Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * Dynamic DMA mapping support.
   3 *
   4 * This implementation is a fallback for platforms that do not support
   5 * I/O TLBs (aka DMA address translation hardware).
   6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
   7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
   8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
   9 *	David Mosberger-Tang <davidm@hpl.hp.com>
  10 *
  11 * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
  12 * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
  13 *			unnecessary i-cache flushing.
  14 * 04/07/.. ak		Better overflow handling. Assorted fixes.
  15 * 05/09/10 linville	Add support for syncing ranges, support syncing for
  16 *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
  17 * 08/12/11 beckyb	Add highmem support
  18 */
  19
  20#include <linux/cache.h>
  21#include <linux/dma-mapping.h>
  22#include <linux/mm.h>
  23#include <linux/export.h>
  24#include <linux/spinlock.h>
  25#include <linux/string.h>
  26#include <linux/swiotlb.h>
  27#include <linux/pfn.h>
  28#include <linux/types.h>
  29#include <linux/ctype.h>
  30#include <linux/highmem.h>
  31#include <linux/gfp.h>
  32#include <linux/scatterlist.h>
  33
  34#include <asm/io.h>
  35#include <asm/dma.h>
 
  36
  37#include <linux/init.h>
  38#include <linux/bootmem.h>
  39#include <linux/iommu-helper.h>
  40
  41#define CREATE_TRACE_POINTS
  42#include <trace/events/swiotlb.h>
  43
  44#define OFFSET(val,align) ((unsigned long)	\
  45	                   ( (val) & ( (align) - 1)))
  46
  47#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
  48
  49/*
  50 * Minimum IO TLB size to bother booting with.  Systems with mainly
  51 * 64bit capable cards will only lightly use the swiotlb.  If we can't
  52 * allocate a contiguous 1MB, we're probably in trouble anyway.
  53 */
  54#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
  55
  56enum swiotlb_force swiotlb_force;
  57
  58/*
  59 * Used to do a quick range check in swiotlb_tbl_unmap_single and
  60 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
  61 * API.
  62 */
  63static phys_addr_t io_tlb_start, io_tlb_end;
  64
  65/*
  66 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
  67 * io_tlb_end.  This is command line adjustable via setup_io_tlb_npages.
  68 */
  69static unsigned long io_tlb_nslabs;
  70
  71/*
  72 * When the IOMMU overflows we return a fallback buffer. This sets the size.
  73 */
  74static unsigned long io_tlb_overflow = 32*1024;
  75
  76static phys_addr_t io_tlb_overflow_buffer;
  77
  78/*
  79 * This is a free list describing the number of free entries available from
  80 * each index
  81 */
  82static unsigned int *io_tlb_list;
  83static unsigned int io_tlb_index;
  84
  85/*
  86 * Max segment that we can provide which (if pages are contingous) will
  87 * not be bounced (unless SWIOTLB_FORCE is set).
  88 */
  89unsigned int max_segment;
  90
  91/*
  92 * We need to save away the original address corresponding to a mapped entry
  93 * for the sync operations.
  94 */
  95#define INVALID_PHYS_ADDR (~(phys_addr_t)0)
  96static phys_addr_t *io_tlb_orig_addr;
  97
  98/*
  99 * Protect the above data structures in the map and unmap calls
 100 */
 101static DEFINE_SPINLOCK(io_tlb_lock);
 102
 103static int late_alloc;
 104
 105static int __init
 106setup_io_tlb_npages(char *str)
 107{
 108	if (isdigit(*str)) {
 109		io_tlb_nslabs = simple_strtoul(str, &str, 0);
 110		/* avoid tail segment of size < IO_TLB_SEGSIZE */
 111		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
 112	}
 113	if (*str == ',')
 114		++str;
 115	if (!strcmp(str, "force")) {
 116		swiotlb_force = SWIOTLB_FORCE;
 117	} else if (!strcmp(str, "noforce")) {
 118		swiotlb_force = SWIOTLB_NO_FORCE;
 119		io_tlb_nslabs = 1;
 120	}
 121
 122	return 0;
 123}
 124early_param("swiotlb", setup_io_tlb_npages);
 125/* make io_tlb_overflow tunable too? */
 126
 127unsigned long swiotlb_nr_tbl(void)
 128{
 129	return io_tlb_nslabs;
 130}
 131EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
 132
 133unsigned int swiotlb_max_segment(void)
 134{
 135	return max_segment;
 136}
 137EXPORT_SYMBOL_GPL(swiotlb_max_segment);
 138
 139void swiotlb_set_max_segment(unsigned int val)
 140{
 141	if (swiotlb_force == SWIOTLB_FORCE)
 142		max_segment = 1;
 143	else
 144		max_segment = rounddown(val, PAGE_SIZE);
 145}
 146
 147/* default to 64MB */
 148#define IO_TLB_DEFAULT_SIZE (64UL<<20)
 149unsigned long swiotlb_size_or_default(void)
 150{
 151	unsigned long size;
 152
 153	size = io_tlb_nslabs << IO_TLB_SHIFT;
 154
 155	return size ? size : (IO_TLB_DEFAULT_SIZE);
 156}
 157
 158/* Note that this doesn't work with highmem page */
 159static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
 160				      volatile void *address)
 161{
 162	return phys_to_dma(hwdev, virt_to_phys(address));
 163}
 164
 165static bool no_iotlb_memory;
 166
 167void swiotlb_print_info(void)
 168{
 169	unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
 170	unsigned char *vstart, *vend;
 171
 172	if (no_iotlb_memory) {
 173		pr_warn("software IO TLB: No low mem\n");
 174		return;
 175	}
 176
 177	vstart = phys_to_virt(io_tlb_start);
 178	vend = phys_to_virt(io_tlb_end);
 179
 180	printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
 181	       (unsigned long long)io_tlb_start,
 182	       (unsigned long long)io_tlb_end,
 183	       bytes >> 20, vstart, vend - 1);
 184}
 185
 186int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
 187{
 188	void *v_overflow_buffer;
 189	unsigned long i, bytes;
 190
 191	bytes = nslabs << IO_TLB_SHIFT;
 192
 193	io_tlb_nslabs = nslabs;
 194	io_tlb_start = __pa(tlb);
 195	io_tlb_end = io_tlb_start + bytes;
 196
 197	/*
 198	 * Get the overflow emergency buffer
 199	 */
 200	v_overflow_buffer = memblock_virt_alloc_low_nopanic(
 201						PAGE_ALIGN(io_tlb_overflow),
 202						PAGE_SIZE);
 203	if (!v_overflow_buffer)
 204		return -ENOMEM;
 205
 206	io_tlb_overflow_buffer = __pa(v_overflow_buffer);
 207
 208	/*
 209	 * Allocate and initialize the free list array.  This array is used
 210	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
 211	 * between io_tlb_start and io_tlb_end.
 212	 */
 213	io_tlb_list = memblock_virt_alloc(
 214				PAGE_ALIGN(io_tlb_nslabs * sizeof(int)),
 215				PAGE_SIZE);
 216	io_tlb_orig_addr = memblock_virt_alloc(
 217				PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)),
 218				PAGE_SIZE);
 219	for (i = 0; i < io_tlb_nslabs; i++) {
 220		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
 221		io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
 222	}
 223	io_tlb_index = 0;
 
 224
 
 
 
 
 
 
 225	if (verbose)
 226		swiotlb_print_info();
 227
 228	swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
 229	return 0;
 230}
 231
 232/*
 233 * Statically reserve bounce buffer space and initialize bounce buffer data
 234 * structures for the software IO TLB used to implement the DMA API.
 235 */
 236void  __init
 237swiotlb_init(int verbose)
 238{
 239	size_t default_size = IO_TLB_DEFAULT_SIZE;
 240	unsigned char *vstart;
 241	unsigned long bytes;
 242
 243	if (!io_tlb_nslabs) {
 244		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
 245		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
 246	}
 247
 248	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
 249
 250	/* Get IO TLB memory from the low pages */
 251	vstart = memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE);
 252	if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
 253		return;
 
 
 
 
 
 254
 255	if (io_tlb_start)
 256		memblock_free_early(io_tlb_start,
 257				    PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
 258	pr_warn("Cannot allocate SWIOTLB buffer");
 259	no_iotlb_memory = true;
 260}
 261
 262/*
 263 * Systems with larger DMA zones (those that don't support ISA) can
 264 * initialize the swiotlb later using the slab allocator if needed.
 265 * This should be just like above, but with some error catching.
 266 */
 267int
 268swiotlb_late_init_with_default_size(size_t default_size)
 269{
 270	unsigned long bytes, req_nslabs = io_tlb_nslabs;
 271	unsigned char *vstart = NULL;
 272	unsigned int order;
 273	int rc = 0;
 274
 275	if (!io_tlb_nslabs) {
 276		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
 277		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
 278	}
 279
 280	/*
 281	 * Get IO TLB memory from the low pages
 282	 */
 283	order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
 284	io_tlb_nslabs = SLABS_PER_PAGE << order;
 285	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
 286
 287	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
 288		vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
 289						  order);
 290		if (vstart)
 291			break;
 292		order--;
 293	}
 294
 295	if (!vstart) {
 296		io_tlb_nslabs = req_nslabs;
 297		return -ENOMEM;
 298	}
 299	if (order != get_order(bytes)) {
 300		printk(KERN_WARNING "Warning: only able to allocate %ld MB "
 301		       "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
 302		io_tlb_nslabs = SLABS_PER_PAGE << order;
 
 303	}
 304	rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
 305	if (rc)
 306		free_pages((unsigned long)vstart, order);
 307
 308	return rc;
 309}
 310
 311int
 312swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
 313{
 314	unsigned long i, bytes;
 315	unsigned char *v_overflow_buffer;
 316
 317	bytes = nslabs << IO_TLB_SHIFT;
 318
 319	io_tlb_nslabs = nslabs;
 320	io_tlb_start = virt_to_phys(tlb);
 321	io_tlb_end = io_tlb_start + bytes;
 322
 323	memset(tlb, 0, bytes);
 324
 325	/*
 326	 * Get the overflow emergency buffer
 327	 */
 328	v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
 329						     get_order(io_tlb_overflow));
 330	if (!v_overflow_buffer)
 331		goto cleanup2;
 332
 333	io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
 334
 335	/*
 336	 * Allocate and initialize the free list array.  This array is used
 337	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
 338	 * between io_tlb_start and io_tlb_end.
 339	 */
 340	io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
 341	                              get_order(io_tlb_nslabs * sizeof(int)));
 342	if (!io_tlb_list)
 343		goto cleanup3;
 
 
 
 
 344
 345	io_tlb_orig_addr = (phys_addr_t *)
 346		__get_free_pages(GFP_KERNEL,
 347				 get_order(io_tlb_nslabs *
 348					   sizeof(phys_addr_t)));
 349	if (!io_tlb_orig_addr)
 350		goto cleanup4;
 351
 352	for (i = 0; i < io_tlb_nslabs; i++) {
 353		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
 354		io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
 355	}
 356	io_tlb_index = 0;
 
 
 
 
 357
 358	swiotlb_print_info();
 359
 360	late_alloc = 1;
 361
 362	swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
 363
 364	return 0;
 365
 366cleanup4:
 
 
 
 
 367	free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
 368	                                                 sizeof(int)));
 369	io_tlb_list = NULL;
 370cleanup3:
 371	free_pages((unsigned long)v_overflow_buffer,
 372		   get_order(io_tlb_overflow));
 373	io_tlb_overflow_buffer = 0;
 374cleanup2:
 375	io_tlb_end = 0;
 376	io_tlb_start = 0;
 377	io_tlb_nslabs = 0;
 378	max_segment = 0;
 
 379	return -ENOMEM;
 380}
 381
 382void __init swiotlb_free(void)
 383{
 384	if (!io_tlb_orig_addr)
 385		return;
 386
 387	if (late_alloc) {
 388		free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
 389			   get_order(io_tlb_overflow));
 390		free_pages((unsigned long)io_tlb_orig_addr,
 391			   get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
 392		free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
 393								 sizeof(int)));
 394		free_pages((unsigned long)phys_to_virt(io_tlb_start),
 395			   get_order(io_tlb_nslabs << IO_TLB_SHIFT));
 396	} else {
 397		memblock_free_late(io_tlb_overflow_buffer,
 398				   PAGE_ALIGN(io_tlb_overflow));
 399		memblock_free_late(__pa(io_tlb_orig_addr),
 400				   PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
 401		memblock_free_late(__pa(io_tlb_list),
 402				   PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
 403		memblock_free_late(io_tlb_start,
 404				   PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
 405	}
 406	io_tlb_nslabs = 0;
 407	max_segment = 0;
 408}
 409
 410int is_swiotlb_buffer(phys_addr_t paddr)
 411{
 412	return paddr >= io_tlb_start && paddr < io_tlb_end;
 
 413}
 414
 415/*
 416 * Bounce: copy the swiotlb buffer back to the original dma location
 417 */
 418static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
 419			   size_t size, enum dma_data_direction dir)
 420{
 421	unsigned long pfn = PFN_DOWN(orig_addr);
 422	unsigned char *vaddr = phys_to_virt(tlb_addr);
 423
 424	if (PageHighMem(pfn_to_page(pfn))) {
 425		/* The buffer does not have a mapping.  Map it in and copy */
 426		unsigned int offset = orig_addr & ~PAGE_MASK;
 427		char *buffer;
 428		unsigned int sz = 0;
 429		unsigned long flags;
 430
 431		while (size) {
 432			sz = min_t(size_t, PAGE_SIZE - offset, size);
 433
 434			local_irq_save(flags);
 435			buffer = kmap_atomic(pfn_to_page(pfn));
 436			if (dir == DMA_TO_DEVICE)
 437				memcpy(vaddr, buffer + offset, sz);
 438			else
 439				memcpy(buffer + offset, vaddr, sz);
 440			kunmap_atomic(buffer);
 441			local_irq_restore(flags);
 442
 443			size -= sz;
 444			pfn++;
 445			vaddr += sz;
 446			offset = 0;
 447		}
 448	} else if (dir == DMA_TO_DEVICE) {
 449		memcpy(vaddr, phys_to_virt(orig_addr), size);
 450	} else {
 451		memcpy(phys_to_virt(orig_addr), vaddr, size);
 
 
 
 452	}
 453}
 
 454
 455phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
 456				   dma_addr_t tbl_dma_addr,
 457				   phys_addr_t orig_addr, size_t size,
 458				   enum dma_data_direction dir,
 459				   unsigned long attrs)
 460{
 461	unsigned long flags;
 462	phys_addr_t tlb_addr;
 463	unsigned int nslots, stride, index, wrap;
 464	int i;
 465	unsigned long mask;
 466	unsigned long offset_slots;
 467	unsigned long max_slots;
 468
 469	if (no_iotlb_memory)
 470		panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
 471
 472	mask = dma_get_seg_boundary(hwdev);
 473
 474	tbl_dma_addr &= mask;
 475
 476	offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
 477
 478	/*
 479 	 * Carefully handle integer overflow which can occur when mask == ~0UL.
 480 	 */
 481	max_slots = mask + 1
 482		    ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
 483		    : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
 484
 485	/*
 486	 * For mappings greater than or equal to a page, we limit the stride
 487	 * (and hence alignment) to a page size.
 488	 */
 489	nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
 490	if (size >= PAGE_SIZE)
 491		stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
 492	else
 493		stride = 1;
 494
 495	BUG_ON(!nslots);
 496
 497	/*
 498	 * Find suitable number of IO TLB entries size that will fit this
 499	 * request and allocate a buffer from that IO TLB pool.
 500	 */
 501	spin_lock_irqsave(&io_tlb_lock, flags);
 502	index = ALIGN(io_tlb_index, stride);
 503	if (index >= io_tlb_nslabs)
 504		index = 0;
 505	wrap = index;
 506
 507	do {
 508		while (iommu_is_span_boundary(index, nslots, offset_slots,
 509					      max_slots)) {
 510			index += stride;
 511			if (index >= io_tlb_nslabs)
 512				index = 0;
 513			if (index == wrap)
 514				goto not_found;
 515		}
 516
 517		/*
 518		 * If we find a slot that indicates we have 'nslots' number of
 519		 * contiguous buffers, we allocate the buffers from that slot
 520		 * and mark the entries as '0' indicating unavailable.
 521		 */
 522		if (io_tlb_list[index] >= nslots) {
 523			int count = 0;
 524
 525			for (i = index; i < (int) (index + nslots); i++)
 526				io_tlb_list[i] = 0;
 527			for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
 528				io_tlb_list[i] = ++count;
 529			tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
 530
 531			/*
 532			 * Update the indices to avoid searching in the next
 533			 * round.
 534			 */
 535			io_tlb_index = ((index + nslots) < io_tlb_nslabs
 536					? (index + nslots) : 0);
 537
 538			goto found;
 539		}
 540		index += stride;
 541		if (index >= io_tlb_nslabs)
 542			index = 0;
 543	} while (index != wrap);
 544
 545not_found:
 546	spin_unlock_irqrestore(&io_tlb_lock, flags);
 547	if (printk_ratelimit())
 548		dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size);
 549	return SWIOTLB_MAP_ERROR;
 550found:
 551	spin_unlock_irqrestore(&io_tlb_lock, flags);
 552
 553	/*
 554	 * Save away the mapping from the original address to the DMA address.
 555	 * This is needed when we sync the memory.  Then we sync the buffer if
 556	 * needed.
 557	 */
 558	for (i = 0; i < nslots; i++)
 559		io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
 560	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
 561	    (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
 562		swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
 563
 564	return tlb_addr;
 565}
 566EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
 567
 568/*
 569 * Allocates bounce buffer and returns its kernel virtual address.
 570 */
 571
 572static phys_addr_t
 573map_single(struct device *hwdev, phys_addr_t phys, size_t size,
 574	   enum dma_data_direction dir, unsigned long attrs)
 575{
 576	dma_addr_t start_dma_addr;
 577
 578	if (swiotlb_force == SWIOTLB_NO_FORCE) {
 579		dev_warn_ratelimited(hwdev, "Cannot do DMA to address %pa\n",
 580				     &phys);
 581		return SWIOTLB_MAP_ERROR;
 582	}
 583
 584	start_dma_addr = phys_to_dma(hwdev, io_tlb_start);
 585	return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size,
 586				      dir, attrs);
 587}
 588
 589/*
 590 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
 591 */
 592void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
 593			      size_t size, enum dma_data_direction dir,
 594			      unsigned long attrs)
 595{
 596	unsigned long flags;
 597	int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
 598	int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
 599	phys_addr_t orig_addr = io_tlb_orig_addr[index];
 600
 601	/*
 602	 * First, sync the memory before unmapping the entry
 603	 */
 604	if (orig_addr != INVALID_PHYS_ADDR &&
 605	    !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
 606	    ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
 607		swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
 608
 609	/*
 610	 * Return the buffer to the free list by setting the corresponding
 611	 * entries to indicate the number of contiguous entries available.
 612	 * While returning the entries to the free list, we merge the entries
 613	 * with slots below and above the pool being returned.
 614	 */
 615	spin_lock_irqsave(&io_tlb_lock, flags);
 616	{
 617		count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
 618			 io_tlb_list[index + nslots] : 0);
 619		/*
 620		 * Step 1: return the slots to the free list, merging the
 621		 * slots with superceeding slots
 622		 */
 623		for (i = index + nslots - 1; i >= index; i--) {
 624			io_tlb_list[i] = ++count;
 625			io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
 626		}
 627		/*
 628		 * Step 2: merge the returned slots with the preceding slots,
 629		 * if available (non zero)
 630		 */
 631		for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
 632			io_tlb_list[i] = ++count;
 633	}
 634	spin_unlock_irqrestore(&io_tlb_lock, flags);
 635}
 636EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
 637
 638void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
 639			     size_t size, enum dma_data_direction dir,
 640			     enum dma_sync_target target)
 
 641{
 642	int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
 643	phys_addr_t orig_addr = io_tlb_orig_addr[index];
 644
 645	if (orig_addr == INVALID_PHYS_ADDR)
 646		return;
 647	orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
 648
 649	switch (target) {
 650	case SYNC_FOR_CPU:
 651		if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
 652			swiotlb_bounce(orig_addr, tlb_addr,
 653				       size, DMA_FROM_DEVICE);
 654		else
 655			BUG_ON(dir != DMA_TO_DEVICE);
 656		break;
 657	case SYNC_FOR_DEVICE:
 658		if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
 659			swiotlb_bounce(orig_addr, tlb_addr,
 660				       size, DMA_TO_DEVICE);
 661		else
 662			BUG_ON(dir != DMA_FROM_DEVICE);
 663		break;
 664	default:
 665		BUG();
 666	}
 667}
 668EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
 669
 670void *
 671swiotlb_alloc_coherent(struct device *hwdev, size_t size,
 672		       dma_addr_t *dma_handle, gfp_t flags)
 673{
 674	dma_addr_t dev_addr;
 675	void *ret;
 676	int order = get_order(size);
 677	u64 dma_mask = DMA_BIT_MASK(32);
 678
 679	if (hwdev && hwdev->coherent_dma_mask)
 680		dma_mask = hwdev->coherent_dma_mask;
 681
 682	ret = (void *)__get_free_pages(flags, order);
 683	if (ret) {
 684		dev_addr = swiotlb_virt_to_bus(hwdev, ret);
 685		if (dev_addr + size - 1 > dma_mask) {
 686			/*
 687			 * The allocated memory isn't reachable by the device.
 688			 */
 689			free_pages((unsigned long) ret, order);
 690			ret = NULL;
 691		}
 692	}
 693	if (!ret) {
 694		/*
 695		 * We are either out of memory or the device can't DMA to
 696		 * GFP_DMA memory; fall back on map_single(), which
 697		 * will grab memory from the lowest available address range.
 698		 */
 699		phys_addr_t paddr = map_single(hwdev, 0, size,
 700					       DMA_FROM_DEVICE, 0);
 701		if (paddr == SWIOTLB_MAP_ERROR)
 702			goto err_warn;
 703
 704		ret = phys_to_virt(paddr);
 705		dev_addr = phys_to_dma(hwdev, paddr);
 706
 707		/* Confirm address can be DMA'd by device */
 708		if (dev_addr + size - 1 > dma_mask) {
 709			printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
 710			       (unsigned long long)dma_mask,
 711			       (unsigned long long)dev_addr);
 712
 713			/*
 714			 * DMA_TO_DEVICE to avoid memcpy in unmap_single.
 715			 * The DMA_ATTR_SKIP_CPU_SYNC is optional.
 716			 */
 717			swiotlb_tbl_unmap_single(hwdev, paddr,
 718						 size, DMA_TO_DEVICE,
 719						 DMA_ATTR_SKIP_CPU_SYNC);
 720			goto err_warn;
 721		}
 722	}
 723
 724	*dma_handle = dev_addr;
 725	memset(ret, 0, size);
 
 726
 
 
 
 
 
 
 
 
 
 
 
 727	return ret;
 728
 729err_warn:
 730	pr_warn("swiotlb: coherent allocation failed for device %s size=%zu\n",
 731		dev_name(hwdev), size);
 732	dump_stack();
 733
 734	return NULL;
 735}
 736EXPORT_SYMBOL(swiotlb_alloc_coherent);
 737
 738void
 739swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
 740		      dma_addr_t dev_addr)
 741{
 742	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
 743
 744	WARN_ON(irqs_disabled());
 745	if (!is_swiotlb_buffer(paddr))
 746		free_pages((unsigned long)vaddr, get_order(size));
 747	else
 748		/*
 749		 * DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single.
 750		 * DMA_ATTR_SKIP_CPU_SYNC is optional.
 751		 */
 752		swiotlb_tbl_unmap_single(hwdev, paddr, size, DMA_TO_DEVICE,
 753					 DMA_ATTR_SKIP_CPU_SYNC);
 754}
 755EXPORT_SYMBOL(swiotlb_free_coherent);
 756
 757static void
 758swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
 759	     int do_panic)
 760{
 761	if (swiotlb_force == SWIOTLB_NO_FORCE)
 762		return;
 763
 764	/*
 765	 * Ran out of IOMMU space for this operation. This is very bad.
 766	 * Unfortunately the drivers cannot handle this operation properly.
 767	 * unless they check for dma_mapping_error (most don't)
 768	 * When the mapping is small enough return a static buffer to limit
 769	 * the damage, or panic when the transfer is too big.
 770	 */
 771	dev_err_ratelimited(dev, "DMA: Out of SW-IOMMU space for %zu bytes\n",
 772			    size);
 773
 774	if (size <= io_tlb_overflow || !do_panic)
 775		return;
 776
 777	if (dir == DMA_BIDIRECTIONAL)
 778		panic("DMA: Random memory could be DMA accessed\n");
 779	if (dir == DMA_FROM_DEVICE)
 780		panic("DMA: Random memory could be DMA written\n");
 781	if (dir == DMA_TO_DEVICE)
 782		panic("DMA: Random memory could be DMA read\n");
 783}
 784
 785/*
 786 * Map a single buffer of the indicated size for DMA in streaming mode.  The
 787 * physical address to use is returned.
 788 *
 789 * Once the device is given the dma address, the device owns this memory until
 790 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
 791 */
 792dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
 793			    unsigned long offset, size_t size,
 794			    enum dma_data_direction dir,
 795			    unsigned long attrs)
 796{
 797	phys_addr_t map, phys = page_to_phys(page) + offset;
 798	dma_addr_t dev_addr = phys_to_dma(dev, phys);
 
 799
 800	BUG_ON(dir == DMA_NONE);
 801	/*
 802	 * If the address happens to be in the device's DMA window,
 803	 * we can safely return the device addr and not worry about bounce
 804	 * buffering it.
 805	 */
 806	if (dma_capable(dev, dev_addr, size) && swiotlb_force != SWIOTLB_FORCE)
 807		return dev_addr;
 808
 809	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
 810
 811	/* Oh well, have to allocate and map a bounce buffer. */
 812	map = map_single(dev, phys, size, dir, attrs);
 813	if (map == SWIOTLB_MAP_ERROR) {
 814		swiotlb_full(dev, size, dir, 1);
 815		return phys_to_dma(dev, io_tlb_overflow_buffer);
 816	}
 817
 818	dev_addr = phys_to_dma(dev, map);
 819
 820	/* Ensure that the address returned is DMA'ble */
 821	if (dma_capable(dev, dev_addr, size))
 822		return dev_addr;
 823
 824	attrs |= DMA_ATTR_SKIP_CPU_SYNC;
 825	swiotlb_tbl_unmap_single(dev, map, size, dir, attrs);
 
 
 
 
 
 826
 827	return phys_to_dma(dev, io_tlb_overflow_buffer);
 828}
 829EXPORT_SYMBOL_GPL(swiotlb_map_page);
 830
 831/*
 832 * Unmap a single streaming mode DMA translation.  The dma_addr and size must
 833 * match what was provided for in a previous swiotlb_map_page call.  All
 834 * other usages are undefined.
 835 *
 836 * After this call, reads by the cpu to the buffer are guaranteed to see
 837 * whatever the device wrote there.
 838 */
 839static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
 840			 size_t size, enum dma_data_direction dir,
 841			 unsigned long attrs)
 842{
 843	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
 844
 845	BUG_ON(dir == DMA_NONE);
 846
 847	if (is_swiotlb_buffer(paddr)) {
 848		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
 849		return;
 850	}
 851
 852	if (dir != DMA_FROM_DEVICE)
 853		return;
 854
 855	/*
 856	 * phys_to_virt doesn't work with hihgmem page but we could
 857	 * call dma_mark_clean() with hihgmem page here. However, we
 858	 * are fine since dma_mark_clean() is null on POWERPC. We can
 859	 * make dma_mark_clean() take a physical address if necessary.
 860	 */
 861	dma_mark_clean(phys_to_virt(paddr), size);
 862}
 863
 864void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
 865			size_t size, enum dma_data_direction dir,
 866			unsigned long attrs)
 867{
 868	unmap_single(hwdev, dev_addr, size, dir, attrs);
 869}
 870EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
 871
 872/*
 873 * Make physical memory consistent for a single streaming mode DMA translation
 874 * after a transfer.
 875 *
 876 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
 877 * using the cpu, yet do not wish to teardown the dma mapping, you must
 878 * call this function before doing so.  At the next point you give the dma
 879 * address back to the card, you must first perform a
 880 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
 881 */
 882static void
 883swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
 884		    size_t size, enum dma_data_direction dir,
 885		    enum dma_sync_target target)
 886{
 887	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
 888
 889	BUG_ON(dir == DMA_NONE);
 890
 891	if (is_swiotlb_buffer(paddr)) {
 892		swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
 
 893		return;
 894	}
 895
 896	if (dir != DMA_FROM_DEVICE)
 897		return;
 898
 899	dma_mark_clean(phys_to_virt(paddr), size);
 900}
 901
 902void
 903swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
 904			    size_t size, enum dma_data_direction dir)
 905{
 906	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
 907}
 908EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
 909
 910void
 911swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
 912			       size_t size, enum dma_data_direction dir)
 913{
 914	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
 915}
 916EXPORT_SYMBOL(swiotlb_sync_single_for_device);
 917
 918/*
 919 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 920 * This is the scatter-gather version of the above swiotlb_map_page
 921 * interface.  Here the scatter gather list elements are each tagged with the
 922 * appropriate dma address and length.  They are obtained via
 923 * sg_dma_{address,length}(SG).
 924 *
 925 * NOTE: An implementation may be able to use a smaller number of
 926 *       DMA address/length pairs than there are SG table elements.
 927 *       (for example via virtual mapping capabilities)
 928 *       The routine returns the number of addr/length pairs actually
 929 *       used, at most nents.
 930 *
 931 * Device ownership issues as mentioned above for swiotlb_map_page are the
 932 * same here.
 933 */
 934int
 935swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
 936		     enum dma_data_direction dir, unsigned long attrs)
 937{
 938	struct scatterlist *sg;
 939	int i;
 940
 941	BUG_ON(dir == DMA_NONE);
 942
 943	for_each_sg(sgl, sg, nelems, i) {
 944		phys_addr_t paddr = sg_phys(sg);
 945		dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
 946
 947		if (swiotlb_force == SWIOTLB_FORCE ||
 948		    !dma_capable(hwdev, dev_addr, sg->length)) {
 949			phys_addr_t map = map_single(hwdev, sg_phys(sg),
 950						     sg->length, dir, attrs);
 951			if (map == SWIOTLB_MAP_ERROR) {
 952				/* Don't panic here, we expect map_sg users
 953				   to do proper error handling. */
 954				swiotlb_full(hwdev, sg->length, dir, 0);
 955				attrs |= DMA_ATTR_SKIP_CPU_SYNC;
 956				swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
 957						       attrs);
 958				sg_dma_len(sgl) = 0;
 959				return 0;
 960			}
 961			sg->dma_address = phys_to_dma(hwdev, map);
 962		} else
 963			sg->dma_address = dev_addr;
 964		sg_dma_len(sg) = sg->length;
 965	}
 966	return nelems;
 967}
 968EXPORT_SYMBOL(swiotlb_map_sg_attrs);
 969
 
 
 
 
 
 
 
 
 970/*
 971 * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
 972 * concerning calls here are the same as for swiotlb_unmap_page() above.
 973 */
 974void
 975swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
 976		       int nelems, enum dma_data_direction dir,
 977		       unsigned long attrs)
 978{
 979	struct scatterlist *sg;
 980	int i;
 981
 982	BUG_ON(dir == DMA_NONE);
 983
 984	for_each_sg(sgl, sg, nelems, i)
 985		unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir,
 986			     attrs);
 987}
 988EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
 989
 
 
 
 
 
 
 
 
 990/*
 991 * Make physical memory consistent for a set of streaming mode DMA translations
 992 * after a transfer.
 993 *
 994 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
 995 * and usage.
 996 */
 997static void
 998swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
 999		int nelems, enum dma_data_direction dir,
1000		enum dma_sync_target target)
1001{
1002	struct scatterlist *sg;
1003	int i;
1004
1005	for_each_sg(sgl, sg, nelems, i)
1006		swiotlb_sync_single(hwdev, sg->dma_address,
1007				    sg_dma_len(sg), dir, target);
1008}
1009
1010void
1011swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
1012			int nelems, enum dma_data_direction dir)
1013{
1014	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
1015}
1016EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
1017
1018void
1019swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
1020			   int nelems, enum dma_data_direction dir)
1021{
1022	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
1023}
1024EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
1025
1026int
1027swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
1028{
1029	return (dma_addr == phys_to_dma(hwdev, io_tlb_overflow_buffer));
1030}
1031EXPORT_SYMBOL(swiotlb_dma_mapping_error);
1032
1033/*
1034 * Return whether the given device DMA address mask can be supported
1035 * properly.  For example, if your device can only drive the low 24-bits
1036 * during bus mastering, then you would pass 0x00ffffff as the mask to
1037 * this function.
1038 */
1039int
1040swiotlb_dma_supported(struct device *hwdev, u64 mask)
1041{
1042	return phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
1043}
1044EXPORT_SYMBOL(swiotlb_dma_supported);
v3.5.6
  1/*
  2 * Dynamic DMA mapping support.
  3 *
  4 * This implementation is a fallback for platforms that do not support
  5 * I/O TLBs (aka DMA address translation hardware).
  6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
  7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
  8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
  9 *	David Mosberger-Tang <davidm@hpl.hp.com>
 10 *
 11 * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
 12 * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
 13 *			unnecessary i-cache flushing.
 14 * 04/07/.. ak		Better overflow handling. Assorted fixes.
 15 * 05/09/10 linville	Add support for syncing ranges, support syncing for
 16 *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
 17 * 08/12/11 beckyb	Add highmem support
 18 */
 19
 20#include <linux/cache.h>
 21#include <linux/dma-mapping.h>
 22#include <linux/mm.h>
 23#include <linux/export.h>
 24#include <linux/spinlock.h>
 25#include <linux/string.h>
 26#include <linux/swiotlb.h>
 27#include <linux/pfn.h>
 28#include <linux/types.h>
 29#include <linux/ctype.h>
 30#include <linux/highmem.h>
 31#include <linux/gfp.h>
 
 32
 33#include <asm/io.h>
 34#include <asm/dma.h>
 35#include <asm/scatterlist.h>
 36
 37#include <linux/init.h>
 38#include <linux/bootmem.h>
 39#include <linux/iommu-helper.h>
 40
 
 
 
 41#define OFFSET(val,align) ((unsigned long)	\
 42	                   ( (val) & ( (align) - 1)))
 43
 44#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
 45
 46/*
 47 * Minimum IO TLB size to bother booting with.  Systems with mainly
 48 * 64bit capable cards will only lightly use the swiotlb.  If we can't
 49 * allocate a contiguous 1MB, we're probably in trouble anyway.
 50 */
 51#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
 52
 53int swiotlb_force;
 54
 55/*
 56 * Used to do a quick range check in swiotlb_tbl_unmap_single and
 57 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
 58 * API.
 59 */
 60static char *io_tlb_start, *io_tlb_end;
 61
 62/*
 63 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
 64 * io_tlb_end.  This is command line adjustable via setup_io_tlb_npages.
 65 */
 66static unsigned long io_tlb_nslabs;
 67
 68/*
 69 * When the IOMMU overflows we return a fallback buffer. This sets the size.
 70 */
 71static unsigned long io_tlb_overflow = 32*1024;
 72
 73static void *io_tlb_overflow_buffer;
 74
 75/*
 76 * This is a free list describing the number of free entries available from
 77 * each index
 78 */
 79static unsigned int *io_tlb_list;
 80static unsigned int io_tlb_index;
 81
 82/*
 
 
 
 
 
 
 83 * We need to save away the original address corresponding to a mapped entry
 84 * for the sync operations.
 85 */
 
 86static phys_addr_t *io_tlb_orig_addr;
 87
 88/*
 89 * Protect the above data structures in the map and unmap calls
 90 */
 91static DEFINE_SPINLOCK(io_tlb_lock);
 92
 93static int late_alloc;
 94
 95static int __init
 96setup_io_tlb_npages(char *str)
 97{
 98	if (isdigit(*str)) {
 99		io_tlb_nslabs = simple_strtoul(str, &str, 0);
100		/* avoid tail segment of size < IO_TLB_SEGSIZE */
101		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
102	}
103	if (*str == ',')
104		++str;
105	if (!strcmp(str, "force"))
106		swiotlb_force = 1;
 
 
 
 
107
108	return 1;
109}
110__setup("swiotlb=", setup_io_tlb_npages);
111/* make io_tlb_overflow tunable too? */
112
113unsigned long swiotlb_nr_tbl(void)
114{
115	return io_tlb_nslabs;
116}
117EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118/* Note that this doesn't work with highmem page */
119static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
120				      volatile void *address)
121{
122	return phys_to_dma(hwdev, virt_to_phys(address));
123}
124
 
 
125void swiotlb_print_info(void)
126{
127	unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
128	phys_addr_t pstart, pend;
129
130	pstart = virt_to_phys(io_tlb_start);
131	pend = virt_to_phys(io_tlb_end);
 
 
 
 
 
132
133	printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
134	       (unsigned long long)pstart, (unsigned long long)pend - 1,
135	       bytes >> 20, io_tlb_start, io_tlb_end - 1);
 
136}
137
138void __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
139{
 
140	unsigned long i, bytes;
141
142	bytes = nslabs << IO_TLB_SHIFT;
143
144	io_tlb_nslabs = nslabs;
145	io_tlb_start = tlb;
146	io_tlb_end = io_tlb_start + bytes;
147
148	/*
 
 
 
 
 
 
 
 
 
 
 
149	 * Allocate and initialize the free list array.  This array is used
150	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
151	 * between io_tlb_start and io_tlb_end.
152	 */
153	io_tlb_list = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
154	for (i = 0; i < io_tlb_nslabs; i++)
155 		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
 
 
 
 
 
 
 
156	io_tlb_index = 0;
157	io_tlb_orig_addr = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
158
159	/*
160	 * Get the overflow emergency buffer
161	 */
162	io_tlb_overflow_buffer = alloc_bootmem_low_pages(PAGE_ALIGN(io_tlb_overflow));
163	if (!io_tlb_overflow_buffer)
164		panic("Cannot allocate SWIOTLB overflow buffer!\n");
165	if (verbose)
166		swiotlb_print_info();
 
 
 
167}
168
169/*
170 * Statically reserve bounce buffer space and initialize bounce buffer data
171 * structures for the software IO TLB used to implement the DMA API.
172 */
173void __init
174swiotlb_init_with_default_size(size_t default_size, int verbose)
175{
 
 
176	unsigned long bytes;
177
178	if (!io_tlb_nslabs) {
179		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
180		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
181	}
182
183	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
184
185	/*
186	 * Get IO TLB memory from the low pages
187	 */
188	io_tlb_start = alloc_bootmem_low_pages(PAGE_ALIGN(bytes));
189	if (!io_tlb_start)
190		panic("Cannot allocate SWIOTLB buffer");
191
192	swiotlb_init_with_tbl(io_tlb_start, io_tlb_nslabs, verbose);
193}
194
195void __init
196swiotlb_init(int verbose)
197{
198	swiotlb_init_with_default_size(64 * (1<<20), verbose);	/* default to 64MB */
 
199}
200
201/*
202 * Systems with larger DMA zones (those that don't support ISA) can
203 * initialize the swiotlb later using the slab allocator if needed.
204 * This should be just like above, but with some error catching.
205 */
206int
207swiotlb_late_init_with_default_size(size_t default_size)
208{
209	unsigned long i, bytes, req_nslabs = io_tlb_nslabs;
 
210	unsigned int order;
 
211
212	if (!io_tlb_nslabs) {
213		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
214		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
215	}
216
217	/*
218	 * Get IO TLB memory from the low pages
219	 */
220	order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
221	io_tlb_nslabs = SLABS_PER_PAGE << order;
222	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
223
224	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
225		io_tlb_start = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
226							order);
227		if (io_tlb_start)
228			break;
229		order--;
230	}
231
232	if (!io_tlb_start)
233		goto cleanup1;
234
 
235	if (order != get_order(bytes)) {
236		printk(KERN_WARNING "Warning: only able to allocate %ld MB "
237		       "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
238		io_tlb_nslabs = SLABS_PER_PAGE << order;
239		bytes = io_tlb_nslabs << IO_TLB_SHIFT;
240	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
241	io_tlb_end = io_tlb_start + bytes;
242	memset(io_tlb_start, 0, bytes);
 
 
 
 
 
 
 
 
 
 
 
243
244	/*
245	 * Allocate and initialize the free list array.  This array is used
246	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
247	 * between io_tlb_start and io_tlb_end.
248	 */
249	io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
250	                              get_order(io_tlb_nslabs * sizeof(int)));
251	if (!io_tlb_list)
252		goto cleanup2;
253
254	for (i = 0; i < io_tlb_nslabs; i++)
255 		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
256	io_tlb_index = 0;
257
258	io_tlb_orig_addr = (phys_addr_t *)
259		__get_free_pages(GFP_KERNEL,
260				 get_order(io_tlb_nslabs *
261					   sizeof(phys_addr_t)));
262	if (!io_tlb_orig_addr)
263		goto cleanup3;
264
265	memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
266
267	/*
268	 * Get the overflow emergency buffer
269	 */
270	io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
271	                                          get_order(io_tlb_overflow));
272	if (!io_tlb_overflow_buffer)
273		goto cleanup4;
274
275	swiotlb_print_info();
276
277	late_alloc = 1;
278
 
 
279	return 0;
280
281cleanup4:
282	free_pages((unsigned long)io_tlb_orig_addr,
283		   get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
284	io_tlb_orig_addr = NULL;
285cleanup3:
286	free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
287	                                                 sizeof(int)));
288	io_tlb_list = NULL;
 
 
 
 
289cleanup2:
290	io_tlb_end = NULL;
291	free_pages((unsigned long)io_tlb_start, order);
292	io_tlb_start = NULL;
293cleanup1:
294	io_tlb_nslabs = req_nslabs;
295	return -ENOMEM;
296}
297
298void __init swiotlb_free(void)
299{
300	if (!io_tlb_overflow_buffer)
301		return;
302
303	if (late_alloc) {
304		free_pages((unsigned long)io_tlb_overflow_buffer,
305			   get_order(io_tlb_overflow));
306		free_pages((unsigned long)io_tlb_orig_addr,
307			   get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
308		free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
309								 sizeof(int)));
310		free_pages((unsigned long)io_tlb_start,
311			   get_order(io_tlb_nslabs << IO_TLB_SHIFT));
312	} else {
313		free_bootmem_late(__pa(io_tlb_overflow_buffer),
314				  PAGE_ALIGN(io_tlb_overflow));
315		free_bootmem_late(__pa(io_tlb_orig_addr),
316				  PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
317		free_bootmem_late(__pa(io_tlb_list),
318				  PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
319		free_bootmem_late(__pa(io_tlb_start),
320				  PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
321	}
322	io_tlb_nslabs = 0;
 
323}
324
325static int is_swiotlb_buffer(phys_addr_t paddr)
326{
327	return paddr >= virt_to_phys(io_tlb_start) &&
328		paddr < virt_to_phys(io_tlb_end);
329}
330
331/*
332 * Bounce: copy the swiotlb buffer back to the original dma location
333 */
334void swiotlb_bounce(phys_addr_t phys, char *dma_addr, size_t size,
335		    enum dma_data_direction dir)
336{
337	unsigned long pfn = PFN_DOWN(phys);
 
338
339	if (PageHighMem(pfn_to_page(pfn))) {
340		/* The buffer does not have a mapping.  Map it in and copy */
341		unsigned int offset = phys & ~PAGE_MASK;
342		char *buffer;
343		unsigned int sz = 0;
344		unsigned long flags;
345
346		while (size) {
347			sz = min_t(size_t, PAGE_SIZE - offset, size);
348
349			local_irq_save(flags);
350			buffer = kmap_atomic(pfn_to_page(pfn));
351			if (dir == DMA_TO_DEVICE)
352				memcpy(dma_addr, buffer + offset, sz);
353			else
354				memcpy(buffer + offset, dma_addr, sz);
355			kunmap_atomic(buffer);
356			local_irq_restore(flags);
357
358			size -= sz;
359			pfn++;
360			dma_addr += sz;
361			offset = 0;
362		}
 
 
363	} else {
364		if (dir == DMA_TO_DEVICE)
365			memcpy(dma_addr, phys_to_virt(phys), size);
366		else
367			memcpy(phys_to_virt(phys), dma_addr, size);
368	}
369}
370EXPORT_SYMBOL_GPL(swiotlb_bounce);
371
372void *swiotlb_tbl_map_single(struct device *hwdev, dma_addr_t tbl_dma_addr,
373			     phys_addr_t phys, size_t size,
374			     enum dma_data_direction dir)
 
 
375{
376	unsigned long flags;
377	char *dma_addr;
378	unsigned int nslots, stride, index, wrap;
379	int i;
380	unsigned long mask;
381	unsigned long offset_slots;
382	unsigned long max_slots;
383
 
 
 
384	mask = dma_get_seg_boundary(hwdev);
385
386	tbl_dma_addr &= mask;
387
388	offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
389
390	/*
391 	 * Carefully handle integer overflow which can occur when mask == ~0UL.
392 	 */
393	max_slots = mask + 1
394		    ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
395		    : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
396
397	/*
398	 * For mappings greater than a page, we limit the stride (and
399	 * hence alignment) to a page size.
400	 */
401	nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
402	if (size > PAGE_SIZE)
403		stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
404	else
405		stride = 1;
406
407	BUG_ON(!nslots);
408
409	/*
410	 * Find suitable number of IO TLB entries size that will fit this
411	 * request and allocate a buffer from that IO TLB pool.
412	 */
413	spin_lock_irqsave(&io_tlb_lock, flags);
414	index = ALIGN(io_tlb_index, stride);
415	if (index >= io_tlb_nslabs)
416		index = 0;
417	wrap = index;
418
419	do {
420		while (iommu_is_span_boundary(index, nslots, offset_slots,
421					      max_slots)) {
422			index += stride;
423			if (index >= io_tlb_nslabs)
424				index = 0;
425			if (index == wrap)
426				goto not_found;
427		}
428
429		/*
430		 * If we find a slot that indicates we have 'nslots' number of
431		 * contiguous buffers, we allocate the buffers from that slot
432		 * and mark the entries as '0' indicating unavailable.
433		 */
434		if (io_tlb_list[index] >= nslots) {
435			int count = 0;
436
437			for (i = index; i < (int) (index + nslots); i++)
438				io_tlb_list[i] = 0;
439			for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
440				io_tlb_list[i] = ++count;
441			dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
442
443			/*
444			 * Update the indices to avoid searching in the next
445			 * round.
446			 */
447			io_tlb_index = ((index + nslots) < io_tlb_nslabs
448					? (index + nslots) : 0);
449
450			goto found;
451		}
452		index += stride;
453		if (index >= io_tlb_nslabs)
454			index = 0;
455	} while (index != wrap);
456
457not_found:
458	spin_unlock_irqrestore(&io_tlb_lock, flags);
459	return NULL;
 
 
460found:
461	spin_unlock_irqrestore(&io_tlb_lock, flags);
462
463	/*
464	 * Save away the mapping from the original address to the DMA address.
465	 * This is needed when we sync the memory.  Then we sync the buffer if
466	 * needed.
467	 */
468	for (i = 0; i < nslots; i++)
469		io_tlb_orig_addr[index+i] = phys + (i << IO_TLB_SHIFT);
470	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
471		swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
 
472
473	return dma_addr;
474}
475EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
476
477/*
478 * Allocates bounce buffer and returns its kernel virtual address.
479 */
480
481static void *
482map_single(struct device *hwdev, phys_addr_t phys, size_t size,
483	   enum dma_data_direction dir)
484{
485	dma_addr_t start_dma_addr = swiotlb_virt_to_bus(hwdev, io_tlb_start);
486
487	return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir);
 
 
 
 
 
 
 
 
488}
489
490/*
491 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
492 */
493void
494swiotlb_tbl_unmap_single(struct device *hwdev, char *dma_addr, size_t size,
495			enum dma_data_direction dir)
496{
497	unsigned long flags;
498	int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
499	int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
500	phys_addr_t phys = io_tlb_orig_addr[index];
501
502	/*
503	 * First, sync the memory before unmapping the entry
504	 */
505	if (phys && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
506		swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
 
 
507
508	/*
509	 * Return the buffer to the free list by setting the corresponding
510	 * entries to indicate the number of contiguous entries available.
511	 * While returning the entries to the free list, we merge the entries
512	 * with slots below and above the pool being returned.
513	 */
514	spin_lock_irqsave(&io_tlb_lock, flags);
515	{
516		count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
517			 io_tlb_list[index + nslots] : 0);
518		/*
519		 * Step 1: return the slots to the free list, merging the
520		 * slots with superceeding slots
521		 */
522		for (i = index + nslots - 1; i >= index; i--)
523			io_tlb_list[i] = ++count;
 
 
524		/*
525		 * Step 2: merge the returned slots with the preceding slots,
526		 * if available (non zero)
527		 */
528		for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
529			io_tlb_list[i] = ++count;
530	}
531	spin_unlock_irqrestore(&io_tlb_lock, flags);
532}
533EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
534
535void
536swiotlb_tbl_sync_single(struct device *hwdev, char *dma_addr, size_t size,
537			enum dma_data_direction dir,
538			enum dma_sync_target target)
539{
540	int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
541	phys_addr_t phys = io_tlb_orig_addr[index];
542
543	phys += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1));
 
 
544
545	switch (target) {
546	case SYNC_FOR_CPU:
547		if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
548			swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
 
549		else
550			BUG_ON(dir != DMA_TO_DEVICE);
551		break;
552	case SYNC_FOR_DEVICE:
553		if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
554			swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
 
555		else
556			BUG_ON(dir != DMA_FROM_DEVICE);
557		break;
558	default:
559		BUG();
560	}
561}
562EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
563
564void *
565swiotlb_alloc_coherent(struct device *hwdev, size_t size,
566		       dma_addr_t *dma_handle, gfp_t flags)
567{
568	dma_addr_t dev_addr;
569	void *ret;
570	int order = get_order(size);
571	u64 dma_mask = DMA_BIT_MASK(32);
572
573	if (hwdev && hwdev->coherent_dma_mask)
574		dma_mask = hwdev->coherent_dma_mask;
575
576	ret = (void *)__get_free_pages(flags, order);
577	if (ret && swiotlb_virt_to_bus(hwdev, ret) + size - 1 > dma_mask) {
578		/*
579		 * The allocated memory isn't reachable by the device.
580		 */
581		free_pages((unsigned long) ret, order);
582		ret = NULL;
 
 
 
583	}
584	if (!ret) {
585		/*
586		 * We are either out of memory or the device can't DMA to
587		 * GFP_DMA memory; fall back on map_single(), which
588		 * will grab memory from the lowest available address range.
589		 */
590		ret = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
591		if (!ret)
592			return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
593	}
594
 
595	memset(ret, 0, size);
596	dev_addr = swiotlb_virt_to_bus(hwdev, ret);
597
598	/* Confirm address can be DMA'd by device */
599	if (dev_addr + size - 1 > dma_mask) {
600		printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
601		       (unsigned long long)dma_mask,
602		       (unsigned long long)dev_addr);
603
604		/* DMA_TO_DEVICE to avoid memcpy in unmap_single */
605		swiotlb_tbl_unmap_single(hwdev, ret, size, DMA_TO_DEVICE);
606		return NULL;
607	}
608	*dma_handle = dev_addr;
609	return ret;
 
 
 
 
 
 
 
610}
611EXPORT_SYMBOL(swiotlb_alloc_coherent);
612
613void
614swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
615		      dma_addr_t dev_addr)
616{
617	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
618
619	WARN_ON(irqs_disabled());
620	if (!is_swiotlb_buffer(paddr))
621		free_pages((unsigned long)vaddr, get_order(size));
622	else
623		/* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
624		swiotlb_tbl_unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE);
 
 
 
 
625}
626EXPORT_SYMBOL(swiotlb_free_coherent);
627
628static void
629swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
630	     int do_panic)
631{
 
 
 
632	/*
633	 * Ran out of IOMMU space for this operation. This is very bad.
634	 * Unfortunately the drivers cannot handle this operation properly.
635	 * unless they check for dma_mapping_error (most don't)
636	 * When the mapping is small enough return a static buffer to limit
637	 * the damage, or panic when the transfer is too big.
638	 */
639	printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
640	       "device %s\n", size, dev ? dev_name(dev) : "?");
641
642	if (size <= io_tlb_overflow || !do_panic)
643		return;
644
645	if (dir == DMA_BIDIRECTIONAL)
646		panic("DMA: Random memory could be DMA accessed\n");
647	if (dir == DMA_FROM_DEVICE)
648		panic("DMA: Random memory could be DMA written\n");
649	if (dir == DMA_TO_DEVICE)
650		panic("DMA: Random memory could be DMA read\n");
651}
652
653/*
654 * Map a single buffer of the indicated size for DMA in streaming mode.  The
655 * physical address to use is returned.
656 *
657 * Once the device is given the dma address, the device owns this memory until
658 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
659 */
660dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
661			    unsigned long offset, size_t size,
662			    enum dma_data_direction dir,
663			    struct dma_attrs *attrs)
664{
665	phys_addr_t phys = page_to_phys(page) + offset;
666	dma_addr_t dev_addr = phys_to_dma(dev, phys);
667	void *map;
668
669	BUG_ON(dir == DMA_NONE);
670	/*
671	 * If the address happens to be in the device's DMA window,
672	 * we can safely return the device addr and not worry about bounce
673	 * buffering it.
674	 */
675	if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
676		return dev_addr;
677
678	/*
679	 * Oh well, have to allocate and map a bounce buffer.
680	 */
681	map = map_single(dev, phys, size, dir);
682	if (!map) {
683		swiotlb_full(dev, size, dir, 1);
684		map = io_tlb_overflow_buffer;
685	}
686
687	dev_addr = swiotlb_virt_to_bus(dev, map);
 
 
 
 
688
689	/*
690	 * Ensure that the address returned is DMA'ble
691	 */
692	if (!dma_capable(dev, dev_addr, size)) {
693		swiotlb_tbl_unmap_single(dev, map, size, dir);
694		dev_addr = swiotlb_virt_to_bus(dev, io_tlb_overflow_buffer);
695	}
696
697	return dev_addr;
698}
699EXPORT_SYMBOL_GPL(swiotlb_map_page);
700
701/*
702 * Unmap a single streaming mode DMA translation.  The dma_addr and size must
703 * match what was provided for in a previous swiotlb_map_page call.  All
704 * other usages are undefined.
705 *
706 * After this call, reads by the cpu to the buffer are guaranteed to see
707 * whatever the device wrote there.
708 */
709static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
710			 size_t size, enum dma_data_direction dir)
 
711{
712	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
713
714	BUG_ON(dir == DMA_NONE);
715
716	if (is_swiotlb_buffer(paddr)) {
717		swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
718		return;
719	}
720
721	if (dir != DMA_FROM_DEVICE)
722		return;
723
724	/*
725	 * phys_to_virt doesn't work with hihgmem page but we could
726	 * call dma_mark_clean() with hihgmem page here. However, we
727	 * are fine since dma_mark_clean() is null on POWERPC. We can
728	 * make dma_mark_clean() take a physical address if necessary.
729	 */
730	dma_mark_clean(phys_to_virt(paddr), size);
731}
732
733void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
734			size_t size, enum dma_data_direction dir,
735			struct dma_attrs *attrs)
736{
737	unmap_single(hwdev, dev_addr, size, dir);
738}
739EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
740
741/*
742 * Make physical memory consistent for a single streaming mode DMA translation
743 * after a transfer.
744 *
745 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
746 * using the cpu, yet do not wish to teardown the dma mapping, you must
747 * call this function before doing so.  At the next point you give the dma
748 * address back to the card, you must first perform a
749 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
750 */
751static void
752swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
753		    size_t size, enum dma_data_direction dir,
754		    enum dma_sync_target target)
755{
756	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
757
758	BUG_ON(dir == DMA_NONE);
759
760	if (is_swiotlb_buffer(paddr)) {
761		swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir,
762				       target);
763		return;
764	}
765
766	if (dir != DMA_FROM_DEVICE)
767		return;
768
769	dma_mark_clean(phys_to_virt(paddr), size);
770}
771
772void
773swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
774			    size_t size, enum dma_data_direction dir)
775{
776	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
777}
778EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
779
780void
781swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
782			       size_t size, enum dma_data_direction dir)
783{
784	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
785}
786EXPORT_SYMBOL(swiotlb_sync_single_for_device);
787
788/*
789 * Map a set of buffers described by scatterlist in streaming mode for DMA.
790 * This is the scatter-gather version of the above swiotlb_map_page
791 * interface.  Here the scatter gather list elements are each tagged with the
792 * appropriate dma address and length.  They are obtained via
793 * sg_dma_{address,length}(SG).
794 *
795 * NOTE: An implementation may be able to use a smaller number of
796 *       DMA address/length pairs than there are SG table elements.
797 *       (for example via virtual mapping capabilities)
798 *       The routine returns the number of addr/length pairs actually
799 *       used, at most nents.
800 *
801 * Device ownership issues as mentioned above for swiotlb_map_page are the
802 * same here.
803 */
804int
805swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
806		     enum dma_data_direction dir, struct dma_attrs *attrs)
807{
808	struct scatterlist *sg;
809	int i;
810
811	BUG_ON(dir == DMA_NONE);
812
813	for_each_sg(sgl, sg, nelems, i) {
814		phys_addr_t paddr = sg_phys(sg);
815		dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
816
817		if (swiotlb_force ||
818		    !dma_capable(hwdev, dev_addr, sg->length)) {
819			void *map = map_single(hwdev, sg_phys(sg),
820					       sg->length, dir);
821			if (!map) {
822				/* Don't panic here, we expect map_sg users
823				   to do proper error handling. */
824				swiotlb_full(hwdev, sg->length, dir, 0);
 
825				swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
826						       attrs);
827				sgl[0].dma_length = 0;
828				return 0;
829			}
830			sg->dma_address = swiotlb_virt_to_bus(hwdev, map);
831		} else
832			sg->dma_address = dev_addr;
833		sg->dma_length = sg->length;
834	}
835	return nelems;
836}
837EXPORT_SYMBOL(swiotlb_map_sg_attrs);
838
839int
840swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
841	       enum dma_data_direction dir)
842{
843	return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
844}
845EXPORT_SYMBOL(swiotlb_map_sg);
846
847/*
848 * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
849 * concerning calls here are the same as for swiotlb_unmap_page() above.
850 */
851void
852swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
853		       int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
 
854{
855	struct scatterlist *sg;
856	int i;
857
858	BUG_ON(dir == DMA_NONE);
859
860	for_each_sg(sgl, sg, nelems, i)
861		unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
862
863}
864EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
865
866void
867swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
868		 enum dma_data_direction dir)
869{
870	return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
871}
872EXPORT_SYMBOL(swiotlb_unmap_sg);
873
874/*
875 * Make physical memory consistent for a set of streaming mode DMA translations
876 * after a transfer.
877 *
878 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
879 * and usage.
880 */
881static void
882swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
883		int nelems, enum dma_data_direction dir,
884		enum dma_sync_target target)
885{
886	struct scatterlist *sg;
887	int i;
888
889	for_each_sg(sgl, sg, nelems, i)
890		swiotlb_sync_single(hwdev, sg->dma_address,
891				    sg->dma_length, dir, target);
892}
893
894void
895swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
896			int nelems, enum dma_data_direction dir)
897{
898	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
899}
900EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
901
902void
903swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
904			   int nelems, enum dma_data_direction dir)
905{
906	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
907}
908EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
909
910int
911swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
912{
913	return (dma_addr == swiotlb_virt_to_bus(hwdev, io_tlb_overflow_buffer));
914}
915EXPORT_SYMBOL(swiotlb_dma_mapping_error);
916
917/*
918 * Return whether the given device DMA address mask can be supported
919 * properly.  For example, if your device can only drive the low 24-bits
920 * during bus mastering, then you would pass 0x00ffffff as the mask to
921 * this function.
922 */
923int
924swiotlb_dma_supported(struct device *hwdev, u64 mask)
925{
926	return swiotlb_virt_to_bus(hwdev, io_tlb_end - 1) <= mask;
927}
928EXPORT_SYMBOL(swiotlb_dma_supported);