Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.10.11.
   1/*
   2 * Implement CPU time clocks for the POSIX clock interface.
   3 */
   4
   5#include <linux/sched.h>
   6#include <linux/posix-timers.h>
   7#include <linux/errno.h>
   8#include <linux/math64.h>
   9#include <asm/uaccess.h>
  10#include <linux/kernel_stat.h>
  11#include <trace/events/timer.h>
  12
  13/*
  14 * Called after updating RLIMIT_CPU to run cpu timer and update
  15 * tsk->signal->cputime_expires expiration cache if necessary. Needs
  16 * siglock protection since other code may update expiration cache as
  17 * well.
  18 */
  19void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
  20{
  21	cputime_t cputime = secs_to_cputime(rlim_new);
  22
  23	spin_lock_irq(&task->sighand->siglock);
  24	set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
  25	spin_unlock_irq(&task->sighand->siglock);
  26}
  27
  28static int check_clock(const clockid_t which_clock)
  29{
  30	int error = 0;
  31	struct task_struct *p;
  32	const pid_t pid = CPUCLOCK_PID(which_clock);
  33
  34	if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
  35		return -EINVAL;
  36
  37	if (pid == 0)
  38		return 0;
  39
  40	rcu_read_lock();
  41	p = find_task_by_vpid(pid);
  42	if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
  43		   same_thread_group(p, current) : has_group_leader_pid(p))) {
  44		error = -EINVAL;
  45	}
  46	rcu_read_unlock();
  47
  48	return error;
  49}
  50
  51static inline union cpu_time_count
  52timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
  53{
  54	union cpu_time_count ret;
  55	ret.sched = 0;		/* high half always zero when .cpu used */
  56	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
  57		ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
  58	} else {
  59		ret.cpu = timespec_to_cputime(tp);
  60	}
  61	return ret;
  62}
  63
  64static void sample_to_timespec(const clockid_t which_clock,
  65			       union cpu_time_count cpu,
  66			       struct timespec *tp)
  67{
  68	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
  69		*tp = ns_to_timespec(cpu.sched);
  70	else
  71		cputime_to_timespec(cpu.cpu, tp);
  72}
  73
  74static inline int cpu_time_before(const clockid_t which_clock,
  75				  union cpu_time_count now,
  76				  union cpu_time_count then)
  77{
  78	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
  79		return now.sched < then.sched;
  80	}  else {
  81		return now.cpu < then.cpu;
  82	}
  83}
  84static inline void cpu_time_add(const clockid_t which_clock,
  85				union cpu_time_count *acc,
  86			        union cpu_time_count val)
  87{
  88	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
  89		acc->sched += val.sched;
  90	}  else {
  91		acc->cpu += val.cpu;
  92	}
  93}
  94static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
  95						union cpu_time_count a,
  96						union cpu_time_count b)
  97{
  98	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
  99		a.sched -= b.sched;
 100	}  else {
 101		a.cpu -= b.cpu;
 102	}
 103	return a;
 104}
 105
 106/*
 107 * Update expiry time from increment, and increase overrun count,
 108 * given the current clock sample.
 109 */
 110static void bump_cpu_timer(struct k_itimer *timer,
 111				  union cpu_time_count now)
 112{
 113	int i;
 114
 115	if (timer->it.cpu.incr.sched == 0)
 116		return;
 117
 118	if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
 119		unsigned long long delta, incr;
 120
 121		if (now.sched < timer->it.cpu.expires.sched)
 122			return;
 123		incr = timer->it.cpu.incr.sched;
 124		delta = now.sched + incr - timer->it.cpu.expires.sched;
 125		/* Don't use (incr*2 < delta), incr*2 might overflow. */
 126		for (i = 0; incr < delta - incr; i++)
 127			incr = incr << 1;
 128		for (; i >= 0; incr >>= 1, i--) {
 129			if (delta < incr)
 130				continue;
 131			timer->it.cpu.expires.sched += incr;
 132			timer->it_overrun += 1 << i;
 133			delta -= incr;
 134		}
 135	} else {
 136		cputime_t delta, incr;
 137
 138		if (now.cpu < timer->it.cpu.expires.cpu)
 139			return;
 140		incr = timer->it.cpu.incr.cpu;
 141		delta = now.cpu + incr - timer->it.cpu.expires.cpu;
 142		/* Don't use (incr*2 < delta), incr*2 might overflow. */
 143		for (i = 0; incr < delta - incr; i++)
 144			     incr += incr;
 145		for (; i >= 0; incr = incr >> 1, i--) {
 146			if (delta < incr)
 147				continue;
 148			timer->it.cpu.expires.cpu += incr;
 149			timer->it_overrun += 1 << i;
 150			delta -= incr;
 151		}
 152	}
 153}
 154
 155static inline cputime_t prof_ticks(struct task_struct *p)
 156{
 157	return p->utime + p->stime;
 158}
 159static inline cputime_t virt_ticks(struct task_struct *p)
 160{
 161	return p->utime;
 162}
 163
 164static int
 165posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
 166{
 167	int error = check_clock(which_clock);
 168	if (!error) {
 169		tp->tv_sec = 0;
 170		tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
 171		if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
 172			/*
 173			 * If sched_clock is using a cycle counter, we
 174			 * don't have any idea of its true resolution
 175			 * exported, but it is much more than 1s/HZ.
 176			 */
 177			tp->tv_nsec = 1;
 178		}
 179	}
 180	return error;
 181}
 182
 183static int
 184posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
 185{
 186	/*
 187	 * You can never reset a CPU clock, but we check for other errors
 188	 * in the call before failing with EPERM.
 189	 */
 190	int error = check_clock(which_clock);
 191	if (error == 0) {
 192		error = -EPERM;
 193	}
 194	return error;
 195}
 196
 197
 198/*
 199 * Sample a per-thread clock for the given task.
 200 */
 201static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
 202			    union cpu_time_count *cpu)
 203{
 204	switch (CPUCLOCK_WHICH(which_clock)) {
 205	default:
 206		return -EINVAL;
 207	case CPUCLOCK_PROF:
 208		cpu->cpu = prof_ticks(p);
 209		break;
 210	case CPUCLOCK_VIRT:
 211		cpu->cpu = virt_ticks(p);
 212		break;
 213	case CPUCLOCK_SCHED:
 214		cpu->sched = task_sched_runtime(p);
 215		break;
 216	}
 217	return 0;
 218}
 219
 220void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
 221{
 222	struct signal_struct *sig = tsk->signal;
 223	struct task_struct *t;
 224
 225	times->utime = sig->utime;
 226	times->stime = sig->stime;
 227	times->sum_exec_runtime = sig->sum_sched_runtime;
 228
 229	rcu_read_lock();
 230	/* make sure we can trust tsk->thread_group list */
 231	if (!likely(pid_alive(tsk)))
 232		goto out;
 233
 234	t = tsk;
 235	do {
 236		times->utime += t->utime;
 237		times->stime += t->stime;
 238		times->sum_exec_runtime += task_sched_runtime(t);
 239	} while_each_thread(tsk, t);
 240out:
 241	rcu_read_unlock();
 242}
 243
 244static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
 245{
 246	if (b->utime > a->utime)
 247		a->utime = b->utime;
 248
 249	if (b->stime > a->stime)
 250		a->stime = b->stime;
 251
 252	if (b->sum_exec_runtime > a->sum_exec_runtime)
 253		a->sum_exec_runtime = b->sum_exec_runtime;
 254}
 255
 256void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
 257{
 258	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
 259	struct task_cputime sum;
 260	unsigned long flags;
 261
 262	if (!cputimer->running) {
 263		/*
 264		 * The POSIX timer interface allows for absolute time expiry
 265		 * values through the TIMER_ABSTIME flag, therefore we have
 266		 * to synchronize the timer to the clock every time we start
 267		 * it.
 268		 */
 269		thread_group_cputime(tsk, &sum);
 270		raw_spin_lock_irqsave(&cputimer->lock, flags);
 271		cputimer->running = 1;
 272		update_gt_cputime(&cputimer->cputime, &sum);
 273	} else
 274		raw_spin_lock_irqsave(&cputimer->lock, flags);
 275	*times = cputimer->cputime;
 276	raw_spin_unlock_irqrestore(&cputimer->lock, flags);
 277}
 278
 279/*
 280 * Sample a process (thread group) clock for the given group_leader task.
 281 * Must be called with tasklist_lock held for reading.
 282 */
 283static int cpu_clock_sample_group(const clockid_t which_clock,
 284				  struct task_struct *p,
 285				  union cpu_time_count *cpu)
 286{
 287	struct task_cputime cputime;
 288
 289	switch (CPUCLOCK_WHICH(which_clock)) {
 290	default:
 291		return -EINVAL;
 292	case CPUCLOCK_PROF:
 293		thread_group_cputime(p, &cputime);
 294		cpu->cpu = cputime.utime + cputime.stime;
 295		break;
 296	case CPUCLOCK_VIRT:
 297		thread_group_cputime(p, &cputime);
 298		cpu->cpu = cputime.utime;
 299		break;
 300	case CPUCLOCK_SCHED:
 301		thread_group_cputime(p, &cputime);
 302		cpu->sched = cputime.sum_exec_runtime;
 303		break;
 304	}
 305	return 0;
 306}
 307
 308
 309static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
 310{
 311	const pid_t pid = CPUCLOCK_PID(which_clock);
 312	int error = -EINVAL;
 313	union cpu_time_count rtn;
 314
 315	if (pid == 0) {
 316		/*
 317		 * Special case constant value for our own clocks.
 318		 * We don't have to do any lookup to find ourselves.
 319		 */
 320		if (CPUCLOCK_PERTHREAD(which_clock)) {
 321			/*
 322			 * Sampling just ourselves we can do with no locking.
 323			 */
 324			error = cpu_clock_sample(which_clock,
 325						 current, &rtn);
 326		} else {
 327			read_lock(&tasklist_lock);
 328			error = cpu_clock_sample_group(which_clock,
 329						       current, &rtn);
 330			read_unlock(&tasklist_lock);
 331		}
 332	} else {
 333		/*
 334		 * Find the given PID, and validate that the caller
 335		 * should be able to see it.
 336		 */
 337		struct task_struct *p;
 338		rcu_read_lock();
 339		p = find_task_by_vpid(pid);
 340		if (p) {
 341			if (CPUCLOCK_PERTHREAD(which_clock)) {
 342				if (same_thread_group(p, current)) {
 343					error = cpu_clock_sample(which_clock,
 344								 p, &rtn);
 345				}
 346			} else {
 347				read_lock(&tasklist_lock);
 348				if (thread_group_leader(p) && p->sighand) {
 349					error =
 350					    cpu_clock_sample_group(which_clock,
 351							           p, &rtn);
 352				}
 353				read_unlock(&tasklist_lock);
 354			}
 355		}
 356		rcu_read_unlock();
 357	}
 358
 359	if (error)
 360		return error;
 361	sample_to_timespec(which_clock, rtn, tp);
 362	return 0;
 363}
 364
 365
 366/*
 367 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
 368 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
 369 * new timer already all-zeros initialized.
 370 */
 371static int posix_cpu_timer_create(struct k_itimer *new_timer)
 372{
 373	int ret = 0;
 374	const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
 375	struct task_struct *p;
 376
 377	if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
 378		return -EINVAL;
 379
 380	INIT_LIST_HEAD(&new_timer->it.cpu.entry);
 381
 382	rcu_read_lock();
 383	if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
 384		if (pid == 0) {
 385			p = current;
 386		} else {
 387			p = find_task_by_vpid(pid);
 388			if (p && !same_thread_group(p, current))
 389				p = NULL;
 390		}
 391	} else {
 392		if (pid == 0) {
 393			p = current->group_leader;
 394		} else {
 395			p = find_task_by_vpid(pid);
 396			if (p && !has_group_leader_pid(p))
 397				p = NULL;
 398		}
 399	}
 400	new_timer->it.cpu.task = p;
 401	if (p) {
 402		get_task_struct(p);
 403	} else {
 404		ret = -EINVAL;
 405	}
 406	rcu_read_unlock();
 407
 408	return ret;
 409}
 410
 411/*
 412 * Clean up a CPU-clock timer that is about to be destroyed.
 413 * This is called from timer deletion with the timer already locked.
 414 * If we return TIMER_RETRY, it's necessary to release the timer's lock
 415 * and try again.  (This happens when the timer is in the middle of firing.)
 416 */
 417static int posix_cpu_timer_del(struct k_itimer *timer)
 418{
 419	struct task_struct *p = timer->it.cpu.task;
 420	int ret = 0;
 421
 422	if (likely(p != NULL)) {
 423		read_lock(&tasklist_lock);
 424		if (unlikely(p->sighand == NULL)) {
 425			/*
 426			 * We raced with the reaping of the task.
 427			 * The deletion should have cleared us off the list.
 428			 */
 429			BUG_ON(!list_empty(&timer->it.cpu.entry));
 430		} else {
 431			spin_lock(&p->sighand->siglock);
 432			if (timer->it.cpu.firing)
 433				ret = TIMER_RETRY;
 434			else
 435				list_del(&timer->it.cpu.entry);
 436			spin_unlock(&p->sighand->siglock);
 437		}
 438		read_unlock(&tasklist_lock);
 439
 440		if (!ret)
 441			put_task_struct(p);
 442	}
 443
 444	return ret;
 445}
 446
 447/*
 448 * Clean out CPU timers still ticking when a thread exited.  The task
 449 * pointer is cleared, and the expiry time is replaced with the residual
 450 * time for later timer_gettime calls to return.
 451 * This must be called with the siglock held.
 452 */
 453static void cleanup_timers(struct list_head *head,
 454			   cputime_t utime, cputime_t stime,
 455			   unsigned long long sum_exec_runtime)
 456{
 457	struct cpu_timer_list *timer, *next;
 458	cputime_t ptime = utime + stime;
 459
 460	list_for_each_entry_safe(timer, next, head, entry) {
 461		list_del_init(&timer->entry);
 462		if (timer->expires.cpu < ptime) {
 463			timer->expires.cpu = 0;
 464		} else {
 465			timer->expires.cpu -= ptime;
 466		}
 467	}
 468
 469	++head;
 470	list_for_each_entry_safe(timer, next, head, entry) {
 471		list_del_init(&timer->entry);
 472		if (timer->expires.cpu < utime) {
 473			timer->expires.cpu = 0;
 474		} else {
 475			timer->expires.cpu -= utime;
 476		}
 477	}
 478
 479	++head;
 480	list_for_each_entry_safe(timer, next, head, entry) {
 481		list_del_init(&timer->entry);
 482		if (timer->expires.sched < sum_exec_runtime) {
 483			timer->expires.sched = 0;
 484		} else {
 485			timer->expires.sched -= sum_exec_runtime;
 486		}
 487	}
 488}
 489
 490/*
 491 * These are both called with the siglock held, when the current thread
 492 * is being reaped.  When the final (leader) thread in the group is reaped,
 493 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
 494 */
 495void posix_cpu_timers_exit(struct task_struct *tsk)
 496{
 497	cleanup_timers(tsk->cpu_timers,
 498		       tsk->utime, tsk->stime, tsk->se.sum_exec_runtime);
 499
 500}
 501void posix_cpu_timers_exit_group(struct task_struct *tsk)
 502{
 503	struct signal_struct *const sig = tsk->signal;
 504
 505	cleanup_timers(tsk->signal->cpu_timers,
 506		       tsk->utime + sig->utime, tsk->stime + sig->stime,
 507		       tsk->se.sum_exec_runtime + sig->sum_sched_runtime);
 508}
 509
 510static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
 511{
 512	/*
 513	 * That's all for this thread or process.
 514	 * We leave our residual in expires to be reported.
 515	 */
 516	put_task_struct(timer->it.cpu.task);
 517	timer->it.cpu.task = NULL;
 518	timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
 519					     timer->it.cpu.expires,
 520					     now);
 521}
 522
 523static inline int expires_gt(cputime_t expires, cputime_t new_exp)
 524{
 525	return expires == 0 || expires > new_exp;
 526}
 527
 528/*
 529 * Insert the timer on the appropriate list before any timers that
 530 * expire later.  This must be called with the tasklist_lock held
 531 * for reading, interrupts disabled and p->sighand->siglock taken.
 532 */
 533static void arm_timer(struct k_itimer *timer)
 534{
 535	struct task_struct *p = timer->it.cpu.task;
 536	struct list_head *head, *listpos;
 537	struct task_cputime *cputime_expires;
 538	struct cpu_timer_list *const nt = &timer->it.cpu;
 539	struct cpu_timer_list *next;
 540
 541	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 542		head = p->cpu_timers;
 543		cputime_expires = &p->cputime_expires;
 544	} else {
 545		head = p->signal->cpu_timers;
 546		cputime_expires = &p->signal->cputime_expires;
 547	}
 548	head += CPUCLOCK_WHICH(timer->it_clock);
 549
 550	listpos = head;
 551	list_for_each_entry(next, head, entry) {
 552		if (cpu_time_before(timer->it_clock, nt->expires, next->expires))
 553			break;
 554		listpos = &next->entry;
 555	}
 556	list_add(&nt->entry, listpos);
 557
 558	if (listpos == head) {
 559		union cpu_time_count *exp = &nt->expires;
 560
 561		/*
 562		 * We are the new earliest-expiring POSIX 1.b timer, hence
 563		 * need to update expiration cache. Take into account that
 564		 * for process timers we share expiration cache with itimers
 565		 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
 566		 */
 567
 568		switch (CPUCLOCK_WHICH(timer->it_clock)) {
 569		case CPUCLOCK_PROF:
 570			if (expires_gt(cputime_expires->prof_exp, exp->cpu))
 571				cputime_expires->prof_exp = exp->cpu;
 572			break;
 573		case CPUCLOCK_VIRT:
 574			if (expires_gt(cputime_expires->virt_exp, exp->cpu))
 575				cputime_expires->virt_exp = exp->cpu;
 576			break;
 577		case CPUCLOCK_SCHED:
 578			if (cputime_expires->sched_exp == 0 ||
 579			    cputime_expires->sched_exp > exp->sched)
 580				cputime_expires->sched_exp = exp->sched;
 581			break;
 582		}
 583	}
 584}
 585
 586/*
 587 * The timer is locked, fire it and arrange for its reload.
 588 */
 589static void cpu_timer_fire(struct k_itimer *timer)
 590{
 591	if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
 592		/*
 593		 * User don't want any signal.
 594		 */
 595		timer->it.cpu.expires.sched = 0;
 596	} else if (unlikely(timer->sigq == NULL)) {
 597		/*
 598		 * This a special case for clock_nanosleep,
 599		 * not a normal timer from sys_timer_create.
 600		 */
 601		wake_up_process(timer->it_process);
 602		timer->it.cpu.expires.sched = 0;
 603	} else if (timer->it.cpu.incr.sched == 0) {
 604		/*
 605		 * One-shot timer.  Clear it as soon as it's fired.
 606		 */
 607		posix_timer_event(timer, 0);
 608		timer->it.cpu.expires.sched = 0;
 609	} else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
 610		/*
 611		 * The signal did not get queued because the signal
 612		 * was ignored, so we won't get any callback to
 613		 * reload the timer.  But we need to keep it
 614		 * ticking in case the signal is deliverable next time.
 615		 */
 616		posix_cpu_timer_schedule(timer);
 617	}
 618}
 619
 620/*
 621 * Sample a process (thread group) timer for the given group_leader task.
 622 * Must be called with tasklist_lock held for reading.
 623 */
 624static int cpu_timer_sample_group(const clockid_t which_clock,
 625				  struct task_struct *p,
 626				  union cpu_time_count *cpu)
 627{
 628	struct task_cputime cputime;
 629
 630	thread_group_cputimer(p, &cputime);
 631	switch (CPUCLOCK_WHICH(which_clock)) {
 632	default:
 633		return -EINVAL;
 634	case CPUCLOCK_PROF:
 635		cpu->cpu = cputime.utime + cputime.stime;
 636		break;
 637	case CPUCLOCK_VIRT:
 638		cpu->cpu = cputime.utime;
 639		break;
 640	case CPUCLOCK_SCHED:
 641		cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p);
 642		break;
 643	}
 644	return 0;
 645}
 646
 647/*
 648 * Guts of sys_timer_settime for CPU timers.
 649 * This is called with the timer locked and interrupts disabled.
 650 * If we return TIMER_RETRY, it's necessary to release the timer's lock
 651 * and try again.  (This happens when the timer is in the middle of firing.)
 652 */
 653static int posix_cpu_timer_set(struct k_itimer *timer, int flags,
 654			       struct itimerspec *new, struct itimerspec *old)
 655{
 656	struct task_struct *p = timer->it.cpu.task;
 657	union cpu_time_count old_expires, new_expires, old_incr, val;
 658	int ret;
 659
 660	if (unlikely(p == NULL)) {
 661		/*
 662		 * Timer refers to a dead task's clock.
 663		 */
 664		return -ESRCH;
 665	}
 666
 667	new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
 668
 669	read_lock(&tasklist_lock);
 670	/*
 671	 * We need the tasklist_lock to protect against reaping that
 672	 * clears p->sighand.  If p has just been reaped, we can no
 673	 * longer get any information about it at all.
 674	 */
 675	if (unlikely(p->sighand == NULL)) {
 676		read_unlock(&tasklist_lock);
 677		put_task_struct(p);
 678		timer->it.cpu.task = NULL;
 679		return -ESRCH;
 680	}
 681
 682	/*
 683	 * Disarm any old timer after extracting its expiry time.
 684	 */
 685	BUG_ON(!irqs_disabled());
 686
 687	ret = 0;
 688	old_incr = timer->it.cpu.incr;
 689	spin_lock(&p->sighand->siglock);
 690	old_expires = timer->it.cpu.expires;
 691	if (unlikely(timer->it.cpu.firing)) {
 692		timer->it.cpu.firing = -1;
 693		ret = TIMER_RETRY;
 694	} else
 695		list_del_init(&timer->it.cpu.entry);
 696
 697	/*
 698	 * We need to sample the current value to convert the new
 699	 * value from to relative and absolute, and to convert the
 700	 * old value from absolute to relative.  To set a process
 701	 * timer, we need a sample to balance the thread expiry
 702	 * times (in arm_timer).  With an absolute time, we must
 703	 * check if it's already passed.  In short, we need a sample.
 704	 */
 705	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 706		cpu_clock_sample(timer->it_clock, p, &val);
 707	} else {
 708		cpu_timer_sample_group(timer->it_clock, p, &val);
 709	}
 710
 711	if (old) {
 712		if (old_expires.sched == 0) {
 713			old->it_value.tv_sec = 0;
 714			old->it_value.tv_nsec = 0;
 715		} else {
 716			/*
 717			 * Update the timer in case it has
 718			 * overrun already.  If it has,
 719			 * we'll report it as having overrun
 720			 * and with the next reloaded timer
 721			 * already ticking, though we are
 722			 * swallowing that pending
 723			 * notification here to install the
 724			 * new setting.
 725			 */
 726			bump_cpu_timer(timer, val);
 727			if (cpu_time_before(timer->it_clock, val,
 728					    timer->it.cpu.expires)) {
 729				old_expires = cpu_time_sub(
 730					timer->it_clock,
 731					timer->it.cpu.expires, val);
 732				sample_to_timespec(timer->it_clock,
 733						   old_expires,
 734						   &old->it_value);
 735			} else {
 736				old->it_value.tv_nsec = 1;
 737				old->it_value.tv_sec = 0;
 738			}
 739		}
 740	}
 741
 742	if (unlikely(ret)) {
 743		/*
 744		 * We are colliding with the timer actually firing.
 745		 * Punt after filling in the timer's old value, and
 746		 * disable this firing since we are already reporting
 747		 * it as an overrun (thanks to bump_cpu_timer above).
 748		 */
 749		spin_unlock(&p->sighand->siglock);
 750		read_unlock(&tasklist_lock);
 751		goto out;
 752	}
 753
 754	if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
 755		cpu_time_add(timer->it_clock, &new_expires, val);
 756	}
 757
 758	/*
 759	 * Install the new expiry time (or zero).
 760	 * For a timer with no notification action, we don't actually
 761	 * arm the timer (we'll just fake it for timer_gettime).
 762	 */
 763	timer->it.cpu.expires = new_expires;
 764	if (new_expires.sched != 0 &&
 765	    cpu_time_before(timer->it_clock, val, new_expires)) {
 766		arm_timer(timer);
 767	}
 768
 769	spin_unlock(&p->sighand->siglock);
 770	read_unlock(&tasklist_lock);
 771
 772	/*
 773	 * Install the new reload setting, and
 774	 * set up the signal and overrun bookkeeping.
 775	 */
 776	timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
 777						&new->it_interval);
 778
 779	/*
 780	 * This acts as a modification timestamp for the timer,
 781	 * so any automatic reload attempt will punt on seeing
 782	 * that we have reset the timer manually.
 783	 */
 784	timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
 785		~REQUEUE_PENDING;
 786	timer->it_overrun_last = 0;
 787	timer->it_overrun = -1;
 788
 789	if (new_expires.sched != 0 &&
 790	    !cpu_time_before(timer->it_clock, val, new_expires)) {
 791		/*
 792		 * The designated time already passed, so we notify
 793		 * immediately, even if the thread never runs to
 794		 * accumulate more time on this clock.
 795		 */
 796		cpu_timer_fire(timer);
 797	}
 798
 799	ret = 0;
 800 out:
 801	if (old) {
 802		sample_to_timespec(timer->it_clock,
 803				   old_incr, &old->it_interval);
 804	}
 805	return ret;
 806}
 807
 808static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
 809{
 810	union cpu_time_count now;
 811	struct task_struct *p = timer->it.cpu.task;
 812	int clear_dead;
 813
 814	/*
 815	 * Easy part: convert the reload time.
 816	 */
 817	sample_to_timespec(timer->it_clock,
 818			   timer->it.cpu.incr, &itp->it_interval);
 819
 820	if (timer->it.cpu.expires.sched == 0) {	/* Timer not armed at all.  */
 821		itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
 822		return;
 823	}
 824
 825	if (unlikely(p == NULL)) {
 826		/*
 827		 * This task already died and the timer will never fire.
 828		 * In this case, expires is actually the dead value.
 829		 */
 830	dead:
 831		sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
 832				   &itp->it_value);
 833		return;
 834	}
 835
 836	/*
 837	 * Sample the clock to take the difference with the expiry time.
 838	 */
 839	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 840		cpu_clock_sample(timer->it_clock, p, &now);
 841		clear_dead = p->exit_state;
 842	} else {
 843		read_lock(&tasklist_lock);
 844		if (unlikely(p->sighand == NULL)) {
 845			/*
 846			 * The process has been reaped.
 847			 * We can't even collect a sample any more.
 848			 * Call the timer disarmed, nothing else to do.
 849			 */
 850			put_task_struct(p);
 851			timer->it.cpu.task = NULL;
 852			timer->it.cpu.expires.sched = 0;
 853			read_unlock(&tasklist_lock);
 854			goto dead;
 855		} else {
 856			cpu_timer_sample_group(timer->it_clock, p, &now);
 857			clear_dead = (unlikely(p->exit_state) &&
 858				      thread_group_empty(p));
 859		}
 860		read_unlock(&tasklist_lock);
 861	}
 862
 863	if (unlikely(clear_dead)) {
 864		/*
 865		 * We've noticed that the thread is dead, but
 866		 * not yet reaped.  Take this opportunity to
 867		 * drop our task ref.
 868		 */
 869		clear_dead_task(timer, now);
 870		goto dead;
 871	}
 872
 873	if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
 874		sample_to_timespec(timer->it_clock,
 875				   cpu_time_sub(timer->it_clock,
 876						timer->it.cpu.expires, now),
 877				   &itp->it_value);
 878	} else {
 879		/*
 880		 * The timer should have expired already, but the firing
 881		 * hasn't taken place yet.  Say it's just about to expire.
 882		 */
 883		itp->it_value.tv_nsec = 1;
 884		itp->it_value.tv_sec = 0;
 885	}
 886}
 887
 888/*
 889 * Check for any per-thread CPU timers that have fired and move them off
 890 * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
 891 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
 892 */
 893static void check_thread_timers(struct task_struct *tsk,
 894				struct list_head *firing)
 895{
 896	int maxfire;
 897	struct list_head *timers = tsk->cpu_timers;
 898	struct signal_struct *const sig = tsk->signal;
 899	unsigned long soft;
 900
 901	maxfire = 20;
 902	tsk->cputime_expires.prof_exp = 0;
 903	while (!list_empty(timers)) {
 904		struct cpu_timer_list *t = list_first_entry(timers,
 905						      struct cpu_timer_list,
 906						      entry);
 907		if (!--maxfire || prof_ticks(tsk) < t->expires.cpu) {
 908			tsk->cputime_expires.prof_exp = t->expires.cpu;
 909			break;
 910		}
 911		t->firing = 1;
 912		list_move_tail(&t->entry, firing);
 913	}
 914
 915	++timers;
 916	maxfire = 20;
 917	tsk->cputime_expires.virt_exp = 0;
 918	while (!list_empty(timers)) {
 919		struct cpu_timer_list *t = list_first_entry(timers,
 920						      struct cpu_timer_list,
 921						      entry);
 922		if (!--maxfire || virt_ticks(tsk) < t->expires.cpu) {
 923			tsk->cputime_expires.virt_exp = t->expires.cpu;
 924			break;
 925		}
 926		t->firing = 1;
 927		list_move_tail(&t->entry, firing);
 928	}
 929
 930	++timers;
 931	maxfire = 20;
 932	tsk->cputime_expires.sched_exp = 0;
 933	while (!list_empty(timers)) {
 934		struct cpu_timer_list *t = list_first_entry(timers,
 935						      struct cpu_timer_list,
 936						      entry);
 937		if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
 938			tsk->cputime_expires.sched_exp = t->expires.sched;
 939			break;
 940		}
 941		t->firing = 1;
 942		list_move_tail(&t->entry, firing);
 943	}
 944
 945	/*
 946	 * Check for the special case thread timers.
 947	 */
 948	soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
 949	if (soft != RLIM_INFINITY) {
 950		unsigned long hard =
 951			ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
 952
 953		if (hard != RLIM_INFINITY &&
 954		    tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
 955			/*
 956			 * At the hard limit, we just die.
 957			 * No need to calculate anything else now.
 958			 */
 959			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
 960			return;
 961		}
 962		if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
 963			/*
 964			 * At the soft limit, send a SIGXCPU every second.
 965			 */
 966			if (soft < hard) {
 967				soft += USEC_PER_SEC;
 968				sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
 969			}
 970			printk(KERN_INFO
 971				"RT Watchdog Timeout: %s[%d]\n",
 972				tsk->comm, task_pid_nr(tsk));
 973			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
 974		}
 975	}
 976}
 977
 978static void stop_process_timers(struct signal_struct *sig)
 979{
 980	struct thread_group_cputimer *cputimer = &sig->cputimer;
 981	unsigned long flags;
 982
 983	raw_spin_lock_irqsave(&cputimer->lock, flags);
 984	cputimer->running = 0;
 985	raw_spin_unlock_irqrestore(&cputimer->lock, flags);
 986}
 987
 988static u32 onecputick;
 989
 990static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
 991			     cputime_t *expires, cputime_t cur_time, int signo)
 992{
 993	if (!it->expires)
 994		return;
 995
 996	if (cur_time >= it->expires) {
 997		if (it->incr) {
 998			it->expires += it->incr;
 999			it->error += it->incr_error;
1000			if (it->error >= onecputick) {
1001				it->expires -= cputime_one_jiffy;
1002				it->error -= onecputick;
1003			}
1004		} else {
1005			it->expires = 0;
1006		}
1007
1008		trace_itimer_expire(signo == SIGPROF ?
1009				    ITIMER_PROF : ITIMER_VIRTUAL,
1010				    tsk->signal->leader_pid, cur_time);
1011		__group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
1012	}
1013
1014	if (it->expires && (!*expires || it->expires < *expires)) {
1015		*expires = it->expires;
1016	}
1017}
1018
1019/**
1020 * task_cputime_zero - Check a task_cputime struct for all zero fields.
1021 *
1022 * @cputime:	The struct to compare.
1023 *
1024 * Checks @cputime to see if all fields are zero.  Returns true if all fields
1025 * are zero, false if any field is nonzero.
1026 */
1027static inline int task_cputime_zero(const struct task_cputime *cputime)
1028{
1029	if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
1030		return 1;
1031	return 0;
1032}
1033
1034/*
1035 * Check for any per-thread CPU timers that have fired and move them
1036 * off the tsk->*_timers list onto the firing list.  Per-thread timers
1037 * have already been taken off.
1038 */
1039static void check_process_timers(struct task_struct *tsk,
1040				 struct list_head *firing)
1041{
1042	int maxfire;
1043	struct signal_struct *const sig = tsk->signal;
1044	cputime_t utime, ptime, virt_expires, prof_expires;
1045	unsigned long long sum_sched_runtime, sched_expires;
1046	struct list_head *timers = sig->cpu_timers;
1047	struct task_cputime cputime;
1048	unsigned long soft;
1049
1050	/*
1051	 * Collect the current process totals.
1052	 */
1053	thread_group_cputimer(tsk, &cputime);
1054	utime = cputime.utime;
1055	ptime = utime + cputime.stime;
1056	sum_sched_runtime = cputime.sum_exec_runtime;
1057	maxfire = 20;
1058	prof_expires = 0;
1059	while (!list_empty(timers)) {
1060		struct cpu_timer_list *tl = list_first_entry(timers,
1061						      struct cpu_timer_list,
1062						      entry);
1063		if (!--maxfire || ptime < tl->expires.cpu) {
1064			prof_expires = tl->expires.cpu;
1065			break;
1066		}
1067		tl->firing = 1;
1068		list_move_tail(&tl->entry, firing);
1069	}
1070
1071	++timers;
1072	maxfire = 20;
1073	virt_expires = 0;
1074	while (!list_empty(timers)) {
1075		struct cpu_timer_list *tl = list_first_entry(timers,
1076						      struct cpu_timer_list,
1077						      entry);
1078		if (!--maxfire || utime < tl->expires.cpu) {
1079			virt_expires = tl->expires.cpu;
1080			break;
1081		}
1082		tl->firing = 1;
1083		list_move_tail(&tl->entry, firing);
1084	}
1085
1086	++timers;
1087	maxfire = 20;
1088	sched_expires = 0;
1089	while (!list_empty(timers)) {
1090		struct cpu_timer_list *tl = list_first_entry(timers,
1091						      struct cpu_timer_list,
1092						      entry);
1093		if (!--maxfire || sum_sched_runtime < tl->expires.sched) {
1094			sched_expires = tl->expires.sched;
1095			break;
1096		}
1097		tl->firing = 1;
1098		list_move_tail(&tl->entry, firing);
1099	}
1100
1101	/*
1102	 * Check for the special case process timers.
1103	 */
1104	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
1105			 SIGPROF);
1106	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
1107			 SIGVTALRM);
1108	soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1109	if (soft != RLIM_INFINITY) {
1110		unsigned long psecs = cputime_to_secs(ptime);
1111		unsigned long hard =
1112			ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
1113		cputime_t x;
1114		if (psecs >= hard) {
1115			/*
1116			 * At the hard limit, we just die.
1117			 * No need to calculate anything else now.
1118			 */
1119			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1120			return;
1121		}
1122		if (psecs >= soft) {
1123			/*
1124			 * At the soft limit, send a SIGXCPU every second.
1125			 */
1126			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1127			if (soft < hard) {
1128				soft++;
1129				sig->rlim[RLIMIT_CPU].rlim_cur = soft;
1130			}
1131		}
1132		x = secs_to_cputime(soft);
1133		if (!prof_expires || x < prof_expires) {
1134			prof_expires = x;
1135		}
1136	}
1137
1138	sig->cputime_expires.prof_exp = prof_expires;
1139	sig->cputime_expires.virt_exp = virt_expires;
1140	sig->cputime_expires.sched_exp = sched_expires;
1141	if (task_cputime_zero(&sig->cputime_expires))
1142		stop_process_timers(sig);
1143}
1144
1145/*
1146 * This is called from the signal code (via do_schedule_next_timer)
1147 * when the last timer signal was delivered and we have to reload the timer.
1148 */
1149void posix_cpu_timer_schedule(struct k_itimer *timer)
1150{
1151	struct task_struct *p = timer->it.cpu.task;
1152	union cpu_time_count now;
1153
1154	if (unlikely(p == NULL))
1155		/*
1156		 * The task was cleaned up already, no future firings.
1157		 */
1158		goto out;
1159
1160	/*
1161	 * Fetch the current sample and update the timer's expiry time.
1162	 */
1163	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1164		cpu_clock_sample(timer->it_clock, p, &now);
1165		bump_cpu_timer(timer, now);
1166		if (unlikely(p->exit_state)) {
1167			clear_dead_task(timer, now);
1168			goto out;
1169		}
1170		read_lock(&tasklist_lock); /* arm_timer needs it.  */
1171		spin_lock(&p->sighand->siglock);
1172	} else {
1173		read_lock(&tasklist_lock);
1174		if (unlikely(p->sighand == NULL)) {
1175			/*
1176			 * The process has been reaped.
1177			 * We can't even collect a sample any more.
1178			 */
1179			put_task_struct(p);
1180			timer->it.cpu.task = p = NULL;
1181			timer->it.cpu.expires.sched = 0;
1182			goto out_unlock;
1183		} else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1184			/*
1185			 * We've noticed that the thread is dead, but
1186			 * not yet reaped.  Take this opportunity to
1187			 * drop our task ref.
1188			 */
1189			clear_dead_task(timer, now);
1190			goto out_unlock;
1191		}
1192		spin_lock(&p->sighand->siglock);
1193		cpu_timer_sample_group(timer->it_clock, p, &now);
1194		bump_cpu_timer(timer, now);
1195		/* Leave the tasklist_lock locked for the call below.  */
1196	}
1197
1198	/*
1199	 * Now re-arm for the new expiry time.
1200	 */
1201	BUG_ON(!irqs_disabled());
1202	arm_timer(timer);
1203	spin_unlock(&p->sighand->siglock);
1204
1205out_unlock:
1206	read_unlock(&tasklist_lock);
1207
1208out:
1209	timer->it_overrun_last = timer->it_overrun;
1210	timer->it_overrun = -1;
1211	++timer->it_requeue_pending;
1212}
1213
1214/**
1215 * task_cputime_expired - Compare two task_cputime entities.
1216 *
1217 * @sample:	The task_cputime structure to be checked for expiration.
1218 * @expires:	Expiration times, against which @sample will be checked.
1219 *
1220 * Checks @sample against @expires to see if any field of @sample has expired.
1221 * Returns true if any field of the former is greater than the corresponding
1222 * field of the latter if the latter field is set.  Otherwise returns false.
1223 */
1224static inline int task_cputime_expired(const struct task_cputime *sample,
1225					const struct task_cputime *expires)
1226{
1227	if (expires->utime && sample->utime >= expires->utime)
1228		return 1;
1229	if (expires->stime && sample->utime + sample->stime >= expires->stime)
1230		return 1;
1231	if (expires->sum_exec_runtime != 0 &&
1232	    sample->sum_exec_runtime >= expires->sum_exec_runtime)
1233		return 1;
1234	return 0;
1235}
1236
1237/**
1238 * fastpath_timer_check - POSIX CPU timers fast path.
1239 *
1240 * @tsk:	The task (thread) being checked.
1241 *
1242 * Check the task and thread group timers.  If both are zero (there are no
1243 * timers set) return false.  Otherwise snapshot the task and thread group
1244 * timers and compare them with the corresponding expiration times.  Return
1245 * true if a timer has expired, else return false.
1246 */
1247static inline int fastpath_timer_check(struct task_struct *tsk)
1248{
1249	struct signal_struct *sig;
1250
1251	if (!task_cputime_zero(&tsk->cputime_expires)) {
1252		struct task_cputime task_sample = {
1253			.utime = tsk->utime,
1254			.stime = tsk->stime,
1255			.sum_exec_runtime = tsk->se.sum_exec_runtime
1256		};
1257
1258		if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1259			return 1;
1260	}
1261
1262	sig = tsk->signal;
1263	if (sig->cputimer.running) {
1264		struct task_cputime group_sample;
1265
1266		raw_spin_lock(&sig->cputimer.lock);
1267		group_sample = sig->cputimer.cputime;
1268		raw_spin_unlock(&sig->cputimer.lock);
1269
1270		if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1271			return 1;
1272	}
1273
1274	return 0;
1275}
1276
1277/*
1278 * This is called from the timer interrupt handler.  The irq handler has
1279 * already updated our counts.  We need to check if any timers fire now.
1280 * Interrupts are disabled.
1281 */
1282void run_posix_cpu_timers(struct task_struct *tsk)
1283{
1284	LIST_HEAD(firing);
1285	struct k_itimer *timer, *next;
1286	unsigned long flags;
1287
1288	BUG_ON(!irqs_disabled());
1289
1290	/*
1291	 * The fast path checks that there are no expired thread or thread
1292	 * group timers.  If that's so, just return.
1293	 */
1294	if (!fastpath_timer_check(tsk))
1295		return;
1296
1297	if (!lock_task_sighand(tsk, &flags))
1298		return;
1299	/*
1300	 * Here we take off tsk->signal->cpu_timers[N] and
1301	 * tsk->cpu_timers[N] all the timers that are firing, and
1302	 * put them on the firing list.
1303	 */
1304	check_thread_timers(tsk, &firing);
1305	/*
1306	 * If there are any active process wide timers (POSIX 1.b, itimers,
1307	 * RLIMIT_CPU) cputimer must be running.
1308	 */
1309	if (tsk->signal->cputimer.running)
1310		check_process_timers(tsk, &firing);
1311
1312	/*
1313	 * We must release these locks before taking any timer's lock.
1314	 * There is a potential race with timer deletion here, as the
1315	 * siglock now protects our private firing list.  We have set
1316	 * the firing flag in each timer, so that a deletion attempt
1317	 * that gets the timer lock before we do will give it up and
1318	 * spin until we've taken care of that timer below.
1319	 */
1320	unlock_task_sighand(tsk, &flags);
1321
1322	/*
1323	 * Now that all the timers on our list have the firing flag,
1324	 * no one will touch their list entries but us.  We'll take
1325	 * each timer's lock before clearing its firing flag, so no
1326	 * timer call will interfere.
1327	 */
1328	list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1329		int cpu_firing;
1330
1331		spin_lock(&timer->it_lock);
1332		list_del_init(&timer->it.cpu.entry);
1333		cpu_firing = timer->it.cpu.firing;
1334		timer->it.cpu.firing = 0;
1335		/*
1336		 * The firing flag is -1 if we collided with a reset
1337		 * of the timer, which already reported this
1338		 * almost-firing as an overrun.  So don't generate an event.
1339		 */
1340		if (likely(cpu_firing >= 0))
1341			cpu_timer_fire(timer);
1342		spin_unlock(&timer->it_lock);
1343	}
1344}
1345
1346/*
1347 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1348 * The tsk->sighand->siglock must be held by the caller.
1349 */
1350void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1351			   cputime_t *newval, cputime_t *oldval)
1352{
1353	union cpu_time_count now;
1354
1355	BUG_ON(clock_idx == CPUCLOCK_SCHED);
1356	cpu_timer_sample_group(clock_idx, tsk, &now);
1357
1358	if (oldval) {
1359		/*
1360		 * We are setting itimer. The *oldval is absolute and we update
1361		 * it to be relative, *newval argument is relative and we update
1362		 * it to be absolute.
1363		 */
1364		if (*oldval) {
1365			if (*oldval <= now.cpu) {
1366				/* Just about to fire. */
1367				*oldval = cputime_one_jiffy;
1368			} else {
1369				*oldval -= now.cpu;
1370			}
1371		}
1372
1373		if (!*newval)
1374			return;
1375		*newval += now.cpu;
1376	}
1377
1378	/*
1379	 * Update expiration cache if we are the earliest timer, or eventually
1380	 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1381	 */
1382	switch (clock_idx) {
1383	case CPUCLOCK_PROF:
1384		if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1385			tsk->signal->cputime_expires.prof_exp = *newval;
1386		break;
1387	case CPUCLOCK_VIRT:
1388		if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1389			tsk->signal->cputime_expires.virt_exp = *newval;
1390		break;
1391	}
1392}
1393
1394static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1395			    struct timespec *rqtp, struct itimerspec *it)
1396{
1397	struct k_itimer timer;
1398	int error;
1399
1400	/*
1401	 * Set up a temporary timer and then wait for it to go off.
1402	 */
1403	memset(&timer, 0, sizeof timer);
1404	spin_lock_init(&timer.it_lock);
1405	timer.it_clock = which_clock;
1406	timer.it_overrun = -1;
1407	error = posix_cpu_timer_create(&timer);
1408	timer.it_process = current;
1409	if (!error) {
1410		static struct itimerspec zero_it;
1411
1412		memset(it, 0, sizeof *it);
1413		it->it_value = *rqtp;
1414
1415		spin_lock_irq(&timer.it_lock);
1416		error = posix_cpu_timer_set(&timer, flags, it, NULL);
1417		if (error) {
1418			spin_unlock_irq(&timer.it_lock);
1419			return error;
1420		}
1421
1422		while (!signal_pending(current)) {
1423			if (timer.it.cpu.expires.sched == 0) {
1424				/*
1425				 * Our timer fired and was reset.
1426				 */
1427				spin_unlock_irq(&timer.it_lock);
1428				return 0;
1429			}
1430
1431			/*
1432			 * Block until cpu_timer_fire (or a signal) wakes us.
1433			 */
1434			__set_current_state(TASK_INTERRUPTIBLE);
1435			spin_unlock_irq(&timer.it_lock);
1436			schedule();
1437			spin_lock_irq(&timer.it_lock);
1438		}
1439
1440		/*
1441		 * We were interrupted by a signal.
1442		 */
1443		sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1444		posix_cpu_timer_set(&timer, 0, &zero_it, it);
1445		spin_unlock_irq(&timer.it_lock);
1446
1447		if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1448			/*
1449			 * It actually did fire already.
1450			 */
1451			return 0;
1452		}
1453
1454		error = -ERESTART_RESTARTBLOCK;
1455	}
1456
1457	return error;
1458}
1459
1460static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1461
1462static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1463			    struct timespec *rqtp, struct timespec __user *rmtp)
1464{
1465	struct restart_block *restart_block =
1466		&current_thread_info()->restart_block;
1467	struct itimerspec it;
1468	int error;
1469
1470	/*
1471	 * Diagnose required errors first.
1472	 */
1473	if (CPUCLOCK_PERTHREAD(which_clock) &&
1474	    (CPUCLOCK_PID(which_clock) == 0 ||
1475	     CPUCLOCK_PID(which_clock) == current->pid))
1476		return -EINVAL;
1477
1478	error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1479
1480	if (error == -ERESTART_RESTARTBLOCK) {
1481
1482		if (flags & TIMER_ABSTIME)
1483			return -ERESTARTNOHAND;
1484		/*
1485		 * Report back to the user the time still remaining.
1486		 */
1487		if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1488			return -EFAULT;
1489
1490		restart_block->fn = posix_cpu_nsleep_restart;
1491		restart_block->nanosleep.clockid = which_clock;
1492		restart_block->nanosleep.rmtp = rmtp;
1493		restart_block->nanosleep.expires = timespec_to_ns(rqtp);
1494	}
1495	return error;
1496}
1497
1498static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1499{
1500	clockid_t which_clock = restart_block->nanosleep.clockid;
1501	struct timespec t;
1502	struct itimerspec it;
1503	int error;
1504
1505	t = ns_to_timespec(restart_block->nanosleep.expires);
1506
1507	error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1508
1509	if (error == -ERESTART_RESTARTBLOCK) {
1510		struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
1511		/*
1512		 * Report back to the user the time still remaining.
1513		 */
1514		if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1515			return -EFAULT;
1516
1517		restart_block->nanosleep.expires = timespec_to_ns(&t);
1518	}
1519	return error;
1520
1521}
1522
1523#define PROCESS_CLOCK	MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1524#define THREAD_CLOCK	MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1525
1526static int process_cpu_clock_getres(const clockid_t which_clock,
1527				    struct timespec *tp)
1528{
1529	return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1530}
1531static int process_cpu_clock_get(const clockid_t which_clock,
1532				 struct timespec *tp)
1533{
1534	return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1535}
1536static int process_cpu_timer_create(struct k_itimer *timer)
1537{
1538	timer->it_clock = PROCESS_CLOCK;
1539	return posix_cpu_timer_create(timer);
1540}
1541static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1542			      struct timespec *rqtp,
1543			      struct timespec __user *rmtp)
1544{
1545	return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1546}
1547static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1548{
1549	return -EINVAL;
1550}
1551static int thread_cpu_clock_getres(const clockid_t which_clock,
1552				   struct timespec *tp)
1553{
1554	return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1555}
1556static int thread_cpu_clock_get(const clockid_t which_clock,
1557				struct timespec *tp)
1558{
1559	return posix_cpu_clock_get(THREAD_CLOCK, tp);
1560}
1561static int thread_cpu_timer_create(struct k_itimer *timer)
1562{
1563	timer->it_clock = THREAD_CLOCK;
1564	return posix_cpu_timer_create(timer);
1565}
1566
1567struct k_clock clock_posix_cpu = {
1568	.clock_getres	= posix_cpu_clock_getres,
1569	.clock_set	= posix_cpu_clock_set,
1570	.clock_get	= posix_cpu_clock_get,
1571	.timer_create	= posix_cpu_timer_create,
1572	.nsleep		= posix_cpu_nsleep,
1573	.nsleep_restart	= posix_cpu_nsleep_restart,
1574	.timer_set	= posix_cpu_timer_set,
1575	.timer_del	= posix_cpu_timer_del,
1576	.timer_get	= posix_cpu_timer_get,
1577};
1578
1579static __init int init_posix_cpu_timers(void)
1580{
1581	struct k_clock process = {
1582		.clock_getres	= process_cpu_clock_getres,
1583		.clock_get	= process_cpu_clock_get,
1584		.timer_create	= process_cpu_timer_create,
1585		.nsleep		= process_cpu_nsleep,
1586		.nsleep_restart	= process_cpu_nsleep_restart,
1587	};
1588	struct k_clock thread = {
1589		.clock_getres	= thread_cpu_clock_getres,
1590		.clock_get	= thread_cpu_clock_get,
1591		.timer_create	= thread_cpu_timer_create,
1592	};
1593	struct timespec ts;
1594
1595	posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1596	posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1597
1598	cputime_to_timespec(cputime_one_jiffy, &ts);
1599	onecputick = ts.tv_nsec;
1600	WARN_ON(ts.tv_sec != 0);
1601
1602	return 0;
1603}
1604__initcall(init_posix_cpu_timers);