Linux Audio

Check our new training course

Loading...
v4.10.11
  1#ifndef _ASM_GENERIC_DIV64_H
  2#define _ASM_GENERIC_DIV64_H
  3/*
  4 * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
  5 * Based on former asm-ppc/div64.h and asm-m68knommu/div64.h
  6 *
  7 * Optimization for constant divisors on 32-bit machines:
  8 * Copyright (C) 2006-2015 Nicolas Pitre
  9 *
 10 * The semantics of do_div() are:
 11 *
 12 * uint32_t do_div(uint64_t *n, uint32_t base)
 13 * {
 14 * 	uint32_t remainder = *n % base;
 15 * 	*n = *n / base;
 16 * 	return remainder;
 17 * }
 18 *
 19 * NOTE: macro parameter n is evaluated multiple times,
 20 *       beware of side effects!
 21 */
 22
 23#include <linux/types.h>
 24#include <linux/compiler.h>
 25
 26#if BITS_PER_LONG == 64
 27
 28# define do_div(n,base) ({					\
 29	uint32_t __base = (base);				\
 30	uint32_t __rem;						\
 31	__rem = ((uint64_t)(n)) % __base;			\
 32	(n) = ((uint64_t)(n)) / __base;				\
 33	__rem;							\
 34 })
 35
 36#elif BITS_PER_LONG == 32
 37
 38#include <linux/log2.h>
 39
 40/*
 41 * If the divisor happens to be constant, we determine the appropriate
 42 * inverse at compile time to turn the division into a few inline
 43 * multiplications which ought to be much faster. And yet only if compiling
 44 * with a sufficiently recent gcc version to perform proper 64-bit constant
 45 * propagation.
 46 *
 47 * (It is unfortunate that gcc doesn't perform all this internally.)
 48 */
 49
 50#ifndef __div64_const32_is_OK
 51#define __div64_const32_is_OK (__GNUC__ >= 4)
 52#endif
 53
 54#define __div64_const32(n, ___b)					\
 55({									\
 56	/*								\
 57	 * Multiplication by reciprocal of b: n / b = n * (p / b) / p	\
 58	 *								\
 59	 * We rely on the fact that most of this code gets optimized	\
 60	 * away at compile time due to constant propagation and only	\
 61	 * a few multiplication instructions should remain.		\
 62	 * Hence this monstrous macro (static inline doesn't always	\
 63	 * do the trick here).						\
 64	 */								\
 65	uint64_t ___res, ___x, ___t, ___m, ___n = (n);			\
 66	uint32_t ___p, ___bias;						\
 67									\
 68	/* determine MSB of b */					\
 69	___p = 1 << ilog2(___b);					\
 70									\
 71	/* compute m = ((p << 64) + b - 1) / b */			\
 72	___m = (~0ULL / ___b) * ___p;					\
 73	___m += (((~0ULL % ___b + 1) * ___p) + ___b - 1) / ___b;	\
 74									\
 75	/* one less than the dividend with highest result */		\
 76	___x = ~0ULL / ___b * ___b - 1;					\
 77									\
 78	/* test our ___m with res = m * x / (p << 64) */		\
 79	___res = ((___m & 0xffffffff) * (___x & 0xffffffff)) >> 32;	\
 80	___t = ___res += (___m & 0xffffffff) * (___x >> 32);		\
 81	___res += (___x & 0xffffffff) * (___m >> 32);			\
 82	___t = (___res < ___t) ? (1ULL << 32) : 0;			\
 83	___res = (___res >> 32) + ___t;					\
 84	___res += (___m >> 32) * (___x >> 32);				\
 85	___res /= ___p;							\
 86									\
 87	/* Now sanitize and optimize what we've got. */			\
 88	if (~0ULL % (___b / (___b & -___b)) == 0) {			\
 89		/* special case, can be simplified to ... */		\
 90		___n /= (___b & -___b);					\
 91		___m = ~0ULL / (___b / (___b & -___b));			\
 92		___p = 1;						\
 93		___bias = 1;						\
 94	} else if (___res != ___x / ___b) {				\
 95		/*							\
 96		 * We can't get away without a bias to compensate	\
 97		 * for bit truncation errors.  To avoid it we'd need an	\
 98		 * additional bit to represent m which would overflow	\
 99		 * a 64-bit variable.					\
100		 *							\
101		 * Instead we do m = p / b and n / b = (n * m + m) / p.	\
102		 */							\
103		___bias = 1;						\
104		/* Compute m = (p << 64) / b */				\
105		___m = (~0ULL / ___b) * ___p;				\
106		___m += ((~0ULL % ___b + 1) * ___p) / ___b;		\
107	} else {							\
108		/*							\
109		 * Reduce m / p, and try to clear bit 31 of m when	\
110		 * possible, otherwise that'll need extra overflow	\
111		 * handling later.					\
112		 */							\
113		uint32_t ___bits = -(___m & -___m);			\
114		___bits |= ___m >> 32;					\
115		___bits = (~___bits) << 1;				\
116		/*							\
117		 * If ___bits == 0 then setting bit 31 is  unavoidable.	\
118		 * Simply apply the maximum possible reduction in that	\
119		 * case. Otherwise the MSB of ___bits indicates the	\
120		 * best reduction we should apply.			\
121		 */							\
122		if (!___bits) {						\
123			___p /= (___m & -___m);				\
124			___m /= (___m & -___m);				\
125		} else {						\
126			___p >>= ilog2(___bits);			\
127			___m >>= ilog2(___bits);			\
128		}							\
129		/* No bias needed. */					\
130		___bias = 0;						\
131	}								\
132									\
133	/*								\
134	 * Now we have a combination of 2 conditions:			\
135	 *								\
136	 * 1) whether or not we need to apply a bias, and		\
137	 *								\
138	 * 2) whether or not there might be an overflow in the cross	\
139	 *    product determined by (___m & ((1 << 63) | (1 << 31))).	\
140	 *								\
141	 * Select the best way to do (m_bias + m * n) / (1 << 64).	\
142	 * From now on there will be actual runtime code generated.	\
143	 */								\
144	___res = __arch_xprod_64(___m, ___n, ___bias);			\
145									\
146	___res /= ___p;							\
147})
148
149#ifndef __arch_xprod_64
150/*
151 * Default C implementation for __arch_xprod_64()
152 *
153 * Prototype: uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias)
154 * Semantic:  retval = ((bias ? m : 0) + m * n) >> 64
155 *
156 * The product is a 128-bit value, scaled down to 64 bits.
157 * Assuming constant propagation to optimize away unused conditional code.
158 * Architectures may provide their own optimized assembly implementation.
159 */
160static inline uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias)
161{
162	uint32_t m_lo = m;
163	uint32_t m_hi = m >> 32;
164	uint32_t n_lo = n;
165	uint32_t n_hi = n >> 32;
166	uint64_t res, tmp;
167
168	if (!bias) {
169		res = ((uint64_t)m_lo * n_lo) >> 32;
170	} else if (!(m & ((1ULL << 63) | (1ULL << 31)))) {
171		/* there can't be any overflow here */
172		res = (m + (uint64_t)m_lo * n_lo) >> 32;
173	} else {
174		res = m + (uint64_t)m_lo * n_lo;
175		tmp = (res < m) ? (1ULL << 32) : 0;
176		res = (res >> 32) + tmp;
177	}
178
179	if (!(m & ((1ULL << 63) | (1ULL << 31)))) {
180		/* there can't be any overflow here */
181		res += (uint64_t)m_lo * n_hi;
182		res += (uint64_t)m_hi * n_lo;
183		res >>= 32;
184	} else {
185		tmp = res += (uint64_t)m_lo * n_hi;
186		res += (uint64_t)m_hi * n_lo;
187		tmp = (res < tmp) ? (1ULL << 32) : 0;
188		res = (res >> 32) + tmp;
189	}
190
191	res += (uint64_t)m_hi * n_hi;
192
193	return res;
194}
195#endif
196
197#ifndef __div64_32
198extern uint32_t __div64_32(uint64_t *dividend, uint32_t divisor);
199#endif
200
201/* The unnecessary pointer compare is there
202 * to check for type safety (n must be 64bit)
203 */
204# define do_div(n,base) ({				\
205	uint32_t __base = (base);			\
206	uint32_t __rem;					\
207	(void)(((typeof((n)) *)0) == ((uint64_t *)0));	\
208	if (__builtin_constant_p(__base) &&		\
209	    is_power_of_2(__base)) {			\
210		__rem = (n) & (__base - 1);		\
211		(n) >>= ilog2(__base);			\
212	} else if (__div64_const32_is_OK &&		\
213		   __builtin_constant_p(__base) &&	\
214		   __base != 0) {			\
215		uint32_t __res_lo, __n_lo = (n);	\
216		(n) = __div64_const32(n, __base);	\
217		/* the remainder can be computed with 32-bit regs */ \
218		__res_lo = (n);				\
219		__rem = __n_lo - __res_lo * __base;	\
220	} else if (likely(((n) >> 32) == 0)) {		\
221		__rem = (uint32_t)(n) % __base;		\
222		(n) = (uint32_t)(n) / __base;		\
223	} else 						\
224		__rem = __div64_32(&(n), __base);	\
225	__rem;						\
226 })
227
228#else /* BITS_PER_LONG == ?? */
229
230# error do_div() does not yet support the C64
231
232#endif /* BITS_PER_LONG */
233
234#endif /* _ASM_GENERIC_DIV64_H */
v3.5.6
 1#ifndef _ASM_GENERIC_DIV64_H
 2#define _ASM_GENERIC_DIV64_H
 3/*
 4 * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
 5 * Based on former asm-ppc/div64.h and asm-m68knommu/div64.h
 6 *
 
 
 
 7 * The semantics of do_div() are:
 8 *
 9 * uint32_t do_div(uint64_t *n, uint32_t base)
10 * {
11 * 	uint32_t remainder = *n % base;
12 * 	*n = *n / base;
13 * 	return remainder;
14 * }
15 *
16 * NOTE: macro parameter n is evaluated multiple times,
17 *       beware of side effects!
18 */
19
20#include <linux/types.h>
21#include <linux/compiler.h>
22
23#if BITS_PER_LONG == 64
24
25# define do_div(n,base) ({					\
26	uint32_t __base = (base);				\
27	uint32_t __rem;						\
28	__rem = ((uint64_t)(n)) % __base;			\
29	(n) = ((uint64_t)(n)) / __base;				\
30	__rem;							\
31 })
32
33#elif BITS_PER_LONG == 32
34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35extern uint32_t __div64_32(uint64_t *dividend, uint32_t divisor);
 
36
37/* The unnecessary pointer compare is there
38 * to check for type safety (n must be 64bit)
39 */
40# define do_div(n,base) ({				\
41	uint32_t __base = (base);			\
42	uint32_t __rem;					\
43	(void)(((typeof((n)) *)0) == ((uint64_t *)0));	\
44	if (likely(((n) >> 32) == 0)) {			\
 
 
 
 
 
 
 
 
 
 
 
 
45		__rem = (uint32_t)(n) % __base;		\
46		(n) = (uint32_t)(n) / __base;		\
47	} else 						\
48		__rem = __div64_32(&(n), __base);	\
49	__rem;						\
50 })
51
52#else /* BITS_PER_LONG == ?? */
53
54# error do_div() does not yet support the C64
55
56#endif /* BITS_PER_LONG */
57
58#endif /* _ASM_GENERIC_DIV64_H */