, n, __copy_user)
1106
1107#define ___invoke_copy_in_kernel(to, from, n) \
1108 __invoke_copy_from_user_eva_generic(to, from, n, __copy_user)
1109
1110#endif /* CONFIG_EVA */
1111
1112/*
1113 * __copy_from_user: - Copy a block of data from user space, with less checking.
1114 * @to: Destination address, in kernel space.
1115 * @from: Source address, in user space.
1116 * @n: Number of bytes to copy.
1117 *
1118 * Context: User context only. This function may sleep if pagefaults are
1119 * enabled.
1120 *
1121 * Copy data from user space to kernel space. Caller must check
1122 * the specified block with access_ok() before calling this function.
1123 *
1124 * Returns number of bytes that could not be copied.
1125 * On success, this will be zero.
1126 *
1127 * If some data could not be copied, this function will pad the copied
1128 * data to the requested size using zero bytes.
1129 */
1130#define __copy_from_user(to, from, n) \
1131({ \
1132 void *__cu_to; \
1133 const void __user *__cu_from; \
1134 long __cu_len; \
1135 \
1136 __cu_to = (to); \
1137 __cu_from = (from); \
1138 __cu_len = (n); \
1139 \
1140 check_object_size(__cu_to, __cu_len, false); \
1141 \
1142 if (eva_kernel_access()) { \
1143 __cu_len = __invoke_copy_from_kernel(__cu_to, \
1144 __cu_from, \
1145 __cu_len); \
1146 } else { \
1147 might_fault(); \
1148 __cu_len = __invoke_copy_from_user(__cu_to, __cu_from, \
1149 __cu_len); \
1150 } \
1151 __cu_len; \
1152})
1153
1154/*
1155 * copy_from_user: - Copy a block of data from user space.
1156 * @to: Destination address, in kernel space.
1157 * @from: Source address, in user space.
1158 * @n: Number of bytes to copy.
1159 *
1160 * Context: User context only. This function may sleep if pagefaults are
1161 * enabled.
1162 *
1163 * Copy data from user space to kernel space.
1164 *
1165 * Returns number of bytes that could not be copied.
1166 * On success, this will be zero.
1167 *
1168 * If some data could not be copied, this function will pad the copied
1169 * data to the requested size using zero bytes.
1170 */
1171#define copy_from_user(to, from, n) \
1172({ \
1173 void *__cu_to; \
1174 const void __user *__cu_from; \
1175 long __cu_len; \
1176 \
1177 __cu_to = (to); \
1178 __cu_from = (from); \
1179 __cu_len = (n); \
1180 \
1181 check_object_size(__cu_to, __cu_len, false); \
1182 \
1183 if (eva_kernel_access()) { \
1184 __cu_len = __invoke_copy_from_kernel(__cu_to, \
1185 __cu_from, \
1186 __cu_len); \
1187 } else { \
1188 if (access_ok(VERIFY_READ, __cu_from, __cu_len)) { \
1189 might_fault(); \
1190 __cu_len = __invoke_copy_from_user(__cu_to, \
1191 __cu_from, \
1192 __cu_len); \
1193 } else { \
1194 memset(__cu_to, 0, __cu_len); \
1195 } \
1196 } \
1197 __cu_len; \
1198})
1199
1200#define __copy_in_user(to, from, n) \
1201({ \
1202 void __user *__cu_to; \
1203 const void __user *__cu_from; \
1204 long __cu_len; \
1205 \
1206 __cu_to = (to); \
1207 __cu_from = (from); \
1208 __cu_len = (n); \
1209 if (eva_kernel_access()) { \
1210 __cu_len = ___invoke_copy_in_kernel(__cu_to, __cu_from, \
1211 __cu_len); \
1212 } else { \
1213 might_fault(); \
1214 __cu_len = ___invoke_copy_in_user(__cu_to, __cu_from, \
1215 __cu_len); \
1216 } \
1217 __cu_len; \
1218})
1219
1220#define copy_in_user(to, from, n) \
1221({ \
1222 void __user *__cu_to; \
1223 const void __user *__cu_from; \
1224 long __cu_len; \
1225 \
1226 __cu_to = (to); \
1227 __cu_from = (from); \
1228 __cu_len = (n); \
1229 if (eva_kernel_access()) { \
1230 __cu_len = ___invoke_copy_in_kernel(__cu_to,__cu_from, \
1231 __cu_len); \
1232 } else { \
1233 if (likely(access_ok(VERIFY_READ, __cu_from, __cu_len) &&\
1234 access_ok(VERIFY_WRITE, __cu_to, __cu_len))) {\
1235 might_fault(); \
1236 __cu_len = ___invoke_copy_in_user(__cu_to, \
1237 __cu_from, \
1238 __cu_len); \
1239 } \
1240 } \
1241 __cu_len; \
1242})
1243
1244/*
1245 * __clear_user: - Zero a block of memory in user space, with less checking.
1246 * @to: Destination address, in user space.
1247 * @n: Number of bytes to zero.
1248 *
1249 * Zero a block of memory in user space. Caller must check
1250 * the specified block with access_ok() before calling this function.
1251 *
1252 * Returns number of bytes that could not be cleared.
1253 * On success, this will be zero.
1254 */
1255static inline __kernel_size_t
1256__clear_user(void __user *addr, __kernel_size_t size)
1257{
1258 __kernel_size_t res;
1259
1260 if (eva_kernel_access()) {
1261 __asm__ __volatile__(
1262 "move\t$4, %1\n\t"
1263 "move\t$5, $0\n\t"
1264 "move\t$6, %2\n\t"
1265 __MODULE_JAL(__bzero_kernel)
1266 "move\t%0, $6"
1267 : "=r" (res)
1268 : "r" (addr), "r" (size)
1269 : "$4", "$5", "$6", __UA_t0, __UA_t1, "$31");
1270 } else {
1271 might_fault();
1272 __asm__ __volatile__(
1273 "move\t$4, %1\n\t"
1274 "move\t$5, $0\n\t"
1275 "move\t$6, %2\n\t"
1276 __MODULE_JAL(__bzero)
1277 "move\t%0, $6"
1278 : "=r" (res)
1279 : "r" (addr), "r" (size)
1280 : "$4", "$5", "$6", __UA_t0, __UA_t1, "$31");
1281 }
1282
1283 return res;
1284}
1285
1286#define clear_user(addr,n) \
1287({ \
1288 void __user * __cl_addr = (addr); \
1289 unsigned long __cl_size = (n); \
1290 if (__cl_size && access_ok(VERIFY_WRITE, \
1291 __cl_addr, __cl_size)) \
1292 __cl_size = __clear_user(__cl_addr, __cl_size); \
1293 __cl_size; \
1294})
1295
1296/*
1297 * __strncpy_from_user: - Copy a NUL terminated string from userspace, with less checking.
1298 * @dst: Destination address, in kernel space. This buffer must be at
1299 * least @count bytes long.
1300 * @src: Source address, in user space.
1301 * @count: Maximum number of bytes to copy, including the trailing NUL.
1302 *
1303 * Copies a NUL-terminated string from userspace to kernel space.
1304 * Caller must check the specified block with access_ok() before calling
1305 * this function.
1306 *
1307 * On success, returns the length of the string (not including the trailing
1308 * NUL).
1309 *
1310 * If access to userspace fails, returns -EFAULT (some data may have been
1311 * copied).
1312 *
1313 * If @count is smaller than the length of the string, copies @count bytes
1314 * and returns @count.
1315 */
1316static inline long
1317__strncpy_from_user(char *__to, const char __user *__from, long __len)
1318{
1319 long res;
1320
1321 if (eva_kernel_access()) {
1322 __asm__ __volatile__(
1323 "move\t$4, %1\n\t"
1324 "move\t$5, %2\n\t"
1325 "move\t$6, %3\n\t"
1326 __MODULE_JAL(__strncpy_from_kernel_nocheck_asm)
1327 "move\t%0, $2"
1328 : "=r" (res)
1329 : "r" (__to), "r" (__from), "r" (__len)
1330 : "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1331 } else {
1332 might_fault();
1333 __asm__ __volatile__(
1334 "move\t$4, %1\n\t"
1335 "move\t$5, %2\n\t"
1336 "move\t$6, %3\n\t"
1337 __MODULE_JAL(__strncpy_from_user_nocheck_asm)
1338 "move\t%0, $2"
1339 : "=r" (res)
1340 : "r" (__to), "r" (__from), "r" (__len)
1341 : "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1342 }
1343
1344 return res;
1345}
1346
1347/*
1348 * strncpy_from_user: - Copy a NUL terminated string from userspace.
1349 * @dst: Destination address, in kernel space. This buffer must be at
1350 * least @count bytes long.
1351 * @src: Source address, in user space.
1352 * @count: Maximum number of bytes to copy, including the trailing NUL.
1353 *
1354 * Copies a NUL-terminated string from userspace to kernel space.
1355 *
1356 * On success, returns the length of the string (not including the trailing
1357 * NUL).
1358 *
1359 * If access to userspace fails, returns -EFAULT (some data may have been
1360 * copied).
1361 *
1362 * If @count is smaller than the length of the string, copies @count bytes
1363 * and returns @count.
1364 */
1365static inline long
1366strncpy_from_user(char *__to, const char __user *__from, long __len)
1367{
1368 long res;
1369
1370 if (eva_kernel_access()) {
1371 __asm__ __volatile__(
1372 "move\t$4, %1\n\t"
1373 "move\t$5, %2\n\t"
1374 "move\t$6, %3\n\t"
1375 __MODULE_JAL(__strncpy_from_kernel_asm)
1376 "move\t%0, $2"
1377 : "=r" (res)
1378 : "r" (__to), "r" (__from), "r" (__len)
1379 : "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1380 } else {
1381 might_fault();
1382 __asm__ __volatile__(
1383 "move\t$4, %1\n\t"
1384 "move\t$5, %2\n\t"
1385 "move\t$6, %3\n\t"
1386 __MODULE_JAL(__strncpy_from_user_asm)
1387 "move\t%0, $2"
1388 : "=r" (res)
1389 : "r" (__to), "r" (__from), "r" (__len)
1390 : "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1391 }
1392
1393 return res;
1394}
1395
1396/*
1397 * strlen_user: - Get the size of a string in user space.
1398 * @str: The string to measure.
1399 *
1400 * Context: User context only. This function may sleep if pagefaults are
1401 * enabled.
1402 *
1403 * Get the size of a NUL-terminated string in user space.
1404 *
1405 * Returns the size of the string INCLUDING the terminating NUL.
1406 * On exception, returns 0.
1407 *
1408 * If there is a limit on the length of a valid string, you may wish to
1409 * consider using strnlen_user() instead.
1410 */
1411static inline long strlen_user(const char __user *s)
1412{
1413 long res;
1414
1415 if (eva_kernel_access()) {
1416 __asm__ __volatile__(
1417 "move\t$4, %1\n\t"
1418 __MODULE_JAL(__strlen_kernel_asm)
1419 "move\t%0, $2"
1420 : "=r" (res)
1421 : "r" (s)
1422 : "$2", "$4", __UA_t0, "$31");
1423 } else {
1424 might_fault();
1425 __asm__ __volatile__(
1426 "move\t$4, %1\n\t"
1427 __MODULE_JAL(__strlen_user_asm)
1428 "move\t%0, $2"
1429 : "=r" (res)
1430 : "r" (s)
1431 : "$2", "$4", __UA_t0, "$31");
1432 }
1433
1434 return res;
1435}
1436
1437/* Returns: 0 if bad, string length+1 (memory size) of string if ok */
1438static inline long __strnlen_user(const char __user *s, long n)
1439{
1440 long res;
1441
1442 if (eva_kernel_access()) {
1443 __asm__ __volatile__(
1444 "move\t$4, %1\n\t"
1445 "move\t$5, %2\n\t"
1446 __MODULE_JAL(__strnlen_kernel_nocheck_asm)
1447 "move\t%0, $2"
1448 : "=r" (res)
1449 : "r" (s), "r" (n)
1450 : "$2", "$4", "$5", __UA_t0, "$31");
1451 } else {
1452 might_fault();
1453 __asm__ __volatile__(
1454 "move\t$4, %1\n\t"
1455 "move\t$5, %2\n\t"
1456 __MODULE_JAL(__strnlen_user_nocheck_asm)
1457 "move\t%0, $2"
1458 : "=r" (res)
1459 : "r" (s), "r" (n)
1460 : "$2", "$4", "$5", __UA_t0, "$31");
1461 }
1462
1463 return res;
1464}
1465
1466/*
1467 * strnlen_user: - Get the size of a string in user space.
1468 * @str: The string to measure.
1469 *
1470 * Context: User context only. This function may sleep if pagefaults are
1471 * enabled.
1472 *
1473 * Get the size of a NUL-terminated string in user space.
1474 *
1475 * Returns the size of the string INCLUDING the terminating NUL.
1476 * On exception, returns 0.
1477 * If the string is too long, returns a value greater than @n.
1478 */
1479static inline long strnlen_user(const char __user *s, long n)
1480{
1481 long res;
1482
1483 might_fault();
1484 if (eva_kernel_access()) {
1485 __asm__ __volatile__(
1486 "move\t$4, %1\n\t"
1487 "move\t$5, %2\n\t"
1488 __MODULE_JAL(__strnlen_kernel_asm)
1489 "move\t%0, $2"
1490 : "=r" (res)
1491 : "r" (s), "r" (n)
1492 : "$2", "$4", "$5", __UA_t0, "$31");
1493 } else {
1494 __asm__ __volatile__(
1495 "move\t$4, %1\n\t"
1496 "move\t$5, %2\n\t"
1497 __MODULE_JAL(__strnlen_user_asm)
1498 "move\t%0, $2"
1499 : "=r" (res)
1500 : "r" (s), "r" (n)
1501 : "$2", "$4", "$5", __UA_t0, "$31");
1502 }
1503
1504 return res;
1505}
1506
1507#endif /* _ASM_UACCESS_H */
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1996, 1997, 1998, 1999, 2000, 03, 04 by Ralf Baechle
7 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
8 * Copyright (C) 2007 Maciej W. Rozycki
9 * Copyright (C) 2014, Imagination Technologies Ltd.
10 */
11#ifndef _ASM_UACCESS_H
12#define _ASM_UACCESS_H
13
14#include <linux/kernel.h>
15#include <linux/string.h>
16#include <asm/asm-eva.h>
17#include <asm/extable.h>
18
19/*
20 * The fs value determines whether argument validity checking should be
21 * performed or not. If get_fs() == USER_DS, checking is performed, with
22 * get_fs() == KERNEL_DS, checking is bypassed.
23 *
24 * For historical reasons, these macros are grossly misnamed.
25 */
26#ifdef CONFIG_32BIT
27
28#ifdef CONFIG_KVM_GUEST
29#define __UA_LIMIT 0x40000000UL
30#else
31#define __UA_LIMIT 0x80000000UL
32#endif
33
34#define __UA_ADDR ".word"
35#define __UA_LA "la"
36#define __UA_ADDU "addu"
37#define __UA_t0 "$8"
38#define __UA_t1 "$9"
39
40#endif /* CONFIG_32BIT */
41
42#ifdef CONFIG_64BIT
43
44extern u64 __ua_limit;
45
46#define __UA_LIMIT __ua_limit
47
48#define __UA_ADDR ".dword"
49#define __UA_LA "dla"
50#define __UA_ADDU "daddu"
51#define __UA_t0 "$12"
52#define __UA_t1 "$13"
53
54#endif /* CONFIG_64BIT */
55
56/*
57 * USER_DS is a bitmask that has the bits set that may not be set in a valid
58 * userspace address. Note that we limit 32-bit userspace to 0x7fff8000 but
59 * the arithmetic we're doing only works if the limit is a power of two, so
60 * we use 0x80000000 here on 32-bit kernels. If a process passes an invalid
61 * address in this range it's the process's problem, not ours :-)
62 */
63
64#ifdef CONFIG_KVM_GUEST
65#define KERNEL_DS ((mm_segment_t) { 0x80000000UL })
66#define USER_DS ((mm_segment_t) { 0xC0000000UL })
67#else
68#define KERNEL_DS ((mm_segment_t) { 0UL })
69#define USER_DS ((mm_segment_t) { __UA_LIMIT })
70#endif
71
72#define get_ds() (KERNEL_DS)
73#define get_fs() (current_thread_info()->addr_limit)
74#define set_fs(x) (current_thread_info()->addr_limit = (x))
75
76#define segment_eq(a, b) ((a).seg == (b).seg)
77
78/*
79 * eva_kernel_access() - determine whether kernel memory access on an EVA system
80 *
81 * Determines whether memory accesses should be performed to kernel memory
82 * on a system using Extended Virtual Addressing (EVA).
83 *
84 * Return: true if a kernel memory access on an EVA system, else false.
85 */
86static inline bool eva_kernel_access(void)
87{
88 if (!IS_ENABLED(CONFIG_EVA))
89 return false;
90
91 return uaccess_kernel();
92}
93
94/*
95 * Is a address valid? This does a straightforward calculation rather
96 * than tests.
97 *
98 * Address valid if:
99 * - "addr" doesn't have any high-bits set
100 * - AND "size" doesn't have any high-bits set
101 * - AND "addr+size" doesn't have any high-bits set
102 * - OR we are in kernel mode.
103 *
104 * __ua_size() is a trick to avoid runtime checking of positive constant
105 * sizes; for those we already know at compile time that the size is ok.
106 */
107#define __ua_size(size) \
108 ((__builtin_constant_p(size) && (signed long) (size) > 0) ? 0 : (size))
109
110/*
111 * access_ok: - Checks if a user space pointer is valid
112 * @type: Type of access: %VERIFY_READ or %VERIFY_WRITE. Note that
113 * %VERIFY_WRITE is a superset of %VERIFY_READ - if it is safe
114 * to write to a block, it is always safe to read from it.
115 * @addr: User space pointer to start of block to check
116 * @size: Size of block to check
117 *
118 * Context: User context only. This function may sleep if pagefaults are
119 * enabled.
120 *
121 * Checks if a pointer to a block of memory in user space is valid.
122 *
123 * Returns true (nonzero) if the memory block may be valid, false (zero)
124 * if it is definitely invalid.
125 *
126 * Note that, depending on architecture, this function probably just
127 * checks that the pointer is in the user space range - after calling
128 * this function, memory access functions may still return -EFAULT.
129 */
130
131static inline int __access_ok(const void __user *p, unsigned long size)
132{
133 unsigned long addr = (unsigned long)p;
134 return (get_fs().seg & (addr | (addr + size) | __ua_size(size))) == 0;
135}
136
137#define access_ok(type, addr, size) \
138 likely(__access_ok((addr), (size)))
139
140/*
141 * put_user: - Write a simple value into user space.
142 * @x: Value to copy to user space.
143 * @ptr: Destination address, in user space.
144 *
145 * Context: User context only. This function may sleep if pagefaults are
146 * enabled.
147 *
148 * This macro copies a single simple value from kernel space to user
149 * space. It supports simple types like char and int, but not larger
150 * data types like structures or arrays.
151 *
152 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
153 * to the result of dereferencing @ptr.
154 *
155 * Returns zero on success, or -EFAULT on error.
156 */
157#define put_user(x,ptr) \
158 __put_user_check((x), (ptr), sizeof(*(ptr)))
159
160/*
161 * get_user: - Get a simple variable from user space.
162 * @x: Variable to store result.
163 * @ptr: Source address, in user space.
164 *
165 * Context: User context only. This function may sleep if pagefaults are
166 * enabled.
167 *
168 * This macro copies a single simple variable from user space to kernel
169 * space. It supports simple types like char and int, but not larger
170 * data types like structures or arrays.
171 *
172 * @ptr must have pointer-to-simple-variable type, and the result of
173 * dereferencing @ptr must be assignable to @x without a cast.
174 *
175 * Returns zero on success, or -EFAULT on error.
176 * On error, the variable @x is set to zero.
177 */
178#define get_user(x,ptr) \
179 __get_user_check((x), (ptr), sizeof(*(ptr)))
180
181/*
182 * __put_user: - Write a simple value into user space, with less checking.
183 * @x: Value to copy to user space.
184 * @ptr: Destination address, in user space.
185 *
186 * Context: User context only. This function may sleep if pagefaults are
187 * enabled.
188 *
189 * This macro copies a single simple value from kernel space to user
190 * space. It supports simple types like char and int, but not larger
191 * data types like structures or arrays.
192 *
193 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
194 * to the result of dereferencing @ptr.
195 *
196 * Caller must check the pointer with access_ok() before calling this
197 * function.
198 *
199 * Returns zero on success, or -EFAULT on error.
200 */
201#define __put_user(x,ptr) \
202 __put_user_nocheck((x), (ptr), sizeof(*(ptr)))
203
204/*
205 * __get_user: - Get a simple variable from user space, with less checking.
206 * @x: Variable to store result.
207 * @ptr: Source address, in user space.
208 *
209 * Context: User context only. This function may sleep if pagefaults are
210 * enabled.
211 *
212 * This macro copies a single simple variable from user space to kernel
213 * space. It supports simple types like char and int, but not larger
214 * data types like structures or arrays.
215 *
216 * @ptr must have pointer-to-simple-variable type, and the result of
217 * dereferencing @ptr must be assignable to @x without a cast.
218 *
219 * Caller must check the pointer with access_ok() before calling this
220 * function.
221 *
222 * Returns zero on success, or -EFAULT on error.
223 * On error, the variable @x is set to zero.
224 */
225#define __get_user(x,ptr) \
226 __get_user_nocheck((x), (ptr), sizeof(*(ptr)))
227
228struct __large_struct { unsigned long buf[100]; };
229#define __m(x) (*(struct __large_struct __user *)(x))
230
231/*
232 * Yuck. We need two variants, one for 64bit operation and one
233 * for 32 bit mode and old iron.
234 */
235#ifndef CONFIG_EVA
236#define __get_kernel_common(val, size, ptr) __get_user_common(val, size, ptr)
237#else
238/*
239 * Kernel specific functions for EVA. We need to use normal load instructions
240 * to read data from kernel when operating in EVA mode. We use these macros to
241 * avoid redefining __get_user_asm for EVA.
242 */
243#undef _loadd
244#undef _loadw
245#undef _loadh
246#undef _loadb
247#ifdef CONFIG_32BIT
248#define _loadd _loadw
249#else
250#define _loadd(reg, addr) "ld " reg ", " addr
251#endif
252#define _loadw(reg, addr) "lw " reg ", " addr
253#define _loadh(reg, addr) "lh " reg ", " addr
254#define _loadb(reg, addr) "lb " reg ", " addr
255
256#define __get_kernel_common(val, size, ptr) \
257do { \
258 switch (size) { \
259 case 1: __get_data_asm(val, _loadb, ptr); break; \
260 case 2: __get_data_asm(val, _loadh, ptr); break; \
261 case 4: __get_data_asm(val, _loadw, ptr); break; \
262 case 8: __GET_DW(val, _loadd, ptr); break; \
263 default: __get_user_unknown(); break; \
264 } \
265} while (0)
266#endif
267
268#ifdef CONFIG_32BIT
269#define __GET_DW(val, insn, ptr) __get_data_asm_ll32(val, insn, ptr)
270#endif
271#ifdef CONFIG_64BIT
272#define __GET_DW(val, insn, ptr) __get_data_asm(val, insn, ptr)
273#endif
274
275extern void __get_user_unknown(void);
276
277#define __get_user_common(val, size, ptr) \
278do { \
279 switch (size) { \
280 case 1: __get_data_asm(val, user_lb, ptr); break; \
281 case 2: __get_data_asm(val, user_lh, ptr); break; \
282 case 4: __get_data_asm(val, user_lw, ptr); break; \
283 case 8: __GET_DW(val, user_ld, ptr); break; \
284 default: __get_user_unknown(); break; \
285 } \
286} while (0)
287
288#define __get_user_nocheck(x, ptr, size) \
289({ \
290 int __gu_err; \
291 \
292 if (eva_kernel_access()) { \
293 __get_kernel_common((x), size, ptr); \
294 } else { \
295 __chk_user_ptr(ptr); \
296 __get_user_common((x), size, ptr); \
297 } \
298 __gu_err; \
299})
300
301#define __get_user_check(x, ptr, size) \
302({ \
303 int __gu_err = -EFAULT; \
304 const __typeof__(*(ptr)) __user * __gu_ptr = (ptr); \
305 \
306 might_fault(); \
307 if (likely(access_ok(VERIFY_READ, __gu_ptr, size))) { \
308 if (eva_kernel_access()) \
309 __get_kernel_common((x), size, __gu_ptr); \
310 else \
311 __get_user_common((x), size, __gu_ptr); \
312 } else \
313 (x) = 0; \
314 \
315 __gu_err; \
316})
317
318#define __get_data_asm(val, insn, addr) \
319{ \
320 long __gu_tmp; \
321 \
322 __asm__ __volatile__( \
323 "1: "insn("%1", "%3")" \n" \
324 "2: \n" \
325 " .insn \n" \
326 " .section .fixup,\"ax\" \n" \
327 "3: li %0, %4 \n" \
328 " move %1, $0 \n" \
329 " j 2b \n" \
330 " .previous \n" \
331 " .section __ex_table,\"a\" \n" \
332 " "__UA_ADDR "\t1b, 3b \n" \
333 " .previous \n" \
334 : "=r" (__gu_err), "=r" (__gu_tmp) \
335 : "0" (0), "o" (__m(addr)), "i" (-EFAULT)); \
336 \
337 (val) = (__typeof__(*(addr))) __gu_tmp; \
338}
339
340/*
341 * Get a long long 64 using 32 bit registers.
342 */
343#define __get_data_asm_ll32(val, insn, addr) \
344{ \
345 union { \
346 unsigned long long l; \
347 __typeof__(*(addr)) t; \
348 } __gu_tmp; \
349 \
350 __asm__ __volatile__( \
351 "1: " insn("%1", "(%3)")" \n" \
352 "2: " insn("%D1", "4(%3)")" \n" \
353 "3: \n" \
354 " .insn \n" \
355 " .section .fixup,\"ax\" \n" \
356 "4: li %0, %4 \n" \
357 " move %1, $0 \n" \
358 " move %D1, $0 \n" \
359 " j 3b \n" \
360 " .previous \n" \
361 " .section __ex_table,\"a\" \n" \
362 " " __UA_ADDR " 1b, 4b \n" \
363 " " __UA_ADDR " 2b, 4b \n" \
364 " .previous \n" \
365 : "=r" (__gu_err), "=&r" (__gu_tmp.l) \
366 : "0" (0), "r" (addr), "i" (-EFAULT)); \
367 \
368 (val) = __gu_tmp.t; \
369}
370
371#ifndef CONFIG_EVA
372#define __put_kernel_common(ptr, size) __put_user_common(ptr, size)
373#else
374/*
375 * Kernel specific functions for EVA. We need to use normal load instructions
376 * to read data from kernel when operating in EVA mode. We use these macros to
377 * avoid redefining __get_data_asm for EVA.
378 */
379#undef _stored
380#undef _storew
381#undef _storeh
382#undef _storeb
383#ifdef CONFIG_32BIT
384#define _stored _storew
385#else
386#define _stored(reg, addr) "ld " reg ", " addr
387#endif
388
389#define _storew(reg, addr) "sw " reg ", " addr
390#define _storeh(reg, addr) "sh " reg ", " addr
391#define _storeb(reg, addr) "sb " reg ", " addr
392
393#define __put_kernel_common(ptr, size) \
394do { \
395 switch (size) { \
396 case 1: __put_data_asm(_storeb, ptr); break; \
397 case 2: __put_data_asm(_storeh, ptr); break; \
398 case 4: __put_data_asm(_storew, ptr); break; \
399 case 8: __PUT_DW(_stored, ptr); break; \
400 default: __put_user_unknown(); break; \
401 } \
402} while(0)
403#endif
404
405/*
406 * Yuck. We need two variants, one for 64bit operation and one
407 * for 32 bit mode and old iron.
408 */
409#ifdef CONFIG_32BIT
410#define __PUT_DW(insn, ptr) __put_data_asm_ll32(insn, ptr)
411#endif
412#ifdef CONFIG_64BIT
413#define __PUT_DW(insn, ptr) __put_data_asm(insn, ptr)
414#endif
415
416#define __put_user_common(ptr, size) \
417do { \
418 switch (size) { \
419 case 1: __put_data_asm(user_sb, ptr); break; \
420 case 2: __put_data_asm(user_sh, ptr); break; \
421 case 4: __put_data_asm(user_sw, ptr); break; \
422 case 8: __PUT_DW(user_sd, ptr); break; \
423 default: __put_user_unknown(); break; \
424 } \
425} while (0)
426
427#define __put_user_nocheck(x, ptr, size) \
428({ \
429 __typeof__(*(ptr)) __pu_val; \
430 int __pu_err = 0; \
431 \
432 __pu_val = (x); \
433 if (eva_kernel_access()) { \
434 __put_kernel_common(ptr, size); \
435 } else { \
436 __chk_user_ptr(ptr); \
437 __put_user_common(ptr, size); \
438 } \
439 __pu_err; \
440})
441
442#define __put_user_check(x, ptr, size) \
443({ \
444 __typeof__(*(ptr)) __user *__pu_addr = (ptr); \
445 __typeof__(*(ptr)) __pu_val = (x); \
446 int __pu_err = -EFAULT; \
447 \
448 might_fault(); \
449 if (likely(access_ok(VERIFY_WRITE, __pu_addr, size))) { \
450 if (eva_kernel_access()) \
451 __put_kernel_common(__pu_addr, size); \
452 else \
453 __put_user_common(__pu_addr, size); \
454 } \
455 \
456 __pu_err; \
457})
458
459#define __put_data_asm(insn, ptr) \
460{ \
461 __asm__ __volatile__( \
462 "1: "insn("%z2", "%3")" # __put_data_asm \n" \
463 "2: \n" \
464 " .insn \n" \
465 " .section .fixup,\"ax\" \n" \
466 "3: li %0, %4 \n" \
467 " j 2b \n" \
468 " .previous \n" \
469 " .section __ex_table,\"a\" \n" \
470 " " __UA_ADDR " 1b, 3b \n" \
471 " .previous \n" \
472 : "=r" (__pu_err) \
473 : "0" (0), "Jr" (__pu_val), "o" (__m(ptr)), \
474 "i" (-EFAULT)); \
475}
476
477#define __put_data_asm_ll32(insn, ptr) \
478{ \
479 __asm__ __volatile__( \
480 "1: "insn("%2", "(%3)")" # __put_data_asm_ll32 \n" \
481 "2: "insn("%D2", "4(%3)")" \n" \
482 "3: \n" \
483 " .insn \n" \
484 " .section .fixup,\"ax\" \n" \
485 "4: li %0, %4 \n" \
486 " j 3b \n" \
487 " .previous \n" \
488 " .section __ex_table,\"a\" \n" \
489 " " __UA_ADDR " 1b, 4b \n" \
490 " " __UA_ADDR " 2b, 4b \n" \
491 " .previous" \
492 : "=r" (__pu_err) \
493 : "0" (0), "r" (__pu_val), "r" (ptr), \
494 "i" (-EFAULT)); \
495}
496
497extern void __put_user_unknown(void);
498
499/*
500 * We're generating jump to subroutines which will be outside the range of
501 * jump instructions
502 */
503#ifdef MODULE
504#define __MODULE_JAL(destination) \
505 ".set\tnoat\n\t" \
506 __UA_LA "\t$1, " #destination "\n\t" \
507 "jalr\t$1\n\t" \
508 ".set\tat\n\t"
509#else
510#define __MODULE_JAL(destination) \
511 "jal\t" #destination "\n\t"
512#endif
513
514#if defined(CONFIG_CPU_DADDI_WORKAROUNDS) || (defined(CONFIG_EVA) && \
515 defined(CONFIG_CPU_HAS_PREFETCH))
516#define DADDI_SCRATCH "$3"
517#else
518#define DADDI_SCRATCH "$0"
519#endif
520
521extern size_t __copy_user(void *__to, const void *__from, size_t __n);
522
523#define __invoke_copy_from(func, to, from, n) \
524({ \
525 register void *__cu_to_r __asm__("$4"); \
526 register const void __user *__cu_from_r __asm__("$5"); \
527 register long __cu_len_r __asm__("$6"); \
528 \
529 __cu_to_r = (to); \
530 __cu_from_r = (from); \
531 __cu_len_r = (n); \
532 __asm__ __volatile__( \
533 ".set\tnoreorder\n\t" \
534 __MODULE_JAL(func) \
535 ".set\tnoat\n\t" \
536 __UA_ADDU "\t$1, %1, %2\n\t" \
537 ".set\tat\n\t" \
538 ".set\treorder" \
539 : "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r) \
540 : \
541 : "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31", \
542 DADDI_SCRATCH, "memory"); \
543 __cu_len_r; \
544})
545
546#define __invoke_copy_to(func, to, from, n) \
547({ \
548 register void __user *__cu_to_r __asm__("$4"); \
549 register const void *__cu_from_r __asm__("$5"); \
550 register long __cu_len_r __asm__("$6"); \
551 \
552 __cu_to_r = (to); \
553 __cu_from_r = (from); \
554 __cu_len_r = (n); \
555 __asm__ __volatile__( \
556 __MODULE_JAL(func) \
557 : "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r) \
558 : \
559 : "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31", \
560 DADDI_SCRATCH, "memory"); \
561 __cu_len_r; \
562})
563
564#define __invoke_copy_from_kernel(to, from, n) \
565 __invoke_copy_from(__copy_user, to, from, n)
566
567#define __invoke_copy_to_kernel(to, from, n) \
568 __invoke_copy_to(__copy_user, to, from, n)
569
570#define ___invoke_copy_in_kernel(to, from, n) \
571 __invoke_copy_from(__copy_user, to, from, n)
572
573#ifndef CONFIG_EVA
574#define __invoke_copy_from_user(to, from, n) \
575 __invoke_copy_from(__copy_user, to, from, n)
576
577#define __invoke_copy_to_user(to, from, n) \
578 __invoke_copy_to(__copy_user, to, from, n)
579
580#define ___invoke_copy_in_user(to, from, n) \
581 __invoke_copy_from(__copy_user, to, from, n)
582
583#else
584
585/* EVA specific functions */
586
587extern size_t __copy_from_user_eva(void *__to, const void *__from,
588 size_t __n);
589extern size_t __copy_to_user_eva(void *__to, const void *__from,
590 size_t __n);
591extern size_t __copy_in_user_eva(void *__to, const void *__from, size_t __n);
592
593/*
594 * Source or destination address is in userland. We need to go through
595 * the TLB
596 */
597#define __invoke_copy_from_user(to, from, n) \
598 __invoke_copy_from(__copy_from_user_eva, to, from, n)
599
600#define __invoke_copy_to_user(to, from, n) \
601 __invoke_copy_to(__copy_to_user_eva, to, from, n)
602
603#define ___invoke_copy_in_user(to, from, n) \
604 __invoke_copy_from(__copy_in_user_eva, to, from, n)
605
606#endif /* CONFIG_EVA */
607
608static inline unsigned long
609raw_copy_to_user(void __user *to, const void *from, unsigned long n)
610{
611 if (eva_kernel_access())
612 return __invoke_copy_to_kernel(to, from, n);
613 else
614 return __invoke_copy_to_user(to, from, n);
615}
616
617static inline unsigned long
618raw_copy_from_user(void *to, const void __user *from, unsigned long n)
619{
620 if (eva_kernel_access())
621 return __invoke_copy_from_kernel(to, from, n);
622 else
623 return __invoke_copy_from_user(to, from, n);
624}
625
626#define INLINE_COPY_FROM_USER
627#define INLINE_COPY_TO_USER
628
629static inline unsigned long
630raw_copy_in_user(void __user*to, const void __user *from, unsigned long n)
631{
632 if (eva_kernel_access())
633 return ___invoke_copy_in_kernel(to, from, n);
634 else
635 return ___invoke_copy_in_user(to, from, n);
636}
637
638extern __kernel_size_t __bzero_kernel(void __user *addr, __kernel_size_t size);
639extern __kernel_size_t __bzero(void __user *addr, __kernel_size_t size);
640
641/*
642 * __clear_user: - Zero a block of memory in user space, with less checking.
643 * @to: Destination address, in user space.
644 * @n: Number of bytes to zero.
645 *
646 * Zero a block of memory in user space. Caller must check
647 * the specified block with access_ok() before calling this function.
648 *
649 * Returns number of bytes that could not be cleared.
650 * On success, this will be zero.
651 */
652static inline __kernel_size_t
653__clear_user(void __user *addr, __kernel_size_t size)
654{
655 __kernel_size_t res;
656
657#ifdef CONFIG_CPU_MICROMIPS
658/* micromips memset / bzero also clobbers t7 & t8 */
659#define bzero_clobbers "$4", "$5", "$6", __UA_t0, __UA_t1, "$15", "$24", "$31"
660#else
661#define bzero_clobbers "$4", "$5", "$6", __UA_t0, __UA_t1, "$31"
662#endif /* CONFIG_CPU_MICROMIPS */
663
664 if (eva_kernel_access()) {
665 __asm__ __volatile__(
666 "move\t$4, %1\n\t"
667 "move\t$5, $0\n\t"
668 "move\t$6, %2\n\t"
669 __MODULE_JAL(__bzero_kernel)
670 "move\t%0, $6"
671 : "=r" (res)
672 : "r" (addr), "r" (size)
673 : bzero_clobbers);
674 } else {
675 might_fault();
676 __asm__ __volatile__(
677 "move\t$4, %1\n\t"
678 "move\t$5, $0\n\t"
679 "move\t$6, %2\n\t"
680 __MODULE_JAL(__bzero)
681 "move\t%0, $6"
682 : "=r" (res)
683 : "r" (addr), "r" (size)
684 : bzero_clobbers);
685 }
686
687 return res;
688}
689
690#define clear_user(addr,n) \
691({ \
692 void __user * __cl_addr = (addr); \
693 unsigned long __cl_size = (n); \
694 if (__cl_size && access_ok(VERIFY_WRITE, \
695 __cl_addr, __cl_size)) \
696 __cl_size = __clear_user(__cl_addr, __cl_size); \
697 __cl_size; \
698})
699
700extern long __strncpy_from_kernel_asm(char *__to, const char __user *__from, long __len);
701extern long __strncpy_from_user_asm(char *__to, const char __user *__from, long __len);
702
703/*
704 * strncpy_from_user: - Copy a NUL terminated string from userspace.
705 * @dst: Destination address, in kernel space. This buffer must be at
706 * least @count bytes long.
707 * @src: Source address, in user space.
708 * @count: Maximum number of bytes to copy, including the trailing NUL.
709 *
710 * Copies a NUL-terminated string from userspace to kernel space.
711 *
712 * On success, returns the length of the string (not including the trailing
713 * NUL).
714 *
715 * If access to userspace fails, returns -EFAULT (some data may have been
716 * copied).
717 *
718 * If @count is smaller than the length of the string, copies @count bytes
719 * and returns @count.
720 */
721static inline long
722strncpy_from_user(char *__to, const char __user *__from, long __len)
723{
724 long res;
725
726 if (eva_kernel_access()) {
727 __asm__ __volatile__(
728 "move\t$4, %1\n\t"
729 "move\t$5, %2\n\t"
730 "move\t$6, %3\n\t"
731 __MODULE_JAL(__strncpy_from_kernel_asm)
732 "move\t%0, $2"
733 : "=r" (res)
734 : "r" (__to), "r" (__from), "r" (__len)
735 : "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
736 } else {
737 might_fault();
738 __asm__ __volatile__(
739 "move\t$4, %1\n\t"
740 "move\t$5, %2\n\t"
741 "move\t$6, %3\n\t"
742 __MODULE_JAL(__strncpy_from_user_asm)
743 "move\t%0, $2"
744 : "=r" (res)
745 : "r" (__to), "r" (__from), "r" (__len)
746 : "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
747 }
748
749 return res;
750}
751
752extern long __strnlen_kernel_asm(const char __user *s, long n);
753extern long __strnlen_user_asm(const char __user *s, long n);
754
755/*
756 * strnlen_user: - Get the size of a string in user space.
757 * @str: The string to measure.
758 *
759 * Context: User context only. This function may sleep if pagefaults are
760 * enabled.
761 *
762 * Get the size of a NUL-terminated string in user space.
763 *
764 * Returns the size of the string INCLUDING the terminating NUL.
765 * On exception, returns 0.
766 * If the string is too long, returns a value greater than @n.
767 */
768static inline long strnlen_user(const char __user *s, long n)
769{
770 long res;
771
772 might_fault();
773 if (eva_kernel_access()) {
774 __asm__ __volatile__(
775 "move\t$4, %1\n\t"
776 "move\t$5, %2\n\t"
777 __MODULE_JAL(__strnlen_kernel_asm)
778 "move\t%0, $2"
779 : "=r" (res)
780 : "r" (s), "r" (n)
781 : "$2", "$4", "$5", __UA_t0, "$31");
782 } else {
783 __asm__ __volatile__(
784 "move\t$4, %1\n\t"
785 "move\t$5, %2\n\t"
786 __MODULE_JAL(__strnlen_user_asm)
787 "move\t%0, $2"
788 : "=r" (res)
789 : "r" (s), "r" (n)
790 : "$2", "$4", "$5", __UA_t0, "$31");
791 }
792
793 return res;
794}
795
796#endif /* _ASM_UACCESS_H */