Linux Audio

Check our new training course

Loading...
v4.10.11
   1/**
   2 * mft.c - NTFS kernel mft record operations. Part of the Linux-NTFS project.
   3 *
   4 * Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc.
   5 * Copyright (c) 2002 Richard Russon
   6 *
   7 * This program/include file is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License as published
   9 * by the Free Software Foundation; either version 2 of the License, or
  10 * (at your option) any later version.
  11 *
  12 * This program/include file is distributed in the hope that it will be
  13 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
  14 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU General Public License
  18 * along with this program (in the main directory of the Linux-NTFS
  19 * distribution in the file COPYING); if not, write to the Free Software
  20 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  21 */
  22
  23#include <linux/buffer_head.h>
  24#include <linux/slab.h>
  25#include <linux/swap.h>
  26#include <linux/bio.h>
  27
  28#include "attrib.h"
  29#include "aops.h"
  30#include "bitmap.h"
  31#include "debug.h"
  32#include "dir.h"
  33#include "lcnalloc.h"
  34#include "malloc.h"
  35#include "mft.h"
  36#include "ntfs.h"
  37
  38/**
  39 * map_mft_record_page - map the page in which a specific mft record resides
  40 * @ni:		ntfs inode whose mft record page to map
  41 *
  42 * This maps the page in which the mft record of the ntfs inode @ni is situated
  43 * and returns a pointer to the mft record within the mapped page.
  44 *
  45 * Return value needs to be checked with IS_ERR() and if that is true PTR_ERR()
  46 * contains the negative error code returned.
  47 */
  48static inline MFT_RECORD *map_mft_record_page(ntfs_inode *ni)
  49{
  50	loff_t i_size;
  51	ntfs_volume *vol = ni->vol;
  52	struct inode *mft_vi = vol->mft_ino;
  53	struct page *page;
  54	unsigned long index, end_index;
  55	unsigned ofs;
  56
  57	BUG_ON(ni->page);
  58	/*
  59	 * The index into the page cache and the offset within the page cache
  60	 * page of the wanted mft record. FIXME: We need to check for
  61	 * overflowing the unsigned long, but I don't think we would ever get
  62	 * here if the volume was that big...
  63	 */
  64	index = (u64)ni->mft_no << vol->mft_record_size_bits >>
  65			PAGE_SHIFT;
  66	ofs = (ni->mft_no << vol->mft_record_size_bits) & ~PAGE_MASK;
  67
  68	i_size = i_size_read(mft_vi);
  69	/* The maximum valid index into the page cache for $MFT's data. */
  70	end_index = i_size >> PAGE_SHIFT;
  71
  72	/* If the wanted index is out of bounds the mft record doesn't exist. */
  73	if (unlikely(index >= end_index)) {
  74		if (index > end_index || (i_size & ~PAGE_MASK) < ofs +
  75				vol->mft_record_size) {
  76			page = ERR_PTR(-ENOENT);
  77			ntfs_error(vol->sb, "Attempt to read mft record 0x%lx, "
  78					"which is beyond the end of the mft.  "
  79					"This is probably a bug in the ntfs "
  80					"driver.", ni->mft_no);
  81			goto err_out;
  82		}
  83	}
  84	/* Read, map, and pin the page. */
  85	page = ntfs_map_page(mft_vi->i_mapping, index);
  86	if (likely(!IS_ERR(page))) {
  87		/* Catch multi sector transfer fixup errors. */
  88		if (likely(ntfs_is_mft_recordp((le32*)(page_address(page) +
  89				ofs)))) {
  90			ni->page = page;
  91			ni->page_ofs = ofs;
  92			return page_address(page) + ofs;
  93		}
  94		ntfs_error(vol->sb, "Mft record 0x%lx is corrupt.  "
  95				"Run chkdsk.", ni->mft_no);
  96		ntfs_unmap_page(page);
  97		page = ERR_PTR(-EIO);
  98		NVolSetErrors(vol);
  99	}
 100err_out:
 101	ni->page = NULL;
 102	ni->page_ofs = 0;
 103	return (void*)page;
 104}
 105
 106/**
 107 * map_mft_record - map, pin and lock an mft record
 108 * @ni:		ntfs inode whose MFT record to map
 109 *
 110 * First, take the mrec_lock mutex.  We might now be sleeping, while waiting
 111 * for the mutex if it was already locked by someone else.
 112 *
 113 * The page of the record is mapped using map_mft_record_page() before being
 114 * returned to the caller.
 115 *
 116 * This in turn uses ntfs_map_page() to get the page containing the wanted mft
 117 * record (it in turn calls read_cache_page() which reads it in from disk if
 118 * necessary, increments the use count on the page so that it cannot disappear
 119 * under us and returns a reference to the page cache page).
 120 *
 121 * If read_cache_page() invokes ntfs_readpage() to load the page from disk, it
 122 * sets PG_locked and clears PG_uptodate on the page. Once I/O has completed
 123 * and the post-read mst fixups on each mft record in the page have been
 124 * performed, the page gets PG_uptodate set and PG_locked cleared (this is done
 125 * in our asynchronous I/O completion handler end_buffer_read_mft_async()).
 126 * ntfs_map_page() waits for PG_locked to become clear and checks if
 127 * PG_uptodate is set and returns an error code if not. This provides
 128 * sufficient protection against races when reading/using the page.
 129 *
 130 * However there is the write mapping to think about. Doing the above described
 131 * checking here will be fine, because when initiating the write we will set
 132 * PG_locked and clear PG_uptodate making sure nobody is touching the page
 133 * contents. Doing the locking this way means that the commit to disk code in
 134 * the page cache code paths is automatically sufficiently locked with us as
 135 * we will not touch a page that has been locked or is not uptodate. The only
 136 * locking problem then is them locking the page while we are accessing it.
 137 *
 138 * So that code will end up having to own the mrec_lock of all mft
 139 * records/inodes present in the page before I/O can proceed. In that case we
 140 * wouldn't need to bother with PG_locked and PG_uptodate as nobody will be
 141 * accessing anything without owning the mrec_lock mutex.  But we do need to
 142 * use them because of the read_cache_page() invocation and the code becomes so
 143 * much simpler this way that it is well worth it.
 144 *
 145 * The mft record is now ours and we return a pointer to it. You need to check
 146 * the returned pointer with IS_ERR() and if that is true, PTR_ERR() will return
 147 * the error code.
 148 *
 149 * NOTE: Caller is responsible for setting the mft record dirty before calling
 150 * unmap_mft_record(). This is obviously only necessary if the caller really
 151 * modified the mft record...
 152 * Q: Do we want to recycle one of the VFS inode state bits instead?
 153 * A: No, the inode ones mean we want to change the mft record, not we want to
 154 * write it out.
 155 */
 156MFT_RECORD *map_mft_record(ntfs_inode *ni)
 157{
 158	MFT_RECORD *m;
 159
 160	ntfs_debug("Entering for mft_no 0x%lx.", ni->mft_no);
 161
 162	/* Make sure the ntfs inode doesn't go away. */
 163	atomic_inc(&ni->count);
 164
 165	/* Serialize access to this mft record. */
 166	mutex_lock(&ni->mrec_lock);
 167
 168	m = map_mft_record_page(ni);
 169	if (likely(!IS_ERR(m)))
 170		return m;
 171
 172	mutex_unlock(&ni->mrec_lock);
 173	atomic_dec(&ni->count);
 174	ntfs_error(ni->vol->sb, "Failed with error code %lu.", -PTR_ERR(m));
 175	return m;
 176}
 177
 178/**
 179 * unmap_mft_record_page - unmap the page in which a specific mft record resides
 180 * @ni:		ntfs inode whose mft record page to unmap
 181 *
 182 * This unmaps the page in which the mft record of the ntfs inode @ni is
 183 * situated and returns. This is a NOOP if highmem is not configured.
 184 *
 185 * The unmap happens via ntfs_unmap_page() which in turn decrements the use
 186 * count on the page thus releasing it from the pinned state.
 187 *
 188 * We do not actually unmap the page from memory of course, as that will be
 189 * done by the page cache code itself when memory pressure increases or
 190 * whatever.
 191 */
 192static inline void unmap_mft_record_page(ntfs_inode *ni)
 193{
 194	BUG_ON(!ni->page);
 195
 196	// TODO: If dirty, blah...
 197	ntfs_unmap_page(ni->page);
 198	ni->page = NULL;
 199	ni->page_ofs = 0;
 200	return;
 201}
 202
 203/**
 204 * unmap_mft_record - release a mapped mft record
 205 * @ni:		ntfs inode whose MFT record to unmap
 206 *
 207 * We release the page mapping and the mrec_lock mutex which unmaps the mft
 208 * record and releases it for others to get hold of. We also release the ntfs
 209 * inode by decrementing the ntfs inode reference count.
 210 *
 211 * NOTE: If caller has modified the mft record, it is imperative to set the mft
 212 * record dirty BEFORE calling unmap_mft_record().
 213 */
 214void unmap_mft_record(ntfs_inode *ni)
 215{
 216	struct page *page = ni->page;
 217
 218	BUG_ON(!page);
 219
 220	ntfs_debug("Entering for mft_no 0x%lx.", ni->mft_no);
 221
 222	unmap_mft_record_page(ni);
 223	mutex_unlock(&ni->mrec_lock);
 224	atomic_dec(&ni->count);
 225	/*
 226	 * If pure ntfs_inode, i.e. no vfs inode attached, we leave it to
 227	 * ntfs_clear_extent_inode() in the extent inode case, and to the
 228	 * caller in the non-extent, yet pure ntfs inode case, to do the actual
 229	 * tear down of all structures and freeing of all allocated memory.
 230	 */
 231	return;
 232}
 233
 234/**
 235 * map_extent_mft_record - load an extent inode and attach it to its base
 236 * @base_ni:	base ntfs inode
 237 * @mref:	mft reference of the extent inode to load
 238 * @ntfs_ino:	on successful return, pointer to the ntfs_inode structure
 239 *
 240 * Load the extent mft record @mref and attach it to its base inode @base_ni.
 241 * Return the mapped extent mft record if IS_ERR(result) is false.  Otherwise
 242 * PTR_ERR(result) gives the negative error code.
 243 *
 244 * On successful return, @ntfs_ino contains a pointer to the ntfs_inode
 245 * structure of the mapped extent inode.
 246 */
 247MFT_RECORD *map_extent_mft_record(ntfs_inode *base_ni, MFT_REF mref,
 248		ntfs_inode **ntfs_ino)
 249{
 250	MFT_RECORD *m;
 251	ntfs_inode *ni = NULL;
 252	ntfs_inode **extent_nis = NULL;
 253	int i;
 254	unsigned long mft_no = MREF(mref);
 255	u16 seq_no = MSEQNO(mref);
 256	bool destroy_ni = false;
 257
 258	ntfs_debug("Mapping extent mft record 0x%lx (base mft record 0x%lx).",
 259			mft_no, base_ni->mft_no);
 260	/* Make sure the base ntfs inode doesn't go away. */
 261	atomic_inc(&base_ni->count);
 262	/*
 263	 * Check if this extent inode has already been added to the base inode,
 264	 * in which case just return it. If not found, add it to the base
 265	 * inode before returning it.
 266	 */
 267	mutex_lock(&base_ni->extent_lock);
 268	if (base_ni->nr_extents > 0) {
 269		extent_nis = base_ni->ext.extent_ntfs_inos;
 270		for (i = 0; i < base_ni->nr_extents; i++) {
 271			if (mft_no != extent_nis[i]->mft_no)
 272				continue;
 273			ni = extent_nis[i];
 274			/* Make sure the ntfs inode doesn't go away. */
 275			atomic_inc(&ni->count);
 276			break;
 277		}
 278	}
 279	if (likely(ni != NULL)) {
 280		mutex_unlock(&base_ni->extent_lock);
 281		atomic_dec(&base_ni->count);
 282		/* We found the record; just have to map and return it. */
 283		m = map_mft_record(ni);
 284		/* map_mft_record() has incremented this on success. */
 285		atomic_dec(&ni->count);
 286		if (likely(!IS_ERR(m))) {
 287			/* Verify the sequence number. */
 288			if (likely(le16_to_cpu(m->sequence_number) == seq_no)) {
 289				ntfs_debug("Done 1.");
 290				*ntfs_ino = ni;
 291				return m;
 292			}
 293			unmap_mft_record(ni);
 294			ntfs_error(base_ni->vol->sb, "Found stale extent mft "
 295					"reference! Corrupt filesystem. "
 296					"Run chkdsk.");
 297			return ERR_PTR(-EIO);
 298		}
 299map_err_out:
 300		ntfs_error(base_ni->vol->sb, "Failed to map extent "
 301				"mft record, error code %ld.", -PTR_ERR(m));
 302		return m;
 303	}
 304	/* Record wasn't there. Get a new ntfs inode and initialize it. */
 305	ni = ntfs_new_extent_inode(base_ni->vol->sb, mft_no);
 306	if (unlikely(!ni)) {
 307		mutex_unlock(&base_ni->extent_lock);
 308		atomic_dec(&base_ni->count);
 309		return ERR_PTR(-ENOMEM);
 310	}
 311	ni->vol = base_ni->vol;
 312	ni->seq_no = seq_no;
 313	ni->nr_extents = -1;
 314	ni->ext.base_ntfs_ino = base_ni;
 315	/* Now map the record. */
 316	m = map_mft_record(ni);
 317	if (IS_ERR(m)) {
 318		mutex_unlock(&base_ni->extent_lock);
 319		atomic_dec(&base_ni->count);
 320		ntfs_clear_extent_inode(ni);
 321		goto map_err_out;
 322	}
 323	/* Verify the sequence number if it is present. */
 324	if (seq_no && (le16_to_cpu(m->sequence_number) != seq_no)) {
 325		ntfs_error(base_ni->vol->sb, "Found stale extent mft "
 326				"reference! Corrupt filesystem. Run chkdsk.");
 327		destroy_ni = true;
 328		m = ERR_PTR(-EIO);
 329		goto unm_err_out;
 330	}
 331	/* Attach extent inode to base inode, reallocating memory if needed. */
 332	if (!(base_ni->nr_extents & 3)) {
 333		ntfs_inode **tmp;
 334		int new_size = (base_ni->nr_extents + 4) * sizeof(ntfs_inode *);
 335
 336		tmp = kmalloc(new_size, GFP_NOFS);
 337		if (unlikely(!tmp)) {
 338			ntfs_error(base_ni->vol->sb, "Failed to allocate "
 339					"internal buffer.");
 340			destroy_ni = true;
 341			m = ERR_PTR(-ENOMEM);
 342			goto unm_err_out;
 343		}
 344		if (base_ni->nr_extents) {
 345			BUG_ON(!base_ni->ext.extent_ntfs_inos);
 346			memcpy(tmp, base_ni->ext.extent_ntfs_inos, new_size -
 347					4 * sizeof(ntfs_inode *));
 348			kfree(base_ni->ext.extent_ntfs_inos);
 349		}
 350		base_ni->ext.extent_ntfs_inos = tmp;
 351	}
 352	base_ni->ext.extent_ntfs_inos[base_ni->nr_extents++] = ni;
 353	mutex_unlock(&base_ni->extent_lock);
 354	atomic_dec(&base_ni->count);
 355	ntfs_debug("Done 2.");
 356	*ntfs_ino = ni;
 357	return m;
 358unm_err_out:
 359	unmap_mft_record(ni);
 360	mutex_unlock(&base_ni->extent_lock);
 361	atomic_dec(&base_ni->count);
 362	/*
 363	 * If the extent inode was not attached to the base inode we need to
 364	 * release it or we will leak memory.
 365	 */
 366	if (destroy_ni)
 367		ntfs_clear_extent_inode(ni);
 368	return m;
 369}
 370
 371#ifdef NTFS_RW
 372
 373/**
 374 * __mark_mft_record_dirty - set the mft record and the page containing it dirty
 375 * @ni:		ntfs inode describing the mapped mft record
 376 *
 377 * Internal function.  Users should call mark_mft_record_dirty() instead.
 378 *
 379 * Set the mapped (extent) mft record of the (base or extent) ntfs inode @ni,
 380 * as well as the page containing the mft record, dirty.  Also, mark the base
 381 * vfs inode dirty.  This ensures that any changes to the mft record are
 382 * written out to disk.
 383 *
 384 * NOTE:  We only set I_DIRTY_SYNC and I_DIRTY_DATASYNC (and not I_DIRTY_PAGES)
 385 * on the base vfs inode, because even though file data may have been modified,
 386 * it is dirty in the inode meta data rather than the data page cache of the
 387 * inode, and thus there are no data pages that need writing out.  Therefore, a
 388 * full mark_inode_dirty() is overkill.  A mark_inode_dirty_sync(), on the
 389 * other hand, is not sufficient, because ->write_inode needs to be called even
 390 * in case of fdatasync. This needs to happen or the file data would not
 391 * necessarily hit the device synchronously, even though the vfs inode has the
 392 * O_SYNC flag set.  Also, I_DIRTY_DATASYNC simply "feels" better than just
 393 * I_DIRTY_SYNC, since the file data has not actually hit the block device yet,
 394 * which is not what I_DIRTY_SYNC on its own would suggest.
 395 */
 396void __mark_mft_record_dirty(ntfs_inode *ni)
 397{
 398	ntfs_inode *base_ni;
 399
 400	ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
 401	BUG_ON(NInoAttr(ni));
 402	mark_ntfs_record_dirty(ni->page, ni->page_ofs);
 403	/* Determine the base vfs inode and mark it dirty, too. */
 404	mutex_lock(&ni->extent_lock);
 405	if (likely(ni->nr_extents >= 0))
 406		base_ni = ni;
 407	else
 408		base_ni = ni->ext.base_ntfs_ino;
 409	mutex_unlock(&ni->extent_lock);
 410	__mark_inode_dirty(VFS_I(base_ni), I_DIRTY_SYNC | I_DIRTY_DATASYNC);
 411}
 412
 413static const char *ntfs_please_email = "Please email "
 414		"linux-ntfs-dev@lists.sourceforge.net and say that you saw "
 415		"this message.  Thank you.";
 416
 417/**
 418 * ntfs_sync_mft_mirror_umount - synchronise an mft record to the mft mirror
 419 * @vol:	ntfs volume on which the mft record to synchronize resides
 420 * @mft_no:	mft record number of mft record to synchronize
 421 * @m:		mapped, mst protected (extent) mft record to synchronize
 422 *
 423 * Write the mapped, mst protected (extent) mft record @m with mft record
 424 * number @mft_no to the mft mirror ($MFTMirr) of the ntfs volume @vol,
 425 * bypassing the page cache and the $MFTMirr inode itself.
 426 *
 427 * This function is only for use at umount time when the mft mirror inode has
 428 * already been disposed off.  We BUG() if we are called while the mft mirror
 429 * inode is still attached to the volume.
 430 *
 431 * On success return 0.  On error return -errno.
 432 *
 433 * NOTE:  This function is not implemented yet as I am not convinced it can
 434 * actually be triggered considering the sequence of commits we do in super.c::
 435 * ntfs_put_super().  But just in case we provide this place holder as the
 436 * alternative would be either to BUG() or to get a NULL pointer dereference
 437 * and Oops.
 438 */
 439static int ntfs_sync_mft_mirror_umount(ntfs_volume *vol,
 440		const unsigned long mft_no, MFT_RECORD *m)
 441{
 442	BUG_ON(vol->mftmirr_ino);
 443	ntfs_error(vol->sb, "Umount time mft mirror syncing is not "
 444			"implemented yet.  %s", ntfs_please_email);
 445	return -EOPNOTSUPP;
 446}
 447
 448/**
 449 * ntfs_sync_mft_mirror - synchronize an mft record to the mft mirror
 450 * @vol:	ntfs volume on which the mft record to synchronize resides
 451 * @mft_no:	mft record number of mft record to synchronize
 452 * @m:		mapped, mst protected (extent) mft record to synchronize
 453 * @sync:	if true, wait for i/o completion
 454 *
 455 * Write the mapped, mst protected (extent) mft record @m with mft record
 456 * number @mft_no to the mft mirror ($MFTMirr) of the ntfs volume @vol.
 457 *
 458 * On success return 0.  On error return -errno and set the volume errors flag
 459 * in the ntfs volume @vol.
 460 *
 461 * NOTE:  We always perform synchronous i/o and ignore the @sync parameter.
 462 *
 463 * TODO:  If @sync is false, want to do truly asynchronous i/o, i.e. just
 464 * schedule i/o via ->writepage or do it via kntfsd or whatever.
 465 */
 466int ntfs_sync_mft_mirror(ntfs_volume *vol, const unsigned long mft_no,
 467		MFT_RECORD *m, int sync)
 468{
 469	struct page *page;
 470	unsigned int blocksize = vol->sb->s_blocksize;
 471	int max_bhs = vol->mft_record_size / blocksize;
 472	struct buffer_head *bhs[max_bhs];
 473	struct buffer_head *bh, *head;
 474	u8 *kmirr;
 475	runlist_element *rl;
 476	unsigned int block_start, block_end, m_start, m_end, page_ofs;
 477	int i_bhs, nr_bhs, err = 0;
 478	unsigned char blocksize_bits = vol->sb->s_blocksize_bits;
 479
 480	ntfs_debug("Entering for inode 0x%lx.", mft_no);
 481	BUG_ON(!max_bhs);
 482	if (unlikely(!vol->mftmirr_ino)) {
 483		/* This could happen during umount... */
 484		err = ntfs_sync_mft_mirror_umount(vol, mft_no, m);
 485		if (likely(!err))
 486			return err;
 487		goto err_out;
 488	}
 489	/* Get the page containing the mirror copy of the mft record @m. */
 490	page = ntfs_map_page(vol->mftmirr_ino->i_mapping, mft_no >>
 491			(PAGE_SHIFT - vol->mft_record_size_bits));
 492	if (IS_ERR(page)) {
 493		ntfs_error(vol->sb, "Failed to map mft mirror page.");
 494		err = PTR_ERR(page);
 495		goto err_out;
 496	}
 497	lock_page(page);
 498	BUG_ON(!PageUptodate(page));
 499	ClearPageUptodate(page);
 500	/* Offset of the mft mirror record inside the page. */
 501	page_ofs = (mft_no << vol->mft_record_size_bits) & ~PAGE_MASK;
 502	/* The address in the page of the mirror copy of the mft record @m. */
 503	kmirr = page_address(page) + page_ofs;
 504	/* Copy the mst protected mft record to the mirror. */
 505	memcpy(kmirr, m, vol->mft_record_size);
 506	/* Create uptodate buffers if not present. */
 507	if (unlikely(!page_has_buffers(page))) {
 508		struct buffer_head *tail;
 509
 510		bh = head = alloc_page_buffers(page, blocksize, 1);
 511		do {
 512			set_buffer_uptodate(bh);
 513			tail = bh;
 514			bh = bh->b_this_page;
 515		} while (bh);
 516		tail->b_this_page = head;
 517		attach_page_buffers(page, head);
 518	}
 519	bh = head = page_buffers(page);
 520	BUG_ON(!bh);
 521	rl = NULL;
 522	nr_bhs = 0;
 523	block_start = 0;
 524	m_start = kmirr - (u8*)page_address(page);
 525	m_end = m_start + vol->mft_record_size;
 526	do {
 527		block_end = block_start + blocksize;
 528		/* If the buffer is outside the mft record, skip it. */
 529		if (block_end <= m_start)
 530			continue;
 531		if (unlikely(block_start >= m_end))
 532			break;
 533		/* Need to map the buffer if it is not mapped already. */
 534		if (unlikely(!buffer_mapped(bh))) {
 535			VCN vcn;
 536			LCN lcn;
 537			unsigned int vcn_ofs;
 538
 539			bh->b_bdev = vol->sb->s_bdev;
 540			/* Obtain the vcn and offset of the current block. */
 541			vcn = ((VCN)mft_no << vol->mft_record_size_bits) +
 542					(block_start - m_start);
 543			vcn_ofs = vcn & vol->cluster_size_mask;
 544			vcn >>= vol->cluster_size_bits;
 545			if (!rl) {
 546				down_read(&NTFS_I(vol->mftmirr_ino)->
 547						runlist.lock);
 548				rl = NTFS_I(vol->mftmirr_ino)->runlist.rl;
 549				/*
 550				 * $MFTMirr always has the whole of its runlist
 551				 * in memory.
 552				 */
 553				BUG_ON(!rl);
 554			}
 555			/* Seek to element containing target vcn. */
 556			while (rl->length && rl[1].vcn <= vcn)
 557				rl++;
 558			lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
 559			/* For $MFTMirr, only lcn >= 0 is a successful remap. */
 560			if (likely(lcn >= 0)) {
 561				/* Setup buffer head to correct block. */
 562				bh->b_blocknr = ((lcn <<
 563						vol->cluster_size_bits) +
 564						vcn_ofs) >> blocksize_bits;
 565				set_buffer_mapped(bh);
 566			} else {
 567				bh->b_blocknr = -1;
 568				ntfs_error(vol->sb, "Cannot write mft mirror "
 569						"record 0x%lx because its "
 570						"location on disk could not "
 571						"be determined (error code "
 572						"%lli).", mft_no,
 573						(long long)lcn);
 574				err = -EIO;
 575			}
 576		}
 577		BUG_ON(!buffer_uptodate(bh));
 578		BUG_ON(!nr_bhs && (m_start != block_start));
 579		BUG_ON(nr_bhs >= max_bhs);
 580		bhs[nr_bhs++] = bh;
 581		BUG_ON((nr_bhs >= max_bhs) && (m_end != block_end));
 582	} while (block_start = block_end, (bh = bh->b_this_page) != head);
 583	if (unlikely(rl))
 584		up_read(&NTFS_I(vol->mftmirr_ino)->runlist.lock);
 585	if (likely(!err)) {
 586		/* Lock buffers and start synchronous write i/o on them. */
 587		for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
 588			struct buffer_head *tbh = bhs[i_bhs];
 589
 590			if (!trylock_buffer(tbh))
 591				BUG();
 592			BUG_ON(!buffer_uptodate(tbh));
 593			clear_buffer_dirty(tbh);
 594			get_bh(tbh);
 595			tbh->b_end_io = end_buffer_write_sync;
 596			submit_bh(REQ_OP_WRITE, 0, tbh);
 597		}
 598		/* Wait on i/o completion of buffers. */
 599		for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
 600			struct buffer_head *tbh = bhs[i_bhs];
 601
 602			wait_on_buffer(tbh);
 603			if (unlikely(!buffer_uptodate(tbh))) {
 604				err = -EIO;
 605				/*
 606				 * Set the buffer uptodate so the page and
 607				 * buffer states do not become out of sync.
 608				 */
 609				set_buffer_uptodate(tbh);
 610			}
 611		}
 612	} else /* if (unlikely(err)) */ {
 613		/* Clean the buffers. */
 614		for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++)
 615			clear_buffer_dirty(bhs[i_bhs]);
 616	}
 617	/* Current state: all buffers are clean, unlocked, and uptodate. */
 618	/* Remove the mst protection fixups again. */
 619	post_write_mst_fixup((NTFS_RECORD*)kmirr);
 620	flush_dcache_page(page);
 621	SetPageUptodate(page);
 622	unlock_page(page);
 623	ntfs_unmap_page(page);
 624	if (likely(!err)) {
 625		ntfs_debug("Done.");
 626	} else {
 627		ntfs_error(vol->sb, "I/O error while writing mft mirror "
 628				"record 0x%lx!", mft_no);
 629err_out:
 630		ntfs_error(vol->sb, "Failed to synchronize $MFTMirr (error "
 631				"code %i).  Volume will be left marked dirty "
 632				"on umount.  Run ntfsfix on the partition "
 633				"after umounting to correct this.", -err);
 634		NVolSetErrors(vol);
 635	}
 636	return err;
 637}
 638
 639/**
 640 * write_mft_record_nolock - write out a mapped (extent) mft record
 641 * @ni:		ntfs inode describing the mapped (extent) mft record
 642 * @m:		mapped (extent) mft record to write
 643 * @sync:	if true, wait for i/o completion
 644 *
 645 * Write the mapped (extent) mft record @m described by the (regular or extent)
 646 * ntfs inode @ni to backing store.  If the mft record @m has a counterpart in
 647 * the mft mirror, that is also updated.
 648 *
 649 * We only write the mft record if the ntfs inode @ni is dirty and the first
 650 * buffer belonging to its mft record is dirty, too.  We ignore the dirty state
 651 * of subsequent buffers because we could have raced with
 652 * fs/ntfs/aops.c::mark_ntfs_record_dirty().
 653 *
 654 * On success, clean the mft record and return 0.  On error, leave the mft
 655 * record dirty and return -errno.
 656 *
 657 * NOTE:  We always perform synchronous i/o and ignore the @sync parameter.
 658 * However, if the mft record has a counterpart in the mft mirror and @sync is
 659 * true, we write the mft record, wait for i/o completion, and only then write
 660 * the mft mirror copy.  This ensures that if the system crashes either the mft
 661 * or the mft mirror will contain a self-consistent mft record @m.  If @sync is
 662 * false on the other hand, we start i/o on both and then wait for completion
 663 * on them.  This provides a speedup but no longer guarantees that you will end
 664 * up with a self-consistent mft record in the case of a crash but if you asked
 665 * for asynchronous writing you probably do not care about that anyway.
 666 *
 667 * TODO:  If @sync is false, want to do truly asynchronous i/o, i.e. just
 668 * schedule i/o via ->writepage or do it via kntfsd or whatever.
 669 */
 670int write_mft_record_nolock(ntfs_inode *ni, MFT_RECORD *m, int sync)
 671{
 672	ntfs_volume *vol = ni->vol;
 673	struct page *page = ni->page;
 674	unsigned int blocksize = vol->sb->s_blocksize;
 675	unsigned char blocksize_bits = vol->sb->s_blocksize_bits;
 676	int max_bhs = vol->mft_record_size / blocksize;
 677	struct buffer_head *bhs[max_bhs];
 678	struct buffer_head *bh, *head;
 679	runlist_element *rl;
 680	unsigned int block_start, block_end, m_start, m_end;
 681	int i_bhs, nr_bhs, err = 0;
 682
 683	ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
 684	BUG_ON(NInoAttr(ni));
 685	BUG_ON(!max_bhs);
 686	BUG_ON(!PageLocked(page));
 687	/*
 688	 * If the ntfs_inode is clean no need to do anything.  If it is dirty,
 689	 * mark it as clean now so that it can be redirtied later on if needed.
 690	 * There is no danger of races since the caller is holding the locks
 691	 * for the mft record @m and the page it is in.
 692	 */
 693	if (!NInoTestClearDirty(ni))
 694		goto done;
 695	bh = head = page_buffers(page);
 696	BUG_ON(!bh);
 697	rl = NULL;
 698	nr_bhs = 0;
 699	block_start = 0;
 700	m_start = ni->page_ofs;
 701	m_end = m_start + vol->mft_record_size;
 702	do {
 703		block_end = block_start + blocksize;
 704		/* If the buffer is outside the mft record, skip it. */
 705		if (block_end <= m_start)
 706			continue;
 707		if (unlikely(block_start >= m_end))
 708			break;
 709		/*
 710		 * If this block is not the first one in the record, we ignore
 711		 * the buffer's dirty state because we could have raced with a
 712		 * parallel mark_ntfs_record_dirty().
 713		 */
 714		if (block_start == m_start) {
 715			/* This block is the first one in the record. */
 716			if (!buffer_dirty(bh)) {
 717				BUG_ON(nr_bhs);
 718				/* Clean records are not written out. */
 719				break;
 720			}
 721		}
 722		/* Need to map the buffer if it is not mapped already. */
 723		if (unlikely(!buffer_mapped(bh))) {
 724			VCN vcn;
 725			LCN lcn;
 726			unsigned int vcn_ofs;
 727
 728			bh->b_bdev = vol->sb->s_bdev;
 729			/* Obtain the vcn and offset of the current block. */
 730			vcn = ((VCN)ni->mft_no << vol->mft_record_size_bits) +
 731					(block_start - m_start);
 732			vcn_ofs = vcn & vol->cluster_size_mask;
 733			vcn >>= vol->cluster_size_bits;
 734			if (!rl) {
 735				down_read(&NTFS_I(vol->mft_ino)->runlist.lock);
 736				rl = NTFS_I(vol->mft_ino)->runlist.rl;
 737				BUG_ON(!rl);
 738			}
 739			/* Seek to element containing target vcn. */
 740			while (rl->length && rl[1].vcn <= vcn)
 741				rl++;
 742			lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
 743			/* For $MFT, only lcn >= 0 is a successful remap. */
 744			if (likely(lcn >= 0)) {
 745				/* Setup buffer head to correct block. */
 746				bh->b_blocknr = ((lcn <<
 747						vol->cluster_size_bits) +
 748						vcn_ofs) >> blocksize_bits;
 749				set_buffer_mapped(bh);
 750			} else {
 751				bh->b_blocknr = -1;
 752				ntfs_error(vol->sb, "Cannot write mft record "
 753						"0x%lx because its location "
 754						"on disk could not be "
 755						"determined (error code %lli).",
 756						ni->mft_no, (long long)lcn);
 757				err = -EIO;
 758			}
 759		}
 760		BUG_ON(!buffer_uptodate(bh));
 761		BUG_ON(!nr_bhs && (m_start != block_start));
 762		BUG_ON(nr_bhs >= max_bhs);
 763		bhs[nr_bhs++] = bh;
 764		BUG_ON((nr_bhs >= max_bhs) && (m_end != block_end));
 765	} while (block_start = block_end, (bh = bh->b_this_page) != head);
 766	if (unlikely(rl))
 767		up_read(&NTFS_I(vol->mft_ino)->runlist.lock);
 768	if (!nr_bhs)
 769		goto done;
 770	if (unlikely(err))
 771		goto cleanup_out;
 772	/* Apply the mst protection fixups. */
 773	err = pre_write_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size);
 774	if (err) {
 775		ntfs_error(vol->sb, "Failed to apply mst fixups!");
 776		goto cleanup_out;
 777	}
 778	flush_dcache_mft_record_page(ni);
 779	/* Lock buffers and start synchronous write i/o on them. */
 780	for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
 781		struct buffer_head *tbh = bhs[i_bhs];
 782
 783		if (!trylock_buffer(tbh))
 784			BUG();
 785		BUG_ON(!buffer_uptodate(tbh));
 786		clear_buffer_dirty(tbh);
 787		get_bh(tbh);
 788		tbh->b_end_io = end_buffer_write_sync;
 789		submit_bh(REQ_OP_WRITE, 0, tbh);
 790	}
 791	/* Synchronize the mft mirror now if not @sync. */
 792	if (!sync && ni->mft_no < vol->mftmirr_size)
 793		ntfs_sync_mft_mirror(vol, ni->mft_no, m, sync);
 794	/* Wait on i/o completion of buffers. */
 795	for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
 796		struct buffer_head *tbh = bhs[i_bhs];
 797
 798		wait_on_buffer(tbh);
 799		if (unlikely(!buffer_uptodate(tbh))) {
 800			err = -EIO;
 801			/*
 802			 * Set the buffer uptodate so the page and buffer
 803			 * states do not become out of sync.
 804			 */
 805			if (PageUptodate(page))
 806				set_buffer_uptodate(tbh);
 807		}
 808	}
 809	/* If @sync, now synchronize the mft mirror. */
 810	if (sync && ni->mft_no < vol->mftmirr_size)
 811		ntfs_sync_mft_mirror(vol, ni->mft_no, m, sync);
 812	/* Remove the mst protection fixups again. */
 813	post_write_mst_fixup((NTFS_RECORD*)m);
 814	flush_dcache_mft_record_page(ni);
 815	if (unlikely(err)) {
 816		/* I/O error during writing.  This is really bad! */
 817		ntfs_error(vol->sb, "I/O error while writing mft record "
 818				"0x%lx!  Marking base inode as bad.  You "
 819				"should unmount the volume and run chkdsk.",
 820				ni->mft_no);
 821		goto err_out;
 822	}
 823done:
 824	ntfs_debug("Done.");
 825	return 0;
 826cleanup_out:
 827	/* Clean the buffers. */
 828	for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++)
 829		clear_buffer_dirty(bhs[i_bhs]);
 830err_out:
 831	/*
 832	 * Current state: all buffers are clean, unlocked, and uptodate.
 833	 * The caller should mark the base inode as bad so that no more i/o
 834	 * happens.  ->clear_inode() will still be invoked so all extent inodes
 835	 * and other allocated memory will be freed.
 836	 */
 837	if (err == -ENOMEM) {
 838		ntfs_error(vol->sb, "Not enough memory to write mft record.  "
 839				"Redirtying so the write is retried later.");
 840		mark_mft_record_dirty(ni);
 841		err = 0;
 842	} else
 843		NVolSetErrors(vol);
 844	return err;
 845}
 846
 847/**
 848 * ntfs_may_write_mft_record - check if an mft record may be written out
 849 * @vol:	[IN]  ntfs volume on which the mft record to check resides
 850 * @mft_no:	[IN]  mft record number of the mft record to check
 851 * @m:		[IN]  mapped mft record to check
 852 * @locked_ni:	[OUT] caller has to unlock this ntfs inode if one is returned
 853 *
 854 * Check if the mapped (base or extent) mft record @m with mft record number
 855 * @mft_no belonging to the ntfs volume @vol may be written out.  If necessary
 856 * and possible the ntfs inode of the mft record is locked and the base vfs
 857 * inode is pinned.  The locked ntfs inode is then returned in @locked_ni.  The
 858 * caller is responsible for unlocking the ntfs inode and unpinning the base
 859 * vfs inode.
 860 *
 861 * Return 'true' if the mft record may be written out and 'false' if not.
 862 *
 863 * The caller has locked the page and cleared the uptodate flag on it which
 864 * means that we can safely write out any dirty mft records that do not have
 865 * their inodes in icache as determined by ilookup5() as anyone
 866 * opening/creating such an inode would block when attempting to map the mft
 867 * record in read_cache_page() until we are finished with the write out.
 868 *
 869 * Here is a description of the tests we perform:
 870 *
 871 * If the inode is found in icache we know the mft record must be a base mft
 872 * record.  If it is dirty, we do not write it and return 'false' as the vfs
 873 * inode write paths will result in the access times being updated which would
 874 * cause the base mft record to be redirtied and written out again.  (We know
 875 * the access time update will modify the base mft record because Windows
 876 * chkdsk complains if the standard information attribute is not in the base
 877 * mft record.)
 878 *
 879 * If the inode is in icache and not dirty, we attempt to lock the mft record
 880 * and if we find the lock was already taken, it is not safe to write the mft
 881 * record and we return 'false'.
 882 *
 883 * If we manage to obtain the lock we have exclusive access to the mft record,
 884 * which also allows us safe writeout of the mft record.  We then set
 885 * @locked_ni to the locked ntfs inode and return 'true'.
 886 *
 887 * Note we cannot just lock the mft record and sleep while waiting for the lock
 888 * because this would deadlock due to lock reversal (normally the mft record is
 889 * locked before the page is locked but we already have the page locked here
 890 * when we try to lock the mft record).
 891 *
 892 * If the inode is not in icache we need to perform further checks.
 893 *
 894 * If the mft record is not a FILE record or it is a base mft record, we can
 895 * safely write it and return 'true'.
 896 *
 897 * We now know the mft record is an extent mft record.  We check if the inode
 898 * corresponding to its base mft record is in icache and obtain a reference to
 899 * it if it is.  If it is not, we can safely write it and return 'true'.
 900 *
 901 * We now have the base inode for the extent mft record.  We check if it has an
 902 * ntfs inode for the extent mft record attached and if not it is safe to write
 903 * the extent mft record and we return 'true'.
 904 *
 905 * The ntfs inode for the extent mft record is attached to the base inode so we
 906 * attempt to lock the extent mft record and if we find the lock was already
 907 * taken, it is not safe to write the extent mft record and we return 'false'.
 908 *
 909 * If we manage to obtain the lock we have exclusive access to the extent mft
 910 * record, which also allows us safe writeout of the extent mft record.  We
 911 * set the ntfs inode of the extent mft record clean and then set @locked_ni to
 912 * the now locked ntfs inode and return 'true'.
 913 *
 914 * Note, the reason for actually writing dirty mft records here and not just
 915 * relying on the vfs inode dirty code paths is that we can have mft records
 916 * modified without them ever having actual inodes in memory.  Also we can have
 917 * dirty mft records with clean ntfs inodes in memory.  None of the described
 918 * cases would result in the dirty mft records being written out if we only
 919 * relied on the vfs inode dirty code paths.  And these cases can really occur
 920 * during allocation of new mft records and in particular when the
 921 * initialized_size of the $MFT/$DATA attribute is extended and the new space
 922 * is initialized using ntfs_mft_record_format().  The clean inode can then
 923 * appear if the mft record is reused for a new inode before it got written
 924 * out.
 925 */
 926bool ntfs_may_write_mft_record(ntfs_volume *vol, const unsigned long mft_no,
 927		const MFT_RECORD *m, ntfs_inode **locked_ni)
 928{
 929	struct super_block *sb = vol->sb;
 930	struct inode *mft_vi = vol->mft_ino;
 931	struct inode *vi;
 932	ntfs_inode *ni, *eni, **extent_nis;
 933	int i;
 934	ntfs_attr na;
 935
 936	ntfs_debug("Entering for inode 0x%lx.", mft_no);
 937	/*
 938	 * Normally we do not return a locked inode so set @locked_ni to NULL.
 939	 */
 940	BUG_ON(!locked_ni);
 941	*locked_ni = NULL;
 942	/*
 943	 * Check if the inode corresponding to this mft record is in the VFS
 944	 * inode cache and obtain a reference to it if it is.
 945	 */
 946	ntfs_debug("Looking for inode 0x%lx in icache.", mft_no);
 947	na.mft_no = mft_no;
 948	na.name = NULL;
 949	na.name_len = 0;
 950	na.type = AT_UNUSED;
 951	/*
 952	 * Optimize inode 0, i.e. $MFT itself, since we have it in memory and
 953	 * we get here for it rather often.
 954	 */
 955	if (!mft_no) {
 956		/* Balance the below iput(). */
 957		vi = igrab(mft_vi);
 958		BUG_ON(vi != mft_vi);
 959	} else {
 960		/*
 961		 * Have to use ilookup5_nowait() since ilookup5() waits for the
 962		 * inode lock which causes ntfs to deadlock when a concurrent
 963		 * inode write via the inode dirty code paths and the page
 964		 * dirty code path of the inode dirty code path when writing
 965		 * $MFT occurs.
 966		 */
 967		vi = ilookup5_nowait(sb, mft_no, (test_t)ntfs_test_inode, &na);
 968	}
 969	if (vi) {
 970		ntfs_debug("Base inode 0x%lx is in icache.", mft_no);
 971		/* The inode is in icache. */
 972		ni = NTFS_I(vi);
 973		/* Take a reference to the ntfs inode. */
 974		atomic_inc(&ni->count);
 975		/* If the inode is dirty, do not write this record. */
 976		if (NInoDirty(ni)) {
 977			ntfs_debug("Inode 0x%lx is dirty, do not write it.",
 978					mft_no);
 979			atomic_dec(&ni->count);
 980			iput(vi);
 981			return false;
 982		}
 983		ntfs_debug("Inode 0x%lx is not dirty.", mft_no);
 984		/* The inode is not dirty, try to take the mft record lock. */
 985		if (unlikely(!mutex_trylock(&ni->mrec_lock))) {
 986			ntfs_debug("Mft record 0x%lx is already locked, do "
 987					"not write it.", mft_no);
 988			atomic_dec(&ni->count);
 989			iput(vi);
 990			return false;
 991		}
 992		ntfs_debug("Managed to lock mft record 0x%lx, write it.",
 993				mft_no);
 994		/*
 995		 * The write has to occur while we hold the mft record lock so
 996		 * return the locked ntfs inode.
 997		 */
 998		*locked_ni = ni;
 999		return true;
1000	}
1001	ntfs_debug("Inode 0x%lx is not in icache.", mft_no);
1002	/* The inode is not in icache. */
1003	/* Write the record if it is not a mft record (type "FILE"). */
1004	if (!ntfs_is_mft_record(m->magic)) {
1005		ntfs_debug("Mft record 0x%lx is not a FILE record, write it.",
1006				mft_no);
1007		return true;
1008	}
1009	/* Write the mft record if it is a base inode. */
1010	if (!m->base_mft_record) {
1011		ntfs_debug("Mft record 0x%lx is a base record, write it.",
1012				mft_no);
1013		return true;
1014	}
1015	/*
1016	 * This is an extent mft record.  Check if the inode corresponding to
1017	 * its base mft record is in icache and obtain a reference to it if it
1018	 * is.
1019	 */
1020	na.mft_no = MREF_LE(m->base_mft_record);
1021	ntfs_debug("Mft record 0x%lx is an extent record.  Looking for base "
1022			"inode 0x%lx in icache.", mft_no, na.mft_no);
1023	if (!na.mft_no) {
1024		/* Balance the below iput(). */
1025		vi = igrab(mft_vi);
1026		BUG_ON(vi != mft_vi);
1027	} else
1028		vi = ilookup5_nowait(sb, na.mft_no, (test_t)ntfs_test_inode,
1029				&na);
1030	if (!vi) {
1031		/*
1032		 * The base inode is not in icache, write this extent mft
1033		 * record.
1034		 */
1035		ntfs_debug("Base inode 0x%lx is not in icache, write the "
1036				"extent record.", na.mft_no);
1037		return true;
1038	}
1039	ntfs_debug("Base inode 0x%lx is in icache.", na.mft_no);
1040	/*
1041	 * The base inode is in icache.  Check if it has the extent inode
1042	 * corresponding to this extent mft record attached.
1043	 */
1044	ni = NTFS_I(vi);
1045	mutex_lock(&ni->extent_lock);
1046	if (ni->nr_extents <= 0) {
1047		/*
1048		 * The base inode has no attached extent inodes, write this
1049		 * extent mft record.
1050		 */
1051		mutex_unlock(&ni->extent_lock);
1052		iput(vi);
1053		ntfs_debug("Base inode 0x%lx has no attached extent inodes, "
1054				"write the extent record.", na.mft_no);
1055		return true;
1056	}
1057	/* Iterate over the attached extent inodes. */
1058	extent_nis = ni->ext.extent_ntfs_inos;
1059	for (eni = NULL, i = 0; i < ni->nr_extents; ++i) {
1060		if (mft_no == extent_nis[i]->mft_no) {
1061			/*
1062			 * Found the extent inode corresponding to this extent
1063			 * mft record.
1064			 */
1065			eni = extent_nis[i];
1066			break;
1067		}
1068	}
1069	/*
1070	 * If the extent inode was not attached to the base inode, write this
1071	 * extent mft record.
1072	 */
1073	if (!eni) {
1074		mutex_unlock(&ni->extent_lock);
1075		iput(vi);
1076		ntfs_debug("Extent inode 0x%lx is not attached to its base "
1077				"inode 0x%lx, write the extent record.",
1078				mft_no, na.mft_no);
1079		return true;
1080	}
1081	ntfs_debug("Extent inode 0x%lx is attached to its base inode 0x%lx.",
1082			mft_no, na.mft_no);
1083	/* Take a reference to the extent ntfs inode. */
1084	atomic_inc(&eni->count);
1085	mutex_unlock(&ni->extent_lock);
1086	/*
1087	 * Found the extent inode coresponding to this extent mft record.
1088	 * Try to take the mft record lock.
1089	 */
1090	if (unlikely(!mutex_trylock(&eni->mrec_lock))) {
1091		atomic_dec(&eni->count);
1092		iput(vi);
1093		ntfs_debug("Extent mft record 0x%lx is already locked, do "
1094				"not write it.", mft_no);
1095		return false;
1096	}
1097	ntfs_debug("Managed to lock extent mft record 0x%lx, write it.",
1098			mft_no);
1099	if (NInoTestClearDirty(eni))
1100		ntfs_debug("Extent inode 0x%lx is dirty, marking it clean.",
1101				mft_no);
1102	/*
1103	 * The write has to occur while we hold the mft record lock so return
1104	 * the locked extent ntfs inode.
1105	 */
1106	*locked_ni = eni;
1107	return true;
1108}
1109
1110static const char *es = "  Leaving inconsistent metadata.  Unmount and run "
1111		"chkdsk.";
1112
1113/**
1114 * ntfs_mft_bitmap_find_and_alloc_free_rec_nolock - see name
1115 * @vol:	volume on which to search for a free mft record
1116 * @base_ni:	open base inode if allocating an extent mft record or NULL
1117 *
1118 * Search for a free mft record in the mft bitmap attribute on the ntfs volume
1119 * @vol.
1120 *
1121 * If @base_ni is NULL start the search at the default allocator position.
1122 *
1123 * If @base_ni is not NULL start the search at the mft record after the base
1124 * mft record @base_ni.
1125 *
1126 * Return the free mft record on success and -errno on error.  An error code of
1127 * -ENOSPC means that there are no free mft records in the currently
1128 * initialized mft bitmap.
1129 *
1130 * Locking: Caller must hold vol->mftbmp_lock for writing.
1131 */
1132static int ntfs_mft_bitmap_find_and_alloc_free_rec_nolock(ntfs_volume *vol,
1133		ntfs_inode *base_ni)
1134{
1135	s64 pass_end, ll, data_pos, pass_start, ofs, bit;
1136	unsigned long flags;
1137	struct address_space *mftbmp_mapping;
1138	u8 *buf, *byte;
1139	struct page *page;
1140	unsigned int page_ofs, size;
1141	u8 pass, b;
1142
1143	ntfs_debug("Searching for free mft record in the currently "
1144			"initialized mft bitmap.");
1145	mftbmp_mapping = vol->mftbmp_ino->i_mapping;
1146	/*
1147	 * Set the end of the pass making sure we do not overflow the mft
1148	 * bitmap.
1149	 */
1150	read_lock_irqsave(&NTFS_I(vol->mft_ino)->size_lock, flags);
1151	pass_end = NTFS_I(vol->mft_ino)->allocated_size >>
1152			vol->mft_record_size_bits;
1153	read_unlock_irqrestore(&NTFS_I(vol->mft_ino)->size_lock, flags);
1154	read_lock_irqsave(&NTFS_I(vol->mftbmp_ino)->size_lock, flags);
1155	ll = NTFS_I(vol->mftbmp_ino)->initialized_size << 3;
1156	read_unlock_irqrestore(&NTFS_I(vol->mftbmp_ino)->size_lock, flags);
1157	if (pass_end > ll)
1158		pass_end = ll;
1159	pass = 1;
1160	if (!base_ni)
1161		data_pos = vol->mft_data_pos;
1162	else
1163		data_pos = base_ni->mft_no + 1;
1164	if (data_pos < 24)
1165		data_pos = 24;
1166	if (data_pos >= pass_end) {
1167		data_pos = 24;
1168		pass = 2;
1169		/* This happens on a freshly formatted volume. */
1170		if (data_pos >= pass_end)
1171			return -ENOSPC;
1172	}
1173	pass_start = data_pos;
1174	ntfs_debug("Starting bitmap search: pass %u, pass_start 0x%llx, "
1175			"pass_end 0x%llx, data_pos 0x%llx.", pass,
1176			(long long)pass_start, (long long)pass_end,
1177			(long long)data_pos);
1178	/* Loop until a free mft record is found. */
1179	for (; pass <= 2;) {
1180		/* Cap size to pass_end. */
1181		ofs = data_pos >> 3;
1182		page_ofs = ofs & ~PAGE_MASK;
1183		size = PAGE_SIZE - page_ofs;
1184		ll = ((pass_end + 7) >> 3) - ofs;
1185		if (size > ll)
1186			size = ll;
1187		size <<= 3;
1188		/*
1189		 * If we are still within the active pass, search the next page
1190		 * for a zero bit.
1191		 */
1192		if (size) {
1193			page = ntfs_map_page(mftbmp_mapping,
1194					ofs >> PAGE_SHIFT);
1195			if (IS_ERR(page)) {
1196				ntfs_error(vol->sb, "Failed to read mft "
1197						"bitmap, aborting.");
1198				return PTR_ERR(page);
1199			}
1200			buf = (u8*)page_address(page) + page_ofs;
1201			bit = data_pos & 7;
1202			data_pos &= ~7ull;
1203			ntfs_debug("Before inner for loop: size 0x%x, "
1204					"data_pos 0x%llx, bit 0x%llx", size,
1205					(long long)data_pos, (long long)bit);
1206			for (; bit < size && data_pos + bit < pass_end;
1207					bit &= ~7ull, bit += 8) {
1208				byte = buf + (bit >> 3);
1209				if (*byte == 0xff)
1210					continue;
1211				b = ffz((unsigned long)*byte);
1212				if (b < 8 && b >= (bit & 7)) {
1213					ll = data_pos + (bit & ~7ull) + b;
1214					if (unlikely(ll > (1ll << 32))) {
1215						ntfs_unmap_page(page);
1216						return -ENOSPC;
1217					}
1218					*byte |= 1 << b;
1219					flush_dcache_page(page);
1220					set_page_dirty(page);
1221					ntfs_unmap_page(page);
1222					ntfs_debug("Done.  (Found and "
1223							"allocated mft record "
1224							"0x%llx.)",
1225							(long long)ll);
1226					return ll;
1227				}
1228			}
1229			ntfs_debug("After inner for loop: size 0x%x, "
1230					"data_pos 0x%llx, bit 0x%llx", size,
1231					(long long)data_pos, (long long)bit);
1232			data_pos += size;
1233			ntfs_unmap_page(page);
1234			/*
1235			 * If the end of the pass has not been reached yet,
1236			 * continue searching the mft bitmap for a zero bit.
1237			 */
1238			if (data_pos < pass_end)
1239				continue;
1240		}
1241		/* Do the next pass. */
1242		if (++pass == 2) {
1243			/*
1244			 * Starting the second pass, in which we scan the first
1245			 * part of the zone which we omitted earlier.
1246			 */
1247			pass_end = pass_start;
1248			data_pos = pass_start = 24;
1249			ntfs_debug("pass %i, pass_start 0x%llx, pass_end "
1250					"0x%llx.", pass, (long long)pass_start,
1251					(long long)pass_end);
1252			if (data_pos >= pass_end)
1253				break;
1254		}
1255	}
1256	/* No free mft records in currently initialized mft bitmap. */
1257	ntfs_debug("Done.  (No free mft records left in currently initialized "
1258			"mft bitmap.)");
1259	return -ENOSPC;
1260}
1261
1262/**
1263 * ntfs_mft_bitmap_extend_allocation_nolock - extend mft bitmap by a cluster
1264 * @vol:	volume on which to extend the mft bitmap attribute
1265 *
1266 * Extend the mft bitmap attribute on the ntfs volume @vol by one cluster.
1267 *
1268 * Note: Only changes allocated_size, i.e. does not touch initialized_size or
1269 * data_size.
1270 *
1271 * Return 0 on success and -errno on error.
1272 *
1273 * Locking: - Caller must hold vol->mftbmp_lock for writing.
1274 *	    - This function takes NTFS_I(vol->mftbmp_ino)->runlist.lock for
1275 *	      writing and releases it before returning.
1276 *	    - This function takes vol->lcnbmp_lock for writing and releases it
1277 *	      before returning.
1278 */
1279static int ntfs_mft_bitmap_extend_allocation_nolock(ntfs_volume *vol)
1280{
1281	LCN lcn;
1282	s64 ll;
1283	unsigned long flags;
1284	struct page *page;
1285	ntfs_inode *mft_ni, *mftbmp_ni;
1286	runlist_element *rl, *rl2 = NULL;
1287	ntfs_attr_search_ctx *ctx = NULL;
1288	MFT_RECORD *mrec;
1289	ATTR_RECORD *a = NULL;
1290	int ret, mp_size;
1291	u32 old_alen = 0;
1292	u8 *b, tb;
1293	struct {
1294		u8 added_cluster:1;
1295		u8 added_run:1;
1296		u8 mp_rebuilt:1;
1297	} status = { 0, 0, 0 };
1298
1299	ntfs_debug("Extending mft bitmap allocation.");
1300	mft_ni = NTFS_I(vol->mft_ino);
1301	mftbmp_ni = NTFS_I(vol->mftbmp_ino);
1302	/*
1303	 * Determine the last lcn of the mft bitmap.  The allocated size of the
1304	 * mft bitmap cannot be zero so we are ok to do this.
1305	 */
1306	down_write(&mftbmp_ni->runlist.lock);
1307	read_lock_irqsave(&mftbmp_ni->size_lock, flags);
1308	ll = mftbmp_ni->allocated_size;
1309	read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1310	rl = ntfs_attr_find_vcn_nolock(mftbmp_ni,
1311			(ll - 1) >> vol->cluster_size_bits, NULL);
1312	if (unlikely(IS_ERR(rl) || !rl->length || rl->lcn < 0)) {
1313		up_write(&mftbmp_ni->runlist.lock);
1314		ntfs_error(vol->sb, "Failed to determine last allocated "
1315				"cluster of mft bitmap attribute.");
1316		if (!IS_ERR(rl))
1317			ret = -EIO;
1318		else
1319			ret = PTR_ERR(rl);
1320		return ret;
1321	}
1322	lcn = rl->lcn + rl->length;
1323	ntfs_debug("Last lcn of mft bitmap attribute is 0x%llx.",
1324			(long long)lcn);
1325	/*
1326	 * Attempt to get the cluster following the last allocated cluster by
1327	 * hand as it may be in the MFT zone so the allocator would not give it
1328	 * to us.
1329	 */
1330	ll = lcn >> 3;
1331	page = ntfs_map_page(vol->lcnbmp_ino->i_mapping,
1332			ll >> PAGE_SHIFT);
1333	if (IS_ERR(page)) {
1334		up_write(&mftbmp_ni->runlist.lock);
1335		ntfs_error(vol->sb, "Failed to read from lcn bitmap.");
1336		return PTR_ERR(page);
1337	}
1338	b = (u8*)page_address(page) + (ll & ~PAGE_MASK);
1339	tb = 1 << (lcn & 7ull);
1340	down_write(&vol->lcnbmp_lock);
1341	if (*b != 0xff && !(*b & tb)) {
1342		/* Next cluster is free, allocate it. */
1343		*b |= tb;
1344		flush_dcache_page(page);
1345		set_page_dirty(page);
1346		up_write(&vol->lcnbmp_lock);
1347		ntfs_unmap_page(page);
1348		/* Update the mft bitmap runlist. */
1349		rl->length++;
1350		rl[1].vcn++;
1351		status.added_cluster = 1;
1352		ntfs_debug("Appending one cluster to mft bitmap.");
1353	} else {
1354		up_write(&vol->lcnbmp_lock);
1355		ntfs_unmap_page(page);
1356		/* Allocate a cluster from the DATA_ZONE. */
1357		rl2 = ntfs_cluster_alloc(vol, rl[1].vcn, 1, lcn, DATA_ZONE,
1358				true);
1359		if (IS_ERR(rl2)) {
1360			up_write(&mftbmp_ni->runlist.lock);
1361			ntfs_error(vol->sb, "Failed to allocate a cluster for "
1362					"the mft bitmap.");
1363			return PTR_ERR(rl2);
1364		}
1365		rl = ntfs_runlists_merge(mftbmp_ni->runlist.rl, rl2);
1366		if (IS_ERR(rl)) {
1367			up_write(&mftbmp_ni->runlist.lock);
1368			ntfs_error(vol->sb, "Failed to merge runlists for mft "
1369					"bitmap.");
1370			if (ntfs_cluster_free_from_rl(vol, rl2)) {
1371				ntfs_error(vol->sb, "Failed to deallocate "
1372						"allocated cluster.%s", es);
1373				NVolSetErrors(vol);
1374			}
1375			ntfs_free(rl2);
1376			return PTR_ERR(rl);
1377		}
1378		mftbmp_ni->runlist.rl = rl;
1379		status.added_run = 1;
1380		ntfs_debug("Adding one run to mft bitmap.");
1381		/* Find the last run in the new runlist. */
1382		for (; rl[1].length; rl++)
1383			;
1384	}
1385	/*
1386	 * Update the attribute record as well.  Note: @rl is the last
1387	 * (non-terminator) runlist element of mft bitmap.
1388	 */
1389	mrec = map_mft_record(mft_ni);
1390	if (IS_ERR(mrec)) {
1391		ntfs_error(vol->sb, "Failed to map mft record.");
1392		ret = PTR_ERR(mrec);
1393		goto undo_alloc;
1394	}
1395	ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1396	if (unlikely(!ctx)) {
1397		ntfs_error(vol->sb, "Failed to get search context.");
1398		ret = -ENOMEM;
1399		goto undo_alloc;
1400	}
1401	ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1402			mftbmp_ni->name_len, CASE_SENSITIVE, rl[1].vcn, NULL,
1403			0, ctx);
1404	if (unlikely(ret)) {
1405		ntfs_error(vol->sb, "Failed to find last attribute extent of "
1406				"mft bitmap attribute.");
1407		if (ret == -ENOENT)
1408			ret = -EIO;
1409		goto undo_alloc;
1410	}
1411	a = ctx->attr;
1412	ll = sle64_to_cpu(a->data.non_resident.lowest_vcn);
1413	/* Search back for the previous last allocated cluster of mft bitmap. */
1414	for (rl2 = rl; rl2 > mftbmp_ni->runlist.rl; rl2--) {
1415		if (ll >= rl2->vcn)
1416			break;
1417	}
1418	BUG_ON(ll < rl2->vcn);
1419	BUG_ON(ll >= rl2->vcn + rl2->length);
1420	/* Get the size for the new mapping pairs array for this extent. */
1421	mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1);
1422	if (unlikely(mp_size <= 0)) {
1423		ntfs_error(vol->sb, "Get size for mapping pairs failed for "
1424				"mft bitmap attribute extent.");
1425		ret = mp_size;
1426		if (!ret)
1427			ret = -EIO;
1428		goto undo_alloc;
1429	}
1430	/* Expand the attribute record if necessary. */
1431	old_alen = le32_to_cpu(a->length);
1432	ret = ntfs_attr_record_resize(ctx->mrec, a, mp_size +
1433			le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
1434	if (unlikely(ret)) {
1435		if (ret != -ENOSPC) {
1436			ntfs_error(vol->sb, "Failed to resize attribute "
1437					"record for mft bitmap attribute.");
1438			goto undo_alloc;
1439		}
1440		// TODO: Deal with this by moving this extent to a new mft
1441		// record or by starting a new extent in a new mft record or by
1442		// moving other attributes out of this mft record.
1443		// Note: It will need to be a special mft record and if none of
1444		// those are available it gets rather complicated...
1445		ntfs_error(vol->sb, "Not enough space in this mft record to "
1446				"accommodate extended mft bitmap attribute "
1447				"extent.  Cannot handle this yet.");
1448		ret = -EOPNOTSUPP;
1449		goto undo_alloc;
1450	}
1451	status.mp_rebuilt = 1;
1452	/* Generate the mapping pairs array directly into the attr record. */
1453	ret = ntfs_mapping_pairs_build(vol, (u8*)a +
1454			le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
1455			mp_size, rl2, ll, -1, NULL);
1456	if (unlikely(ret)) {
1457		ntfs_error(vol->sb, "Failed to build mapping pairs array for "
1458				"mft bitmap attribute.");
1459		goto undo_alloc;
1460	}
1461	/* Update the highest_vcn. */
1462	a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 1);
1463	/*
1464	 * We now have extended the mft bitmap allocated_size by one cluster.
1465	 * Reflect this in the ntfs_inode structure and the attribute record.
1466	 */
1467	if (a->data.non_resident.lowest_vcn) {
1468		/*
1469		 * We are not in the first attribute extent, switch to it, but
1470		 * first ensure the changes will make it to disk later.
1471		 */
1472		flush_dcache_mft_record_page(ctx->ntfs_ino);
1473		mark_mft_record_dirty(ctx->ntfs_ino);
1474		ntfs_attr_reinit_search_ctx(ctx);
1475		ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1476				mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL,
1477				0, ctx);
1478		if (unlikely(ret)) {
1479			ntfs_error(vol->sb, "Failed to find first attribute "
1480					"extent of mft bitmap attribute.");
1481			goto restore_undo_alloc;
1482		}
1483		a = ctx->attr;
1484	}
1485	write_lock_irqsave(&mftbmp_ni->size_lock, flags);
1486	mftbmp_ni->allocated_size += vol->cluster_size;
1487	a->data.non_resident.allocated_size =
1488			cpu_to_sle64(mftbmp_ni->allocated_size);
1489	write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1490	/* Ensure the changes make it to disk. */
1491	flush_dcache_mft_record_page(ctx->ntfs_ino);
1492	mark_mft_record_dirty(ctx->ntfs_ino);
1493	ntfs_attr_put_search_ctx(ctx);
1494	unmap_mft_record(mft_ni);
1495	up_write(&mftbmp_ni->runlist.lock);
1496	ntfs_debug("Done.");
1497	return 0;
1498restore_undo_alloc:
1499	ntfs_attr_reinit_search_ctx(ctx);
1500	if (ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1501			mftbmp_ni->name_len, CASE_SENSITIVE, rl[1].vcn, NULL,
1502			0, ctx)) {
1503		ntfs_error(vol->sb, "Failed to find last attribute extent of "
1504				"mft bitmap attribute.%s", es);
1505		write_lock_irqsave(&mftbmp_ni->size_lock, flags);
1506		mftbmp_ni->allocated_size += vol->cluster_size;
1507		write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1508		ntfs_attr_put_search_ctx(ctx);
1509		unmap_mft_record(mft_ni);
1510		up_write(&mftbmp_ni->runlist.lock);
1511		/*
1512		 * The only thing that is now wrong is ->allocated_size of the
1513		 * base attribute extent which chkdsk should be able to fix.
1514		 */
1515		NVolSetErrors(vol);
1516		return ret;
1517	}
1518	a = ctx->attr;
1519	a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 2);
1520undo_alloc:
1521	if (status.added_cluster) {
1522		/* Truncate the last run in the runlist by one cluster. */
1523		rl->length--;
1524		rl[1].vcn--;
1525	} else if (status.added_run) {
1526		lcn = rl->lcn;
1527		/* Remove the last run from the runlist. */
1528		rl->lcn = rl[1].lcn;
1529		rl->length = 0;
1530	}
1531	/* Deallocate the cluster. */
1532	down_write(&vol->lcnbmp_lock);
1533	if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
1534		ntfs_error(vol->sb, "Failed to free allocated cluster.%s", es);
1535		NVolSetErrors(vol);
1536	}
1537	up_write(&vol->lcnbmp_lock);
1538	if (status.mp_rebuilt) {
1539		if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1540				a->data.non_resident.mapping_pairs_offset),
1541				old_alen - le16_to_cpu(
1542				a->data.non_resident.mapping_pairs_offset),
1543				rl2, ll, -1, NULL)) {
1544			ntfs_error(vol->sb, "Failed to restore mapping pairs "
1545					"array.%s", es);
1546			NVolSetErrors(vol);
1547		}
1548		if (ntfs_attr_record_resize(ctx->mrec, a, old_alen)) {
1549			ntfs_error(vol->sb, "Failed to restore attribute "
1550					"record.%s", es);
1551			NVolSetErrors(vol);
1552		}
1553		flush_dcache_mft_record_page(ctx->ntfs_ino);
1554		mark_mft_record_dirty(ctx->ntfs_ino);
1555	}
1556	if (ctx)
1557		ntfs_attr_put_search_ctx(ctx);
1558	if (!IS_ERR(mrec))
1559		unmap_mft_record(mft_ni);
1560	up_write(&mftbmp_ni->runlist.lock);
1561	return ret;
1562}
1563
1564/**
1565 * ntfs_mft_bitmap_extend_initialized_nolock - extend mftbmp initialized data
1566 * @vol:	volume on which to extend the mft bitmap attribute
1567 *
1568 * Extend the initialized portion of the mft bitmap attribute on the ntfs
1569 * volume @vol by 8 bytes.
1570 *
1571 * Note:  Only changes initialized_size and data_size, i.e. requires that
1572 * allocated_size is big enough to fit the new initialized_size.
1573 *
1574 * Return 0 on success and -error on error.
1575 *
1576 * Locking: Caller must hold vol->mftbmp_lock for writing.
1577 */
1578static int ntfs_mft_bitmap_extend_initialized_nolock(ntfs_volume *vol)
1579{
1580	s64 old_data_size, old_initialized_size;
1581	unsigned long flags;
1582	struct inode *mftbmp_vi;
1583	ntfs_inode *mft_ni, *mftbmp_ni;
1584	ntfs_attr_search_ctx *ctx;
1585	MFT_RECORD *mrec;
1586	ATTR_RECORD *a;
1587	int ret;
1588
1589	ntfs_debug("Extending mft bitmap initiailized (and data) size.");
1590	mft_ni = NTFS_I(vol->mft_ino);
1591	mftbmp_vi = vol->mftbmp_ino;
1592	mftbmp_ni = NTFS_I(mftbmp_vi);
1593	/* Get the attribute record. */
1594	mrec = map_mft_record(mft_ni);
1595	if (IS_ERR(mrec)) {
1596		ntfs_error(vol->sb, "Failed to map mft record.");
1597		return PTR_ERR(mrec);
1598	}
1599	ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1600	if (unlikely(!ctx)) {
1601		ntfs_error(vol->sb, "Failed to get search context.");
1602		ret = -ENOMEM;
1603		goto unm_err_out;
1604	}
1605	ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1606			mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx);
1607	if (unlikely(ret)) {
1608		ntfs_error(vol->sb, "Failed to find first attribute extent of "
1609				"mft bitmap attribute.");
1610		if (ret == -ENOENT)
1611			ret = -EIO;
1612		goto put_err_out;
1613	}
1614	a = ctx->attr;
1615	write_lock_irqsave(&mftbmp_ni->size_lock, flags);
1616	old_data_size = i_size_read(mftbmp_vi);
1617	old_initialized_size = mftbmp_ni->initialized_size;
1618	/*
1619	 * We can simply update the initialized_size before filling the space
1620	 * with zeroes because the caller is holding the mft bitmap lock for
1621	 * writing which ensures that no one else is trying to access the data.
1622	 */
1623	mftbmp_ni->initialized_size += 8;
1624	a->data.non_resident.initialized_size =
1625			cpu_to_sle64(mftbmp_ni->initialized_size);
1626	if (mftbmp_ni->initialized_size > old_data_size) {
1627		i_size_write(mftbmp_vi, mftbmp_ni->initialized_size);
1628		a->data.non_resident.data_size =
1629				cpu_to_sle64(mftbmp_ni->initialized_size);
1630	}
1631	write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1632	/* Ensure the changes make it to disk. */
1633	flush_dcache_mft_record_page(ctx->ntfs_ino);
1634	mark_mft_record_dirty(ctx->ntfs_ino);
1635	ntfs_attr_put_search_ctx(ctx);
1636	unmap_mft_record(mft_ni);
1637	/* Initialize the mft bitmap attribute value with zeroes. */
1638	ret = ntfs_attr_set(mftbmp_ni, old_initialized_size, 8, 0);
1639	if (likely(!ret)) {
1640		ntfs_debug("Done.  (Wrote eight initialized bytes to mft "
1641				"bitmap.");
1642		return 0;
1643	}
1644	ntfs_error(vol->sb, "Failed to write to mft bitmap.");
1645	/* Try to recover from the error. */
1646	mrec = map_mft_record(mft_ni);
1647	if (IS_ERR(mrec)) {
1648		ntfs_error(vol->sb, "Failed to map mft record.%s", es);
1649		NVolSetErrors(vol);
1650		return ret;
1651	}
1652	ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1653	if (unlikely(!ctx)) {
1654		ntfs_error(vol->sb, "Failed to get search context.%s", es);
1655		NVolSetErrors(vol);
1656		goto unm_err_out;
1657	}
1658	if (ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1659			mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx)) {
1660		ntfs_error(vol->sb, "Failed to find first attribute extent of "
1661				"mft bitmap attribute.%s", es);
1662		NVolSetErrors(vol);
1663put_err_out:
1664		ntfs_attr_put_search_ctx(ctx);
1665unm_err_out:
1666		unmap_mft_record(mft_ni);
1667		goto err_out;
1668	}
1669	a = ctx->attr;
1670	write_lock_irqsave(&mftbmp_ni->size_lock, flags);
1671	mftbmp_ni->initialized_size = old_initialized_size;
1672	a->data.non_resident.initialized_size =
1673			cpu_to_sle64(old_initialized_size);
1674	if (i_size_read(mftbmp_vi) != old_data_size) {
1675		i_size_write(mftbmp_vi, old_data_size);
1676		a->data.non_resident.data_size = cpu_to_sle64(old_data_size);
1677	}
1678	write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1679	flush_dcache_mft_record_page(ctx->ntfs_ino);
1680	mark_mft_record_dirty(ctx->ntfs_ino);
1681	ntfs_attr_put_search_ctx(ctx);
1682	unmap_mft_record(mft_ni);
1683#ifdef DEBUG
1684	read_lock_irqsave(&mftbmp_ni->size_lock, flags);
1685	ntfs_debug("Restored status of mftbmp: allocated_size 0x%llx, "
1686			"data_size 0x%llx, initialized_size 0x%llx.",
1687			(long long)mftbmp_ni->allocated_size,
1688			(long long)i_size_read(mftbmp_vi),
1689			(long long)mftbmp_ni->initialized_size);
1690	read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1691#endif /* DEBUG */
1692err_out:
1693	return ret;
1694}
1695
1696/**
1697 * ntfs_mft_data_extend_allocation_nolock - extend mft data attribute
1698 * @vol:	volume on which to extend the mft data attribute
1699 *
1700 * Extend the mft data attribute on the ntfs volume @vol by 16 mft records
1701 * worth of clusters or if not enough space for this by one mft record worth
1702 * of clusters.
1703 *
1704 * Note:  Only changes allocated_size, i.e. does not touch initialized_size or
1705 * data_size.
1706 *
1707 * Return 0 on success and -errno on error.
1708 *
1709 * Locking: - Caller must hold vol->mftbmp_lock for writing.
1710 *	    - This function takes NTFS_I(vol->mft_ino)->runlist.lock for
1711 *	      writing and releases it before returning.
1712 *	    - This function calls functions which take vol->lcnbmp_lock for
1713 *	      writing and release it before returning.
1714 */
1715static int ntfs_mft_data_extend_allocation_nolock(ntfs_volume *vol)
1716{
1717	LCN lcn;
1718	VCN old_last_vcn;
1719	s64 min_nr, nr, ll;
1720	unsigned long flags;
1721	ntfs_inode *mft_ni;
1722	runlist_element *rl, *rl2;
1723	ntfs_attr_search_ctx *ctx = NULL;
1724	MFT_RECORD *mrec;
1725	ATTR_RECORD *a = NULL;
1726	int ret, mp_size;
1727	u32 old_alen = 0;
1728	bool mp_rebuilt = false;
1729
1730	ntfs_debug("Extending mft data allocation.");
1731	mft_ni = NTFS_I(vol->mft_ino);
1732	/*
1733	 * Determine the preferred allocation location, i.e. the last lcn of
1734	 * the mft data attribute.  The allocated size of the mft data
1735	 * attribute cannot be zero so we are ok to do this.
1736	 */
1737	down_write(&mft_ni->runlist.lock);
1738	read_lock_irqsave(&mft_ni->size_lock, flags);
1739	ll = mft_ni->allocated_size;
1740	read_unlock_irqrestore(&mft_ni->size_lock, flags);
1741	rl = ntfs_attr_find_vcn_nolock(mft_ni,
1742			(ll - 1) >> vol->cluster_size_bits, NULL);
1743	if (unlikely(IS_ERR(rl) || !rl->length || rl->lcn < 0)) {
1744		up_write(&mft_ni->runlist.lock);
1745		ntfs_error(vol->sb, "Failed to determine last allocated "
1746				"cluster of mft data attribute.");
1747		if (!IS_ERR(rl))
1748			ret = -EIO;
1749		else
1750			ret = PTR_ERR(rl);
1751		return ret;
1752	}
1753	lcn = rl->lcn + rl->length;
1754	ntfs_debug("Last lcn of mft data attribute is 0x%llx.", (long long)lcn);
1755	/* Minimum allocation is one mft record worth of clusters. */
1756	min_nr = vol->mft_record_size >> vol->cluster_size_bits;
1757	if (!min_nr)
1758		min_nr = 1;
1759	/* Want to allocate 16 mft records worth of clusters. */
1760	nr = vol->mft_record_size << 4 >> vol->cluster_size_bits;
1761	if (!nr)
1762		nr = min_nr;
1763	/* Ensure we do not go above 2^32-1 mft records. */
1764	read_lock_irqsave(&mft_ni->size_lock, flags);
1765	ll = mft_ni->allocated_size;
1766	read_unlock_irqrestore(&mft_ni->size_lock, flags);
1767	if (unlikely((ll + (nr << vol->cluster_size_bits)) >>
1768			vol->mft_record_size_bits >= (1ll << 32))) {
1769		nr = min_nr;
1770		if (unlikely((ll + (nr << vol->cluster_size_bits)) >>
1771				vol->mft_record_size_bits >= (1ll << 32))) {
1772			ntfs_warning(vol->sb, "Cannot allocate mft record "
1773					"because the maximum number of inodes "
1774					"(2^32) has already been reached.");
1775			up_write(&mft_ni->runlist.lock);
1776			return -ENOSPC;
1777		}
1778	}
1779	ntfs_debug("Trying mft data allocation with %s cluster count %lli.",
1780			nr > min_nr ? "default" : "minimal", (long long)nr);
1781	old_last_vcn = rl[1].vcn;
1782	do {
1783		rl2 = ntfs_cluster_alloc(vol, old_last_vcn, nr, lcn, MFT_ZONE,
1784				true);
1785		if (likely(!IS_ERR(rl2)))
1786			break;
1787		if (PTR_ERR(rl2) != -ENOSPC || nr == min_nr) {
1788			ntfs_error(vol->sb, "Failed to allocate the minimal "
1789					"number of clusters (%lli) for the "
1790					"mft data attribute.", (long long)nr);
1791			up_write(&mft_ni->runlist.lock);
1792			return PTR_ERR(rl2);
1793		}
1794		/*
1795		 * There is not enough space to do the allocation, but there
1796		 * might be enough space to do a minimal allocation so try that
1797		 * before failing.
1798		 */
1799		nr = min_nr;
1800		ntfs_debug("Retrying mft data allocation with minimal cluster "
1801				"count %lli.", (long long)nr);
1802	} while (1);
1803	rl = ntfs_runlists_merge(mft_ni->runlist.rl, rl2);
1804	if (IS_ERR(rl)) {
1805		up_write(&mft_ni->runlist.lock);
1806		ntfs_error(vol->sb, "Failed to merge runlists for mft data "
1807				"attribute.");
1808		if (ntfs_cluster_free_from_rl(vol, rl2)) {
1809			ntfs_error(vol->sb, "Failed to deallocate clusters "
1810					"from the mft data attribute.%s", es);
1811			NVolSetErrors(vol);
1812		}
1813		ntfs_free(rl2);
1814		return PTR_ERR(rl);
1815	}
1816	mft_ni->runlist.rl = rl;
1817	ntfs_debug("Allocated %lli clusters.", (long long)nr);
1818	/* Find the last run in the new runlist. */
1819	for (; rl[1].length; rl++)
1820		;
1821	/* Update the attribute record as well. */
1822	mrec = map_mft_record(mft_ni);
1823	if (IS_ERR(mrec)) {
1824		ntfs_error(vol->sb, "Failed to map mft record.");
1825		ret = PTR_ERR(mrec);
1826		goto undo_alloc;
1827	}
1828	ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1829	if (unlikely(!ctx)) {
1830		ntfs_error(vol->sb, "Failed to get search context.");
1831		ret = -ENOMEM;
1832		goto undo_alloc;
1833	}
1834	ret = ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len,
1835			CASE_SENSITIVE, rl[1].vcn, NULL, 0, ctx);
1836	if (unlikely(ret)) {
1837		ntfs_error(vol->sb, "Failed to find last attribute extent of "
1838				"mft data attribute.");
1839		if (ret == -ENOENT)
1840			ret = -EIO;
1841		goto undo_alloc;
1842	}
1843	a = ctx->attr;
1844	ll = sle64_to_cpu(a->data.non_resident.lowest_vcn);
1845	/* Search back for the previous last allocated cluster of mft bitmap. */
1846	for (rl2 = rl; rl2 > mft_ni->runlist.rl; rl2--) {
1847		if (ll >= rl2->vcn)
1848			break;
1849	}
1850	BUG_ON(ll < rl2->vcn);
1851	BUG_ON(ll >= rl2->vcn + rl2->length);
1852	/* Get the size for the new mapping pairs array for this extent. */
1853	mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1);
1854	if (unlikely(mp_size <= 0)) {
1855		ntfs_error(vol->sb, "Get size for mapping pairs failed for "
1856				"mft data attribute extent.");
1857		ret = mp_size;
1858		if (!ret)
1859			ret = -EIO;
1860		goto undo_alloc;
1861	}
1862	/* Expand the attribute record if necessary. */
1863	old_alen = le32_to_cpu(a->length);
1864	ret = ntfs_attr_record_resize(ctx->mrec, a, mp_size +
1865			le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
1866	if (unlikely(ret)) {
1867		if (ret != -ENOSPC) {
1868			ntfs_error(vol->sb, "Failed to resize attribute "
1869					"record for mft data attribute.");
1870			goto undo_alloc;
1871		}
1872		// TODO: Deal with this by moving this extent to a new mft
1873		// record or by starting a new extent in a new mft record or by
1874		// moving other attributes out of this mft record.
1875		// Note: Use the special reserved mft records and ensure that
1876		// this extent is not required to find the mft record in
1877		// question.  If no free special records left we would need to
1878		// move an existing record away, insert ours in its place, and
1879		// then place the moved record into the newly allocated space
1880		// and we would then need to update all references to this mft
1881		// record appropriately.  This is rather complicated...
1882		ntfs_error(vol->sb, "Not enough space in this mft record to "
1883				"accommodate extended mft data attribute "
1884				"extent.  Cannot handle this yet.");
1885		ret = -EOPNOTSUPP;
1886		goto undo_alloc;
1887	}
1888	mp_rebuilt = true;
1889	/* Generate the mapping pairs array directly into the attr record. */
1890	ret = ntfs_mapping_pairs_build(vol, (u8*)a +
1891			le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
1892			mp_size, rl2, ll, -1, NULL);
1893	if (unlikely(ret)) {
1894		ntfs_error(vol->sb, "Failed to build mapping pairs array of "
1895				"mft data attribute.");
1896		goto undo_alloc;
1897	}
1898	/* Update the highest_vcn. */
1899	a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 1);
1900	/*
1901	 * We now have extended the mft data allocated_size by nr clusters.
1902	 * Reflect this in the ntfs_inode structure and the attribute record.
1903	 * @rl is the last (non-terminator) runlist element of mft data
1904	 * attribute.
1905	 */
1906	if (a->data.non_resident.lowest_vcn) {
1907		/*
1908		 * We are not in the first attribute extent, switch to it, but
1909		 * first ensure the changes will make it to disk later.
1910		 */
1911		flush_dcache_mft_record_page(ctx->ntfs_ino);
1912		mark_mft_record_dirty(ctx->ntfs_ino);
1913		ntfs_attr_reinit_search_ctx(ctx);
1914		ret = ntfs_attr_lookup(mft_ni->type, mft_ni->name,
1915				mft_ni->name_len, CASE_SENSITIVE, 0, NULL, 0,
1916				ctx);
1917		if (unlikely(ret)) {
1918			ntfs_error(vol->sb, "Failed to find first attribute "
1919					"extent of mft data attribute.");
1920			goto restore_undo_alloc;
1921		}
1922		a = ctx->attr;
1923	}
1924	write_lock_irqsave(&mft_ni->size_lock, flags);
1925	mft_ni->allocated_size += nr << vol->cluster_size_bits;
1926	a->data.non_resident.allocated_size =
1927			cpu_to_sle64(mft_ni->allocated_size);
1928	write_unlock_irqrestore(&mft_ni->size_lock, flags);
1929	/* Ensure the changes make it to disk. */
1930	flush_dcache_mft_record_page(ctx->ntfs_ino);
1931	mark_mft_record_dirty(ctx->ntfs_ino);
1932	ntfs_attr_put_search_ctx(ctx);
1933	unmap_mft_record(mft_ni);
1934	up_write(&mft_ni->runlist.lock);
1935	ntfs_debug("Done.");
1936	return 0;
1937restore_undo_alloc:
1938	ntfs_attr_reinit_search_ctx(ctx);
1939	if (ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len,
1940			CASE_SENSITIVE, rl[1].vcn, NULL, 0, ctx)) {
1941		ntfs_error(vol->sb, "Failed to find last attribute extent of "
1942				"mft data attribute.%s", es);
1943		write_lock_irqsave(&mft_ni->size_lock, flags);
1944		mft_ni->allocated_size += nr << vol->cluster_size_bits;
1945		write_unlock_irqrestore(&mft_ni->size_lock, flags);
1946		ntfs_attr_put_search_ctx(ctx);
1947		unmap_mft_record(mft_ni);
1948		up_write(&mft_ni->runlist.lock);
1949		/*
1950		 * The only thing that is now wrong is ->allocated_size of the
1951		 * base attribute extent which chkdsk should be able to fix.
1952		 */
1953		NVolSetErrors(vol);
1954		return ret;
1955	}
1956	ctx->attr->data.non_resident.highest_vcn =
1957			cpu_to_sle64(old_last_vcn - 1);
1958undo_alloc:
1959	if (ntfs_cluster_free(mft_ni, old_last_vcn, -1, ctx) < 0) {
1960		ntfs_error(vol->sb, "Failed to free clusters from mft data "
1961				"attribute.%s", es);
1962		NVolSetErrors(vol);
1963	}
1964	a = ctx->attr;
1965	if (ntfs_rl_truncate_nolock(vol, &mft_ni->runlist, old_last_vcn)) {
1966		ntfs_error(vol->sb, "Failed to truncate mft data attribute "
1967				"runlist.%s", es);
1968		NVolSetErrors(vol);
1969	}
1970	if (mp_rebuilt && !IS_ERR(ctx->mrec)) {
1971		if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1972				a->data.non_resident.mapping_pairs_offset),
1973				old_alen - le16_to_cpu(
1974				a->data.non_resident.mapping_pairs_offset),
1975				rl2, ll, -1, NULL)) {
1976			ntfs_error(vol->sb, "Failed to restore mapping pairs "
1977					"array.%s", es);
1978			NVolSetErrors(vol);
1979		}
1980		if (ntfs_attr_record_resize(ctx->mrec, a, old_alen)) {
1981			ntfs_error(vol->sb, "Failed to restore attribute "
1982					"record.%s", es);
1983			NVolSetErrors(vol);
1984		}
1985		flush_dcache_mft_record_page(ctx->ntfs_ino);
1986		mark_mft_record_dirty(ctx->ntfs_ino);
1987	} else if (IS_ERR(ctx->mrec)) {
1988		ntfs_error(vol->sb, "Failed to restore attribute search "
1989				"context.%s", es);
1990		NVolSetErrors(vol);
1991	}
1992	if (ctx)
1993		ntfs_attr_put_search_ctx(ctx);
1994	if (!IS_ERR(mrec))
1995		unmap_mft_record(mft_ni);
1996	up_write(&mft_ni->runlist.lock);
1997	return ret;
1998}
1999
2000/**
2001 * ntfs_mft_record_layout - layout an mft record into a memory buffer
2002 * @vol:	volume to which the mft record will belong
2003 * @mft_no:	mft reference specifying the mft record number
2004 * @m:		destination buffer of size >= @vol->mft_record_size bytes
2005 *
2006 * Layout an empty, unused mft record with the mft record number @mft_no into
2007 * the buffer @m.  The volume @vol is needed because the mft record structure
2008 * was modified in NTFS 3.1 so we need to know which volume version this mft
2009 * record will be used on.
2010 *
2011 * Return 0 on success and -errno on error.
2012 */
2013static int ntfs_mft_record_layout(const ntfs_volume *vol, const s64 mft_no,
2014		MFT_RECORD *m)
2015{
2016	ATTR_RECORD *a;
2017
2018	ntfs_debug("Entering for mft record 0x%llx.", (long long)mft_no);
2019	if (mft_no >= (1ll << 32)) {
2020		ntfs_error(vol->sb, "Mft record number 0x%llx exceeds "
2021				"maximum of 2^32.", (long long)mft_no);
2022		return -ERANGE;
2023	}
2024	/* Start by clearing the whole mft record to gives us a clean slate. */
2025	memset(m, 0, vol->mft_record_size);
2026	/* Aligned to 2-byte boundary. */
2027	if (vol->major_ver < 3 || (vol->major_ver == 3 && !vol->minor_ver))
2028		m->usa_ofs = cpu_to_le16((sizeof(MFT_RECORD_OLD) + 1) & ~1);
2029	else {
2030		m->usa_ofs = cpu_to_le16((sizeof(MFT_RECORD) + 1) & ~1);
2031		/*
2032		 * Set the NTFS 3.1+ specific fields while we know that the
2033		 * volume version is 3.1+.
2034		 */
2035		m->reserved = 0;
2036		m->mft_record_number = cpu_to_le32((u32)mft_no);
2037	}
2038	m->magic = magic_FILE;
2039	if (vol->mft_record_size >= NTFS_BLOCK_SIZE)
2040		m->usa_count = cpu_to_le16(vol->mft_record_size /
2041				NTFS_BLOCK_SIZE + 1);
2042	else {
2043		m->usa_count = cpu_to_le16(1);
2044		ntfs_warning(vol->sb, "Sector size is bigger than mft record "
2045				"size.  Setting usa_count to 1.  If chkdsk "
2046				"reports this as corruption, please email "
2047				"linux-ntfs-dev@lists.sourceforge.net stating "
2048				"that you saw this message and that the "
2049				"modified filesystem created was corrupt.  "
2050				"Thank you.");
2051	}
2052	/* Set the update sequence number to 1. */
2053	*(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)) = cpu_to_le16(1);
2054	m->lsn = 0;
2055	m->sequence_number = cpu_to_le16(1);
2056	m->link_count = 0;
2057	/*
2058	 * Place the attributes straight after the update sequence array,
2059	 * aligned to 8-byte boundary.
2060	 */
2061	m->attrs_offset = cpu_to_le16((le16_to_cpu(m->usa_ofs) +
2062			(le16_to_cpu(m->usa_count) << 1) + 7) & ~7);
2063	m->flags = 0;
2064	/*
2065	 * Using attrs_offset plus eight bytes (for the termination attribute).
2066	 * attrs_offset is already aligned to 8-byte boundary, so no need to
2067	 * align again.
2068	 */
2069	m->bytes_in_use = cpu_to_le32(le16_to_cpu(m->attrs_offset) + 8);
2070	m->bytes_allocated = cpu_to_le32(vol->mft_record_size);
2071	m->base_mft_record = 0;
2072	m->next_attr_instance = 0;
2073	/* Add the termination attribute. */
2074	a = (ATTR_RECORD*)((u8*)m + le16_to_cpu(m->attrs_offset));
2075	a->type = AT_END;
2076	a->length = 0;
2077	ntfs_debug("Done.");
2078	return 0;
2079}
2080
2081/**
2082 * ntfs_mft_record_format - format an mft record on an ntfs volume
2083 * @vol:	volume on which to format the mft record
2084 * @mft_no:	mft record number to format
2085 *
2086 * Format the mft record @mft_no in $MFT/$DATA, i.e. lay out an empty, unused
2087 * mft record into the appropriate place of the mft data attribute.  This is
2088 * used when extending the mft data attribute.
2089 *
2090 * Return 0 on success and -errno on error.
2091 */
2092static int ntfs_mft_record_format(const ntfs_volume *vol, const s64 mft_no)
2093{
2094	loff_t i_size;
2095	struct inode *mft_vi = vol->mft_ino;
2096	struct page *page;
2097	MFT_RECORD *m;
2098	pgoff_t index, end_index;
2099	unsigned int ofs;
2100	int err;
2101
2102	ntfs_debug("Entering for mft record 0x%llx.", (long long)mft_no);
2103	/*
2104	 * The index into the page cache and the offset within the page cache
2105	 * page of the wanted mft record.
2106	 */
2107	index = mft_no << vol->mft_record_size_bits >> PAGE_SHIFT;
2108	ofs = (mft_no << vol->mft_record_size_bits) & ~PAGE_MASK;
2109	/* The maximum valid index into the page cache for $MFT's data. */
2110	i_size = i_size_read(mft_vi);
2111	end_index = i_size >> PAGE_SHIFT;
2112	if (unlikely(index >= end_index)) {
2113		if (unlikely(index > end_index || ofs + vol->mft_record_size >=
2114				(i_size & ~PAGE_MASK))) {
2115			ntfs_error(vol->sb, "Tried to format non-existing mft "
2116					"record 0x%llx.", (long long)mft_no);
2117			return -ENOENT;
2118		}
2119	}
2120	/* Read, map, and pin the page containing the mft record. */
2121	page = ntfs_map_page(mft_vi->i_mapping, index);
2122	if (IS_ERR(page)) {
2123		ntfs_error(vol->sb, "Failed to map page containing mft record "
2124				"to format 0x%llx.", (long long)mft_no);
2125		return PTR_ERR(page);
2126	}
2127	lock_page(page);
2128	BUG_ON(!PageUptodate(page));
2129	ClearPageUptodate(page);
2130	m = (MFT_RECORD*)((u8*)page_address(page) + ofs);
2131	err = ntfs_mft_record_layout(vol, mft_no, m);
2132	if (unlikely(err)) {
2133		ntfs_error(vol->sb, "Failed to layout mft record 0x%llx.",
2134				(long long)mft_no);
2135		SetPageUptodate(page);
2136		unlock_page(page);
2137		ntfs_unmap_page(page);
2138		return err;
2139	}
2140	flush_dcache_page(page);
2141	SetPageUptodate(page);
2142	unlock_page(page);
2143	/*
2144	 * Make sure the mft record is written out to disk.  We could use
2145	 * ilookup5() to check if an inode is in icache and so on but this is
2146	 * unnecessary as ntfs_writepage() will write the dirty record anyway.
2147	 */
2148	mark_ntfs_record_dirty(page, ofs);
2149	ntfs_unmap_page(page);
2150	ntfs_debug("Done.");
2151	return 0;
2152}
2153
2154/**
2155 * ntfs_mft_record_alloc - allocate an mft record on an ntfs volume
2156 * @vol:	[IN]  volume on which to allocate the mft record
2157 * @mode:	[IN]  mode if want a file or directory, i.e. base inode or 0
2158 * @base_ni:	[IN]  open base inode if allocating an extent mft record or NULL
2159 * @mrec:	[OUT] on successful return this is the mapped mft record
2160 *
2161 * Allocate an mft record in $MFT/$DATA of an open ntfs volume @vol.
2162 *
2163 * If @base_ni is NULL make the mft record a base mft record, i.e. a file or
2164 * direvctory inode, and allocate it at the default allocator position.  In
2165 * this case @mode is the file mode as given to us by the caller.  We in
2166 * particular use @mode to distinguish whether a file or a directory is being
2167 * created (S_IFDIR(mode) and S_IFREG(mode), respectively).
2168 *
2169 * If @base_ni is not NULL make the allocated mft record an extent record,
2170 * allocate it starting at the mft record after the base mft record and attach
2171 * the allocated and opened ntfs inode to the base inode @base_ni.  In this
2172 * case @mode must be 0 as it is meaningless for extent inodes.
2173 *
2174 * You need to check the return value with IS_ERR().  If false, the function
2175 * was successful and the return value is the now opened ntfs inode of the
2176 * allocated mft record.  *@mrec is then set to the allocated, mapped, pinned,
2177 * and locked mft record.  If IS_ERR() is true, the function failed and the
2178 * error code is obtained from PTR_ERR(return value).  *@mrec is undefined in
2179 * this case.
2180 *
2181 * Allocation strategy:
2182 *
2183 * To find a free mft record, we scan the mft bitmap for a zero bit.  To
2184 * optimize this we start scanning at the place specified by @base_ni or if
2185 * @base_ni is NULL we start where we last stopped and we perform wrap around
2186 * when we reach the end.  Note, we do not try to allocate mft records below
2187 * number 24 because numbers 0 to 15 are the defined system files anyway and 16
2188 * to 24 are special in that they are used for storing extension mft records
2189 * for the $DATA attribute of $MFT.  This is required to avoid the possibility
2190 * of creating a runlist with a circular dependency which once written to disk
2191 * can never be read in again.  Windows will only use records 16 to 24 for
2192 * normal files if the volume is completely out of space.  We never use them
2193 * which means that when the volume is really out of space we cannot create any
2194 * more files while Windows can still create up to 8 small files.  We can start
2195 * doing this at some later time, it does not matter much for now.
2196 *
2197 * When scanning the mft bitmap, we only search up to the last allocated mft
2198 * record.  If there are no free records left in the range 24 to number of
2199 * allocated mft records, then we extend the $MFT/$DATA attribute in order to
2200 * create free mft records.  We extend the allocated size of $MFT/$DATA by 16
2201 * records at a time or one cluster, if cluster size is above 16kiB.  If there
2202 * is not sufficient space to do this, we try to extend by a single mft record
2203 * or one cluster, if cluster size is above the mft record size.
2204 *
2205 * No matter how many mft records we allocate, we initialize only the first
2206 * allocated mft record, incrementing mft data size and initialized size
2207 * accordingly, open an ntfs_inode for it and return it to the caller, unless
2208 * there are less than 24 mft records, in which case we allocate and initialize
2209 * mft records until we reach record 24 which we consider as the first free mft
2210 * record for use by normal files.
2211 *
2212 * If during any stage we overflow the initialized data in the mft bitmap, we
2213 * extend the initialized size (and data size) by 8 bytes, allocating another
2214 * cluster if required.  The bitmap data size has to be at least equal to the
2215 * number of mft records in the mft, but it can be bigger, in which case the
2216 * superflous bits are padded with zeroes.
2217 *
2218 * Thus, when we return successfully (IS_ERR() is false), we will have:
2219 *	- initialized / extended the mft bitmap if necessary,
2220 *	- initialized / extended the mft data if necessary,
2221 *	- set the bit corresponding to the mft record being allocated in the
2222 *	  mft bitmap,
2223 *	- opened an ntfs_inode for the allocated mft record, and we will have
2224 *	- returned the ntfs_inode as well as the allocated mapped, pinned, and
2225 *	  locked mft record.
2226 *
2227 * On error, the volume will be left in a consistent state and no record will
2228 * be allocated.  If rolling back a partial operation fails, we may leave some
2229 * inconsistent metadata in which case we set NVolErrors() so the volume is
2230 * left dirty when unmounted.
2231 *
2232 * Note, this function cannot make use of most of the normal functions, like
2233 * for example for attribute resizing, etc, because when the run list overflows
2234 * the base mft record and an attribute list is used, it is very important that
2235 * the extension mft records used to store the $DATA attribute of $MFT can be
2236 * reached without having to read the information contained inside them, as
2237 * this would make it impossible to find them in the first place after the
2238 * volume is unmounted.  $MFT/$BITMAP probably does not need to follow this
2239 * rule because the bitmap is not essential for finding the mft records, but on
2240 * the other hand, handling the bitmap in this special way would make life
2241 * easier because otherwise there might be circular invocations of functions
2242 * when reading the bitmap.
2243 */
2244ntfs_inode *ntfs_mft_record_alloc(ntfs_volume *vol, const int mode,
2245		ntfs_inode *base_ni, MFT_RECORD **mrec)
2246{
2247	s64 ll, bit, old_data_initialized, old_data_size;
2248	unsigned long flags;
2249	struct inode *vi;
2250	struct page *page;
2251	ntfs_inode *mft_ni, *mftbmp_ni, *ni;
2252	ntfs_attr_search_ctx *ctx;
2253	MFT_RECORD *m;
2254	ATTR_RECORD *a;
2255	pgoff_t index;
2256	unsigned int ofs;
2257	int err;
2258	le16 seq_no, usn;
2259	bool record_formatted = false;
2260
2261	if (base_ni) {
2262		ntfs_debug("Entering (allocating an extent mft record for "
2263				"base mft record 0x%llx).",
2264				(long long)base_ni->mft_no);
2265		/* @mode and @base_ni are mutually exclusive. */
2266		BUG_ON(mode);
2267	} else
2268		ntfs_debug("Entering (allocating a base mft record).");
2269	if (mode) {
2270		/* @mode and @base_ni are mutually exclusive. */
2271		BUG_ON(base_ni);
2272		/* We only support creation of normal files and directories. */
2273		if (!S_ISREG(mode) && !S_ISDIR(mode))
2274			return ERR_PTR(-EOPNOTSUPP);
2275	}
2276	BUG_ON(!mrec);
2277	mft_ni = NTFS_I(vol->mft_ino);
2278	mftbmp_ni = NTFS_I(vol->mftbmp_ino);
2279	down_write(&vol->mftbmp_lock);
2280	bit = ntfs_mft_bitmap_find_and_alloc_free_rec_nolock(vol, base_ni);
2281	if (bit >= 0) {
2282		ntfs_debug("Found and allocated free record (#1), bit 0x%llx.",
2283				(long long)bit);
2284		goto have_alloc_rec;
2285	}
2286	if (bit != -ENOSPC) {
2287		up_write(&vol->mftbmp_lock);
2288		return ERR_PTR(bit);
2289	}
2290	/*
2291	 * No free mft records left.  If the mft bitmap already covers more
2292	 * than the currently used mft records, the next records are all free,
2293	 * so we can simply allocate the first unused mft record.
2294	 * Note: We also have to make sure that the mft bitmap at least covers
2295	 * the first 24 mft records as they are special and whilst they may not
2296	 * be in use, we do not allocate from them.
2297	 */
2298	read_lock_irqsave(&mft_ni->size_lock, flags);
2299	ll = mft_ni->initialized_size >> vol->mft_record_size_bits;
2300	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2301	read_lock_irqsave(&mftbmp_ni->size_lock, flags);
2302	old_data_initialized = mftbmp_ni->initialized_size;
2303	read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
2304	if (old_data_initialized << 3 > ll && old_data_initialized > 3) {
2305		bit = ll;
2306		if (bit < 24)
2307			bit = 24;
2308		if (unlikely(bit >= (1ll << 32)))
2309			goto max_err_out;
2310		ntfs_debug("Found free record (#2), bit 0x%llx.",
2311				(long long)bit);
2312		goto found_free_rec;
2313	}
2314	/*
2315	 * The mft bitmap needs to be expanded until it covers the first unused
2316	 * mft record that we can allocate.
2317	 * Note: The smallest mft record we allocate is mft record 24.
2318	 */
2319	bit = old_data_initialized << 3;
2320	if (unlikely(bit >= (1ll << 32)))
2321		goto max_err_out;
2322	read_lock_irqsave(&mftbmp_ni->size_lock, flags);
2323	old_data_size = mftbmp_ni->allocated_size;
2324	ntfs_debug("Status of mftbmp before extension: allocated_size 0x%llx, "
2325			"data_size 0x%llx, initialized_size 0x%llx.",
2326			(long long)old_data_size,
2327			(long long)i_size_read(vol->mftbmp_ino),
2328			(long long)old_data_initialized);
2329	read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
2330	if (old_data_initialized + 8 > old_data_size) {
2331		/* Need to extend bitmap by one more cluster. */
2332		ntfs_debug("mftbmp: initialized_size + 8 > allocated_size.");
2333		err = ntfs_mft_bitmap_extend_allocation_nolock(vol);
2334		if (unlikely(err)) {
2335			up_write(&vol->mftbmp_lock);
2336			goto err_out;
2337		}
2338#ifdef DEBUG
2339		read_lock_irqsave(&mftbmp_ni->size_lock, flags);
2340		ntfs_debug("Status of mftbmp after allocation extension: "
2341				"allocated_size 0x%llx, data_size 0x%llx, "
2342				"initialized_size 0x%llx.",
2343				(long long)mftbmp_ni->allocated_size,
2344				(long long)i_size_read(vol->mftbmp_ino),
2345				(long long)mftbmp_ni->initialized_size);
2346		read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
2347#endif /* DEBUG */
2348	}
2349	/*
2350	 * We now have sufficient allocated space, extend the initialized_size
2351	 * as well as the data_size if necessary and fill the new space with
2352	 * zeroes.
2353	 */
2354	err = ntfs_mft_bitmap_extend_initialized_nolock(vol);
2355	if (unlikely(err)) {
2356		up_write(&vol->mftbmp_lock);
2357		goto err_out;
2358	}
2359#ifdef DEBUG
2360	read_lock_irqsave(&mftbmp_ni->size_lock, flags);
2361	ntfs_debug("Status of mftbmp after initialized extension: "
2362			"allocated_size 0x%llx, data_size 0x%llx, "
2363			"initialized_size 0x%llx.",
2364			(long long)mftbmp_ni->allocated_size,
2365			(long long)i_size_read(vol->mftbmp_ino),
2366			(long long)mftbmp_ni->initialized_size);
2367	read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
2368#endif /* DEBUG */
2369	ntfs_debug("Found free record (#3), bit 0x%llx.", (long long)bit);
2370found_free_rec:
2371	/* @bit is the found free mft record, allocate it in the mft bitmap. */
2372	ntfs_debug("At found_free_rec.");
2373	err = ntfs_bitmap_set_bit(vol->mftbmp_ino, bit);
2374	if (unlikely(err)) {
2375		ntfs_error(vol->sb, "Failed to allocate bit in mft bitmap.");
2376		up_write(&vol->mftbmp_lock);
2377		goto err_out;
2378	}
2379	ntfs_debug("Set bit 0x%llx in mft bitmap.", (long long)bit);
2380have_alloc_rec:
2381	/*
2382	 * The mft bitmap is now uptodate.  Deal with mft data attribute now.
2383	 * Note, we keep hold of the mft bitmap lock for writing until all
2384	 * modifications to the mft data attribute are complete, too, as they
2385	 * will impact decisions for mft bitmap and mft record allocation done
2386	 * by a parallel allocation and if the lock is not maintained a
2387	 * parallel allocation could allocate the same mft record as this one.
2388	 */
2389	ll = (bit + 1) << vol->mft_record_size_bits;
2390	read_lock_irqsave(&mft_ni->size_lock, flags);
2391	old_data_initialized = mft_ni->initialized_size;
2392	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2393	if (ll <= old_data_initialized) {
2394		ntfs_debug("Allocated mft record already initialized.");
2395		goto mft_rec_already_initialized;
2396	}
2397	ntfs_debug("Initializing allocated mft record.");
2398	/*
2399	 * The mft record is outside the initialized data.  Extend the mft data
2400	 * attribute until it covers the allocated record.  The loop is only
2401	 * actually traversed more than once when a freshly formatted volume is
2402	 * first written to so it optimizes away nicely in the common case.
2403	 */
2404	read_lock_irqsave(&mft_ni->size_lock, flags);
2405	ntfs_debug("Status of mft data before extension: "
2406			"allocated_size 0x%llx, data_size 0x%llx, "
2407			"initialized_size 0x%llx.",
2408			(long long)mft_ni->allocated_size,
2409			(long long)i_size_read(vol->mft_ino),
2410			(long long)mft_ni->initialized_size);
2411	while (ll > mft_ni->allocated_size) {
2412		read_unlock_irqrestore(&mft_ni->size_lock, flags);
2413		err = ntfs_mft_data_extend_allocation_nolock(vol);
2414		if (unlikely(err)) {
2415			ntfs_error(vol->sb, "Failed to extend mft data "
2416					"allocation.");
2417			goto undo_mftbmp_alloc_nolock;
2418		}
2419		read_lock_irqsave(&mft_ni->size_lock, flags);
2420		ntfs_debug("Status of mft data after allocation extension: "
2421				"allocated_size 0x%llx, data_size 0x%llx, "
2422				"initialized_size 0x%llx.",
2423				(long long)mft_ni->allocated_size,
2424				(long long)i_size_read(vol->mft_ino),
2425				(long long)mft_ni->initialized_size);
2426	}
2427	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2428	/*
2429	 * Extend mft data initialized size (and data size of course) to reach
2430	 * the allocated mft record, formatting the mft records allong the way.
2431	 * Note: We only modify the ntfs_inode structure as that is all that is
2432	 * needed by ntfs_mft_record_format().  We will update the attribute
2433	 * record itself in one fell swoop later on.
2434	 */
2435	write_lock_irqsave(&mft_ni->size_lock, flags);
2436	old_data_initialized = mft_ni->initialized_size;
2437	old_data_size = vol->mft_ino->i_size;
2438	while (ll > mft_ni->initialized_size) {
2439		s64 new_initialized_size, mft_no;
2440		
2441		new_initialized_size = mft_ni->initialized_size +
2442				vol->mft_record_size;
2443		mft_no = mft_ni->initialized_size >> vol->mft_record_size_bits;
2444		if (new_initialized_size > i_size_read(vol->mft_ino))
2445			i_size_write(vol->mft_ino, new_initialized_size);
2446		write_unlock_irqrestore(&mft_ni->size_lock, flags);
2447		ntfs_debug("Initializing mft record 0x%llx.",
2448				(long long)mft_no);
2449		err = ntfs_mft_record_format(vol, mft_no);
2450		if (unlikely(err)) {
2451			ntfs_error(vol->sb, "Failed to format mft record.");
2452			goto undo_data_init;
2453		}
2454		write_lock_irqsave(&mft_ni->size_lock, flags);
2455		mft_ni->initialized_size = new_initialized_size;
2456	}
2457	write_unlock_irqrestore(&mft_ni->size_lock, flags);
2458	record_formatted = true;
2459	/* Update the mft data attribute record to reflect the new sizes. */
2460	m = map_mft_record(mft_ni);
2461	if (IS_ERR(m)) {
2462		ntfs_error(vol->sb, "Failed to map mft record.");
2463		err = PTR_ERR(m);
2464		goto undo_data_init;
2465	}
2466	ctx = ntfs_attr_get_search_ctx(mft_ni, m);
2467	if (unlikely(!ctx)) {
2468		ntfs_error(vol->sb, "Failed to get search context.");
2469		err = -ENOMEM;
2470		unmap_mft_record(mft_ni);
2471		goto undo_data_init;
2472	}
2473	err = ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len,
2474			CASE_SENSITIVE, 0, NULL, 0, ctx);
2475	if (unlikely(err)) {
2476		ntfs_error(vol->sb, "Failed to find first attribute extent of "
2477				"mft data attribute.");
2478		ntfs_attr_put_search_ctx(ctx);
2479		unmap_mft_record(mft_ni);
2480		goto undo_data_init;
2481	}
2482	a = ctx->attr;
2483	read_lock_irqsave(&mft_ni->size_lock, flags);
2484	a->data.non_resident.initialized_size =
2485			cpu_to_sle64(mft_ni->initialized_size);
2486	a->data.non_resident.data_size =
2487			cpu_to_sle64(i_size_read(vol->mft_ino));
2488	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2489	/* Ensure the changes make it to disk. */
2490	flush_dcache_mft_record_page(ctx->ntfs_ino);
2491	mark_mft_record_dirty(ctx->ntfs_ino);
2492	ntfs_attr_put_search_ctx(ctx);
2493	unmap_mft_record(mft_ni);
2494	read_lock_irqsave(&mft_ni->size_lock, flags);
2495	ntfs_debug("Status of mft data after mft record initialization: "
2496			"allocated_size 0x%llx, data_size 0x%llx, "
2497			"initialized_size 0x%llx.",
2498			(long long)mft_ni->allocated_size,
2499			(long long)i_size_read(vol->mft_ino),
2500			(long long)mft_ni->initialized_size);
2501	BUG_ON(i_size_read(vol->mft_ino) > mft_ni->allocated_size);
2502	BUG_ON(mft_ni->initialized_size > i_size_read(vol->mft_ino));
2503	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2504mft_rec_already_initialized:
2505	/*
2506	 * We can finally drop the mft bitmap lock as the mft data attribute
2507	 * has been fully updated.  The only disparity left is that the
2508	 * allocated mft record still needs to be marked as in use to match the
2509	 * set bit in the mft bitmap but this is actually not a problem since
2510	 * this mft record is not referenced from anywhere yet and the fact
2511	 * that it is allocated in the mft bitmap means that no-one will try to
2512	 * allocate it either.
2513	 */
2514	up_write(&vol->mftbmp_lock);
2515	/*
2516	 * We now have allocated and initialized the mft record.  Calculate the
2517	 * index of and the offset within the page cache page the record is in.
2518	 */
2519	index = bit << vol->mft_record_size_bits >> PAGE_SHIFT;
2520	ofs = (bit << vol->mft_record_size_bits) & ~PAGE_MASK;
2521	/* Read, map, and pin the page containing the mft record. */
2522	page = ntfs_map_page(vol->mft_ino->i_mapping, index);
2523	if (IS_ERR(page)) {
2524		ntfs_error(vol->sb, "Failed to map page containing allocated "
2525				"mft record 0x%llx.", (long long)bit);
2526		err = PTR_ERR(page);
2527		goto undo_mftbmp_alloc;
2528	}
2529	lock_page(page);
2530	BUG_ON(!PageUptodate(page));
2531	ClearPageUptodate(page);
2532	m = (MFT_RECORD*)((u8*)page_address(page) + ofs);
2533	/* If we just formatted the mft record no need to do it again. */
2534	if (!record_formatted) {
2535		/* Sanity check that the mft record is really not in use. */
2536		if (ntfs_is_file_record(m->magic) &&
2537				(m->flags & MFT_RECORD_IN_USE)) {
2538			ntfs_error(vol->sb, "Mft record 0x%llx was marked "
2539					"free in mft bitmap but is marked "
2540					"used itself.  Corrupt filesystem.  "
2541					"Unmount and run chkdsk.",
2542					(long long)bit);
2543			err = -EIO;
2544			SetPageUptodate(page);
2545			unlock_page(page);
2546			ntfs_unmap_page(page);
2547			NVolSetErrors(vol);
2548			goto undo_mftbmp_alloc;
2549		}
2550		/*
2551		 * We need to (re-)format the mft record, preserving the
2552		 * sequence number if it is not zero as well as the update
2553		 * sequence number if it is not zero or -1 (0xffff).  This
2554		 * means we do not need to care whether or not something went
2555		 * wrong with the previous mft record.
2556		 */
2557		seq_no = m->sequence_number;
2558		usn = *(le16*)((u8*)m + le16_to_cpu(m->usa_ofs));
2559		err = ntfs_mft_record_layout(vol, bit, m);
2560		if (unlikely(err)) {
2561			ntfs_error(vol->sb, "Failed to layout allocated mft "
2562					"record 0x%llx.", (long long)bit);
2563			SetPageUptodate(page);
2564			unlock_page(page);
2565			ntfs_unmap_page(page);
2566			goto undo_mftbmp_alloc;
2567		}
2568		if (seq_no)
2569			m->sequence_number = seq_no;
2570		if (usn && le16_to_cpu(usn) != 0xffff)
2571			*(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)) = usn;
2572	}
2573	/* Set the mft record itself in use. */
2574	m->flags |= MFT_RECORD_IN_USE;
2575	if (S_ISDIR(mode))
2576		m->flags |= MFT_RECORD_IS_DIRECTORY;
2577	flush_dcache_page(page);
2578	SetPageUptodate(page);
2579	if (base_ni) {
2580		MFT_RECORD *m_tmp;
2581
2582		/*
2583		 * Setup the base mft record in the extent mft record.  This
2584		 * completes initialization of the allocated extent mft record
2585		 * and we can simply use it with map_extent_mft_record().
2586		 */
2587		m->base_mft_record = MK_LE_MREF(base_ni->mft_no,
2588				base_ni->seq_no);
2589		/*
2590		 * Allocate an extent inode structure for the new mft record,
2591		 * attach it to the base inode @base_ni and map, pin, and lock
2592		 * its, i.e. the allocated, mft record.
2593		 */
2594		m_tmp = map_extent_mft_record(base_ni, bit, &ni);
2595		if (IS_ERR(m_tmp)) {
2596			ntfs_error(vol->sb, "Failed to map allocated extent "
2597					"mft record 0x%llx.", (long long)bit);
2598			err = PTR_ERR(m_tmp);
2599			/* Set the mft record itself not in use. */
2600			m->flags &= cpu_to_le16(
2601					~le16_to_cpu(MFT_RECORD_IN_USE));
2602			flush_dcache_page(page);
2603			/* Make sure the mft record is written out to disk. */
2604			mark_ntfs_record_dirty(page, ofs);
2605			unlock_page(page);
2606			ntfs_unmap_page(page);
2607			goto undo_mftbmp_alloc;
2608		}
2609		BUG_ON(m != m_tmp);
2610		/*
2611		 * Make sure the allocated mft record is written out to disk.
2612		 * No need to set the inode dirty because the caller is going
2613		 * to do that anyway after finishing with the new extent mft
2614		 * record (e.g. at a minimum a new attribute will be added to
2615		 * the mft record.
2616		 */
2617		mark_ntfs_record_dirty(page, ofs);
2618		unlock_page(page);
2619		/*
2620		 * Need to unmap the page since map_extent_mft_record() mapped
2621		 * it as well so we have it mapped twice at the moment.
2622		 */
2623		ntfs_unmap_page(page);
2624	} else {
2625		/*
2626		 * Allocate a new VFS inode and set it up.  NOTE: @vi->i_nlink
2627		 * is set to 1 but the mft record->link_count is 0.  The caller
2628		 * needs to bear this in mind.
2629		 */
2630		vi = new_inode(vol->sb);
2631		if (unlikely(!vi)) {
2632			err = -ENOMEM;
2633			/* Set the mft record itself not in use. */
2634			m->flags &= cpu_to_le16(
2635					~le16_to_cpu(MFT_RECORD_IN_USE));
2636			flush_dcache_page(page);
2637			/* Make sure the mft record is written out to disk. */
2638			mark_ntfs_record_dirty(page, ofs);
2639			unlock_page(page);
2640			ntfs_unmap_page(page);
2641			goto undo_mftbmp_alloc;
2642		}
2643		vi->i_ino = bit;
2644		/*
2645		 * This is for checking whether an inode has changed w.r.t. a
2646		 * file so that the file can be updated if necessary (compare
2647		 * with f_version).
2648		 */
2649		vi->i_version = 1;
2650
2651		/* The owner and group come from the ntfs volume. */
2652		vi->i_uid = vol->uid;
2653		vi->i_gid = vol->gid;
2654
2655		/* Initialize the ntfs specific part of @vi. */
2656		ntfs_init_big_inode(vi);
2657		ni = NTFS_I(vi);
2658		/*
2659		 * Set the appropriate mode, attribute type, and name.  For
2660		 * directories, also setup the index values to the defaults.
2661		 */
2662		if (S_ISDIR(mode)) {
2663			vi->i_mode = S_IFDIR | S_IRWXUGO;
2664			vi->i_mode &= ~vol->dmask;
2665
2666			NInoSetMstProtected(ni);
2667			ni->type = AT_INDEX_ALLOCATION;
2668			ni->name = I30;
2669			ni->name_len = 4;
2670
2671			ni->itype.index.block_size = 4096;
2672			ni->itype.index.block_size_bits = ntfs_ffs(4096) - 1;
2673			ni->itype.index.collation_rule = COLLATION_FILE_NAME;
2674			if (vol->cluster_size <= ni->itype.index.block_size) {
2675				ni->itype.index.vcn_size = vol->cluster_size;
2676				ni->itype.index.vcn_size_bits =
2677						vol->cluster_size_bits;
2678			} else {
2679				ni->itype.index.vcn_size = vol->sector_size;
2680				ni->itype.index.vcn_size_bits =
2681						vol->sector_size_bits;
2682			}
2683		} else {
2684			vi->i_mode = S_IFREG | S_IRWXUGO;
2685			vi->i_mode &= ~vol->fmask;
2686
2687			ni->type = AT_DATA;
2688			ni->name = NULL;
2689			ni->name_len = 0;
2690		}
2691		if (IS_RDONLY(vi))
2692			vi->i_mode &= ~S_IWUGO;
2693
2694		/* Set the inode times to the current time. */
2695		vi->i_atime = vi->i_mtime = vi->i_ctime =
2696			current_time(vi);
2697		/*
2698		 * Set the file size to 0, the ntfs inode sizes are set to 0 by
2699		 * the call to ntfs_init_big_inode() below.
2700		 */
2701		vi->i_size = 0;
2702		vi->i_blocks = 0;
2703
2704		/* Set the sequence number. */
2705		vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
2706		/*
2707		 * Manually map, pin, and lock the mft record as we already
2708		 * have its page mapped and it is very easy to do.
2709		 */
2710		atomic_inc(&ni->count);
2711		mutex_lock(&ni->mrec_lock);
2712		ni->page = page;
2713		ni->page_ofs = ofs;
2714		/*
2715		 * Make sure the allocated mft record is written out to disk.
2716		 * NOTE: We do not set the ntfs inode dirty because this would
2717		 * fail in ntfs_write_inode() because the inode does not have a
2718		 * standard information attribute yet.  Also, there is no need
2719		 * to set the inode dirty because the caller is going to do
2720		 * that anyway after finishing with the new mft record (e.g. at
2721		 * a minimum some new attributes will be added to the mft
2722		 * record.
2723		 */
2724		mark_ntfs_record_dirty(page, ofs);
2725		unlock_page(page);
2726
2727		/* Add the inode to the inode hash for the superblock. */
2728		insert_inode_hash(vi);
2729
2730		/* Update the default mft allocation position. */
2731		vol->mft_data_pos = bit + 1;
2732	}
2733	/*
2734	 * Return the opened, allocated inode of the allocated mft record as
2735	 * well as the mapped, pinned, and locked mft record.
2736	 */
2737	ntfs_debug("Returning opened, allocated %sinode 0x%llx.",
2738			base_ni ? "extent " : "", (long long)bit);
2739	*mrec = m;
2740	return ni;
2741undo_data_init:
2742	write_lock_irqsave(&mft_ni->size_lock, flags);
2743	mft_ni->initialized_size = old_data_initialized;
2744	i_size_write(vol->mft_ino, old_data_size);
2745	write_unlock_irqrestore(&mft_ni->size_lock, flags);
2746	goto undo_mftbmp_alloc_nolock;
2747undo_mftbmp_alloc:
2748	down_write(&vol->mftbmp_lock);
2749undo_mftbmp_alloc_nolock:
2750	if (ntfs_bitmap_clear_bit(vol->mftbmp_ino, bit)) {
2751		ntfs_error(vol->sb, "Failed to clear bit in mft bitmap.%s", es);
2752		NVolSetErrors(vol);
2753	}
2754	up_write(&vol->mftbmp_lock);
2755err_out:
2756	return ERR_PTR(err);
2757max_err_out:
2758	ntfs_warning(vol->sb, "Cannot allocate mft record because the maximum "
2759			"number of inodes (2^32) has already been reached.");
2760	up_write(&vol->mftbmp_lock);
2761	return ERR_PTR(-ENOSPC);
2762}
2763
2764/**
2765 * ntfs_extent_mft_record_free - free an extent mft record on an ntfs volume
2766 * @ni:		ntfs inode of the mapped extent mft record to free
2767 * @m:		mapped extent mft record of the ntfs inode @ni
2768 *
2769 * Free the mapped extent mft record @m of the extent ntfs inode @ni.
2770 *
2771 * Note that this function unmaps the mft record and closes and destroys @ni
2772 * internally and hence you cannot use either @ni nor @m any more after this
2773 * function returns success.
2774 *
2775 * On success return 0 and on error return -errno.  @ni and @m are still valid
2776 * in this case and have not been freed.
2777 *
2778 * For some errors an error message is displayed and the success code 0 is
2779 * returned and the volume is then left dirty on umount.  This makes sense in
2780 * case we could not rollback the changes that were already done since the
2781 * caller no longer wants to reference this mft record so it does not matter to
2782 * the caller if something is wrong with it as long as it is properly detached
2783 * from the base inode.
2784 */
2785int ntfs_extent_mft_record_free(ntfs_inode *ni, MFT_RECORD *m)
2786{
2787	unsigned long mft_no = ni->mft_no;
2788	ntfs_volume *vol = ni->vol;
2789	ntfs_inode *base_ni;
2790	ntfs_inode **extent_nis;
2791	int i, err;
2792	le16 old_seq_no;
2793	u16 seq_no;
2794	
2795	BUG_ON(NInoAttr(ni));
2796	BUG_ON(ni->nr_extents != -1);
2797
2798	mutex_lock(&ni->extent_lock);
2799	base_ni = ni->ext.base_ntfs_ino;
2800	mutex_unlock(&ni->extent_lock);
2801
2802	BUG_ON(base_ni->nr_extents <= 0);
2803
2804	ntfs_debug("Entering for extent inode 0x%lx, base inode 0x%lx.\n",
2805			mft_no, base_ni->mft_no);
2806
2807	mutex_lock(&base_ni->extent_lock);
2808
2809	/* Make sure we are holding the only reference to the extent inode. */
2810	if (atomic_read(&ni->count) > 2) {
2811		ntfs_error(vol->sb, "Tried to free busy extent inode 0x%lx, "
2812				"not freeing.", base_ni->mft_no);
2813		mutex_unlock(&base_ni->extent_lock);
2814		return -EBUSY;
2815	}
2816
2817	/* Dissociate the ntfs inode from the base inode. */
2818	extent_nis = base_ni->ext.extent_ntfs_inos;
2819	err = -ENOENT;
2820	for (i = 0; i < base_ni->nr_extents; i++) {
2821		if (ni != extent_nis[i])
2822			continue;
2823		extent_nis += i;
2824		base_ni->nr_extents--;
2825		memmove(extent_nis, extent_nis + 1, (base_ni->nr_extents - i) *
2826				sizeof(ntfs_inode*));
2827		err = 0;
2828		break;
2829	}
2830
2831	mutex_unlock(&base_ni->extent_lock);
2832
2833	if (unlikely(err)) {
2834		ntfs_error(vol->sb, "Extent inode 0x%lx is not attached to "
2835				"its base inode 0x%lx.", mft_no,
2836				base_ni->mft_no);
2837		BUG();
2838	}
2839
2840	/*
2841	 * The extent inode is no longer attached to the base inode so no one
2842	 * can get a reference to it any more.
2843	 */
2844
2845	/* Mark the mft record as not in use. */
2846	m->flags &= ~MFT_RECORD_IN_USE;
2847
2848	/* Increment the sequence number, skipping zero, if it is not zero. */
2849	old_seq_no = m->sequence_number;
2850	seq_no = le16_to_cpu(old_seq_no);
2851	if (seq_no == 0xffff)
2852		seq_no = 1;
2853	else if (seq_no)
2854		seq_no++;
2855	m->sequence_number = cpu_to_le16(seq_no);
2856
2857	/*
2858	 * Set the ntfs inode dirty and write it out.  We do not need to worry
2859	 * about the base inode here since whatever caused the extent mft
2860	 * record to be freed is guaranteed to do it already.
2861	 */
2862	NInoSetDirty(ni);
2863	err = write_mft_record(ni, m, 0);
2864	if (unlikely(err)) {
2865		ntfs_error(vol->sb, "Failed to write mft record 0x%lx, not "
2866				"freeing.", mft_no);
2867		goto rollback;
2868	}
2869rollback_error:
2870	/* Unmap and throw away the now freed extent inode. */
2871	unmap_extent_mft_record(ni);
2872	ntfs_clear_extent_inode(ni);
2873
2874	/* Clear the bit in the $MFT/$BITMAP corresponding to this record. */
2875	down_write(&vol->mftbmp_lock);
2876	err = ntfs_bitmap_clear_bit(vol->mftbmp_ino, mft_no);
2877	up_write(&vol->mftbmp_lock);
2878	if (unlikely(err)) {
2879		/*
2880		 * The extent inode is gone but we failed to deallocate it in
2881		 * the mft bitmap.  Just emit a warning and leave the volume
2882		 * dirty on umount.
2883		 */
2884		ntfs_error(vol->sb, "Failed to clear bit in mft bitmap.%s", es);
2885		NVolSetErrors(vol);
2886	}
2887	return 0;
2888rollback:
2889	/* Rollback what we did... */
2890	mutex_lock(&base_ni->extent_lock);
2891	extent_nis = base_ni->ext.extent_ntfs_inos;
2892	if (!(base_ni->nr_extents & 3)) {
2893		int new_size = (base_ni->nr_extents + 4) * sizeof(ntfs_inode*);
2894
2895		extent_nis = kmalloc(new_size, GFP_NOFS);
2896		if (unlikely(!extent_nis)) {
2897			ntfs_error(vol->sb, "Failed to allocate internal "
2898					"buffer during rollback.%s", es);
2899			mutex_unlock(&base_ni->extent_lock);
2900			NVolSetErrors(vol);
2901			goto rollback_error;
2902		}
2903		if (base_ni->nr_extents) {
2904			BUG_ON(!base_ni->ext.extent_ntfs_inos);
2905			memcpy(extent_nis, base_ni->ext.extent_ntfs_inos,
2906					new_size - 4 * sizeof(ntfs_inode*));
2907			kfree(base_ni->ext.extent_ntfs_inos);
2908		}
2909		base_ni->ext.extent_ntfs_inos = extent_nis;
2910	}
2911	m->flags |= MFT_RECORD_IN_USE;
2912	m->sequence_number = old_seq_no;
2913	extent_nis[base_ni->nr_extents++] = ni;
2914	mutex_unlock(&base_ni->extent_lock);
2915	mark_mft_record_dirty(ni);
2916	return err;
2917}
2918#endif /* NTFS_RW */
v3.5.6
   1/**
   2 * mft.c - NTFS kernel mft record operations. Part of the Linux-NTFS project.
   3 *
   4 * Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc.
   5 * Copyright (c) 2002 Richard Russon
   6 *
   7 * This program/include file is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License as published
   9 * by the Free Software Foundation; either version 2 of the License, or
  10 * (at your option) any later version.
  11 *
  12 * This program/include file is distributed in the hope that it will be
  13 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
  14 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU General Public License
  18 * along with this program (in the main directory of the Linux-NTFS
  19 * distribution in the file COPYING); if not, write to the Free Software
  20 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  21 */
  22
  23#include <linux/buffer_head.h>
  24#include <linux/slab.h>
  25#include <linux/swap.h>
 
  26
  27#include "attrib.h"
  28#include "aops.h"
  29#include "bitmap.h"
  30#include "debug.h"
  31#include "dir.h"
  32#include "lcnalloc.h"
  33#include "malloc.h"
  34#include "mft.h"
  35#include "ntfs.h"
  36
  37/**
  38 * map_mft_record_page - map the page in which a specific mft record resides
  39 * @ni:		ntfs inode whose mft record page to map
  40 *
  41 * This maps the page in which the mft record of the ntfs inode @ni is situated
  42 * and returns a pointer to the mft record within the mapped page.
  43 *
  44 * Return value needs to be checked with IS_ERR() and if that is true PTR_ERR()
  45 * contains the negative error code returned.
  46 */
  47static inline MFT_RECORD *map_mft_record_page(ntfs_inode *ni)
  48{
  49	loff_t i_size;
  50	ntfs_volume *vol = ni->vol;
  51	struct inode *mft_vi = vol->mft_ino;
  52	struct page *page;
  53	unsigned long index, end_index;
  54	unsigned ofs;
  55
  56	BUG_ON(ni->page);
  57	/*
  58	 * The index into the page cache and the offset within the page cache
  59	 * page of the wanted mft record. FIXME: We need to check for
  60	 * overflowing the unsigned long, but I don't think we would ever get
  61	 * here if the volume was that big...
  62	 */
  63	index = (u64)ni->mft_no << vol->mft_record_size_bits >>
  64			PAGE_CACHE_SHIFT;
  65	ofs = (ni->mft_no << vol->mft_record_size_bits) & ~PAGE_CACHE_MASK;
  66
  67	i_size = i_size_read(mft_vi);
  68	/* The maximum valid index into the page cache for $MFT's data. */
  69	end_index = i_size >> PAGE_CACHE_SHIFT;
  70
  71	/* If the wanted index is out of bounds the mft record doesn't exist. */
  72	if (unlikely(index >= end_index)) {
  73		if (index > end_index || (i_size & ~PAGE_CACHE_MASK) < ofs +
  74				vol->mft_record_size) {
  75			page = ERR_PTR(-ENOENT);
  76			ntfs_error(vol->sb, "Attempt to read mft record 0x%lx, "
  77					"which is beyond the end of the mft.  "
  78					"This is probably a bug in the ntfs "
  79					"driver.", ni->mft_no);
  80			goto err_out;
  81		}
  82	}
  83	/* Read, map, and pin the page. */
  84	page = ntfs_map_page(mft_vi->i_mapping, index);
  85	if (likely(!IS_ERR(page))) {
  86		/* Catch multi sector transfer fixup errors. */
  87		if (likely(ntfs_is_mft_recordp((le32*)(page_address(page) +
  88				ofs)))) {
  89			ni->page = page;
  90			ni->page_ofs = ofs;
  91			return page_address(page) + ofs;
  92		}
  93		ntfs_error(vol->sb, "Mft record 0x%lx is corrupt.  "
  94				"Run chkdsk.", ni->mft_no);
  95		ntfs_unmap_page(page);
  96		page = ERR_PTR(-EIO);
  97		NVolSetErrors(vol);
  98	}
  99err_out:
 100	ni->page = NULL;
 101	ni->page_ofs = 0;
 102	return (void*)page;
 103}
 104
 105/**
 106 * map_mft_record - map, pin and lock an mft record
 107 * @ni:		ntfs inode whose MFT record to map
 108 *
 109 * First, take the mrec_lock mutex.  We might now be sleeping, while waiting
 110 * for the mutex if it was already locked by someone else.
 111 *
 112 * The page of the record is mapped using map_mft_record_page() before being
 113 * returned to the caller.
 114 *
 115 * This in turn uses ntfs_map_page() to get the page containing the wanted mft
 116 * record (it in turn calls read_cache_page() which reads it in from disk if
 117 * necessary, increments the use count on the page so that it cannot disappear
 118 * under us and returns a reference to the page cache page).
 119 *
 120 * If read_cache_page() invokes ntfs_readpage() to load the page from disk, it
 121 * sets PG_locked and clears PG_uptodate on the page. Once I/O has completed
 122 * and the post-read mst fixups on each mft record in the page have been
 123 * performed, the page gets PG_uptodate set and PG_locked cleared (this is done
 124 * in our asynchronous I/O completion handler end_buffer_read_mft_async()).
 125 * ntfs_map_page() waits for PG_locked to become clear and checks if
 126 * PG_uptodate is set and returns an error code if not. This provides
 127 * sufficient protection against races when reading/using the page.
 128 *
 129 * However there is the write mapping to think about. Doing the above described
 130 * checking here will be fine, because when initiating the write we will set
 131 * PG_locked and clear PG_uptodate making sure nobody is touching the page
 132 * contents. Doing the locking this way means that the commit to disk code in
 133 * the page cache code paths is automatically sufficiently locked with us as
 134 * we will not touch a page that has been locked or is not uptodate. The only
 135 * locking problem then is them locking the page while we are accessing it.
 136 *
 137 * So that code will end up having to own the mrec_lock of all mft
 138 * records/inodes present in the page before I/O can proceed. In that case we
 139 * wouldn't need to bother with PG_locked and PG_uptodate as nobody will be
 140 * accessing anything without owning the mrec_lock mutex.  But we do need to
 141 * use them because of the read_cache_page() invocation and the code becomes so
 142 * much simpler this way that it is well worth it.
 143 *
 144 * The mft record is now ours and we return a pointer to it. You need to check
 145 * the returned pointer with IS_ERR() and if that is true, PTR_ERR() will return
 146 * the error code.
 147 *
 148 * NOTE: Caller is responsible for setting the mft record dirty before calling
 149 * unmap_mft_record(). This is obviously only necessary if the caller really
 150 * modified the mft record...
 151 * Q: Do we want to recycle one of the VFS inode state bits instead?
 152 * A: No, the inode ones mean we want to change the mft record, not we want to
 153 * write it out.
 154 */
 155MFT_RECORD *map_mft_record(ntfs_inode *ni)
 156{
 157	MFT_RECORD *m;
 158
 159	ntfs_debug("Entering for mft_no 0x%lx.", ni->mft_no);
 160
 161	/* Make sure the ntfs inode doesn't go away. */
 162	atomic_inc(&ni->count);
 163
 164	/* Serialize access to this mft record. */
 165	mutex_lock(&ni->mrec_lock);
 166
 167	m = map_mft_record_page(ni);
 168	if (likely(!IS_ERR(m)))
 169		return m;
 170
 171	mutex_unlock(&ni->mrec_lock);
 172	atomic_dec(&ni->count);
 173	ntfs_error(ni->vol->sb, "Failed with error code %lu.", -PTR_ERR(m));
 174	return m;
 175}
 176
 177/**
 178 * unmap_mft_record_page - unmap the page in which a specific mft record resides
 179 * @ni:		ntfs inode whose mft record page to unmap
 180 *
 181 * This unmaps the page in which the mft record of the ntfs inode @ni is
 182 * situated and returns. This is a NOOP if highmem is not configured.
 183 *
 184 * The unmap happens via ntfs_unmap_page() which in turn decrements the use
 185 * count on the page thus releasing it from the pinned state.
 186 *
 187 * We do not actually unmap the page from memory of course, as that will be
 188 * done by the page cache code itself when memory pressure increases or
 189 * whatever.
 190 */
 191static inline void unmap_mft_record_page(ntfs_inode *ni)
 192{
 193	BUG_ON(!ni->page);
 194
 195	// TODO: If dirty, blah...
 196	ntfs_unmap_page(ni->page);
 197	ni->page = NULL;
 198	ni->page_ofs = 0;
 199	return;
 200}
 201
 202/**
 203 * unmap_mft_record - release a mapped mft record
 204 * @ni:		ntfs inode whose MFT record to unmap
 205 *
 206 * We release the page mapping and the mrec_lock mutex which unmaps the mft
 207 * record and releases it for others to get hold of. We also release the ntfs
 208 * inode by decrementing the ntfs inode reference count.
 209 *
 210 * NOTE: If caller has modified the mft record, it is imperative to set the mft
 211 * record dirty BEFORE calling unmap_mft_record().
 212 */
 213void unmap_mft_record(ntfs_inode *ni)
 214{
 215	struct page *page = ni->page;
 216
 217	BUG_ON(!page);
 218
 219	ntfs_debug("Entering for mft_no 0x%lx.", ni->mft_no);
 220
 221	unmap_mft_record_page(ni);
 222	mutex_unlock(&ni->mrec_lock);
 223	atomic_dec(&ni->count);
 224	/*
 225	 * If pure ntfs_inode, i.e. no vfs inode attached, we leave it to
 226	 * ntfs_clear_extent_inode() in the extent inode case, and to the
 227	 * caller in the non-extent, yet pure ntfs inode case, to do the actual
 228	 * tear down of all structures and freeing of all allocated memory.
 229	 */
 230	return;
 231}
 232
 233/**
 234 * map_extent_mft_record - load an extent inode and attach it to its base
 235 * @base_ni:	base ntfs inode
 236 * @mref:	mft reference of the extent inode to load
 237 * @ntfs_ino:	on successful return, pointer to the ntfs_inode structure
 238 *
 239 * Load the extent mft record @mref and attach it to its base inode @base_ni.
 240 * Return the mapped extent mft record if IS_ERR(result) is false.  Otherwise
 241 * PTR_ERR(result) gives the negative error code.
 242 *
 243 * On successful return, @ntfs_ino contains a pointer to the ntfs_inode
 244 * structure of the mapped extent inode.
 245 */
 246MFT_RECORD *map_extent_mft_record(ntfs_inode *base_ni, MFT_REF mref,
 247		ntfs_inode **ntfs_ino)
 248{
 249	MFT_RECORD *m;
 250	ntfs_inode *ni = NULL;
 251	ntfs_inode **extent_nis = NULL;
 252	int i;
 253	unsigned long mft_no = MREF(mref);
 254	u16 seq_no = MSEQNO(mref);
 255	bool destroy_ni = false;
 256
 257	ntfs_debug("Mapping extent mft record 0x%lx (base mft record 0x%lx).",
 258			mft_no, base_ni->mft_no);
 259	/* Make sure the base ntfs inode doesn't go away. */
 260	atomic_inc(&base_ni->count);
 261	/*
 262	 * Check if this extent inode has already been added to the base inode,
 263	 * in which case just return it. If not found, add it to the base
 264	 * inode before returning it.
 265	 */
 266	mutex_lock(&base_ni->extent_lock);
 267	if (base_ni->nr_extents > 0) {
 268		extent_nis = base_ni->ext.extent_ntfs_inos;
 269		for (i = 0; i < base_ni->nr_extents; i++) {
 270			if (mft_no != extent_nis[i]->mft_no)
 271				continue;
 272			ni = extent_nis[i];
 273			/* Make sure the ntfs inode doesn't go away. */
 274			atomic_inc(&ni->count);
 275			break;
 276		}
 277	}
 278	if (likely(ni != NULL)) {
 279		mutex_unlock(&base_ni->extent_lock);
 280		atomic_dec(&base_ni->count);
 281		/* We found the record; just have to map and return it. */
 282		m = map_mft_record(ni);
 283		/* map_mft_record() has incremented this on success. */
 284		atomic_dec(&ni->count);
 285		if (likely(!IS_ERR(m))) {
 286			/* Verify the sequence number. */
 287			if (likely(le16_to_cpu(m->sequence_number) == seq_no)) {
 288				ntfs_debug("Done 1.");
 289				*ntfs_ino = ni;
 290				return m;
 291			}
 292			unmap_mft_record(ni);
 293			ntfs_error(base_ni->vol->sb, "Found stale extent mft "
 294					"reference! Corrupt filesystem. "
 295					"Run chkdsk.");
 296			return ERR_PTR(-EIO);
 297		}
 298map_err_out:
 299		ntfs_error(base_ni->vol->sb, "Failed to map extent "
 300				"mft record, error code %ld.", -PTR_ERR(m));
 301		return m;
 302	}
 303	/* Record wasn't there. Get a new ntfs inode and initialize it. */
 304	ni = ntfs_new_extent_inode(base_ni->vol->sb, mft_no);
 305	if (unlikely(!ni)) {
 306		mutex_unlock(&base_ni->extent_lock);
 307		atomic_dec(&base_ni->count);
 308		return ERR_PTR(-ENOMEM);
 309	}
 310	ni->vol = base_ni->vol;
 311	ni->seq_no = seq_no;
 312	ni->nr_extents = -1;
 313	ni->ext.base_ntfs_ino = base_ni;
 314	/* Now map the record. */
 315	m = map_mft_record(ni);
 316	if (IS_ERR(m)) {
 317		mutex_unlock(&base_ni->extent_lock);
 318		atomic_dec(&base_ni->count);
 319		ntfs_clear_extent_inode(ni);
 320		goto map_err_out;
 321	}
 322	/* Verify the sequence number if it is present. */
 323	if (seq_no && (le16_to_cpu(m->sequence_number) != seq_no)) {
 324		ntfs_error(base_ni->vol->sb, "Found stale extent mft "
 325				"reference! Corrupt filesystem. Run chkdsk.");
 326		destroy_ni = true;
 327		m = ERR_PTR(-EIO);
 328		goto unm_err_out;
 329	}
 330	/* Attach extent inode to base inode, reallocating memory if needed. */
 331	if (!(base_ni->nr_extents & 3)) {
 332		ntfs_inode **tmp;
 333		int new_size = (base_ni->nr_extents + 4) * sizeof(ntfs_inode *);
 334
 335		tmp = kmalloc(new_size, GFP_NOFS);
 336		if (unlikely(!tmp)) {
 337			ntfs_error(base_ni->vol->sb, "Failed to allocate "
 338					"internal buffer.");
 339			destroy_ni = true;
 340			m = ERR_PTR(-ENOMEM);
 341			goto unm_err_out;
 342		}
 343		if (base_ni->nr_extents) {
 344			BUG_ON(!base_ni->ext.extent_ntfs_inos);
 345			memcpy(tmp, base_ni->ext.extent_ntfs_inos, new_size -
 346					4 * sizeof(ntfs_inode *));
 347			kfree(base_ni->ext.extent_ntfs_inos);
 348		}
 349		base_ni->ext.extent_ntfs_inos = tmp;
 350	}
 351	base_ni->ext.extent_ntfs_inos[base_ni->nr_extents++] = ni;
 352	mutex_unlock(&base_ni->extent_lock);
 353	atomic_dec(&base_ni->count);
 354	ntfs_debug("Done 2.");
 355	*ntfs_ino = ni;
 356	return m;
 357unm_err_out:
 358	unmap_mft_record(ni);
 359	mutex_unlock(&base_ni->extent_lock);
 360	atomic_dec(&base_ni->count);
 361	/*
 362	 * If the extent inode was not attached to the base inode we need to
 363	 * release it or we will leak memory.
 364	 */
 365	if (destroy_ni)
 366		ntfs_clear_extent_inode(ni);
 367	return m;
 368}
 369
 370#ifdef NTFS_RW
 371
 372/**
 373 * __mark_mft_record_dirty - set the mft record and the page containing it dirty
 374 * @ni:		ntfs inode describing the mapped mft record
 375 *
 376 * Internal function.  Users should call mark_mft_record_dirty() instead.
 377 *
 378 * Set the mapped (extent) mft record of the (base or extent) ntfs inode @ni,
 379 * as well as the page containing the mft record, dirty.  Also, mark the base
 380 * vfs inode dirty.  This ensures that any changes to the mft record are
 381 * written out to disk.
 382 *
 383 * NOTE:  We only set I_DIRTY_SYNC and I_DIRTY_DATASYNC (and not I_DIRTY_PAGES)
 384 * on the base vfs inode, because even though file data may have been modified,
 385 * it is dirty in the inode meta data rather than the data page cache of the
 386 * inode, and thus there are no data pages that need writing out.  Therefore, a
 387 * full mark_inode_dirty() is overkill.  A mark_inode_dirty_sync(), on the
 388 * other hand, is not sufficient, because ->write_inode needs to be called even
 389 * in case of fdatasync. This needs to happen or the file data would not
 390 * necessarily hit the device synchronously, even though the vfs inode has the
 391 * O_SYNC flag set.  Also, I_DIRTY_DATASYNC simply "feels" better than just
 392 * I_DIRTY_SYNC, since the file data has not actually hit the block device yet,
 393 * which is not what I_DIRTY_SYNC on its own would suggest.
 394 */
 395void __mark_mft_record_dirty(ntfs_inode *ni)
 396{
 397	ntfs_inode *base_ni;
 398
 399	ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
 400	BUG_ON(NInoAttr(ni));
 401	mark_ntfs_record_dirty(ni->page, ni->page_ofs);
 402	/* Determine the base vfs inode and mark it dirty, too. */
 403	mutex_lock(&ni->extent_lock);
 404	if (likely(ni->nr_extents >= 0))
 405		base_ni = ni;
 406	else
 407		base_ni = ni->ext.base_ntfs_ino;
 408	mutex_unlock(&ni->extent_lock);
 409	__mark_inode_dirty(VFS_I(base_ni), I_DIRTY_SYNC | I_DIRTY_DATASYNC);
 410}
 411
 412static const char *ntfs_please_email = "Please email "
 413		"linux-ntfs-dev@lists.sourceforge.net and say that you saw "
 414		"this message.  Thank you.";
 415
 416/**
 417 * ntfs_sync_mft_mirror_umount - synchronise an mft record to the mft mirror
 418 * @vol:	ntfs volume on which the mft record to synchronize resides
 419 * @mft_no:	mft record number of mft record to synchronize
 420 * @m:		mapped, mst protected (extent) mft record to synchronize
 421 *
 422 * Write the mapped, mst protected (extent) mft record @m with mft record
 423 * number @mft_no to the mft mirror ($MFTMirr) of the ntfs volume @vol,
 424 * bypassing the page cache and the $MFTMirr inode itself.
 425 *
 426 * This function is only for use at umount time when the mft mirror inode has
 427 * already been disposed off.  We BUG() if we are called while the mft mirror
 428 * inode is still attached to the volume.
 429 *
 430 * On success return 0.  On error return -errno.
 431 *
 432 * NOTE:  This function is not implemented yet as I am not convinced it can
 433 * actually be triggered considering the sequence of commits we do in super.c::
 434 * ntfs_put_super().  But just in case we provide this place holder as the
 435 * alternative would be either to BUG() or to get a NULL pointer dereference
 436 * and Oops.
 437 */
 438static int ntfs_sync_mft_mirror_umount(ntfs_volume *vol,
 439		const unsigned long mft_no, MFT_RECORD *m)
 440{
 441	BUG_ON(vol->mftmirr_ino);
 442	ntfs_error(vol->sb, "Umount time mft mirror syncing is not "
 443			"implemented yet.  %s", ntfs_please_email);
 444	return -EOPNOTSUPP;
 445}
 446
 447/**
 448 * ntfs_sync_mft_mirror - synchronize an mft record to the mft mirror
 449 * @vol:	ntfs volume on which the mft record to synchronize resides
 450 * @mft_no:	mft record number of mft record to synchronize
 451 * @m:		mapped, mst protected (extent) mft record to synchronize
 452 * @sync:	if true, wait for i/o completion
 453 *
 454 * Write the mapped, mst protected (extent) mft record @m with mft record
 455 * number @mft_no to the mft mirror ($MFTMirr) of the ntfs volume @vol.
 456 *
 457 * On success return 0.  On error return -errno and set the volume errors flag
 458 * in the ntfs volume @vol.
 459 *
 460 * NOTE:  We always perform synchronous i/o and ignore the @sync parameter.
 461 *
 462 * TODO:  If @sync is false, want to do truly asynchronous i/o, i.e. just
 463 * schedule i/o via ->writepage or do it via kntfsd or whatever.
 464 */
 465int ntfs_sync_mft_mirror(ntfs_volume *vol, const unsigned long mft_no,
 466		MFT_RECORD *m, int sync)
 467{
 468	struct page *page;
 469	unsigned int blocksize = vol->sb->s_blocksize;
 470	int max_bhs = vol->mft_record_size / blocksize;
 471	struct buffer_head *bhs[max_bhs];
 472	struct buffer_head *bh, *head;
 473	u8 *kmirr;
 474	runlist_element *rl;
 475	unsigned int block_start, block_end, m_start, m_end, page_ofs;
 476	int i_bhs, nr_bhs, err = 0;
 477	unsigned char blocksize_bits = vol->sb->s_blocksize_bits;
 478
 479	ntfs_debug("Entering for inode 0x%lx.", mft_no);
 480	BUG_ON(!max_bhs);
 481	if (unlikely(!vol->mftmirr_ino)) {
 482		/* This could happen during umount... */
 483		err = ntfs_sync_mft_mirror_umount(vol, mft_no, m);
 484		if (likely(!err))
 485			return err;
 486		goto err_out;
 487	}
 488	/* Get the page containing the mirror copy of the mft record @m. */
 489	page = ntfs_map_page(vol->mftmirr_ino->i_mapping, mft_no >>
 490			(PAGE_CACHE_SHIFT - vol->mft_record_size_bits));
 491	if (IS_ERR(page)) {
 492		ntfs_error(vol->sb, "Failed to map mft mirror page.");
 493		err = PTR_ERR(page);
 494		goto err_out;
 495	}
 496	lock_page(page);
 497	BUG_ON(!PageUptodate(page));
 498	ClearPageUptodate(page);
 499	/* Offset of the mft mirror record inside the page. */
 500	page_ofs = (mft_no << vol->mft_record_size_bits) & ~PAGE_CACHE_MASK;
 501	/* The address in the page of the mirror copy of the mft record @m. */
 502	kmirr = page_address(page) + page_ofs;
 503	/* Copy the mst protected mft record to the mirror. */
 504	memcpy(kmirr, m, vol->mft_record_size);
 505	/* Create uptodate buffers if not present. */
 506	if (unlikely(!page_has_buffers(page))) {
 507		struct buffer_head *tail;
 508
 509		bh = head = alloc_page_buffers(page, blocksize, 1);
 510		do {
 511			set_buffer_uptodate(bh);
 512			tail = bh;
 513			bh = bh->b_this_page;
 514		} while (bh);
 515		tail->b_this_page = head;
 516		attach_page_buffers(page, head);
 517	}
 518	bh = head = page_buffers(page);
 519	BUG_ON(!bh);
 520	rl = NULL;
 521	nr_bhs = 0;
 522	block_start = 0;
 523	m_start = kmirr - (u8*)page_address(page);
 524	m_end = m_start + vol->mft_record_size;
 525	do {
 526		block_end = block_start + blocksize;
 527		/* If the buffer is outside the mft record, skip it. */
 528		if (block_end <= m_start)
 529			continue;
 530		if (unlikely(block_start >= m_end))
 531			break;
 532		/* Need to map the buffer if it is not mapped already. */
 533		if (unlikely(!buffer_mapped(bh))) {
 534			VCN vcn;
 535			LCN lcn;
 536			unsigned int vcn_ofs;
 537
 538			bh->b_bdev = vol->sb->s_bdev;
 539			/* Obtain the vcn and offset of the current block. */
 540			vcn = ((VCN)mft_no << vol->mft_record_size_bits) +
 541					(block_start - m_start);
 542			vcn_ofs = vcn & vol->cluster_size_mask;
 543			vcn >>= vol->cluster_size_bits;
 544			if (!rl) {
 545				down_read(&NTFS_I(vol->mftmirr_ino)->
 546						runlist.lock);
 547				rl = NTFS_I(vol->mftmirr_ino)->runlist.rl;
 548				/*
 549				 * $MFTMirr always has the whole of its runlist
 550				 * in memory.
 551				 */
 552				BUG_ON(!rl);
 553			}
 554			/* Seek to element containing target vcn. */
 555			while (rl->length && rl[1].vcn <= vcn)
 556				rl++;
 557			lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
 558			/* For $MFTMirr, only lcn >= 0 is a successful remap. */
 559			if (likely(lcn >= 0)) {
 560				/* Setup buffer head to correct block. */
 561				bh->b_blocknr = ((lcn <<
 562						vol->cluster_size_bits) +
 563						vcn_ofs) >> blocksize_bits;
 564				set_buffer_mapped(bh);
 565			} else {
 566				bh->b_blocknr = -1;
 567				ntfs_error(vol->sb, "Cannot write mft mirror "
 568						"record 0x%lx because its "
 569						"location on disk could not "
 570						"be determined (error code "
 571						"%lli).", mft_no,
 572						(long long)lcn);
 573				err = -EIO;
 574			}
 575		}
 576		BUG_ON(!buffer_uptodate(bh));
 577		BUG_ON(!nr_bhs && (m_start != block_start));
 578		BUG_ON(nr_bhs >= max_bhs);
 579		bhs[nr_bhs++] = bh;
 580		BUG_ON((nr_bhs >= max_bhs) && (m_end != block_end));
 581	} while (block_start = block_end, (bh = bh->b_this_page) != head);
 582	if (unlikely(rl))
 583		up_read(&NTFS_I(vol->mftmirr_ino)->runlist.lock);
 584	if (likely(!err)) {
 585		/* Lock buffers and start synchronous write i/o on them. */
 586		for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
 587			struct buffer_head *tbh = bhs[i_bhs];
 588
 589			if (!trylock_buffer(tbh))
 590				BUG();
 591			BUG_ON(!buffer_uptodate(tbh));
 592			clear_buffer_dirty(tbh);
 593			get_bh(tbh);
 594			tbh->b_end_io = end_buffer_write_sync;
 595			submit_bh(WRITE, tbh);
 596		}
 597		/* Wait on i/o completion of buffers. */
 598		for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
 599			struct buffer_head *tbh = bhs[i_bhs];
 600
 601			wait_on_buffer(tbh);
 602			if (unlikely(!buffer_uptodate(tbh))) {
 603				err = -EIO;
 604				/*
 605				 * Set the buffer uptodate so the page and
 606				 * buffer states do not become out of sync.
 607				 */
 608				set_buffer_uptodate(tbh);
 609			}
 610		}
 611	} else /* if (unlikely(err)) */ {
 612		/* Clean the buffers. */
 613		for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++)
 614			clear_buffer_dirty(bhs[i_bhs]);
 615	}
 616	/* Current state: all buffers are clean, unlocked, and uptodate. */
 617	/* Remove the mst protection fixups again. */
 618	post_write_mst_fixup((NTFS_RECORD*)kmirr);
 619	flush_dcache_page(page);
 620	SetPageUptodate(page);
 621	unlock_page(page);
 622	ntfs_unmap_page(page);
 623	if (likely(!err)) {
 624		ntfs_debug("Done.");
 625	} else {
 626		ntfs_error(vol->sb, "I/O error while writing mft mirror "
 627				"record 0x%lx!", mft_no);
 628err_out:
 629		ntfs_error(vol->sb, "Failed to synchronize $MFTMirr (error "
 630				"code %i).  Volume will be left marked dirty "
 631				"on umount.  Run ntfsfix on the partition "
 632				"after umounting to correct this.", -err);
 633		NVolSetErrors(vol);
 634	}
 635	return err;
 636}
 637
 638/**
 639 * write_mft_record_nolock - write out a mapped (extent) mft record
 640 * @ni:		ntfs inode describing the mapped (extent) mft record
 641 * @m:		mapped (extent) mft record to write
 642 * @sync:	if true, wait for i/o completion
 643 *
 644 * Write the mapped (extent) mft record @m described by the (regular or extent)
 645 * ntfs inode @ni to backing store.  If the mft record @m has a counterpart in
 646 * the mft mirror, that is also updated.
 647 *
 648 * We only write the mft record if the ntfs inode @ni is dirty and the first
 649 * buffer belonging to its mft record is dirty, too.  We ignore the dirty state
 650 * of subsequent buffers because we could have raced with
 651 * fs/ntfs/aops.c::mark_ntfs_record_dirty().
 652 *
 653 * On success, clean the mft record and return 0.  On error, leave the mft
 654 * record dirty and return -errno.
 655 *
 656 * NOTE:  We always perform synchronous i/o and ignore the @sync parameter.
 657 * However, if the mft record has a counterpart in the mft mirror and @sync is
 658 * true, we write the mft record, wait for i/o completion, and only then write
 659 * the mft mirror copy.  This ensures that if the system crashes either the mft
 660 * or the mft mirror will contain a self-consistent mft record @m.  If @sync is
 661 * false on the other hand, we start i/o on both and then wait for completion
 662 * on them.  This provides a speedup but no longer guarantees that you will end
 663 * up with a self-consistent mft record in the case of a crash but if you asked
 664 * for asynchronous writing you probably do not care about that anyway.
 665 *
 666 * TODO:  If @sync is false, want to do truly asynchronous i/o, i.e. just
 667 * schedule i/o via ->writepage or do it via kntfsd or whatever.
 668 */
 669int write_mft_record_nolock(ntfs_inode *ni, MFT_RECORD *m, int sync)
 670{
 671	ntfs_volume *vol = ni->vol;
 672	struct page *page = ni->page;
 673	unsigned int blocksize = vol->sb->s_blocksize;
 674	unsigned char blocksize_bits = vol->sb->s_blocksize_bits;
 675	int max_bhs = vol->mft_record_size / blocksize;
 676	struct buffer_head *bhs[max_bhs];
 677	struct buffer_head *bh, *head;
 678	runlist_element *rl;
 679	unsigned int block_start, block_end, m_start, m_end;
 680	int i_bhs, nr_bhs, err = 0;
 681
 682	ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
 683	BUG_ON(NInoAttr(ni));
 684	BUG_ON(!max_bhs);
 685	BUG_ON(!PageLocked(page));
 686	/*
 687	 * If the ntfs_inode is clean no need to do anything.  If it is dirty,
 688	 * mark it as clean now so that it can be redirtied later on if needed.
 689	 * There is no danger of races since the caller is holding the locks
 690	 * for the mft record @m and the page it is in.
 691	 */
 692	if (!NInoTestClearDirty(ni))
 693		goto done;
 694	bh = head = page_buffers(page);
 695	BUG_ON(!bh);
 696	rl = NULL;
 697	nr_bhs = 0;
 698	block_start = 0;
 699	m_start = ni->page_ofs;
 700	m_end = m_start + vol->mft_record_size;
 701	do {
 702		block_end = block_start + blocksize;
 703		/* If the buffer is outside the mft record, skip it. */
 704		if (block_end <= m_start)
 705			continue;
 706		if (unlikely(block_start >= m_end))
 707			break;
 708		/*
 709		 * If this block is not the first one in the record, we ignore
 710		 * the buffer's dirty state because we could have raced with a
 711		 * parallel mark_ntfs_record_dirty().
 712		 */
 713		if (block_start == m_start) {
 714			/* This block is the first one in the record. */
 715			if (!buffer_dirty(bh)) {
 716				BUG_ON(nr_bhs);
 717				/* Clean records are not written out. */
 718				break;
 719			}
 720		}
 721		/* Need to map the buffer if it is not mapped already. */
 722		if (unlikely(!buffer_mapped(bh))) {
 723			VCN vcn;
 724			LCN lcn;
 725			unsigned int vcn_ofs;
 726
 727			bh->b_bdev = vol->sb->s_bdev;
 728			/* Obtain the vcn and offset of the current block. */
 729			vcn = ((VCN)ni->mft_no << vol->mft_record_size_bits) +
 730					(block_start - m_start);
 731			vcn_ofs = vcn & vol->cluster_size_mask;
 732			vcn >>= vol->cluster_size_bits;
 733			if (!rl) {
 734				down_read(&NTFS_I(vol->mft_ino)->runlist.lock);
 735				rl = NTFS_I(vol->mft_ino)->runlist.rl;
 736				BUG_ON(!rl);
 737			}
 738			/* Seek to element containing target vcn. */
 739			while (rl->length && rl[1].vcn <= vcn)
 740				rl++;
 741			lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
 742			/* For $MFT, only lcn >= 0 is a successful remap. */
 743			if (likely(lcn >= 0)) {
 744				/* Setup buffer head to correct block. */
 745				bh->b_blocknr = ((lcn <<
 746						vol->cluster_size_bits) +
 747						vcn_ofs) >> blocksize_bits;
 748				set_buffer_mapped(bh);
 749			} else {
 750				bh->b_blocknr = -1;
 751				ntfs_error(vol->sb, "Cannot write mft record "
 752						"0x%lx because its location "
 753						"on disk could not be "
 754						"determined (error code %lli).",
 755						ni->mft_no, (long long)lcn);
 756				err = -EIO;
 757			}
 758		}
 759		BUG_ON(!buffer_uptodate(bh));
 760		BUG_ON(!nr_bhs && (m_start != block_start));
 761		BUG_ON(nr_bhs >= max_bhs);
 762		bhs[nr_bhs++] = bh;
 763		BUG_ON((nr_bhs >= max_bhs) && (m_end != block_end));
 764	} while (block_start = block_end, (bh = bh->b_this_page) != head);
 765	if (unlikely(rl))
 766		up_read(&NTFS_I(vol->mft_ino)->runlist.lock);
 767	if (!nr_bhs)
 768		goto done;
 769	if (unlikely(err))
 770		goto cleanup_out;
 771	/* Apply the mst protection fixups. */
 772	err = pre_write_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size);
 773	if (err) {
 774		ntfs_error(vol->sb, "Failed to apply mst fixups!");
 775		goto cleanup_out;
 776	}
 777	flush_dcache_mft_record_page(ni);
 778	/* Lock buffers and start synchronous write i/o on them. */
 779	for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
 780		struct buffer_head *tbh = bhs[i_bhs];
 781
 782		if (!trylock_buffer(tbh))
 783			BUG();
 784		BUG_ON(!buffer_uptodate(tbh));
 785		clear_buffer_dirty(tbh);
 786		get_bh(tbh);
 787		tbh->b_end_io = end_buffer_write_sync;
 788		submit_bh(WRITE, tbh);
 789	}
 790	/* Synchronize the mft mirror now if not @sync. */
 791	if (!sync && ni->mft_no < vol->mftmirr_size)
 792		ntfs_sync_mft_mirror(vol, ni->mft_no, m, sync);
 793	/* Wait on i/o completion of buffers. */
 794	for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
 795		struct buffer_head *tbh = bhs[i_bhs];
 796
 797		wait_on_buffer(tbh);
 798		if (unlikely(!buffer_uptodate(tbh))) {
 799			err = -EIO;
 800			/*
 801			 * Set the buffer uptodate so the page and buffer
 802			 * states do not become out of sync.
 803			 */
 804			if (PageUptodate(page))
 805				set_buffer_uptodate(tbh);
 806		}
 807	}
 808	/* If @sync, now synchronize the mft mirror. */
 809	if (sync && ni->mft_no < vol->mftmirr_size)
 810		ntfs_sync_mft_mirror(vol, ni->mft_no, m, sync);
 811	/* Remove the mst protection fixups again. */
 812	post_write_mst_fixup((NTFS_RECORD*)m);
 813	flush_dcache_mft_record_page(ni);
 814	if (unlikely(err)) {
 815		/* I/O error during writing.  This is really bad! */
 816		ntfs_error(vol->sb, "I/O error while writing mft record "
 817				"0x%lx!  Marking base inode as bad.  You "
 818				"should unmount the volume and run chkdsk.",
 819				ni->mft_no);
 820		goto err_out;
 821	}
 822done:
 823	ntfs_debug("Done.");
 824	return 0;
 825cleanup_out:
 826	/* Clean the buffers. */
 827	for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++)
 828		clear_buffer_dirty(bhs[i_bhs]);
 829err_out:
 830	/*
 831	 * Current state: all buffers are clean, unlocked, and uptodate.
 832	 * The caller should mark the base inode as bad so that no more i/o
 833	 * happens.  ->clear_inode() will still be invoked so all extent inodes
 834	 * and other allocated memory will be freed.
 835	 */
 836	if (err == -ENOMEM) {
 837		ntfs_error(vol->sb, "Not enough memory to write mft record.  "
 838				"Redirtying so the write is retried later.");
 839		mark_mft_record_dirty(ni);
 840		err = 0;
 841	} else
 842		NVolSetErrors(vol);
 843	return err;
 844}
 845
 846/**
 847 * ntfs_may_write_mft_record - check if an mft record may be written out
 848 * @vol:	[IN]  ntfs volume on which the mft record to check resides
 849 * @mft_no:	[IN]  mft record number of the mft record to check
 850 * @m:		[IN]  mapped mft record to check
 851 * @locked_ni:	[OUT] caller has to unlock this ntfs inode if one is returned
 852 *
 853 * Check if the mapped (base or extent) mft record @m with mft record number
 854 * @mft_no belonging to the ntfs volume @vol may be written out.  If necessary
 855 * and possible the ntfs inode of the mft record is locked and the base vfs
 856 * inode is pinned.  The locked ntfs inode is then returned in @locked_ni.  The
 857 * caller is responsible for unlocking the ntfs inode and unpinning the base
 858 * vfs inode.
 859 *
 860 * Return 'true' if the mft record may be written out and 'false' if not.
 861 *
 862 * The caller has locked the page and cleared the uptodate flag on it which
 863 * means that we can safely write out any dirty mft records that do not have
 864 * their inodes in icache as determined by ilookup5() as anyone
 865 * opening/creating such an inode would block when attempting to map the mft
 866 * record in read_cache_page() until we are finished with the write out.
 867 *
 868 * Here is a description of the tests we perform:
 869 *
 870 * If the inode is found in icache we know the mft record must be a base mft
 871 * record.  If it is dirty, we do not write it and return 'false' as the vfs
 872 * inode write paths will result in the access times being updated which would
 873 * cause the base mft record to be redirtied and written out again.  (We know
 874 * the access time update will modify the base mft record because Windows
 875 * chkdsk complains if the standard information attribute is not in the base
 876 * mft record.)
 877 *
 878 * If the inode is in icache and not dirty, we attempt to lock the mft record
 879 * and if we find the lock was already taken, it is not safe to write the mft
 880 * record and we return 'false'.
 881 *
 882 * If we manage to obtain the lock we have exclusive access to the mft record,
 883 * which also allows us safe writeout of the mft record.  We then set
 884 * @locked_ni to the locked ntfs inode and return 'true'.
 885 *
 886 * Note we cannot just lock the mft record and sleep while waiting for the lock
 887 * because this would deadlock due to lock reversal (normally the mft record is
 888 * locked before the page is locked but we already have the page locked here
 889 * when we try to lock the mft record).
 890 *
 891 * If the inode is not in icache we need to perform further checks.
 892 *
 893 * If the mft record is not a FILE record or it is a base mft record, we can
 894 * safely write it and return 'true'.
 895 *
 896 * We now know the mft record is an extent mft record.  We check if the inode
 897 * corresponding to its base mft record is in icache and obtain a reference to
 898 * it if it is.  If it is not, we can safely write it and return 'true'.
 899 *
 900 * We now have the base inode for the extent mft record.  We check if it has an
 901 * ntfs inode for the extent mft record attached and if not it is safe to write
 902 * the extent mft record and we return 'true'.
 903 *
 904 * The ntfs inode for the extent mft record is attached to the base inode so we
 905 * attempt to lock the extent mft record and if we find the lock was already
 906 * taken, it is not safe to write the extent mft record and we return 'false'.
 907 *
 908 * If we manage to obtain the lock we have exclusive access to the extent mft
 909 * record, which also allows us safe writeout of the extent mft record.  We
 910 * set the ntfs inode of the extent mft record clean and then set @locked_ni to
 911 * the now locked ntfs inode and return 'true'.
 912 *
 913 * Note, the reason for actually writing dirty mft records here and not just
 914 * relying on the vfs inode dirty code paths is that we can have mft records
 915 * modified without them ever having actual inodes in memory.  Also we can have
 916 * dirty mft records with clean ntfs inodes in memory.  None of the described
 917 * cases would result in the dirty mft records being written out if we only
 918 * relied on the vfs inode dirty code paths.  And these cases can really occur
 919 * during allocation of new mft records and in particular when the
 920 * initialized_size of the $MFT/$DATA attribute is extended and the new space
 921 * is initialized using ntfs_mft_record_format().  The clean inode can then
 922 * appear if the mft record is reused for a new inode before it got written
 923 * out.
 924 */
 925bool ntfs_may_write_mft_record(ntfs_volume *vol, const unsigned long mft_no,
 926		const MFT_RECORD *m, ntfs_inode **locked_ni)
 927{
 928	struct super_block *sb = vol->sb;
 929	struct inode *mft_vi = vol->mft_ino;
 930	struct inode *vi;
 931	ntfs_inode *ni, *eni, **extent_nis;
 932	int i;
 933	ntfs_attr na;
 934
 935	ntfs_debug("Entering for inode 0x%lx.", mft_no);
 936	/*
 937	 * Normally we do not return a locked inode so set @locked_ni to NULL.
 938	 */
 939	BUG_ON(!locked_ni);
 940	*locked_ni = NULL;
 941	/*
 942	 * Check if the inode corresponding to this mft record is in the VFS
 943	 * inode cache and obtain a reference to it if it is.
 944	 */
 945	ntfs_debug("Looking for inode 0x%lx in icache.", mft_no);
 946	na.mft_no = mft_no;
 947	na.name = NULL;
 948	na.name_len = 0;
 949	na.type = AT_UNUSED;
 950	/*
 951	 * Optimize inode 0, i.e. $MFT itself, since we have it in memory and
 952	 * we get here for it rather often.
 953	 */
 954	if (!mft_no) {
 955		/* Balance the below iput(). */
 956		vi = igrab(mft_vi);
 957		BUG_ON(vi != mft_vi);
 958	} else {
 959		/*
 960		 * Have to use ilookup5_nowait() since ilookup5() waits for the
 961		 * inode lock which causes ntfs to deadlock when a concurrent
 962		 * inode write via the inode dirty code paths and the page
 963		 * dirty code path of the inode dirty code path when writing
 964		 * $MFT occurs.
 965		 */
 966		vi = ilookup5_nowait(sb, mft_no, (test_t)ntfs_test_inode, &na);
 967	}
 968	if (vi) {
 969		ntfs_debug("Base inode 0x%lx is in icache.", mft_no);
 970		/* The inode is in icache. */
 971		ni = NTFS_I(vi);
 972		/* Take a reference to the ntfs inode. */
 973		atomic_inc(&ni->count);
 974		/* If the inode is dirty, do not write this record. */
 975		if (NInoDirty(ni)) {
 976			ntfs_debug("Inode 0x%lx is dirty, do not write it.",
 977					mft_no);
 978			atomic_dec(&ni->count);
 979			iput(vi);
 980			return false;
 981		}
 982		ntfs_debug("Inode 0x%lx is not dirty.", mft_no);
 983		/* The inode is not dirty, try to take the mft record lock. */
 984		if (unlikely(!mutex_trylock(&ni->mrec_lock))) {
 985			ntfs_debug("Mft record 0x%lx is already locked, do "
 986					"not write it.", mft_no);
 987			atomic_dec(&ni->count);
 988			iput(vi);
 989			return false;
 990		}
 991		ntfs_debug("Managed to lock mft record 0x%lx, write it.",
 992				mft_no);
 993		/*
 994		 * The write has to occur while we hold the mft record lock so
 995		 * return the locked ntfs inode.
 996		 */
 997		*locked_ni = ni;
 998		return true;
 999	}
1000	ntfs_debug("Inode 0x%lx is not in icache.", mft_no);
1001	/* The inode is not in icache. */
1002	/* Write the record if it is not a mft record (type "FILE"). */
1003	if (!ntfs_is_mft_record(m->magic)) {
1004		ntfs_debug("Mft record 0x%lx is not a FILE record, write it.",
1005				mft_no);
1006		return true;
1007	}
1008	/* Write the mft record if it is a base inode. */
1009	if (!m->base_mft_record) {
1010		ntfs_debug("Mft record 0x%lx is a base record, write it.",
1011				mft_no);
1012		return true;
1013	}
1014	/*
1015	 * This is an extent mft record.  Check if the inode corresponding to
1016	 * its base mft record is in icache and obtain a reference to it if it
1017	 * is.
1018	 */
1019	na.mft_no = MREF_LE(m->base_mft_record);
1020	ntfs_debug("Mft record 0x%lx is an extent record.  Looking for base "
1021			"inode 0x%lx in icache.", mft_no, na.mft_no);
1022	if (!na.mft_no) {
1023		/* Balance the below iput(). */
1024		vi = igrab(mft_vi);
1025		BUG_ON(vi != mft_vi);
1026	} else
1027		vi = ilookup5_nowait(sb, na.mft_no, (test_t)ntfs_test_inode,
1028				&na);
1029	if (!vi) {
1030		/*
1031		 * The base inode is not in icache, write this extent mft
1032		 * record.
1033		 */
1034		ntfs_debug("Base inode 0x%lx is not in icache, write the "
1035				"extent record.", na.mft_no);
1036		return true;
1037	}
1038	ntfs_debug("Base inode 0x%lx is in icache.", na.mft_no);
1039	/*
1040	 * The base inode is in icache.  Check if it has the extent inode
1041	 * corresponding to this extent mft record attached.
1042	 */
1043	ni = NTFS_I(vi);
1044	mutex_lock(&ni->extent_lock);
1045	if (ni->nr_extents <= 0) {
1046		/*
1047		 * The base inode has no attached extent inodes, write this
1048		 * extent mft record.
1049		 */
1050		mutex_unlock(&ni->extent_lock);
1051		iput(vi);
1052		ntfs_debug("Base inode 0x%lx has no attached extent inodes, "
1053				"write the extent record.", na.mft_no);
1054		return true;
1055	}
1056	/* Iterate over the attached extent inodes. */
1057	extent_nis = ni->ext.extent_ntfs_inos;
1058	for (eni = NULL, i = 0; i < ni->nr_extents; ++i) {
1059		if (mft_no == extent_nis[i]->mft_no) {
1060			/*
1061			 * Found the extent inode corresponding to this extent
1062			 * mft record.
1063			 */
1064			eni = extent_nis[i];
1065			break;
1066		}
1067	}
1068	/*
1069	 * If the extent inode was not attached to the base inode, write this
1070	 * extent mft record.
1071	 */
1072	if (!eni) {
1073		mutex_unlock(&ni->extent_lock);
1074		iput(vi);
1075		ntfs_debug("Extent inode 0x%lx is not attached to its base "
1076				"inode 0x%lx, write the extent record.",
1077				mft_no, na.mft_no);
1078		return true;
1079	}
1080	ntfs_debug("Extent inode 0x%lx is attached to its base inode 0x%lx.",
1081			mft_no, na.mft_no);
1082	/* Take a reference to the extent ntfs inode. */
1083	atomic_inc(&eni->count);
1084	mutex_unlock(&ni->extent_lock);
1085	/*
1086	 * Found the extent inode coresponding to this extent mft record.
1087	 * Try to take the mft record lock.
1088	 */
1089	if (unlikely(!mutex_trylock(&eni->mrec_lock))) {
1090		atomic_dec(&eni->count);
1091		iput(vi);
1092		ntfs_debug("Extent mft record 0x%lx is already locked, do "
1093				"not write it.", mft_no);
1094		return false;
1095	}
1096	ntfs_debug("Managed to lock extent mft record 0x%lx, write it.",
1097			mft_no);
1098	if (NInoTestClearDirty(eni))
1099		ntfs_debug("Extent inode 0x%lx is dirty, marking it clean.",
1100				mft_no);
1101	/*
1102	 * The write has to occur while we hold the mft record lock so return
1103	 * the locked extent ntfs inode.
1104	 */
1105	*locked_ni = eni;
1106	return true;
1107}
1108
1109static const char *es = "  Leaving inconsistent metadata.  Unmount and run "
1110		"chkdsk.";
1111
1112/**
1113 * ntfs_mft_bitmap_find_and_alloc_free_rec_nolock - see name
1114 * @vol:	volume on which to search for a free mft record
1115 * @base_ni:	open base inode if allocating an extent mft record or NULL
1116 *
1117 * Search for a free mft record in the mft bitmap attribute on the ntfs volume
1118 * @vol.
1119 *
1120 * If @base_ni is NULL start the search at the default allocator position.
1121 *
1122 * If @base_ni is not NULL start the search at the mft record after the base
1123 * mft record @base_ni.
1124 *
1125 * Return the free mft record on success and -errno on error.  An error code of
1126 * -ENOSPC means that there are no free mft records in the currently
1127 * initialized mft bitmap.
1128 *
1129 * Locking: Caller must hold vol->mftbmp_lock for writing.
1130 */
1131static int ntfs_mft_bitmap_find_and_alloc_free_rec_nolock(ntfs_volume *vol,
1132		ntfs_inode *base_ni)
1133{
1134	s64 pass_end, ll, data_pos, pass_start, ofs, bit;
1135	unsigned long flags;
1136	struct address_space *mftbmp_mapping;
1137	u8 *buf, *byte;
1138	struct page *page;
1139	unsigned int page_ofs, size;
1140	u8 pass, b;
1141
1142	ntfs_debug("Searching for free mft record in the currently "
1143			"initialized mft bitmap.");
1144	mftbmp_mapping = vol->mftbmp_ino->i_mapping;
1145	/*
1146	 * Set the end of the pass making sure we do not overflow the mft
1147	 * bitmap.
1148	 */
1149	read_lock_irqsave(&NTFS_I(vol->mft_ino)->size_lock, flags);
1150	pass_end = NTFS_I(vol->mft_ino)->allocated_size >>
1151			vol->mft_record_size_bits;
1152	read_unlock_irqrestore(&NTFS_I(vol->mft_ino)->size_lock, flags);
1153	read_lock_irqsave(&NTFS_I(vol->mftbmp_ino)->size_lock, flags);
1154	ll = NTFS_I(vol->mftbmp_ino)->initialized_size << 3;
1155	read_unlock_irqrestore(&NTFS_I(vol->mftbmp_ino)->size_lock, flags);
1156	if (pass_end > ll)
1157		pass_end = ll;
1158	pass = 1;
1159	if (!base_ni)
1160		data_pos = vol->mft_data_pos;
1161	else
1162		data_pos = base_ni->mft_no + 1;
1163	if (data_pos < 24)
1164		data_pos = 24;
1165	if (data_pos >= pass_end) {
1166		data_pos = 24;
1167		pass = 2;
1168		/* This happens on a freshly formatted volume. */
1169		if (data_pos >= pass_end)
1170			return -ENOSPC;
1171	}
1172	pass_start = data_pos;
1173	ntfs_debug("Starting bitmap search: pass %u, pass_start 0x%llx, "
1174			"pass_end 0x%llx, data_pos 0x%llx.", pass,
1175			(long long)pass_start, (long long)pass_end,
1176			(long long)data_pos);
1177	/* Loop until a free mft record is found. */
1178	for (; pass <= 2;) {
1179		/* Cap size to pass_end. */
1180		ofs = data_pos >> 3;
1181		page_ofs = ofs & ~PAGE_CACHE_MASK;
1182		size = PAGE_CACHE_SIZE - page_ofs;
1183		ll = ((pass_end + 7) >> 3) - ofs;
1184		if (size > ll)
1185			size = ll;
1186		size <<= 3;
1187		/*
1188		 * If we are still within the active pass, search the next page
1189		 * for a zero bit.
1190		 */
1191		if (size) {
1192			page = ntfs_map_page(mftbmp_mapping,
1193					ofs >> PAGE_CACHE_SHIFT);
1194			if (IS_ERR(page)) {
1195				ntfs_error(vol->sb, "Failed to read mft "
1196						"bitmap, aborting.");
1197				return PTR_ERR(page);
1198			}
1199			buf = (u8*)page_address(page) + page_ofs;
1200			bit = data_pos & 7;
1201			data_pos &= ~7ull;
1202			ntfs_debug("Before inner for loop: size 0x%x, "
1203					"data_pos 0x%llx, bit 0x%llx", size,
1204					(long long)data_pos, (long long)bit);
1205			for (; bit < size && data_pos + bit < pass_end;
1206					bit &= ~7ull, bit += 8) {
1207				byte = buf + (bit >> 3);
1208				if (*byte == 0xff)
1209					continue;
1210				b = ffz((unsigned long)*byte);
1211				if (b < 8 && b >= (bit & 7)) {
1212					ll = data_pos + (bit & ~7ull) + b;
1213					if (unlikely(ll > (1ll << 32))) {
1214						ntfs_unmap_page(page);
1215						return -ENOSPC;
1216					}
1217					*byte |= 1 << b;
1218					flush_dcache_page(page);
1219					set_page_dirty(page);
1220					ntfs_unmap_page(page);
1221					ntfs_debug("Done.  (Found and "
1222							"allocated mft record "
1223							"0x%llx.)",
1224							(long long)ll);
1225					return ll;
1226				}
1227			}
1228			ntfs_debug("After inner for loop: size 0x%x, "
1229					"data_pos 0x%llx, bit 0x%llx", size,
1230					(long long)data_pos, (long long)bit);
1231			data_pos += size;
1232			ntfs_unmap_page(page);
1233			/*
1234			 * If the end of the pass has not been reached yet,
1235			 * continue searching the mft bitmap for a zero bit.
1236			 */
1237			if (data_pos < pass_end)
1238				continue;
1239		}
1240		/* Do the next pass. */
1241		if (++pass == 2) {
1242			/*
1243			 * Starting the second pass, in which we scan the first
1244			 * part of the zone which we omitted earlier.
1245			 */
1246			pass_end = pass_start;
1247			data_pos = pass_start = 24;
1248			ntfs_debug("pass %i, pass_start 0x%llx, pass_end "
1249					"0x%llx.", pass, (long long)pass_start,
1250					(long long)pass_end);
1251			if (data_pos >= pass_end)
1252				break;
1253		}
1254	}
1255	/* No free mft records in currently initialized mft bitmap. */
1256	ntfs_debug("Done.  (No free mft records left in currently initialized "
1257			"mft bitmap.)");
1258	return -ENOSPC;
1259}
1260
1261/**
1262 * ntfs_mft_bitmap_extend_allocation_nolock - extend mft bitmap by a cluster
1263 * @vol:	volume on which to extend the mft bitmap attribute
1264 *
1265 * Extend the mft bitmap attribute on the ntfs volume @vol by one cluster.
1266 *
1267 * Note: Only changes allocated_size, i.e. does not touch initialized_size or
1268 * data_size.
1269 *
1270 * Return 0 on success and -errno on error.
1271 *
1272 * Locking: - Caller must hold vol->mftbmp_lock for writing.
1273 *	    - This function takes NTFS_I(vol->mftbmp_ino)->runlist.lock for
1274 *	      writing and releases it before returning.
1275 *	    - This function takes vol->lcnbmp_lock for writing and releases it
1276 *	      before returning.
1277 */
1278static int ntfs_mft_bitmap_extend_allocation_nolock(ntfs_volume *vol)
1279{
1280	LCN lcn;
1281	s64 ll;
1282	unsigned long flags;
1283	struct page *page;
1284	ntfs_inode *mft_ni, *mftbmp_ni;
1285	runlist_element *rl, *rl2 = NULL;
1286	ntfs_attr_search_ctx *ctx = NULL;
1287	MFT_RECORD *mrec;
1288	ATTR_RECORD *a = NULL;
1289	int ret, mp_size;
1290	u32 old_alen = 0;
1291	u8 *b, tb;
1292	struct {
1293		u8 added_cluster:1;
1294		u8 added_run:1;
1295		u8 mp_rebuilt:1;
1296	} status = { 0, 0, 0 };
1297
1298	ntfs_debug("Extending mft bitmap allocation.");
1299	mft_ni = NTFS_I(vol->mft_ino);
1300	mftbmp_ni = NTFS_I(vol->mftbmp_ino);
1301	/*
1302	 * Determine the last lcn of the mft bitmap.  The allocated size of the
1303	 * mft bitmap cannot be zero so we are ok to do this.
1304	 */
1305	down_write(&mftbmp_ni->runlist.lock);
1306	read_lock_irqsave(&mftbmp_ni->size_lock, flags);
1307	ll = mftbmp_ni->allocated_size;
1308	read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1309	rl = ntfs_attr_find_vcn_nolock(mftbmp_ni,
1310			(ll - 1) >> vol->cluster_size_bits, NULL);
1311	if (unlikely(IS_ERR(rl) || !rl->length || rl->lcn < 0)) {
1312		up_write(&mftbmp_ni->runlist.lock);
1313		ntfs_error(vol->sb, "Failed to determine last allocated "
1314				"cluster of mft bitmap attribute.");
1315		if (!IS_ERR(rl))
1316			ret = -EIO;
1317		else
1318			ret = PTR_ERR(rl);
1319		return ret;
1320	}
1321	lcn = rl->lcn + rl->length;
1322	ntfs_debug("Last lcn of mft bitmap attribute is 0x%llx.",
1323			(long long)lcn);
1324	/*
1325	 * Attempt to get the cluster following the last allocated cluster by
1326	 * hand as it may be in the MFT zone so the allocator would not give it
1327	 * to us.
1328	 */
1329	ll = lcn >> 3;
1330	page = ntfs_map_page(vol->lcnbmp_ino->i_mapping,
1331			ll >> PAGE_CACHE_SHIFT);
1332	if (IS_ERR(page)) {
1333		up_write(&mftbmp_ni->runlist.lock);
1334		ntfs_error(vol->sb, "Failed to read from lcn bitmap.");
1335		return PTR_ERR(page);
1336	}
1337	b = (u8*)page_address(page) + (ll & ~PAGE_CACHE_MASK);
1338	tb = 1 << (lcn & 7ull);
1339	down_write(&vol->lcnbmp_lock);
1340	if (*b != 0xff && !(*b & tb)) {
1341		/* Next cluster is free, allocate it. */
1342		*b |= tb;
1343		flush_dcache_page(page);
1344		set_page_dirty(page);
1345		up_write(&vol->lcnbmp_lock);
1346		ntfs_unmap_page(page);
1347		/* Update the mft bitmap runlist. */
1348		rl->length++;
1349		rl[1].vcn++;
1350		status.added_cluster = 1;
1351		ntfs_debug("Appending one cluster to mft bitmap.");
1352	} else {
1353		up_write(&vol->lcnbmp_lock);
1354		ntfs_unmap_page(page);
1355		/* Allocate a cluster from the DATA_ZONE. */
1356		rl2 = ntfs_cluster_alloc(vol, rl[1].vcn, 1, lcn, DATA_ZONE,
1357				true);
1358		if (IS_ERR(rl2)) {
1359			up_write(&mftbmp_ni->runlist.lock);
1360			ntfs_error(vol->sb, "Failed to allocate a cluster for "
1361					"the mft bitmap.");
1362			return PTR_ERR(rl2);
1363		}
1364		rl = ntfs_runlists_merge(mftbmp_ni->runlist.rl, rl2);
1365		if (IS_ERR(rl)) {
1366			up_write(&mftbmp_ni->runlist.lock);
1367			ntfs_error(vol->sb, "Failed to merge runlists for mft "
1368					"bitmap.");
1369			if (ntfs_cluster_free_from_rl(vol, rl2)) {
1370				ntfs_error(vol->sb, "Failed to deallocate "
1371						"allocated cluster.%s", es);
1372				NVolSetErrors(vol);
1373			}
1374			ntfs_free(rl2);
1375			return PTR_ERR(rl);
1376		}
1377		mftbmp_ni->runlist.rl = rl;
1378		status.added_run = 1;
1379		ntfs_debug("Adding one run to mft bitmap.");
1380		/* Find the last run in the new runlist. */
1381		for (; rl[1].length; rl++)
1382			;
1383	}
1384	/*
1385	 * Update the attribute record as well.  Note: @rl is the last
1386	 * (non-terminator) runlist element of mft bitmap.
1387	 */
1388	mrec = map_mft_record(mft_ni);
1389	if (IS_ERR(mrec)) {
1390		ntfs_error(vol->sb, "Failed to map mft record.");
1391		ret = PTR_ERR(mrec);
1392		goto undo_alloc;
1393	}
1394	ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1395	if (unlikely(!ctx)) {
1396		ntfs_error(vol->sb, "Failed to get search context.");
1397		ret = -ENOMEM;
1398		goto undo_alloc;
1399	}
1400	ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1401			mftbmp_ni->name_len, CASE_SENSITIVE, rl[1].vcn, NULL,
1402			0, ctx);
1403	if (unlikely(ret)) {
1404		ntfs_error(vol->sb, "Failed to find last attribute extent of "
1405				"mft bitmap attribute.");
1406		if (ret == -ENOENT)
1407			ret = -EIO;
1408		goto undo_alloc;
1409	}
1410	a = ctx->attr;
1411	ll = sle64_to_cpu(a->data.non_resident.lowest_vcn);
1412	/* Search back for the previous last allocated cluster of mft bitmap. */
1413	for (rl2 = rl; rl2 > mftbmp_ni->runlist.rl; rl2--) {
1414		if (ll >= rl2->vcn)
1415			break;
1416	}
1417	BUG_ON(ll < rl2->vcn);
1418	BUG_ON(ll >= rl2->vcn + rl2->length);
1419	/* Get the size for the new mapping pairs array for this extent. */
1420	mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1);
1421	if (unlikely(mp_size <= 0)) {
1422		ntfs_error(vol->sb, "Get size for mapping pairs failed for "
1423				"mft bitmap attribute extent.");
1424		ret = mp_size;
1425		if (!ret)
1426			ret = -EIO;
1427		goto undo_alloc;
1428	}
1429	/* Expand the attribute record if necessary. */
1430	old_alen = le32_to_cpu(a->length);
1431	ret = ntfs_attr_record_resize(ctx->mrec, a, mp_size +
1432			le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
1433	if (unlikely(ret)) {
1434		if (ret != -ENOSPC) {
1435			ntfs_error(vol->sb, "Failed to resize attribute "
1436					"record for mft bitmap attribute.");
1437			goto undo_alloc;
1438		}
1439		// TODO: Deal with this by moving this extent to a new mft
1440		// record or by starting a new extent in a new mft record or by
1441		// moving other attributes out of this mft record.
1442		// Note: It will need to be a special mft record and if none of
1443		// those are available it gets rather complicated...
1444		ntfs_error(vol->sb, "Not enough space in this mft record to "
1445				"accommodate extended mft bitmap attribute "
1446				"extent.  Cannot handle this yet.");
1447		ret = -EOPNOTSUPP;
1448		goto undo_alloc;
1449	}
1450	status.mp_rebuilt = 1;
1451	/* Generate the mapping pairs array directly into the attr record. */
1452	ret = ntfs_mapping_pairs_build(vol, (u8*)a +
1453			le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
1454			mp_size, rl2, ll, -1, NULL);
1455	if (unlikely(ret)) {
1456		ntfs_error(vol->sb, "Failed to build mapping pairs array for "
1457				"mft bitmap attribute.");
1458		goto undo_alloc;
1459	}
1460	/* Update the highest_vcn. */
1461	a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 1);
1462	/*
1463	 * We now have extended the mft bitmap allocated_size by one cluster.
1464	 * Reflect this in the ntfs_inode structure and the attribute record.
1465	 */
1466	if (a->data.non_resident.lowest_vcn) {
1467		/*
1468		 * We are not in the first attribute extent, switch to it, but
1469		 * first ensure the changes will make it to disk later.
1470		 */
1471		flush_dcache_mft_record_page(ctx->ntfs_ino);
1472		mark_mft_record_dirty(ctx->ntfs_ino);
1473		ntfs_attr_reinit_search_ctx(ctx);
1474		ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1475				mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL,
1476				0, ctx);
1477		if (unlikely(ret)) {
1478			ntfs_error(vol->sb, "Failed to find first attribute "
1479					"extent of mft bitmap attribute.");
1480			goto restore_undo_alloc;
1481		}
1482		a = ctx->attr;
1483	}
1484	write_lock_irqsave(&mftbmp_ni->size_lock, flags);
1485	mftbmp_ni->allocated_size += vol->cluster_size;
1486	a->data.non_resident.allocated_size =
1487			cpu_to_sle64(mftbmp_ni->allocated_size);
1488	write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1489	/* Ensure the changes make it to disk. */
1490	flush_dcache_mft_record_page(ctx->ntfs_ino);
1491	mark_mft_record_dirty(ctx->ntfs_ino);
1492	ntfs_attr_put_search_ctx(ctx);
1493	unmap_mft_record(mft_ni);
1494	up_write(&mftbmp_ni->runlist.lock);
1495	ntfs_debug("Done.");
1496	return 0;
1497restore_undo_alloc:
1498	ntfs_attr_reinit_search_ctx(ctx);
1499	if (ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1500			mftbmp_ni->name_len, CASE_SENSITIVE, rl[1].vcn, NULL,
1501			0, ctx)) {
1502		ntfs_error(vol->sb, "Failed to find last attribute extent of "
1503				"mft bitmap attribute.%s", es);
1504		write_lock_irqsave(&mftbmp_ni->size_lock, flags);
1505		mftbmp_ni->allocated_size += vol->cluster_size;
1506		write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1507		ntfs_attr_put_search_ctx(ctx);
1508		unmap_mft_record(mft_ni);
1509		up_write(&mftbmp_ni->runlist.lock);
1510		/*
1511		 * The only thing that is now wrong is ->allocated_size of the
1512		 * base attribute extent which chkdsk should be able to fix.
1513		 */
1514		NVolSetErrors(vol);
1515		return ret;
1516	}
1517	a = ctx->attr;
1518	a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 2);
1519undo_alloc:
1520	if (status.added_cluster) {
1521		/* Truncate the last run in the runlist by one cluster. */
1522		rl->length--;
1523		rl[1].vcn--;
1524	} else if (status.added_run) {
1525		lcn = rl->lcn;
1526		/* Remove the last run from the runlist. */
1527		rl->lcn = rl[1].lcn;
1528		rl->length = 0;
1529	}
1530	/* Deallocate the cluster. */
1531	down_write(&vol->lcnbmp_lock);
1532	if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
1533		ntfs_error(vol->sb, "Failed to free allocated cluster.%s", es);
1534		NVolSetErrors(vol);
1535	}
1536	up_write(&vol->lcnbmp_lock);
1537	if (status.mp_rebuilt) {
1538		if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1539				a->data.non_resident.mapping_pairs_offset),
1540				old_alen - le16_to_cpu(
1541				a->data.non_resident.mapping_pairs_offset),
1542				rl2, ll, -1, NULL)) {
1543			ntfs_error(vol->sb, "Failed to restore mapping pairs "
1544					"array.%s", es);
1545			NVolSetErrors(vol);
1546		}
1547		if (ntfs_attr_record_resize(ctx->mrec, a, old_alen)) {
1548			ntfs_error(vol->sb, "Failed to restore attribute "
1549					"record.%s", es);
1550			NVolSetErrors(vol);
1551		}
1552		flush_dcache_mft_record_page(ctx->ntfs_ino);
1553		mark_mft_record_dirty(ctx->ntfs_ino);
1554	}
1555	if (ctx)
1556		ntfs_attr_put_search_ctx(ctx);
1557	if (!IS_ERR(mrec))
1558		unmap_mft_record(mft_ni);
1559	up_write(&mftbmp_ni->runlist.lock);
1560	return ret;
1561}
1562
1563/**
1564 * ntfs_mft_bitmap_extend_initialized_nolock - extend mftbmp initialized data
1565 * @vol:	volume on which to extend the mft bitmap attribute
1566 *
1567 * Extend the initialized portion of the mft bitmap attribute on the ntfs
1568 * volume @vol by 8 bytes.
1569 *
1570 * Note:  Only changes initialized_size and data_size, i.e. requires that
1571 * allocated_size is big enough to fit the new initialized_size.
1572 *
1573 * Return 0 on success and -error on error.
1574 *
1575 * Locking: Caller must hold vol->mftbmp_lock for writing.
1576 */
1577static int ntfs_mft_bitmap_extend_initialized_nolock(ntfs_volume *vol)
1578{
1579	s64 old_data_size, old_initialized_size;
1580	unsigned long flags;
1581	struct inode *mftbmp_vi;
1582	ntfs_inode *mft_ni, *mftbmp_ni;
1583	ntfs_attr_search_ctx *ctx;
1584	MFT_RECORD *mrec;
1585	ATTR_RECORD *a;
1586	int ret;
1587
1588	ntfs_debug("Extending mft bitmap initiailized (and data) size.");
1589	mft_ni = NTFS_I(vol->mft_ino);
1590	mftbmp_vi = vol->mftbmp_ino;
1591	mftbmp_ni = NTFS_I(mftbmp_vi);
1592	/* Get the attribute record. */
1593	mrec = map_mft_record(mft_ni);
1594	if (IS_ERR(mrec)) {
1595		ntfs_error(vol->sb, "Failed to map mft record.");
1596		return PTR_ERR(mrec);
1597	}
1598	ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1599	if (unlikely(!ctx)) {
1600		ntfs_error(vol->sb, "Failed to get search context.");
1601		ret = -ENOMEM;
1602		goto unm_err_out;
1603	}
1604	ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1605			mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx);
1606	if (unlikely(ret)) {
1607		ntfs_error(vol->sb, "Failed to find first attribute extent of "
1608				"mft bitmap attribute.");
1609		if (ret == -ENOENT)
1610			ret = -EIO;
1611		goto put_err_out;
1612	}
1613	a = ctx->attr;
1614	write_lock_irqsave(&mftbmp_ni->size_lock, flags);
1615	old_data_size = i_size_read(mftbmp_vi);
1616	old_initialized_size = mftbmp_ni->initialized_size;
1617	/*
1618	 * We can simply update the initialized_size before filling the space
1619	 * with zeroes because the caller is holding the mft bitmap lock for
1620	 * writing which ensures that no one else is trying to access the data.
1621	 */
1622	mftbmp_ni->initialized_size += 8;
1623	a->data.non_resident.initialized_size =
1624			cpu_to_sle64(mftbmp_ni->initialized_size);
1625	if (mftbmp_ni->initialized_size > old_data_size) {
1626		i_size_write(mftbmp_vi, mftbmp_ni->initialized_size);
1627		a->data.non_resident.data_size =
1628				cpu_to_sle64(mftbmp_ni->initialized_size);
1629	}
1630	write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1631	/* Ensure the changes make it to disk. */
1632	flush_dcache_mft_record_page(ctx->ntfs_ino);
1633	mark_mft_record_dirty(ctx->ntfs_ino);
1634	ntfs_attr_put_search_ctx(ctx);
1635	unmap_mft_record(mft_ni);
1636	/* Initialize the mft bitmap attribute value with zeroes. */
1637	ret = ntfs_attr_set(mftbmp_ni, old_initialized_size, 8, 0);
1638	if (likely(!ret)) {
1639		ntfs_debug("Done.  (Wrote eight initialized bytes to mft "
1640				"bitmap.");
1641		return 0;
1642	}
1643	ntfs_error(vol->sb, "Failed to write to mft bitmap.");
1644	/* Try to recover from the error. */
1645	mrec = map_mft_record(mft_ni);
1646	if (IS_ERR(mrec)) {
1647		ntfs_error(vol->sb, "Failed to map mft record.%s", es);
1648		NVolSetErrors(vol);
1649		return ret;
1650	}
1651	ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1652	if (unlikely(!ctx)) {
1653		ntfs_error(vol->sb, "Failed to get search context.%s", es);
1654		NVolSetErrors(vol);
1655		goto unm_err_out;
1656	}
1657	if (ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1658			mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx)) {
1659		ntfs_error(vol->sb, "Failed to find first attribute extent of "
1660				"mft bitmap attribute.%s", es);
1661		NVolSetErrors(vol);
1662put_err_out:
1663		ntfs_attr_put_search_ctx(ctx);
1664unm_err_out:
1665		unmap_mft_record(mft_ni);
1666		goto err_out;
1667	}
1668	a = ctx->attr;
1669	write_lock_irqsave(&mftbmp_ni->size_lock, flags);
1670	mftbmp_ni->initialized_size = old_initialized_size;
1671	a->data.non_resident.initialized_size =
1672			cpu_to_sle64(old_initialized_size);
1673	if (i_size_read(mftbmp_vi) != old_data_size) {
1674		i_size_write(mftbmp_vi, old_data_size);
1675		a->data.non_resident.data_size = cpu_to_sle64(old_data_size);
1676	}
1677	write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1678	flush_dcache_mft_record_page(ctx->ntfs_ino);
1679	mark_mft_record_dirty(ctx->ntfs_ino);
1680	ntfs_attr_put_search_ctx(ctx);
1681	unmap_mft_record(mft_ni);
1682#ifdef DEBUG
1683	read_lock_irqsave(&mftbmp_ni->size_lock, flags);
1684	ntfs_debug("Restored status of mftbmp: allocated_size 0x%llx, "
1685			"data_size 0x%llx, initialized_size 0x%llx.",
1686			(long long)mftbmp_ni->allocated_size,
1687			(long long)i_size_read(mftbmp_vi),
1688			(long long)mftbmp_ni->initialized_size);
1689	read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1690#endif /* DEBUG */
1691err_out:
1692	return ret;
1693}
1694
1695/**
1696 * ntfs_mft_data_extend_allocation_nolock - extend mft data attribute
1697 * @vol:	volume on which to extend the mft data attribute
1698 *
1699 * Extend the mft data attribute on the ntfs volume @vol by 16 mft records
1700 * worth of clusters or if not enough space for this by one mft record worth
1701 * of clusters.
1702 *
1703 * Note:  Only changes allocated_size, i.e. does not touch initialized_size or
1704 * data_size.
1705 *
1706 * Return 0 on success and -errno on error.
1707 *
1708 * Locking: - Caller must hold vol->mftbmp_lock for writing.
1709 *	    - This function takes NTFS_I(vol->mft_ino)->runlist.lock for
1710 *	      writing and releases it before returning.
1711 *	    - This function calls functions which take vol->lcnbmp_lock for
1712 *	      writing and release it before returning.
1713 */
1714static int ntfs_mft_data_extend_allocation_nolock(ntfs_volume *vol)
1715{
1716	LCN lcn;
1717	VCN old_last_vcn;
1718	s64 min_nr, nr, ll;
1719	unsigned long flags;
1720	ntfs_inode *mft_ni;
1721	runlist_element *rl, *rl2;
1722	ntfs_attr_search_ctx *ctx = NULL;
1723	MFT_RECORD *mrec;
1724	ATTR_RECORD *a = NULL;
1725	int ret, mp_size;
1726	u32 old_alen = 0;
1727	bool mp_rebuilt = false;
1728
1729	ntfs_debug("Extending mft data allocation.");
1730	mft_ni = NTFS_I(vol->mft_ino);
1731	/*
1732	 * Determine the preferred allocation location, i.e. the last lcn of
1733	 * the mft data attribute.  The allocated size of the mft data
1734	 * attribute cannot be zero so we are ok to do this.
1735	 */
1736	down_write(&mft_ni->runlist.lock);
1737	read_lock_irqsave(&mft_ni->size_lock, flags);
1738	ll = mft_ni->allocated_size;
1739	read_unlock_irqrestore(&mft_ni->size_lock, flags);
1740	rl = ntfs_attr_find_vcn_nolock(mft_ni,
1741			(ll - 1) >> vol->cluster_size_bits, NULL);
1742	if (unlikely(IS_ERR(rl) || !rl->length || rl->lcn < 0)) {
1743		up_write(&mft_ni->runlist.lock);
1744		ntfs_error(vol->sb, "Failed to determine last allocated "
1745				"cluster of mft data attribute.");
1746		if (!IS_ERR(rl))
1747			ret = -EIO;
1748		else
1749			ret = PTR_ERR(rl);
1750		return ret;
1751	}
1752	lcn = rl->lcn + rl->length;
1753	ntfs_debug("Last lcn of mft data attribute is 0x%llx.", (long long)lcn);
1754	/* Minimum allocation is one mft record worth of clusters. */
1755	min_nr = vol->mft_record_size >> vol->cluster_size_bits;
1756	if (!min_nr)
1757		min_nr = 1;
1758	/* Want to allocate 16 mft records worth of clusters. */
1759	nr = vol->mft_record_size << 4 >> vol->cluster_size_bits;
1760	if (!nr)
1761		nr = min_nr;
1762	/* Ensure we do not go above 2^32-1 mft records. */
1763	read_lock_irqsave(&mft_ni->size_lock, flags);
1764	ll = mft_ni->allocated_size;
1765	read_unlock_irqrestore(&mft_ni->size_lock, flags);
1766	if (unlikely((ll + (nr << vol->cluster_size_bits)) >>
1767			vol->mft_record_size_bits >= (1ll << 32))) {
1768		nr = min_nr;
1769		if (unlikely((ll + (nr << vol->cluster_size_bits)) >>
1770				vol->mft_record_size_bits >= (1ll << 32))) {
1771			ntfs_warning(vol->sb, "Cannot allocate mft record "
1772					"because the maximum number of inodes "
1773					"(2^32) has already been reached.");
1774			up_write(&mft_ni->runlist.lock);
1775			return -ENOSPC;
1776		}
1777	}
1778	ntfs_debug("Trying mft data allocation with %s cluster count %lli.",
1779			nr > min_nr ? "default" : "minimal", (long long)nr);
1780	old_last_vcn = rl[1].vcn;
1781	do {
1782		rl2 = ntfs_cluster_alloc(vol, old_last_vcn, nr, lcn, MFT_ZONE,
1783				true);
1784		if (likely(!IS_ERR(rl2)))
1785			break;
1786		if (PTR_ERR(rl2) != -ENOSPC || nr == min_nr) {
1787			ntfs_error(vol->sb, "Failed to allocate the minimal "
1788					"number of clusters (%lli) for the "
1789					"mft data attribute.", (long long)nr);
1790			up_write(&mft_ni->runlist.lock);
1791			return PTR_ERR(rl2);
1792		}
1793		/*
1794		 * There is not enough space to do the allocation, but there
1795		 * might be enough space to do a minimal allocation so try that
1796		 * before failing.
1797		 */
1798		nr = min_nr;
1799		ntfs_debug("Retrying mft data allocation with minimal cluster "
1800				"count %lli.", (long long)nr);
1801	} while (1);
1802	rl = ntfs_runlists_merge(mft_ni->runlist.rl, rl2);
1803	if (IS_ERR(rl)) {
1804		up_write(&mft_ni->runlist.lock);
1805		ntfs_error(vol->sb, "Failed to merge runlists for mft data "
1806				"attribute.");
1807		if (ntfs_cluster_free_from_rl(vol, rl2)) {
1808			ntfs_error(vol->sb, "Failed to deallocate clusters "
1809					"from the mft data attribute.%s", es);
1810			NVolSetErrors(vol);
1811		}
1812		ntfs_free(rl2);
1813		return PTR_ERR(rl);
1814	}
1815	mft_ni->runlist.rl = rl;
1816	ntfs_debug("Allocated %lli clusters.", (long long)nr);
1817	/* Find the last run in the new runlist. */
1818	for (; rl[1].length; rl++)
1819		;
1820	/* Update the attribute record as well. */
1821	mrec = map_mft_record(mft_ni);
1822	if (IS_ERR(mrec)) {
1823		ntfs_error(vol->sb, "Failed to map mft record.");
1824		ret = PTR_ERR(mrec);
1825		goto undo_alloc;
1826	}
1827	ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1828	if (unlikely(!ctx)) {
1829		ntfs_error(vol->sb, "Failed to get search context.");
1830		ret = -ENOMEM;
1831		goto undo_alloc;
1832	}
1833	ret = ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len,
1834			CASE_SENSITIVE, rl[1].vcn, NULL, 0, ctx);
1835	if (unlikely(ret)) {
1836		ntfs_error(vol->sb, "Failed to find last attribute extent of "
1837				"mft data attribute.");
1838		if (ret == -ENOENT)
1839			ret = -EIO;
1840		goto undo_alloc;
1841	}
1842	a = ctx->attr;
1843	ll = sle64_to_cpu(a->data.non_resident.lowest_vcn);
1844	/* Search back for the previous last allocated cluster of mft bitmap. */
1845	for (rl2 = rl; rl2 > mft_ni->runlist.rl; rl2--) {
1846		if (ll >= rl2->vcn)
1847			break;
1848	}
1849	BUG_ON(ll < rl2->vcn);
1850	BUG_ON(ll >= rl2->vcn + rl2->length);
1851	/* Get the size for the new mapping pairs array for this extent. */
1852	mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1);
1853	if (unlikely(mp_size <= 0)) {
1854		ntfs_error(vol->sb, "Get size for mapping pairs failed for "
1855				"mft data attribute extent.");
1856		ret = mp_size;
1857		if (!ret)
1858			ret = -EIO;
1859		goto undo_alloc;
1860	}
1861	/* Expand the attribute record if necessary. */
1862	old_alen = le32_to_cpu(a->length);
1863	ret = ntfs_attr_record_resize(ctx->mrec, a, mp_size +
1864			le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
1865	if (unlikely(ret)) {
1866		if (ret != -ENOSPC) {
1867			ntfs_error(vol->sb, "Failed to resize attribute "
1868					"record for mft data attribute.");
1869			goto undo_alloc;
1870		}
1871		// TODO: Deal with this by moving this extent to a new mft
1872		// record or by starting a new extent in a new mft record or by
1873		// moving other attributes out of this mft record.
1874		// Note: Use the special reserved mft records and ensure that
1875		// this extent is not required to find the mft record in
1876		// question.  If no free special records left we would need to
1877		// move an existing record away, insert ours in its place, and
1878		// then place the moved record into the newly allocated space
1879		// and we would then need to update all references to this mft
1880		// record appropriately.  This is rather complicated...
1881		ntfs_error(vol->sb, "Not enough space in this mft record to "
1882				"accommodate extended mft data attribute "
1883				"extent.  Cannot handle this yet.");
1884		ret = -EOPNOTSUPP;
1885		goto undo_alloc;
1886	}
1887	mp_rebuilt = true;
1888	/* Generate the mapping pairs array directly into the attr record. */
1889	ret = ntfs_mapping_pairs_build(vol, (u8*)a +
1890			le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
1891			mp_size, rl2, ll, -1, NULL);
1892	if (unlikely(ret)) {
1893		ntfs_error(vol->sb, "Failed to build mapping pairs array of "
1894				"mft data attribute.");
1895		goto undo_alloc;
1896	}
1897	/* Update the highest_vcn. */
1898	a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 1);
1899	/*
1900	 * We now have extended the mft data allocated_size by nr clusters.
1901	 * Reflect this in the ntfs_inode structure and the attribute record.
1902	 * @rl is the last (non-terminator) runlist element of mft data
1903	 * attribute.
1904	 */
1905	if (a->data.non_resident.lowest_vcn) {
1906		/*
1907		 * We are not in the first attribute extent, switch to it, but
1908		 * first ensure the changes will make it to disk later.
1909		 */
1910		flush_dcache_mft_record_page(ctx->ntfs_ino);
1911		mark_mft_record_dirty(ctx->ntfs_ino);
1912		ntfs_attr_reinit_search_ctx(ctx);
1913		ret = ntfs_attr_lookup(mft_ni->type, mft_ni->name,
1914				mft_ni->name_len, CASE_SENSITIVE, 0, NULL, 0,
1915				ctx);
1916		if (unlikely(ret)) {
1917			ntfs_error(vol->sb, "Failed to find first attribute "
1918					"extent of mft data attribute.");
1919			goto restore_undo_alloc;
1920		}
1921		a = ctx->attr;
1922	}
1923	write_lock_irqsave(&mft_ni->size_lock, flags);
1924	mft_ni->allocated_size += nr << vol->cluster_size_bits;
1925	a->data.non_resident.allocated_size =
1926			cpu_to_sle64(mft_ni->allocated_size);
1927	write_unlock_irqrestore(&mft_ni->size_lock, flags);
1928	/* Ensure the changes make it to disk. */
1929	flush_dcache_mft_record_page(ctx->ntfs_ino);
1930	mark_mft_record_dirty(ctx->ntfs_ino);
1931	ntfs_attr_put_search_ctx(ctx);
1932	unmap_mft_record(mft_ni);
1933	up_write(&mft_ni->runlist.lock);
1934	ntfs_debug("Done.");
1935	return 0;
1936restore_undo_alloc:
1937	ntfs_attr_reinit_search_ctx(ctx);
1938	if (ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len,
1939			CASE_SENSITIVE, rl[1].vcn, NULL, 0, ctx)) {
1940		ntfs_error(vol->sb, "Failed to find last attribute extent of "
1941				"mft data attribute.%s", es);
1942		write_lock_irqsave(&mft_ni->size_lock, flags);
1943		mft_ni->allocated_size += nr << vol->cluster_size_bits;
1944		write_unlock_irqrestore(&mft_ni->size_lock, flags);
1945		ntfs_attr_put_search_ctx(ctx);
1946		unmap_mft_record(mft_ni);
1947		up_write(&mft_ni->runlist.lock);
1948		/*
1949		 * The only thing that is now wrong is ->allocated_size of the
1950		 * base attribute extent which chkdsk should be able to fix.
1951		 */
1952		NVolSetErrors(vol);
1953		return ret;
1954	}
1955	ctx->attr->data.non_resident.highest_vcn =
1956			cpu_to_sle64(old_last_vcn - 1);
1957undo_alloc:
1958	if (ntfs_cluster_free(mft_ni, old_last_vcn, -1, ctx) < 0) {
1959		ntfs_error(vol->sb, "Failed to free clusters from mft data "
1960				"attribute.%s", es);
1961		NVolSetErrors(vol);
1962	}
1963	a = ctx->attr;
1964	if (ntfs_rl_truncate_nolock(vol, &mft_ni->runlist, old_last_vcn)) {
1965		ntfs_error(vol->sb, "Failed to truncate mft data attribute "
1966				"runlist.%s", es);
1967		NVolSetErrors(vol);
1968	}
1969	if (mp_rebuilt && !IS_ERR(ctx->mrec)) {
1970		if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1971				a->data.non_resident.mapping_pairs_offset),
1972				old_alen - le16_to_cpu(
1973				a->data.non_resident.mapping_pairs_offset),
1974				rl2, ll, -1, NULL)) {
1975			ntfs_error(vol->sb, "Failed to restore mapping pairs "
1976					"array.%s", es);
1977			NVolSetErrors(vol);
1978		}
1979		if (ntfs_attr_record_resize(ctx->mrec, a, old_alen)) {
1980			ntfs_error(vol->sb, "Failed to restore attribute "
1981					"record.%s", es);
1982			NVolSetErrors(vol);
1983		}
1984		flush_dcache_mft_record_page(ctx->ntfs_ino);
1985		mark_mft_record_dirty(ctx->ntfs_ino);
1986	} else if (IS_ERR(ctx->mrec)) {
1987		ntfs_error(vol->sb, "Failed to restore attribute search "
1988				"context.%s", es);
1989		NVolSetErrors(vol);
1990	}
1991	if (ctx)
1992		ntfs_attr_put_search_ctx(ctx);
1993	if (!IS_ERR(mrec))
1994		unmap_mft_record(mft_ni);
1995	up_write(&mft_ni->runlist.lock);
1996	return ret;
1997}
1998
1999/**
2000 * ntfs_mft_record_layout - layout an mft record into a memory buffer
2001 * @vol:	volume to which the mft record will belong
2002 * @mft_no:	mft reference specifying the mft record number
2003 * @m:		destination buffer of size >= @vol->mft_record_size bytes
2004 *
2005 * Layout an empty, unused mft record with the mft record number @mft_no into
2006 * the buffer @m.  The volume @vol is needed because the mft record structure
2007 * was modified in NTFS 3.1 so we need to know which volume version this mft
2008 * record will be used on.
2009 *
2010 * Return 0 on success and -errno on error.
2011 */
2012static int ntfs_mft_record_layout(const ntfs_volume *vol, const s64 mft_no,
2013		MFT_RECORD *m)
2014{
2015	ATTR_RECORD *a;
2016
2017	ntfs_debug("Entering for mft record 0x%llx.", (long long)mft_no);
2018	if (mft_no >= (1ll << 32)) {
2019		ntfs_error(vol->sb, "Mft record number 0x%llx exceeds "
2020				"maximum of 2^32.", (long long)mft_no);
2021		return -ERANGE;
2022	}
2023	/* Start by clearing the whole mft record to gives us a clean slate. */
2024	memset(m, 0, vol->mft_record_size);
2025	/* Aligned to 2-byte boundary. */
2026	if (vol->major_ver < 3 || (vol->major_ver == 3 && !vol->minor_ver))
2027		m->usa_ofs = cpu_to_le16((sizeof(MFT_RECORD_OLD) + 1) & ~1);
2028	else {
2029		m->usa_ofs = cpu_to_le16((sizeof(MFT_RECORD) + 1) & ~1);
2030		/*
2031		 * Set the NTFS 3.1+ specific fields while we know that the
2032		 * volume version is 3.1+.
2033		 */
2034		m->reserved = 0;
2035		m->mft_record_number = cpu_to_le32((u32)mft_no);
2036	}
2037	m->magic = magic_FILE;
2038	if (vol->mft_record_size >= NTFS_BLOCK_SIZE)
2039		m->usa_count = cpu_to_le16(vol->mft_record_size /
2040				NTFS_BLOCK_SIZE + 1);
2041	else {
2042		m->usa_count = cpu_to_le16(1);
2043		ntfs_warning(vol->sb, "Sector size is bigger than mft record "
2044				"size.  Setting usa_count to 1.  If chkdsk "
2045				"reports this as corruption, please email "
2046				"linux-ntfs-dev@lists.sourceforge.net stating "
2047				"that you saw this message and that the "
2048				"modified filesystem created was corrupt.  "
2049				"Thank you.");
2050	}
2051	/* Set the update sequence number to 1. */
2052	*(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)) = cpu_to_le16(1);
2053	m->lsn = 0;
2054	m->sequence_number = cpu_to_le16(1);
2055	m->link_count = 0;
2056	/*
2057	 * Place the attributes straight after the update sequence array,
2058	 * aligned to 8-byte boundary.
2059	 */
2060	m->attrs_offset = cpu_to_le16((le16_to_cpu(m->usa_ofs) +
2061			(le16_to_cpu(m->usa_count) << 1) + 7) & ~7);
2062	m->flags = 0;
2063	/*
2064	 * Using attrs_offset plus eight bytes (for the termination attribute).
2065	 * attrs_offset is already aligned to 8-byte boundary, so no need to
2066	 * align again.
2067	 */
2068	m->bytes_in_use = cpu_to_le32(le16_to_cpu(m->attrs_offset) + 8);
2069	m->bytes_allocated = cpu_to_le32(vol->mft_record_size);
2070	m->base_mft_record = 0;
2071	m->next_attr_instance = 0;
2072	/* Add the termination attribute. */
2073	a = (ATTR_RECORD*)((u8*)m + le16_to_cpu(m->attrs_offset));
2074	a->type = AT_END;
2075	a->length = 0;
2076	ntfs_debug("Done.");
2077	return 0;
2078}
2079
2080/**
2081 * ntfs_mft_record_format - format an mft record on an ntfs volume
2082 * @vol:	volume on which to format the mft record
2083 * @mft_no:	mft record number to format
2084 *
2085 * Format the mft record @mft_no in $MFT/$DATA, i.e. lay out an empty, unused
2086 * mft record into the appropriate place of the mft data attribute.  This is
2087 * used when extending the mft data attribute.
2088 *
2089 * Return 0 on success and -errno on error.
2090 */
2091static int ntfs_mft_record_format(const ntfs_volume *vol, const s64 mft_no)
2092{
2093	loff_t i_size;
2094	struct inode *mft_vi = vol->mft_ino;
2095	struct page *page;
2096	MFT_RECORD *m;
2097	pgoff_t index, end_index;
2098	unsigned int ofs;
2099	int err;
2100
2101	ntfs_debug("Entering for mft record 0x%llx.", (long long)mft_no);
2102	/*
2103	 * The index into the page cache and the offset within the page cache
2104	 * page of the wanted mft record.
2105	 */
2106	index = mft_no << vol->mft_record_size_bits >> PAGE_CACHE_SHIFT;
2107	ofs = (mft_no << vol->mft_record_size_bits) & ~PAGE_CACHE_MASK;
2108	/* The maximum valid index into the page cache for $MFT's data. */
2109	i_size = i_size_read(mft_vi);
2110	end_index = i_size >> PAGE_CACHE_SHIFT;
2111	if (unlikely(index >= end_index)) {
2112		if (unlikely(index > end_index || ofs + vol->mft_record_size >=
2113				(i_size & ~PAGE_CACHE_MASK))) {
2114			ntfs_error(vol->sb, "Tried to format non-existing mft "
2115					"record 0x%llx.", (long long)mft_no);
2116			return -ENOENT;
2117		}
2118	}
2119	/* Read, map, and pin the page containing the mft record. */
2120	page = ntfs_map_page(mft_vi->i_mapping, index);
2121	if (IS_ERR(page)) {
2122		ntfs_error(vol->sb, "Failed to map page containing mft record "
2123				"to format 0x%llx.", (long long)mft_no);
2124		return PTR_ERR(page);
2125	}
2126	lock_page(page);
2127	BUG_ON(!PageUptodate(page));
2128	ClearPageUptodate(page);
2129	m = (MFT_RECORD*)((u8*)page_address(page) + ofs);
2130	err = ntfs_mft_record_layout(vol, mft_no, m);
2131	if (unlikely(err)) {
2132		ntfs_error(vol->sb, "Failed to layout mft record 0x%llx.",
2133				(long long)mft_no);
2134		SetPageUptodate(page);
2135		unlock_page(page);
2136		ntfs_unmap_page(page);
2137		return err;
2138	}
2139	flush_dcache_page(page);
2140	SetPageUptodate(page);
2141	unlock_page(page);
2142	/*
2143	 * Make sure the mft record is written out to disk.  We could use
2144	 * ilookup5() to check if an inode is in icache and so on but this is
2145	 * unnecessary as ntfs_writepage() will write the dirty record anyway.
2146	 */
2147	mark_ntfs_record_dirty(page, ofs);
2148	ntfs_unmap_page(page);
2149	ntfs_debug("Done.");
2150	return 0;
2151}
2152
2153/**
2154 * ntfs_mft_record_alloc - allocate an mft record on an ntfs volume
2155 * @vol:	[IN]  volume on which to allocate the mft record
2156 * @mode:	[IN]  mode if want a file or directory, i.e. base inode or 0
2157 * @base_ni:	[IN]  open base inode if allocating an extent mft record or NULL
2158 * @mrec:	[OUT] on successful return this is the mapped mft record
2159 *
2160 * Allocate an mft record in $MFT/$DATA of an open ntfs volume @vol.
2161 *
2162 * If @base_ni is NULL make the mft record a base mft record, i.e. a file or
2163 * direvctory inode, and allocate it at the default allocator position.  In
2164 * this case @mode is the file mode as given to us by the caller.  We in
2165 * particular use @mode to distinguish whether a file or a directory is being
2166 * created (S_IFDIR(mode) and S_IFREG(mode), respectively).
2167 *
2168 * If @base_ni is not NULL make the allocated mft record an extent record,
2169 * allocate it starting at the mft record after the base mft record and attach
2170 * the allocated and opened ntfs inode to the base inode @base_ni.  In this
2171 * case @mode must be 0 as it is meaningless for extent inodes.
2172 *
2173 * You need to check the return value with IS_ERR().  If false, the function
2174 * was successful and the return value is the now opened ntfs inode of the
2175 * allocated mft record.  *@mrec is then set to the allocated, mapped, pinned,
2176 * and locked mft record.  If IS_ERR() is true, the function failed and the
2177 * error code is obtained from PTR_ERR(return value).  *@mrec is undefined in
2178 * this case.
2179 *
2180 * Allocation strategy:
2181 *
2182 * To find a free mft record, we scan the mft bitmap for a zero bit.  To
2183 * optimize this we start scanning at the place specified by @base_ni or if
2184 * @base_ni is NULL we start where we last stopped and we perform wrap around
2185 * when we reach the end.  Note, we do not try to allocate mft records below
2186 * number 24 because numbers 0 to 15 are the defined system files anyway and 16
2187 * to 24 are special in that they are used for storing extension mft records
2188 * for the $DATA attribute of $MFT.  This is required to avoid the possibility
2189 * of creating a runlist with a circular dependency which once written to disk
2190 * can never be read in again.  Windows will only use records 16 to 24 for
2191 * normal files if the volume is completely out of space.  We never use them
2192 * which means that when the volume is really out of space we cannot create any
2193 * more files while Windows can still create up to 8 small files.  We can start
2194 * doing this at some later time, it does not matter much for now.
2195 *
2196 * When scanning the mft bitmap, we only search up to the last allocated mft
2197 * record.  If there are no free records left in the range 24 to number of
2198 * allocated mft records, then we extend the $MFT/$DATA attribute in order to
2199 * create free mft records.  We extend the allocated size of $MFT/$DATA by 16
2200 * records at a time or one cluster, if cluster size is above 16kiB.  If there
2201 * is not sufficient space to do this, we try to extend by a single mft record
2202 * or one cluster, if cluster size is above the mft record size.
2203 *
2204 * No matter how many mft records we allocate, we initialize only the first
2205 * allocated mft record, incrementing mft data size and initialized size
2206 * accordingly, open an ntfs_inode for it and return it to the caller, unless
2207 * there are less than 24 mft records, in which case we allocate and initialize
2208 * mft records until we reach record 24 which we consider as the first free mft
2209 * record for use by normal files.
2210 *
2211 * If during any stage we overflow the initialized data in the mft bitmap, we
2212 * extend the initialized size (and data size) by 8 bytes, allocating another
2213 * cluster if required.  The bitmap data size has to be at least equal to the
2214 * number of mft records in the mft, but it can be bigger, in which case the
2215 * superflous bits are padded with zeroes.
2216 *
2217 * Thus, when we return successfully (IS_ERR() is false), we will have:
2218 *	- initialized / extended the mft bitmap if necessary,
2219 *	- initialized / extended the mft data if necessary,
2220 *	- set the bit corresponding to the mft record being allocated in the
2221 *	  mft bitmap,
2222 *	- opened an ntfs_inode for the allocated mft record, and we will have
2223 *	- returned the ntfs_inode as well as the allocated mapped, pinned, and
2224 *	  locked mft record.
2225 *
2226 * On error, the volume will be left in a consistent state and no record will
2227 * be allocated.  If rolling back a partial operation fails, we may leave some
2228 * inconsistent metadata in which case we set NVolErrors() so the volume is
2229 * left dirty when unmounted.
2230 *
2231 * Note, this function cannot make use of most of the normal functions, like
2232 * for example for attribute resizing, etc, because when the run list overflows
2233 * the base mft record and an attribute list is used, it is very important that
2234 * the extension mft records used to store the $DATA attribute of $MFT can be
2235 * reached without having to read the information contained inside them, as
2236 * this would make it impossible to find them in the first place after the
2237 * volume is unmounted.  $MFT/$BITMAP probably does not need to follow this
2238 * rule because the bitmap is not essential for finding the mft records, but on
2239 * the other hand, handling the bitmap in this special way would make life
2240 * easier because otherwise there might be circular invocations of functions
2241 * when reading the bitmap.
2242 */
2243ntfs_inode *ntfs_mft_record_alloc(ntfs_volume *vol, const int mode,
2244		ntfs_inode *base_ni, MFT_RECORD **mrec)
2245{
2246	s64 ll, bit, old_data_initialized, old_data_size;
2247	unsigned long flags;
2248	struct inode *vi;
2249	struct page *page;
2250	ntfs_inode *mft_ni, *mftbmp_ni, *ni;
2251	ntfs_attr_search_ctx *ctx;
2252	MFT_RECORD *m;
2253	ATTR_RECORD *a;
2254	pgoff_t index;
2255	unsigned int ofs;
2256	int err;
2257	le16 seq_no, usn;
2258	bool record_formatted = false;
2259
2260	if (base_ni) {
2261		ntfs_debug("Entering (allocating an extent mft record for "
2262				"base mft record 0x%llx).",
2263				(long long)base_ni->mft_no);
2264		/* @mode and @base_ni are mutually exclusive. */
2265		BUG_ON(mode);
2266	} else
2267		ntfs_debug("Entering (allocating a base mft record).");
2268	if (mode) {
2269		/* @mode and @base_ni are mutually exclusive. */
2270		BUG_ON(base_ni);
2271		/* We only support creation of normal files and directories. */
2272		if (!S_ISREG(mode) && !S_ISDIR(mode))
2273			return ERR_PTR(-EOPNOTSUPP);
2274	}
2275	BUG_ON(!mrec);
2276	mft_ni = NTFS_I(vol->mft_ino);
2277	mftbmp_ni = NTFS_I(vol->mftbmp_ino);
2278	down_write(&vol->mftbmp_lock);
2279	bit = ntfs_mft_bitmap_find_and_alloc_free_rec_nolock(vol, base_ni);
2280	if (bit >= 0) {
2281		ntfs_debug("Found and allocated free record (#1), bit 0x%llx.",
2282				(long long)bit);
2283		goto have_alloc_rec;
2284	}
2285	if (bit != -ENOSPC) {
2286		up_write(&vol->mftbmp_lock);
2287		return ERR_PTR(bit);
2288	}
2289	/*
2290	 * No free mft records left.  If the mft bitmap already covers more
2291	 * than the currently used mft records, the next records are all free,
2292	 * so we can simply allocate the first unused mft record.
2293	 * Note: We also have to make sure that the mft bitmap at least covers
2294	 * the first 24 mft records as they are special and whilst they may not
2295	 * be in use, we do not allocate from them.
2296	 */
2297	read_lock_irqsave(&mft_ni->size_lock, flags);
2298	ll = mft_ni->initialized_size >> vol->mft_record_size_bits;
2299	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2300	read_lock_irqsave(&mftbmp_ni->size_lock, flags);
2301	old_data_initialized = mftbmp_ni->initialized_size;
2302	read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
2303	if (old_data_initialized << 3 > ll && old_data_initialized > 3) {
2304		bit = ll;
2305		if (bit < 24)
2306			bit = 24;
2307		if (unlikely(bit >= (1ll << 32)))
2308			goto max_err_out;
2309		ntfs_debug("Found free record (#2), bit 0x%llx.",
2310				(long long)bit);
2311		goto found_free_rec;
2312	}
2313	/*
2314	 * The mft bitmap needs to be expanded until it covers the first unused
2315	 * mft record that we can allocate.
2316	 * Note: The smallest mft record we allocate is mft record 24.
2317	 */
2318	bit = old_data_initialized << 3;
2319	if (unlikely(bit >= (1ll << 32)))
2320		goto max_err_out;
2321	read_lock_irqsave(&mftbmp_ni->size_lock, flags);
2322	old_data_size = mftbmp_ni->allocated_size;
2323	ntfs_debug("Status of mftbmp before extension: allocated_size 0x%llx, "
2324			"data_size 0x%llx, initialized_size 0x%llx.",
2325			(long long)old_data_size,
2326			(long long)i_size_read(vol->mftbmp_ino),
2327			(long long)old_data_initialized);
2328	read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
2329	if (old_data_initialized + 8 > old_data_size) {
2330		/* Need to extend bitmap by one more cluster. */
2331		ntfs_debug("mftbmp: initialized_size + 8 > allocated_size.");
2332		err = ntfs_mft_bitmap_extend_allocation_nolock(vol);
2333		if (unlikely(err)) {
2334			up_write(&vol->mftbmp_lock);
2335			goto err_out;
2336		}
2337#ifdef DEBUG
2338		read_lock_irqsave(&mftbmp_ni->size_lock, flags);
2339		ntfs_debug("Status of mftbmp after allocation extension: "
2340				"allocated_size 0x%llx, data_size 0x%llx, "
2341				"initialized_size 0x%llx.",
2342				(long long)mftbmp_ni->allocated_size,
2343				(long long)i_size_read(vol->mftbmp_ino),
2344				(long long)mftbmp_ni->initialized_size);
2345		read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
2346#endif /* DEBUG */
2347	}
2348	/*
2349	 * We now have sufficient allocated space, extend the initialized_size
2350	 * as well as the data_size if necessary and fill the new space with
2351	 * zeroes.
2352	 */
2353	err = ntfs_mft_bitmap_extend_initialized_nolock(vol);
2354	if (unlikely(err)) {
2355		up_write(&vol->mftbmp_lock);
2356		goto err_out;
2357	}
2358#ifdef DEBUG
2359	read_lock_irqsave(&mftbmp_ni->size_lock, flags);
2360	ntfs_debug("Status of mftbmp after initialized extension: "
2361			"allocated_size 0x%llx, data_size 0x%llx, "
2362			"initialized_size 0x%llx.",
2363			(long long)mftbmp_ni->allocated_size,
2364			(long long)i_size_read(vol->mftbmp_ino),
2365			(long long)mftbmp_ni->initialized_size);
2366	read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
2367#endif /* DEBUG */
2368	ntfs_debug("Found free record (#3), bit 0x%llx.", (long long)bit);
2369found_free_rec:
2370	/* @bit is the found free mft record, allocate it in the mft bitmap. */
2371	ntfs_debug("At found_free_rec.");
2372	err = ntfs_bitmap_set_bit(vol->mftbmp_ino, bit);
2373	if (unlikely(err)) {
2374		ntfs_error(vol->sb, "Failed to allocate bit in mft bitmap.");
2375		up_write(&vol->mftbmp_lock);
2376		goto err_out;
2377	}
2378	ntfs_debug("Set bit 0x%llx in mft bitmap.", (long long)bit);
2379have_alloc_rec:
2380	/*
2381	 * The mft bitmap is now uptodate.  Deal with mft data attribute now.
2382	 * Note, we keep hold of the mft bitmap lock for writing until all
2383	 * modifications to the mft data attribute are complete, too, as they
2384	 * will impact decisions for mft bitmap and mft record allocation done
2385	 * by a parallel allocation and if the lock is not maintained a
2386	 * parallel allocation could allocate the same mft record as this one.
2387	 */
2388	ll = (bit + 1) << vol->mft_record_size_bits;
2389	read_lock_irqsave(&mft_ni->size_lock, flags);
2390	old_data_initialized = mft_ni->initialized_size;
2391	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2392	if (ll <= old_data_initialized) {
2393		ntfs_debug("Allocated mft record already initialized.");
2394		goto mft_rec_already_initialized;
2395	}
2396	ntfs_debug("Initializing allocated mft record.");
2397	/*
2398	 * The mft record is outside the initialized data.  Extend the mft data
2399	 * attribute until it covers the allocated record.  The loop is only
2400	 * actually traversed more than once when a freshly formatted volume is
2401	 * first written to so it optimizes away nicely in the common case.
2402	 */
2403	read_lock_irqsave(&mft_ni->size_lock, flags);
2404	ntfs_debug("Status of mft data before extension: "
2405			"allocated_size 0x%llx, data_size 0x%llx, "
2406			"initialized_size 0x%llx.",
2407			(long long)mft_ni->allocated_size,
2408			(long long)i_size_read(vol->mft_ino),
2409			(long long)mft_ni->initialized_size);
2410	while (ll > mft_ni->allocated_size) {
2411		read_unlock_irqrestore(&mft_ni->size_lock, flags);
2412		err = ntfs_mft_data_extend_allocation_nolock(vol);
2413		if (unlikely(err)) {
2414			ntfs_error(vol->sb, "Failed to extend mft data "
2415					"allocation.");
2416			goto undo_mftbmp_alloc_nolock;
2417		}
2418		read_lock_irqsave(&mft_ni->size_lock, flags);
2419		ntfs_debug("Status of mft data after allocation extension: "
2420				"allocated_size 0x%llx, data_size 0x%llx, "
2421				"initialized_size 0x%llx.",
2422				(long long)mft_ni->allocated_size,
2423				(long long)i_size_read(vol->mft_ino),
2424				(long long)mft_ni->initialized_size);
2425	}
2426	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2427	/*
2428	 * Extend mft data initialized size (and data size of course) to reach
2429	 * the allocated mft record, formatting the mft records allong the way.
2430	 * Note: We only modify the ntfs_inode structure as that is all that is
2431	 * needed by ntfs_mft_record_format().  We will update the attribute
2432	 * record itself in one fell swoop later on.
2433	 */
2434	write_lock_irqsave(&mft_ni->size_lock, flags);
2435	old_data_initialized = mft_ni->initialized_size;
2436	old_data_size = vol->mft_ino->i_size;
2437	while (ll > mft_ni->initialized_size) {
2438		s64 new_initialized_size, mft_no;
2439		
2440		new_initialized_size = mft_ni->initialized_size +
2441				vol->mft_record_size;
2442		mft_no = mft_ni->initialized_size >> vol->mft_record_size_bits;
2443		if (new_initialized_size > i_size_read(vol->mft_ino))
2444			i_size_write(vol->mft_ino, new_initialized_size);
2445		write_unlock_irqrestore(&mft_ni->size_lock, flags);
2446		ntfs_debug("Initializing mft record 0x%llx.",
2447				(long long)mft_no);
2448		err = ntfs_mft_record_format(vol, mft_no);
2449		if (unlikely(err)) {
2450			ntfs_error(vol->sb, "Failed to format mft record.");
2451			goto undo_data_init;
2452		}
2453		write_lock_irqsave(&mft_ni->size_lock, flags);
2454		mft_ni->initialized_size = new_initialized_size;
2455	}
2456	write_unlock_irqrestore(&mft_ni->size_lock, flags);
2457	record_formatted = true;
2458	/* Update the mft data attribute record to reflect the new sizes. */
2459	m = map_mft_record(mft_ni);
2460	if (IS_ERR(m)) {
2461		ntfs_error(vol->sb, "Failed to map mft record.");
2462		err = PTR_ERR(m);
2463		goto undo_data_init;
2464	}
2465	ctx = ntfs_attr_get_search_ctx(mft_ni, m);
2466	if (unlikely(!ctx)) {
2467		ntfs_error(vol->sb, "Failed to get search context.");
2468		err = -ENOMEM;
2469		unmap_mft_record(mft_ni);
2470		goto undo_data_init;
2471	}
2472	err = ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len,
2473			CASE_SENSITIVE, 0, NULL, 0, ctx);
2474	if (unlikely(err)) {
2475		ntfs_error(vol->sb, "Failed to find first attribute extent of "
2476				"mft data attribute.");
2477		ntfs_attr_put_search_ctx(ctx);
2478		unmap_mft_record(mft_ni);
2479		goto undo_data_init;
2480	}
2481	a = ctx->attr;
2482	read_lock_irqsave(&mft_ni->size_lock, flags);
2483	a->data.non_resident.initialized_size =
2484			cpu_to_sle64(mft_ni->initialized_size);
2485	a->data.non_resident.data_size =
2486			cpu_to_sle64(i_size_read(vol->mft_ino));
2487	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2488	/* Ensure the changes make it to disk. */
2489	flush_dcache_mft_record_page(ctx->ntfs_ino);
2490	mark_mft_record_dirty(ctx->ntfs_ino);
2491	ntfs_attr_put_search_ctx(ctx);
2492	unmap_mft_record(mft_ni);
2493	read_lock_irqsave(&mft_ni->size_lock, flags);
2494	ntfs_debug("Status of mft data after mft record initialization: "
2495			"allocated_size 0x%llx, data_size 0x%llx, "
2496			"initialized_size 0x%llx.",
2497			(long long)mft_ni->allocated_size,
2498			(long long)i_size_read(vol->mft_ino),
2499			(long long)mft_ni->initialized_size);
2500	BUG_ON(i_size_read(vol->mft_ino) > mft_ni->allocated_size);
2501	BUG_ON(mft_ni->initialized_size > i_size_read(vol->mft_ino));
2502	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2503mft_rec_already_initialized:
2504	/*
2505	 * We can finally drop the mft bitmap lock as the mft data attribute
2506	 * has been fully updated.  The only disparity left is that the
2507	 * allocated mft record still needs to be marked as in use to match the
2508	 * set bit in the mft bitmap but this is actually not a problem since
2509	 * this mft record is not referenced from anywhere yet and the fact
2510	 * that it is allocated in the mft bitmap means that no-one will try to
2511	 * allocate it either.
2512	 */
2513	up_write(&vol->mftbmp_lock);
2514	/*
2515	 * We now have allocated and initialized the mft record.  Calculate the
2516	 * index of and the offset within the page cache page the record is in.
2517	 */
2518	index = bit << vol->mft_record_size_bits >> PAGE_CACHE_SHIFT;
2519	ofs = (bit << vol->mft_record_size_bits) & ~PAGE_CACHE_MASK;
2520	/* Read, map, and pin the page containing the mft record. */
2521	page = ntfs_map_page(vol->mft_ino->i_mapping, index);
2522	if (IS_ERR(page)) {
2523		ntfs_error(vol->sb, "Failed to map page containing allocated "
2524				"mft record 0x%llx.", (long long)bit);
2525		err = PTR_ERR(page);
2526		goto undo_mftbmp_alloc;
2527	}
2528	lock_page(page);
2529	BUG_ON(!PageUptodate(page));
2530	ClearPageUptodate(page);
2531	m = (MFT_RECORD*)((u8*)page_address(page) + ofs);
2532	/* If we just formatted the mft record no need to do it again. */
2533	if (!record_formatted) {
2534		/* Sanity check that the mft record is really not in use. */
2535		if (ntfs_is_file_record(m->magic) &&
2536				(m->flags & MFT_RECORD_IN_USE)) {
2537			ntfs_error(vol->sb, "Mft record 0x%llx was marked "
2538					"free in mft bitmap but is marked "
2539					"used itself.  Corrupt filesystem.  "
2540					"Unmount and run chkdsk.",
2541					(long long)bit);
2542			err = -EIO;
2543			SetPageUptodate(page);
2544			unlock_page(page);
2545			ntfs_unmap_page(page);
2546			NVolSetErrors(vol);
2547			goto undo_mftbmp_alloc;
2548		}
2549		/*
2550		 * We need to (re-)format the mft record, preserving the
2551		 * sequence number if it is not zero as well as the update
2552		 * sequence number if it is not zero or -1 (0xffff).  This
2553		 * means we do not need to care whether or not something went
2554		 * wrong with the previous mft record.
2555		 */
2556		seq_no = m->sequence_number;
2557		usn = *(le16*)((u8*)m + le16_to_cpu(m->usa_ofs));
2558		err = ntfs_mft_record_layout(vol, bit, m);
2559		if (unlikely(err)) {
2560			ntfs_error(vol->sb, "Failed to layout allocated mft "
2561					"record 0x%llx.", (long long)bit);
2562			SetPageUptodate(page);
2563			unlock_page(page);
2564			ntfs_unmap_page(page);
2565			goto undo_mftbmp_alloc;
2566		}
2567		if (seq_no)
2568			m->sequence_number = seq_no;
2569		if (usn && le16_to_cpu(usn) != 0xffff)
2570			*(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)) = usn;
2571	}
2572	/* Set the mft record itself in use. */
2573	m->flags |= MFT_RECORD_IN_USE;
2574	if (S_ISDIR(mode))
2575		m->flags |= MFT_RECORD_IS_DIRECTORY;
2576	flush_dcache_page(page);
2577	SetPageUptodate(page);
2578	if (base_ni) {
2579		MFT_RECORD *m_tmp;
2580
2581		/*
2582		 * Setup the base mft record in the extent mft record.  This
2583		 * completes initialization of the allocated extent mft record
2584		 * and we can simply use it with map_extent_mft_record().
2585		 */
2586		m->base_mft_record = MK_LE_MREF(base_ni->mft_no,
2587				base_ni->seq_no);
2588		/*
2589		 * Allocate an extent inode structure for the new mft record,
2590		 * attach it to the base inode @base_ni and map, pin, and lock
2591		 * its, i.e. the allocated, mft record.
2592		 */
2593		m_tmp = map_extent_mft_record(base_ni, bit, &ni);
2594		if (IS_ERR(m_tmp)) {
2595			ntfs_error(vol->sb, "Failed to map allocated extent "
2596					"mft record 0x%llx.", (long long)bit);
2597			err = PTR_ERR(m_tmp);
2598			/* Set the mft record itself not in use. */
2599			m->flags &= cpu_to_le16(
2600					~le16_to_cpu(MFT_RECORD_IN_USE));
2601			flush_dcache_page(page);
2602			/* Make sure the mft record is written out to disk. */
2603			mark_ntfs_record_dirty(page, ofs);
2604			unlock_page(page);
2605			ntfs_unmap_page(page);
2606			goto undo_mftbmp_alloc;
2607		}
2608		BUG_ON(m != m_tmp);
2609		/*
2610		 * Make sure the allocated mft record is written out to disk.
2611		 * No need to set the inode dirty because the caller is going
2612		 * to do that anyway after finishing with the new extent mft
2613		 * record (e.g. at a minimum a new attribute will be added to
2614		 * the mft record.
2615		 */
2616		mark_ntfs_record_dirty(page, ofs);
2617		unlock_page(page);
2618		/*
2619		 * Need to unmap the page since map_extent_mft_record() mapped
2620		 * it as well so we have it mapped twice at the moment.
2621		 */
2622		ntfs_unmap_page(page);
2623	} else {
2624		/*
2625		 * Allocate a new VFS inode and set it up.  NOTE: @vi->i_nlink
2626		 * is set to 1 but the mft record->link_count is 0.  The caller
2627		 * needs to bear this in mind.
2628		 */
2629		vi = new_inode(vol->sb);
2630		if (unlikely(!vi)) {
2631			err = -ENOMEM;
2632			/* Set the mft record itself not in use. */
2633			m->flags &= cpu_to_le16(
2634					~le16_to_cpu(MFT_RECORD_IN_USE));
2635			flush_dcache_page(page);
2636			/* Make sure the mft record is written out to disk. */
2637			mark_ntfs_record_dirty(page, ofs);
2638			unlock_page(page);
2639			ntfs_unmap_page(page);
2640			goto undo_mftbmp_alloc;
2641		}
2642		vi->i_ino = bit;
2643		/*
2644		 * This is for checking whether an inode has changed w.r.t. a
2645		 * file so that the file can be updated if necessary (compare
2646		 * with f_version).
2647		 */
2648		vi->i_version = 1;
2649
2650		/* The owner and group come from the ntfs volume. */
2651		vi->i_uid = vol->uid;
2652		vi->i_gid = vol->gid;
2653
2654		/* Initialize the ntfs specific part of @vi. */
2655		ntfs_init_big_inode(vi);
2656		ni = NTFS_I(vi);
2657		/*
2658		 * Set the appropriate mode, attribute type, and name.  For
2659		 * directories, also setup the index values to the defaults.
2660		 */
2661		if (S_ISDIR(mode)) {
2662			vi->i_mode = S_IFDIR | S_IRWXUGO;
2663			vi->i_mode &= ~vol->dmask;
2664
2665			NInoSetMstProtected(ni);
2666			ni->type = AT_INDEX_ALLOCATION;
2667			ni->name = I30;
2668			ni->name_len = 4;
2669
2670			ni->itype.index.block_size = 4096;
2671			ni->itype.index.block_size_bits = ntfs_ffs(4096) - 1;
2672			ni->itype.index.collation_rule = COLLATION_FILE_NAME;
2673			if (vol->cluster_size <= ni->itype.index.block_size) {
2674				ni->itype.index.vcn_size = vol->cluster_size;
2675				ni->itype.index.vcn_size_bits =
2676						vol->cluster_size_bits;
2677			} else {
2678				ni->itype.index.vcn_size = vol->sector_size;
2679				ni->itype.index.vcn_size_bits =
2680						vol->sector_size_bits;
2681			}
2682		} else {
2683			vi->i_mode = S_IFREG | S_IRWXUGO;
2684			vi->i_mode &= ~vol->fmask;
2685
2686			ni->type = AT_DATA;
2687			ni->name = NULL;
2688			ni->name_len = 0;
2689		}
2690		if (IS_RDONLY(vi))
2691			vi->i_mode &= ~S_IWUGO;
2692
2693		/* Set the inode times to the current time. */
2694		vi->i_atime = vi->i_mtime = vi->i_ctime =
2695			current_fs_time(vi->i_sb);
2696		/*
2697		 * Set the file size to 0, the ntfs inode sizes are set to 0 by
2698		 * the call to ntfs_init_big_inode() below.
2699		 */
2700		vi->i_size = 0;
2701		vi->i_blocks = 0;
2702
2703		/* Set the sequence number. */
2704		vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
2705		/*
2706		 * Manually map, pin, and lock the mft record as we already
2707		 * have its page mapped and it is very easy to do.
2708		 */
2709		atomic_inc(&ni->count);
2710		mutex_lock(&ni->mrec_lock);
2711		ni->page = page;
2712		ni->page_ofs = ofs;
2713		/*
2714		 * Make sure the allocated mft record is written out to disk.
2715		 * NOTE: We do not set the ntfs inode dirty because this would
2716		 * fail in ntfs_write_inode() because the inode does not have a
2717		 * standard information attribute yet.  Also, there is no need
2718		 * to set the inode dirty because the caller is going to do
2719		 * that anyway after finishing with the new mft record (e.g. at
2720		 * a minimum some new attributes will be added to the mft
2721		 * record.
2722		 */
2723		mark_ntfs_record_dirty(page, ofs);
2724		unlock_page(page);
2725
2726		/* Add the inode to the inode hash for the superblock. */
2727		insert_inode_hash(vi);
2728
2729		/* Update the default mft allocation position. */
2730		vol->mft_data_pos = bit + 1;
2731	}
2732	/*
2733	 * Return the opened, allocated inode of the allocated mft record as
2734	 * well as the mapped, pinned, and locked mft record.
2735	 */
2736	ntfs_debug("Returning opened, allocated %sinode 0x%llx.",
2737			base_ni ? "extent " : "", (long long)bit);
2738	*mrec = m;
2739	return ni;
2740undo_data_init:
2741	write_lock_irqsave(&mft_ni->size_lock, flags);
2742	mft_ni->initialized_size = old_data_initialized;
2743	i_size_write(vol->mft_ino, old_data_size);
2744	write_unlock_irqrestore(&mft_ni->size_lock, flags);
2745	goto undo_mftbmp_alloc_nolock;
2746undo_mftbmp_alloc:
2747	down_write(&vol->mftbmp_lock);
2748undo_mftbmp_alloc_nolock:
2749	if (ntfs_bitmap_clear_bit(vol->mftbmp_ino, bit)) {
2750		ntfs_error(vol->sb, "Failed to clear bit in mft bitmap.%s", es);
2751		NVolSetErrors(vol);
2752	}
2753	up_write(&vol->mftbmp_lock);
2754err_out:
2755	return ERR_PTR(err);
2756max_err_out:
2757	ntfs_warning(vol->sb, "Cannot allocate mft record because the maximum "
2758			"number of inodes (2^32) has already been reached.");
2759	up_write(&vol->mftbmp_lock);
2760	return ERR_PTR(-ENOSPC);
2761}
2762
2763/**
2764 * ntfs_extent_mft_record_free - free an extent mft record on an ntfs volume
2765 * @ni:		ntfs inode of the mapped extent mft record to free
2766 * @m:		mapped extent mft record of the ntfs inode @ni
2767 *
2768 * Free the mapped extent mft record @m of the extent ntfs inode @ni.
2769 *
2770 * Note that this function unmaps the mft record and closes and destroys @ni
2771 * internally and hence you cannot use either @ni nor @m any more after this
2772 * function returns success.
2773 *
2774 * On success return 0 and on error return -errno.  @ni and @m are still valid
2775 * in this case and have not been freed.
2776 *
2777 * For some errors an error message is displayed and the success code 0 is
2778 * returned and the volume is then left dirty on umount.  This makes sense in
2779 * case we could not rollback the changes that were already done since the
2780 * caller no longer wants to reference this mft record so it does not matter to
2781 * the caller if something is wrong with it as long as it is properly detached
2782 * from the base inode.
2783 */
2784int ntfs_extent_mft_record_free(ntfs_inode *ni, MFT_RECORD *m)
2785{
2786	unsigned long mft_no = ni->mft_no;
2787	ntfs_volume *vol = ni->vol;
2788	ntfs_inode *base_ni;
2789	ntfs_inode **extent_nis;
2790	int i, err;
2791	le16 old_seq_no;
2792	u16 seq_no;
2793	
2794	BUG_ON(NInoAttr(ni));
2795	BUG_ON(ni->nr_extents != -1);
2796
2797	mutex_lock(&ni->extent_lock);
2798	base_ni = ni->ext.base_ntfs_ino;
2799	mutex_unlock(&ni->extent_lock);
2800
2801	BUG_ON(base_ni->nr_extents <= 0);
2802
2803	ntfs_debug("Entering for extent inode 0x%lx, base inode 0x%lx.\n",
2804			mft_no, base_ni->mft_no);
2805
2806	mutex_lock(&base_ni->extent_lock);
2807
2808	/* Make sure we are holding the only reference to the extent inode. */
2809	if (atomic_read(&ni->count) > 2) {
2810		ntfs_error(vol->sb, "Tried to free busy extent inode 0x%lx, "
2811				"not freeing.", base_ni->mft_no);
2812		mutex_unlock(&base_ni->extent_lock);
2813		return -EBUSY;
2814	}
2815
2816	/* Dissociate the ntfs inode from the base inode. */
2817	extent_nis = base_ni->ext.extent_ntfs_inos;
2818	err = -ENOENT;
2819	for (i = 0; i < base_ni->nr_extents; i++) {
2820		if (ni != extent_nis[i])
2821			continue;
2822		extent_nis += i;
2823		base_ni->nr_extents--;
2824		memmove(extent_nis, extent_nis + 1, (base_ni->nr_extents - i) *
2825				sizeof(ntfs_inode*));
2826		err = 0;
2827		break;
2828	}
2829
2830	mutex_unlock(&base_ni->extent_lock);
2831
2832	if (unlikely(err)) {
2833		ntfs_error(vol->sb, "Extent inode 0x%lx is not attached to "
2834				"its base inode 0x%lx.", mft_no,
2835				base_ni->mft_no);
2836		BUG();
2837	}
2838
2839	/*
2840	 * The extent inode is no longer attached to the base inode so no one
2841	 * can get a reference to it any more.
2842	 */
2843
2844	/* Mark the mft record as not in use. */
2845	m->flags &= ~MFT_RECORD_IN_USE;
2846
2847	/* Increment the sequence number, skipping zero, if it is not zero. */
2848	old_seq_no = m->sequence_number;
2849	seq_no = le16_to_cpu(old_seq_no);
2850	if (seq_no == 0xffff)
2851		seq_no = 1;
2852	else if (seq_no)
2853		seq_no++;
2854	m->sequence_number = cpu_to_le16(seq_no);
2855
2856	/*
2857	 * Set the ntfs inode dirty and write it out.  We do not need to worry
2858	 * about the base inode here since whatever caused the extent mft
2859	 * record to be freed is guaranteed to do it already.
2860	 */
2861	NInoSetDirty(ni);
2862	err = write_mft_record(ni, m, 0);
2863	if (unlikely(err)) {
2864		ntfs_error(vol->sb, "Failed to write mft record 0x%lx, not "
2865				"freeing.", mft_no);
2866		goto rollback;
2867	}
2868rollback_error:
2869	/* Unmap and throw away the now freed extent inode. */
2870	unmap_extent_mft_record(ni);
2871	ntfs_clear_extent_inode(ni);
2872
2873	/* Clear the bit in the $MFT/$BITMAP corresponding to this record. */
2874	down_write(&vol->mftbmp_lock);
2875	err = ntfs_bitmap_clear_bit(vol->mftbmp_ino, mft_no);
2876	up_write(&vol->mftbmp_lock);
2877	if (unlikely(err)) {
2878		/*
2879		 * The extent inode is gone but we failed to deallocate it in
2880		 * the mft bitmap.  Just emit a warning and leave the volume
2881		 * dirty on umount.
2882		 */
2883		ntfs_error(vol->sb, "Failed to clear bit in mft bitmap.%s", es);
2884		NVolSetErrors(vol);
2885	}
2886	return 0;
2887rollback:
2888	/* Rollback what we did... */
2889	mutex_lock(&base_ni->extent_lock);
2890	extent_nis = base_ni->ext.extent_ntfs_inos;
2891	if (!(base_ni->nr_extents & 3)) {
2892		int new_size = (base_ni->nr_extents + 4) * sizeof(ntfs_inode*);
2893
2894		extent_nis = kmalloc(new_size, GFP_NOFS);
2895		if (unlikely(!extent_nis)) {
2896			ntfs_error(vol->sb, "Failed to allocate internal "
2897					"buffer during rollback.%s", es);
2898			mutex_unlock(&base_ni->extent_lock);
2899			NVolSetErrors(vol);
2900			goto rollback_error;
2901		}
2902		if (base_ni->nr_extents) {
2903			BUG_ON(!base_ni->ext.extent_ntfs_inos);
2904			memcpy(extent_nis, base_ni->ext.extent_ntfs_inos,
2905					new_size - 4 * sizeof(ntfs_inode*));
2906			kfree(base_ni->ext.extent_ntfs_inos);
2907		}
2908		base_ni->ext.extent_ntfs_inos = extent_nis;
2909	}
2910	m->flags |= MFT_RECORD_IN_USE;
2911	m->sequence_number = old_seq_no;
2912	extent_nis[base_ni->nr_extents++] = ni;
2913	mutex_unlock(&base_ni->extent_lock);
2914	mark_mft_record_dirty(ni);
2915	return err;
2916}
2917#endif /* NTFS_RW */