Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
   3 * Written by Alex Tomas <alex@clusterfs.com>
   4 *
   5 * Architecture independence:
   6 *   Copyright (c) 2005, Bull S.A.
   7 *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
  21 */
  22
  23/*
  24 * Extents support for EXT4
  25 *
  26 * TODO:
  27 *   - ext4*_error() should be used in some situations
  28 *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
  29 *   - smart tree reduction
  30 */
  31
  32#include <linux/fs.h>
  33#include <linux/time.h>
  34#include <linux/jbd2.h>
  35#include <linux/highuid.h>
  36#include <linux/pagemap.h>
  37#include <linux/quotaops.h>
  38#include <linux/string.h>
  39#include <linux/slab.h>
  40#include <linux/uaccess.h>
 
  41#include <linux/fiemap.h>
  42#include <linux/backing-dev.h>
  43#include "ext4_jbd2.h"
  44#include "ext4_extents.h"
  45#include "xattr.h"
  46
  47#include <trace/events/ext4.h>
  48
  49/*
  50 * used by extent splitting.
  51 */
  52#define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \
  53					due to ENOSPC */
  54#define EXT4_EXT_MARK_UNWRIT1	0x2  /* mark first half unwritten */
  55#define EXT4_EXT_MARK_UNWRIT2	0x4  /* mark second half unwritten */
  56
  57#define EXT4_EXT_DATA_VALID1	0x8  /* first half contains valid data */
  58#define EXT4_EXT_DATA_VALID2	0x10 /* second half contains valid data */
  59
  60static __le32 ext4_extent_block_csum(struct inode *inode,
  61				     struct ext4_extent_header *eh)
  62{
  63	struct ext4_inode_info *ei = EXT4_I(inode);
  64	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  65	__u32 csum;
  66
  67	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
  68			   EXT4_EXTENT_TAIL_OFFSET(eh));
  69	return cpu_to_le32(csum);
  70}
  71
  72static int ext4_extent_block_csum_verify(struct inode *inode,
  73					 struct ext4_extent_header *eh)
  74{
  75	struct ext4_extent_tail *et;
  76
  77	if (!ext4_has_metadata_csum(inode->i_sb))
 
  78		return 1;
  79
  80	et = find_ext4_extent_tail(eh);
  81	if (et->et_checksum != ext4_extent_block_csum(inode, eh))
  82		return 0;
  83	return 1;
  84}
  85
  86static void ext4_extent_block_csum_set(struct inode *inode,
  87				       struct ext4_extent_header *eh)
  88{
  89	struct ext4_extent_tail *et;
  90
  91	if (!ext4_has_metadata_csum(inode->i_sb))
 
  92		return;
  93
  94	et = find_ext4_extent_tail(eh);
  95	et->et_checksum = ext4_extent_block_csum(inode, eh);
  96}
  97
  98static int ext4_split_extent(handle_t *handle,
  99				struct inode *inode,
 100				struct ext4_ext_path **ppath,
 101				struct ext4_map_blocks *map,
 102				int split_flag,
 103				int flags);
 104
 105static int ext4_split_extent_at(handle_t *handle,
 106			     struct inode *inode,
 107			     struct ext4_ext_path **ppath,
 108			     ext4_lblk_t split,
 109			     int split_flag,
 110			     int flags);
 111
 112static int ext4_find_delayed_extent(struct inode *inode,
 113				    struct extent_status *newes);
 114
 115static int ext4_ext_truncate_extend_restart(handle_t *handle,
 116					    struct inode *inode,
 117					    int needed)
 118{
 119	int err;
 120
 121	if (!ext4_handle_valid(handle))
 122		return 0;
 123	if (handle->h_buffer_credits >= needed)
 124		return 0;
 125	/*
 126	 * If we need to extend the journal get a few extra blocks
 127	 * while we're at it for efficiency's sake.
 128	 */
 129	needed += 3;
 130	err = ext4_journal_extend(handle, needed - handle->h_buffer_credits);
 131	if (err <= 0)
 132		return err;
 133	err = ext4_truncate_restart_trans(handle, inode, needed);
 134	if (err == 0)
 135		err = -EAGAIN;
 136
 137	return err;
 138}
 139
 140/*
 141 * could return:
 142 *  - EROFS
 143 *  - ENOMEM
 144 */
 145static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
 146				struct ext4_ext_path *path)
 147{
 148	if (path->p_bh) {
 149		/* path points to block */
 150		BUFFER_TRACE(path->p_bh, "get_write_access");
 151		return ext4_journal_get_write_access(handle, path->p_bh);
 152	}
 153	/* path points to leaf/index in inode body */
 154	/* we use in-core data, no need to protect them */
 155	return 0;
 156}
 157
 158/*
 159 * could return:
 160 *  - EROFS
 161 *  - ENOMEM
 162 *  - EIO
 163 */
 164int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle,
 165		     struct inode *inode, struct ext4_ext_path *path)
 
 
 
 166{
 167	int err;
 168
 169	WARN_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
 170	if (path->p_bh) {
 171		ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
 172		/* path points to block */
 173		err = __ext4_handle_dirty_metadata(where, line, handle,
 174						   inode, path->p_bh);
 175	} else {
 176		/* path points to leaf/index in inode body */
 177		err = ext4_mark_inode_dirty(handle, inode);
 178	}
 179	return err;
 180}
 181
 182static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
 183			      struct ext4_ext_path *path,
 184			      ext4_lblk_t block)
 185{
 186	if (path) {
 187		int depth = path->p_depth;
 188		struct ext4_extent *ex;
 189
 190		/*
 191		 * Try to predict block placement assuming that we are
 192		 * filling in a file which will eventually be
 193		 * non-sparse --- i.e., in the case of libbfd writing
 194		 * an ELF object sections out-of-order but in a way
 195		 * the eventually results in a contiguous object or
 196		 * executable file, or some database extending a table
 197		 * space file.  However, this is actually somewhat
 198		 * non-ideal if we are writing a sparse file such as
 199		 * qemu or KVM writing a raw image file that is going
 200		 * to stay fairly sparse, since it will end up
 201		 * fragmenting the file system's free space.  Maybe we
 202		 * should have some hueristics or some way to allow
 203		 * userspace to pass a hint to file system,
 204		 * especially if the latter case turns out to be
 205		 * common.
 206		 */
 207		ex = path[depth].p_ext;
 208		if (ex) {
 209			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
 210			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
 211
 212			if (block > ext_block)
 213				return ext_pblk + (block - ext_block);
 214			else
 215				return ext_pblk - (ext_block - block);
 216		}
 217
 218		/* it looks like index is empty;
 219		 * try to find starting block from index itself */
 220		if (path[depth].p_bh)
 221			return path[depth].p_bh->b_blocknr;
 222	}
 223
 224	/* OK. use inode's group */
 225	return ext4_inode_to_goal_block(inode);
 226}
 227
 228/*
 229 * Allocation for a meta data block
 230 */
 231static ext4_fsblk_t
 232ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
 233			struct ext4_ext_path *path,
 234			struct ext4_extent *ex, int *err, unsigned int flags)
 235{
 236	ext4_fsblk_t goal, newblock;
 237
 238	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
 239	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
 240					NULL, err);
 241	return newblock;
 242}
 243
 244static inline int ext4_ext_space_block(struct inode *inode, int check)
 245{
 246	int size;
 247
 248	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
 249			/ sizeof(struct ext4_extent);
 250#ifdef AGGRESSIVE_TEST
 251	if (!check && size > 6)
 252		size = 6;
 253#endif
 254	return size;
 255}
 256
 257static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
 258{
 259	int size;
 260
 261	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
 262			/ sizeof(struct ext4_extent_idx);
 263#ifdef AGGRESSIVE_TEST
 264	if (!check && size > 5)
 265		size = 5;
 266#endif
 267	return size;
 268}
 269
 270static inline int ext4_ext_space_root(struct inode *inode, int check)
 271{
 272	int size;
 273
 274	size = sizeof(EXT4_I(inode)->i_data);
 275	size -= sizeof(struct ext4_extent_header);
 276	size /= sizeof(struct ext4_extent);
 277#ifdef AGGRESSIVE_TEST
 278	if (!check && size > 3)
 279		size = 3;
 280#endif
 281	return size;
 282}
 283
 284static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
 285{
 286	int size;
 287
 288	size = sizeof(EXT4_I(inode)->i_data);
 289	size -= sizeof(struct ext4_extent_header);
 290	size /= sizeof(struct ext4_extent_idx);
 291#ifdef AGGRESSIVE_TEST
 292	if (!check && size > 4)
 293		size = 4;
 294#endif
 295	return size;
 296}
 297
 298static inline int
 299ext4_force_split_extent_at(handle_t *handle, struct inode *inode,
 300			   struct ext4_ext_path **ppath, ext4_lblk_t lblk,
 301			   int nofail)
 302{
 303	struct ext4_ext_path *path = *ppath;
 304	int unwritten = ext4_ext_is_unwritten(path[path->p_depth].p_ext);
 305
 306	return ext4_split_extent_at(handle, inode, ppath, lblk, unwritten ?
 307			EXT4_EXT_MARK_UNWRIT1|EXT4_EXT_MARK_UNWRIT2 : 0,
 308			EXT4_EX_NOCACHE | EXT4_GET_BLOCKS_PRE_IO |
 309			(nofail ? EXT4_GET_BLOCKS_METADATA_NOFAIL:0));
 310}
 311
 312/*
 313 * Calculate the number of metadata blocks needed
 314 * to allocate @blocks
 315 * Worse case is one block per extent
 316 */
 317int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
 318{
 319	struct ext4_inode_info *ei = EXT4_I(inode);
 320	int idxs;
 321
 322	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
 323		/ sizeof(struct ext4_extent_idx));
 324
 325	/*
 326	 * If the new delayed allocation block is contiguous with the
 327	 * previous da block, it can share index blocks with the
 328	 * previous block, so we only need to allocate a new index
 329	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
 330	 * an additional index block, and at ldxs**3 blocks, yet
 331	 * another index blocks.
 332	 */
 333	if (ei->i_da_metadata_calc_len &&
 334	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
 335		int num = 0;
 336
 337		if ((ei->i_da_metadata_calc_len % idxs) == 0)
 338			num++;
 339		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
 340			num++;
 341		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
 342			num++;
 343			ei->i_da_metadata_calc_len = 0;
 344		} else
 345			ei->i_da_metadata_calc_len++;
 346		ei->i_da_metadata_calc_last_lblock++;
 347		return num;
 348	}
 349
 350	/*
 351	 * In the worst case we need a new set of index blocks at
 352	 * every level of the inode's extent tree.
 353	 */
 354	ei->i_da_metadata_calc_len = 1;
 355	ei->i_da_metadata_calc_last_lblock = lblock;
 356	return ext_depth(inode) + 1;
 357}
 358
 359static int
 360ext4_ext_max_entries(struct inode *inode, int depth)
 361{
 362	int max;
 363
 364	if (depth == ext_depth(inode)) {
 365		if (depth == 0)
 366			max = ext4_ext_space_root(inode, 1);
 367		else
 368			max = ext4_ext_space_root_idx(inode, 1);
 369	} else {
 370		if (depth == 0)
 371			max = ext4_ext_space_block(inode, 1);
 372		else
 373			max = ext4_ext_space_block_idx(inode, 1);
 374	}
 375
 376	return max;
 377}
 378
 379static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
 380{
 381	ext4_fsblk_t block = ext4_ext_pblock(ext);
 382	int len = ext4_ext_get_actual_len(ext);
 383	ext4_lblk_t lblock = le32_to_cpu(ext->ee_block);
 384
 385	/*
 386	 * We allow neither:
 387	 *  - zero length
 388	 *  - overflow/wrap-around
 389	 */
 390	if (lblock + len <= lblock)
 391		return 0;
 392	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
 393}
 394
 395static int ext4_valid_extent_idx(struct inode *inode,
 396				struct ext4_extent_idx *ext_idx)
 397{
 398	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
 399
 400	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
 401}
 402
 403static int ext4_valid_extent_entries(struct inode *inode,
 404				struct ext4_extent_header *eh,
 405				int depth)
 406{
 407	unsigned short entries;
 408	if (eh->eh_entries == 0)
 409		return 1;
 410
 411	entries = le16_to_cpu(eh->eh_entries);
 412
 413	if (depth == 0) {
 414		/* leaf entries */
 415		struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
 416		struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
 417		ext4_fsblk_t pblock = 0;
 418		ext4_lblk_t lblock = 0;
 419		ext4_lblk_t prev = 0;
 420		int len = 0;
 421		while (entries) {
 422			if (!ext4_valid_extent(inode, ext))
 423				return 0;
 424
 425			/* Check for overlapping extents */
 426			lblock = le32_to_cpu(ext->ee_block);
 427			len = ext4_ext_get_actual_len(ext);
 428			if ((lblock <= prev) && prev) {
 429				pblock = ext4_ext_pblock(ext);
 430				es->s_last_error_block = cpu_to_le64(pblock);
 431				return 0;
 432			}
 433			ext++;
 434			entries--;
 435			prev = lblock + len - 1;
 436		}
 437	} else {
 438		struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
 439		while (entries) {
 440			if (!ext4_valid_extent_idx(inode, ext_idx))
 441				return 0;
 442			ext_idx++;
 443			entries--;
 444		}
 445	}
 446	return 1;
 447}
 448
 449static int __ext4_ext_check(const char *function, unsigned int line,
 450			    struct inode *inode, struct ext4_extent_header *eh,
 451			    int depth, ext4_fsblk_t pblk)
 452{
 453	const char *error_msg;
 454	int max = 0, err = -EFSCORRUPTED;
 455
 456	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
 457		error_msg = "invalid magic";
 458		goto corrupted;
 459	}
 460	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
 461		error_msg = "unexpected eh_depth";
 462		goto corrupted;
 463	}
 464	if (unlikely(eh->eh_max == 0)) {
 465		error_msg = "invalid eh_max";
 466		goto corrupted;
 467	}
 468	max = ext4_ext_max_entries(inode, depth);
 469	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
 470		error_msg = "too large eh_max";
 471		goto corrupted;
 472	}
 473	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
 474		error_msg = "invalid eh_entries";
 475		goto corrupted;
 476	}
 477	if (!ext4_valid_extent_entries(inode, eh, depth)) {
 478		error_msg = "invalid extent entries";
 479		goto corrupted;
 480	}
 481	if (unlikely(depth > 32)) {
 482		error_msg = "too large eh_depth";
 483		goto corrupted;
 484	}
 485	/* Verify checksum on non-root extent tree nodes */
 486	if (ext_depth(inode) != depth &&
 487	    !ext4_extent_block_csum_verify(inode, eh)) {
 488		error_msg = "extent tree corrupted";
 489		err = -EFSBADCRC;
 490		goto corrupted;
 491	}
 492	return 0;
 493
 494corrupted:
 495	ext4_error_inode(inode, function, line, 0,
 496			 "pblk %llu bad header/extent: %s - magic %x, "
 497			 "entries %u, max %u(%u), depth %u(%u)",
 498			 (unsigned long long) pblk, error_msg,
 499			 le16_to_cpu(eh->eh_magic),
 500			 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
 501			 max, le16_to_cpu(eh->eh_depth), depth);
 502	return err;
 503}
 504
 505#define ext4_ext_check(inode, eh, depth, pblk)			\
 506	__ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk))
 507
 508int ext4_ext_check_inode(struct inode *inode)
 509{
 510	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0);
 511}
 512
 513static struct buffer_head *
 514__read_extent_tree_block(const char *function, unsigned int line,
 515			 struct inode *inode, ext4_fsblk_t pblk, int depth,
 516			 int flags)
 517{
 518	struct buffer_head		*bh;
 519	int				err;
 520
 521	bh = sb_getblk_gfp(inode->i_sb, pblk, __GFP_MOVABLE | GFP_NOFS);
 522	if (unlikely(!bh))
 523		return ERR_PTR(-ENOMEM);
 524
 525	if (!bh_uptodate_or_lock(bh)) {
 526		trace_ext4_ext_load_extent(inode, pblk, _RET_IP_);
 527		err = bh_submit_read(bh);
 528		if (err < 0)
 529			goto errout;
 530	}
 531	if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE))
 532		return bh;
 533	err = __ext4_ext_check(function, line, inode,
 534			       ext_block_hdr(bh), depth, pblk);
 535	if (err)
 536		goto errout;
 537	set_buffer_verified(bh);
 538	/*
 539	 * If this is a leaf block, cache all of its entries
 540	 */
 541	if (!(flags & EXT4_EX_NOCACHE) && depth == 0) {
 542		struct ext4_extent_header *eh = ext_block_hdr(bh);
 543		struct ext4_extent *ex = EXT_FIRST_EXTENT(eh);
 544		ext4_lblk_t prev = 0;
 545		int i;
 546
 547		for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) {
 548			unsigned int status = EXTENT_STATUS_WRITTEN;
 549			ext4_lblk_t lblk = le32_to_cpu(ex->ee_block);
 550			int len = ext4_ext_get_actual_len(ex);
 551
 552			if (prev && (prev != lblk))
 553				ext4_es_cache_extent(inode, prev,
 554						     lblk - prev, ~0,
 555						     EXTENT_STATUS_HOLE);
 556
 557			if (ext4_ext_is_unwritten(ex))
 558				status = EXTENT_STATUS_UNWRITTEN;
 559			ext4_es_cache_extent(inode, lblk, len,
 560					     ext4_ext_pblock(ex), status);
 561			prev = lblk + len;
 562		}
 563	}
 564	return bh;
 565errout:
 566	put_bh(bh);
 567	return ERR_PTR(err);
 568
 569}
 570
 571#define read_extent_tree_block(inode, pblk, depth, flags)		\
 572	__read_extent_tree_block(__func__, __LINE__, (inode), (pblk),   \
 573				 (depth), (flags))
 574
 575/*
 576 * This function is called to cache a file's extent information in the
 577 * extent status tree
 578 */
 579int ext4_ext_precache(struct inode *inode)
 580{
 581	struct ext4_inode_info *ei = EXT4_I(inode);
 582	struct ext4_ext_path *path = NULL;
 583	struct buffer_head *bh;
 584	int i = 0, depth, ret = 0;
 585
 586	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
 587		return 0;	/* not an extent-mapped inode */
 588
 589	down_read(&ei->i_data_sem);
 590	depth = ext_depth(inode);
 591
 592	path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
 593		       GFP_NOFS);
 594	if (path == NULL) {
 595		up_read(&ei->i_data_sem);
 596		return -ENOMEM;
 597	}
 598
 599	/* Don't cache anything if there are no external extent blocks */
 600	if (depth == 0)
 601		goto out;
 602	path[0].p_hdr = ext_inode_hdr(inode);
 603	ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0);
 604	if (ret)
 605		goto out;
 606	path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr);
 607	while (i >= 0) {
 608		/*
 609		 * If this is a leaf block or we've reached the end of
 610		 * the index block, go up
 611		 */
 612		if ((i == depth) ||
 613		    path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) {
 614			brelse(path[i].p_bh);
 615			path[i].p_bh = NULL;
 616			i--;
 617			continue;
 618		}
 619		bh = read_extent_tree_block(inode,
 620					    ext4_idx_pblock(path[i].p_idx++),
 621					    depth - i - 1,
 622					    EXT4_EX_FORCE_CACHE);
 623		if (IS_ERR(bh)) {
 624			ret = PTR_ERR(bh);
 625			break;
 626		}
 627		i++;
 628		path[i].p_bh = bh;
 629		path[i].p_hdr = ext_block_hdr(bh);
 630		path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr);
 631	}
 632	ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
 633out:
 634	up_read(&ei->i_data_sem);
 635	ext4_ext_drop_refs(path);
 636	kfree(path);
 637	return ret;
 638}
 639
 
 
 
 640#ifdef EXT_DEBUG
 641static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
 642{
 643	int k, l = path->p_depth;
 644
 645	ext_debug("path:");
 646	for (k = 0; k <= l; k++, path++) {
 647		if (path->p_idx) {
 648		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
 649			    ext4_idx_pblock(path->p_idx));
 650		} else if (path->p_ext) {
 651			ext_debug("  %d:[%d]%d:%llu ",
 652				  le32_to_cpu(path->p_ext->ee_block),
 653				  ext4_ext_is_unwritten(path->p_ext),
 654				  ext4_ext_get_actual_len(path->p_ext),
 655				  ext4_ext_pblock(path->p_ext));
 656		} else
 657			ext_debug("  []");
 658	}
 659	ext_debug("\n");
 660}
 661
 662static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
 663{
 664	int depth = ext_depth(inode);
 665	struct ext4_extent_header *eh;
 666	struct ext4_extent *ex;
 667	int i;
 668
 669	if (!path)
 670		return;
 671
 672	eh = path[depth].p_hdr;
 673	ex = EXT_FIRST_EXTENT(eh);
 674
 675	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
 676
 677	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
 678		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
 679			  ext4_ext_is_unwritten(ex),
 680			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
 681	}
 682	ext_debug("\n");
 683}
 684
 685static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
 686			ext4_fsblk_t newblock, int level)
 687{
 688	int depth = ext_depth(inode);
 689	struct ext4_extent *ex;
 690
 691	if (depth != level) {
 692		struct ext4_extent_idx *idx;
 693		idx = path[level].p_idx;
 694		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
 695			ext_debug("%d: move %d:%llu in new index %llu\n", level,
 696					le32_to_cpu(idx->ei_block),
 697					ext4_idx_pblock(idx),
 698					newblock);
 699			idx++;
 700		}
 701
 702		return;
 703	}
 704
 705	ex = path[depth].p_ext;
 706	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
 707		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
 708				le32_to_cpu(ex->ee_block),
 709				ext4_ext_pblock(ex),
 710				ext4_ext_is_unwritten(ex),
 711				ext4_ext_get_actual_len(ex),
 712				newblock);
 713		ex++;
 714	}
 715}
 716
 717#else
 718#define ext4_ext_show_path(inode, path)
 719#define ext4_ext_show_leaf(inode, path)
 720#define ext4_ext_show_move(inode, path, newblock, level)
 721#endif
 722
 723void ext4_ext_drop_refs(struct ext4_ext_path *path)
 724{
 725	int depth, i;
 
 726
 727	if (!path)
 728		return;
 729	depth = path->p_depth;
 730	for (i = 0; i <= depth; i++, path++)
 731		if (path->p_bh) {
 732			brelse(path->p_bh);
 733			path->p_bh = NULL;
 734		}
 735}
 736
 737/*
 738 * ext4_ext_binsearch_idx:
 739 * binary search for the closest index of the given block
 740 * the header must be checked before calling this
 741 */
 742static void
 743ext4_ext_binsearch_idx(struct inode *inode,
 744			struct ext4_ext_path *path, ext4_lblk_t block)
 745{
 746	struct ext4_extent_header *eh = path->p_hdr;
 747	struct ext4_extent_idx *r, *l, *m;
 748
 749
 750	ext_debug("binsearch for %u(idx):  ", block);
 751
 752	l = EXT_FIRST_INDEX(eh) + 1;
 753	r = EXT_LAST_INDEX(eh);
 754	while (l <= r) {
 755		m = l + (r - l) / 2;
 756		if (block < le32_to_cpu(m->ei_block))
 757			r = m - 1;
 758		else
 759			l = m + 1;
 760		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
 761				m, le32_to_cpu(m->ei_block),
 762				r, le32_to_cpu(r->ei_block));
 763	}
 764
 765	path->p_idx = l - 1;
 766	ext_debug("  -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
 767		  ext4_idx_pblock(path->p_idx));
 768
 769#ifdef CHECK_BINSEARCH
 770	{
 771		struct ext4_extent_idx *chix, *ix;
 772		int k;
 773
 774		chix = ix = EXT_FIRST_INDEX(eh);
 775		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
 776		  if (k != 0 &&
 777		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
 778				printk(KERN_DEBUG "k=%d, ix=0x%p, "
 779				       "first=0x%p\n", k,
 780				       ix, EXT_FIRST_INDEX(eh));
 781				printk(KERN_DEBUG "%u <= %u\n",
 782				       le32_to_cpu(ix->ei_block),
 783				       le32_to_cpu(ix[-1].ei_block));
 784			}
 785			BUG_ON(k && le32_to_cpu(ix->ei_block)
 786					   <= le32_to_cpu(ix[-1].ei_block));
 787			if (block < le32_to_cpu(ix->ei_block))
 788				break;
 789			chix = ix;
 790		}
 791		BUG_ON(chix != path->p_idx);
 792	}
 793#endif
 794
 795}
 796
 797/*
 798 * ext4_ext_binsearch:
 799 * binary search for closest extent of the given block
 800 * the header must be checked before calling this
 801 */
 802static void
 803ext4_ext_binsearch(struct inode *inode,
 804		struct ext4_ext_path *path, ext4_lblk_t block)
 805{
 806	struct ext4_extent_header *eh = path->p_hdr;
 807	struct ext4_extent *r, *l, *m;
 808
 809	if (eh->eh_entries == 0) {
 810		/*
 811		 * this leaf is empty:
 812		 * we get such a leaf in split/add case
 813		 */
 814		return;
 815	}
 816
 817	ext_debug("binsearch for %u:  ", block);
 818
 819	l = EXT_FIRST_EXTENT(eh) + 1;
 820	r = EXT_LAST_EXTENT(eh);
 821
 822	while (l <= r) {
 823		m = l + (r - l) / 2;
 824		if (block < le32_to_cpu(m->ee_block))
 825			r = m - 1;
 826		else
 827			l = m + 1;
 828		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
 829				m, le32_to_cpu(m->ee_block),
 830				r, le32_to_cpu(r->ee_block));
 831	}
 832
 833	path->p_ext = l - 1;
 834	ext_debug("  -> %d:%llu:[%d]%d ",
 835			le32_to_cpu(path->p_ext->ee_block),
 836			ext4_ext_pblock(path->p_ext),
 837			ext4_ext_is_unwritten(path->p_ext),
 838			ext4_ext_get_actual_len(path->p_ext));
 839
 840#ifdef CHECK_BINSEARCH
 841	{
 842		struct ext4_extent *chex, *ex;
 843		int k;
 844
 845		chex = ex = EXT_FIRST_EXTENT(eh);
 846		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
 847			BUG_ON(k && le32_to_cpu(ex->ee_block)
 848					  <= le32_to_cpu(ex[-1].ee_block));
 849			if (block < le32_to_cpu(ex->ee_block))
 850				break;
 851			chex = ex;
 852		}
 853		BUG_ON(chex != path->p_ext);
 854	}
 855#endif
 856
 857}
 858
 859int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
 860{
 861	struct ext4_extent_header *eh;
 862
 863	eh = ext_inode_hdr(inode);
 864	eh->eh_depth = 0;
 865	eh->eh_entries = 0;
 866	eh->eh_magic = EXT4_EXT_MAGIC;
 867	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
 868	ext4_mark_inode_dirty(handle, inode);
 
 869	return 0;
 870}
 871
 872struct ext4_ext_path *
 873ext4_find_extent(struct inode *inode, ext4_lblk_t block,
 874		 struct ext4_ext_path **orig_path, int flags)
 875{
 876	struct ext4_extent_header *eh;
 877	struct buffer_head *bh;
 878	struct ext4_ext_path *path = orig_path ? *orig_path : NULL;
 879	short int depth, i, ppos = 0;
 880	int ret;
 881
 882	eh = ext_inode_hdr(inode);
 883	depth = ext_depth(inode);
 884
 885	if (path) {
 886		ext4_ext_drop_refs(path);
 887		if (depth > path[0].p_maxdepth) {
 888			kfree(path);
 889			*orig_path = path = NULL;
 890		}
 891	}
 892	if (!path) {
 893		/* account possible depth increase */
 894		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
 895				GFP_NOFS);
 896		if (unlikely(!path))
 897			return ERR_PTR(-ENOMEM);
 898		path[0].p_maxdepth = depth + 1;
 899	}
 900	path[0].p_hdr = eh;
 901	path[0].p_bh = NULL;
 902
 903	i = depth;
 904	/* walk through the tree */
 905	while (i) {
 906		ext_debug("depth %d: num %d, max %d\n",
 907			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
 908
 909		ext4_ext_binsearch_idx(inode, path + ppos, block);
 910		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
 911		path[ppos].p_depth = i;
 912		path[ppos].p_ext = NULL;
 913
 914		bh = read_extent_tree_block(inode, path[ppos].p_block, --i,
 915					    flags);
 916		if (IS_ERR(bh)) {
 917			ret = PTR_ERR(bh);
 918			goto err;
 
 
 
 
 
 
 
 919		}
 920
 921		eh = ext_block_hdr(bh);
 922		ppos++;
 
 
 
 
 
 
 923		path[ppos].p_bh = bh;
 924		path[ppos].p_hdr = eh;
 
 
 
 
 925	}
 926
 927	path[ppos].p_depth = i;
 928	path[ppos].p_ext = NULL;
 929	path[ppos].p_idx = NULL;
 930
 931	/* find extent */
 932	ext4_ext_binsearch(inode, path + ppos, block);
 933	/* if not an empty leaf */
 934	if (path[ppos].p_ext)
 935		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
 936
 937	ext4_ext_show_path(inode, path);
 938
 939	return path;
 940
 941err:
 942	ext4_ext_drop_refs(path);
 943	kfree(path);
 944	if (orig_path)
 945		*orig_path = NULL;
 946	return ERR_PTR(ret);
 947}
 948
 949/*
 950 * ext4_ext_insert_index:
 951 * insert new index [@logical;@ptr] into the block at @curp;
 952 * check where to insert: before @curp or after @curp
 953 */
 954static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
 955				 struct ext4_ext_path *curp,
 956				 int logical, ext4_fsblk_t ptr)
 957{
 958	struct ext4_extent_idx *ix;
 959	int len, err;
 960
 961	err = ext4_ext_get_access(handle, inode, curp);
 962	if (err)
 963		return err;
 964
 965	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
 966		EXT4_ERROR_INODE(inode,
 967				 "logical %d == ei_block %d!",
 968				 logical, le32_to_cpu(curp->p_idx->ei_block));
 969		return -EFSCORRUPTED;
 970	}
 971
 972	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
 973			     >= le16_to_cpu(curp->p_hdr->eh_max))) {
 974		EXT4_ERROR_INODE(inode,
 975				 "eh_entries %d >= eh_max %d!",
 976				 le16_to_cpu(curp->p_hdr->eh_entries),
 977				 le16_to_cpu(curp->p_hdr->eh_max));
 978		return -EFSCORRUPTED;
 979	}
 980
 981	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
 982		/* insert after */
 983		ext_debug("insert new index %d after: %llu\n", logical, ptr);
 984		ix = curp->p_idx + 1;
 985	} else {
 986		/* insert before */
 987		ext_debug("insert new index %d before: %llu\n", logical, ptr);
 988		ix = curp->p_idx;
 989	}
 990
 991	len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
 992	BUG_ON(len < 0);
 993	if (len > 0) {
 994		ext_debug("insert new index %d: "
 995				"move %d indices from 0x%p to 0x%p\n",
 996				logical, len, ix, ix + 1);
 997		memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
 998	}
 999
1000	if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
1001		EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
1002		return -EFSCORRUPTED;
1003	}
1004
1005	ix->ei_block = cpu_to_le32(logical);
1006	ext4_idx_store_pblock(ix, ptr);
1007	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
1008
1009	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
1010		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
1011		return -EFSCORRUPTED;
1012	}
1013
1014	err = ext4_ext_dirty(handle, inode, curp);
1015	ext4_std_error(inode->i_sb, err);
1016
1017	return err;
1018}
1019
1020/*
1021 * ext4_ext_split:
1022 * inserts new subtree into the path, using free index entry
1023 * at depth @at:
1024 * - allocates all needed blocks (new leaf and all intermediate index blocks)
1025 * - makes decision where to split
1026 * - moves remaining extents and index entries (right to the split point)
1027 *   into the newly allocated blocks
1028 * - initializes subtree
1029 */
1030static int ext4_ext_split(handle_t *handle, struct inode *inode,
1031			  unsigned int flags,
1032			  struct ext4_ext_path *path,
1033			  struct ext4_extent *newext, int at)
1034{
1035	struct buffer_head *bh = NULL;
1036	int depth = ext_depth(inode);
1037	struct ext4_extent_header *neh;
1038	struct ext4_extent_idx *fidx;
1039	int i = at, k, m, a;
1040	ext4_fsblk_t newblock, oldblock;
1041	__le32 border;
1042	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
1043	int err = 0;
1044
1045	/* make decision: where to split? */
1046	/* FIXME: now decision is simplest: at current extent */
1047
1048	/* if current leaf will be split, then we should use
1049	 * border from split point */
1050	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
1051		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
1052		return -EFSCORRUPTED;
1053	}
1054	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
1055		border = path[depth].p_ext[1].ee_block;
1056		ext_debug("leaf will be split."
1057				" next leaf starts at %d\n",
1058				  le32_to_cpu(border));
1059	} else {
1060		border = newext->ee_block;
1061		ext_debug("leaf will be added."
1062				" next leaf starts at %d\n",
1063				le32_to_cpu(border));
1064	}
1065
1066	/*
1067	 * If error occurs, then we break processing
1068	 * and mark filesystem read-only. index won't
1069	 * be inserted and tree will be in consistent
1070	 * state. Next mount will repair buffers too.
1071	 */
1072
1073	/*
1074	 * Get array to track all allocated blocks.
1075	 * We need this to handle errors and free blocks
1076	 * upon them.
1077	 */
1078	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
1079	if (!ablocks)
1080		return -ENOMEM;
1081
1082	/* allocate all needed blocks */
1083	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
1084	for (a = 0; a < depth - at; a++) {
1085		newblock = ext4_ext_new_meta_block(handle, inode, path,
1086						   newext, &err, flags);
1087		if (newblock == 0)
1088			goto cleanup;
1089		ablocks[a] = newblock;
1090	}
1091
1092	/* initialize new leaf */
1093	newblock = ablocks[--a];
1094	if (unlikely(newblock == 0)) {
1095		EXT4_ERROR_INODE(inode, "newblock == 0!");
1096		err = -EFSCORRUPTED;
1097		goto cleanup;
1098	}
1099	bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS);
1100	if (unlikely(!bh)) {
1101		err = -ENOMEM;
1102		goto cleanup;
1103	}
1104	lock_buffer(bh);
1105
1106	err = ext4_journal_get_create_access(handle, bh);
1107	if (err)
1108		goto cleanup;
1109
1110	neh = ext_block_hdr(bh);
1111	neh->eh_entries = 0;
1112	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1113	neh->eh_magic = EXT4_EXT_MAGIC;
1114	neh->eh_depth = 0;
1115
1116	/* move remainder of path[depth] to the new leaf */
1117	if (unlikely(path[depth].p_hdr->eh_entries !=
1118		     path[depth].p_hdr->eh_max)) {
1119		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
1120				 path[depth].p_hdr->eh_entries,
1121				 path[depth].p_hdr->eh_max);
1122		err = -EFSCORRUPTED;
1123		goto cleanup;
1124	}
1125	/* start copy from next extent */
1126	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
1127	ext4_ext_show_move(inode, path, newblock, depth);
1128	if (m) {
1129		struct ext4_extent *ex;
1130		ex = EXT_FIRST_EXTENT(neh);
1131		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
1132		le16_add_cpu(&neh->eh_entries, m);
1133	}
1134
1135	ext4_extent_block_csum_set(inode, neh);
1136	set_buffer_uptodate(bh);
1137	unlock_buffer(bh);
1138
1139	err = ext4_handle_dirty_metadata(handle, inode, bh);
1140	if (err)
1141		goto cleanup;
1142	brelse(bh);
1143	bh = NULL;
1144
1145	/* correct old leaf */
1146	if (m) {
1147		err = ext4_ext_get_access(handle, inode, path + depth);
1148		if (err)
1149			goto cleanup;
1150		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1151		err = ext4_ext_dirty(handle, inode, path + depth);
1152		if (err)
1153			goto cleanup;
1154
1155	}
1156
1157	/* create intermediate indexes */
1158	k = depth - at - 1;
1159	if (unlikely(k < 0)) {
1160		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1161		err = -EFSCORRUPTED;
1162		goto cleanup;
1163	}
1164	if (k)
1165		ext_debug("create %d intermediate indices\n", k);
1166	/* insert new index into current index block */
1167	/* current depth stored in i var */
1168	i = depth - 1;
1169	while (k--) {
1170		oldblock = newblock;
1171		newblock = ablocks[--a];
1172		bh = sb_getblk(inode->i_sb, newblock);
1173		if (unlikely(!bh)) {
1174			err = -ENOMEM;
1175			goto cleanup;
1176		}
1177		lock_buffer(bh);
1178
1179		err = ext4_journal_get_create_access(handle, bh);
1180		if (err)
1181			goto cleanup;
1182
1183		neh = ext_block_hdr(bh);
1184		neh->eh_entries = cpu_to_le16(1);
1185		neh->eh_magic = EXT4_EXT_MAGIC;
1186		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1187		neh->eh_depth = cpu_to_le16(depth - i);
1188		fidx = EXT_FIRST_INDEX(neh);
1189		fidx->ei_block = border;
1190		ext4_idx_store_pblock(fidx, oldblock);
1191
1192		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1193				i, newblock, le32_to_cpu(border), oldblock);
1194
1195		/* move remainder of path[i] to the new index block */
1196		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1197					EXT_LAST_INDEX(path[i].p_hdr))) {
1198			EXT4_ERROR_INODE(inode,
1199					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1200					 le32_to_cpu(path[i].p_ext->ee_block));
1201			err = -EFSCORRUPTED;
1202			goto cleanup;
1203		}
1204		/* start copy indexes */
1205		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1206		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1207				EXT_MAX_INDEX(path[i].p_hdr));
1208		ext4_ext_show_move(inode, path, newblock, i);
1209		if (m) {
1210			memmove(++fidx, path[i].p_idx,
1211				sizeof(struct ext4_extent_idx) * m);
1212			le16_add_cpu(&neh->eh_entries, m);
1213		}
1214		ext4_extent_block_csum_set(inode, neh);
1215		set_buffer_uptodate(bh);
1216		unlock_buffer(bh);
1217
1218		err = ext4_handle_dirty_metadata(handle, inode, bh);
1219		if (err)
1220			goto cleanup;
1221		brelse(bh);
1222		bh = NULL;
1223
1224		/* correct old index */
1225		if (m) {
1226			err = ext4_ext_get_access(handle, inode, path + i);
1227			if (err)
1228				goto cleanup;
1229			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1230			err = ext4_ext_dirty(handle, inode, path + i);
1231			if (err)
1232				goto cleanup;
1233		}
1234
1235		i--;
1236	}
1237
1238	/* insert new index */
1239	err = ext4_ext_insert_index(handle, inode, path + at,
1240				    le32_to_cpu(border), newblock);
1241
1242cleanup:
1243	if (bh) {
1244		if (buffer_locked(bh))
1245			unlock_buffer(bh);
1246		brelse(bh);
1247	}
1248
1249	if (err) {
1250		/* free all allocated blocks in error case */
1251		for (i = 0; i < depth; i++) {
1252			if (!ablocks[i])
1253				continue;
1254			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1255					 EXT4_FREE_BLOCKS_METADATA);
1256		}
1257	}
1258	kfree(ablocks);
1259
1260	return err;
1261}
1262
1263/*
1264 * ext4_ext_grow_indepth:
1265 * implements tree growing procedure:
1266 * - allocates new block
1267 * - moves top-level data (index block or leaf) into the new block
1268 * - initializes new top-level, creating index that points to the
1269 *   just created block
1270 */
1271static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1272				 unsigned int flags)
 
1273{
1274	struct ext4_extent_header *neh;
1275	struct buffer_head *bh;
1276	ext4_fsblk_t newblock, goal = 0;
1277	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
1278	int err = 0;
1279
1280	/* Try to prepend new index to old one */
1281	if (ext_depth(inode))
1282		goal = ext4_idx_pblock(EXT_FIRST_INDEX(ext_inode_hdr(inode)));
1283	if (goal > le32_to_cpu(es->s_first_data_block)) {
1284		flags |= EXT4_MB_HINT_TRY_GOAL;
1285		goal--;
1286	} else
1287		goal = ext4_inode_to_goal_block(inode);
1288	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
1289					NULL, &err);
1290	if (newblock == 0)
1291		return err;
1292
1293	bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS);
1294	if (unlikely(!bh))
1295		return -ENOMEM;
 
 
 
1296	lock_buffer(bh);
1297
1298	err = ext4_journal_get_create_access(handle, bh);
1299	if (err) {
1300		unlock_buffer(bh);
1301		goto out;
1302	}
1303
1304	/* move top-level index/leaf into new block */
1305	memmove(bh->b_data, EXT4_I(inode)->i_data,
1306		sizeof(EXT4_I(inode)->i_data));
1307
1308	/* set size of new block */
1309	neh = ext_block_hdr(bh);
1310	/* old root could have indexes or leaves
1311	 * so calculate e_max right way */
1312	if (ext_depth(inode))
1313		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1314	else
1315		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1316	neh->eh_magic = EXT4_EXT_MAGIC;
1317	ext4_extent_block_csum_set(inode, neh);
1318	set_buffer_uptodate(bh);
1319	unlock_buffer(bh);
1320
1321	err = ext4_handle_dirty_metadata(handle, inode, bh);
1322	if (err)
1323		goto out;
1324
1325	/* Update top-level index: num,max,pointer */
1326	neh = ext_inode_hdr(inode);
1327	neh->eh_entries = cpu_to_le16(1);
1328	ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1329	if (neh->eh_depth == 0) {
1330		/* Root extent block becomes index block */
1331		neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1332		EXT_FIRST_INDEX(neh)->ei_block =
1333			EXT_FIRST_EXTENT(neh)->ee_block;
1334	}
1335	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1336		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1337		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1338		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1339
1340	le16_add_cpu(&neh->eh_depth, 1);
1341	ext4_mark_inode_dirty(handle, inode);
1342out:
1343	brelse(bh);
1344
1345	return err;
1346}
1347
1348/*
1349 * ext4_ext_create_new_leaf:
1350 * finds empty index and adds new leaf.
1351 * if no free index is found, then it requests in-depth growing.
1352 */
1353static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1354				    unsigned int mb_flags,
1355				    unsigned int gb_flags,
1356				    struct ext4_ext_path **ppath,
1357				    struct ext4_extent *newext)
1358{
1359	struct ext4_ext_path *path = *ppath;
1360	struct ext4_ext_path *curp;
1361	int depth, i, err = 0;
1362
1363repeat:
1364	i = depth = ext_depth(inode);
1365
1366	/* walk up to the tree and look for free index entry */
1367	curp = path + depth;
1368	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1369		i--;
1370		curp--;
1371	}
1372
1373	/* we use already allocated block for index block,
1374	 * so subsequent data blocks should be contiguous */
1375	if (EXT_HAS_FREE_INDEX(curp)) {
1376		/* if we found index with free entry, then use that
1377		 * entry: create all needed subtree and add new leaf */
1378		err = ext4_ext_split(handle, inode, mb_flags, path, newext, i);
1379		if (err)
1380			goto out;
1381
1382		/* refill path */
1383		path = ext4_find_extent(inode,
 
1384				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1385				    ppath, gb_flags);
1386		if (IS_ERR(path))
1387			err = PTR_ERR(path);
1388	} else {
1389		/* tree is full, time to grow in depth */
1390		err = ext4_ext_grow_indepth(handle, inode, mb_flags);
1391		if (err)
1392			goto out;
1393
1394		/* refill path */
1395		path = ext4_find_extent(inode,
 
1396				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1397				    ppath, gb_flags);
1398		if (IS_ERR(path)) {
1399			err = PTR_ERR(path);
1400			goto out;
1401		}
1402
1403		/*
1404		 * only first (depth 0 -> 1) produces free space;
1405		 * in all other cases we have to split the grown tree
1406		 */
1407		depth = ext_depth(inode);
1408		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1409			/* now we need to split */
1410			goto repeat;
1411		}
1412	}
1413
1414out:
1415	return err;
1416}
1417
1418/*
1419 * search the closest allocated block to the left for *logical
1420 * and returns it at @logical + it's physical address at @phys
1421 * if *logical is the smallest allocated block, the function
1422 * returns 0 at @phys
1423 * return value contains 0 (success) or error code
1424 */
1425static int ext4_ext_search_left(struct inode *inode,
1426				struct ext4_ext_path *path,
1427				ext4_lblk_t *logical, ext4_fsblk_t *phys)
1428{
1429	struct ext4_extent_idx *ix;
1430	struct ext4_extent *ex;
1431	int depth, ee_len;
1432
1433	if (unlikely(path == NULL)) {
1434		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1435		return -EFSCORRUPTED;
1436	}
1437	depth = path->p_depth;
1438	*phys = 0;
1439
1440	if (depth == 0 && path->p_ext == NULL)
1441		return 0;
1442
1443	/* usually extent in the path covers blocks smaller
1444	 * then *logical, but it can be that extent is the
1445	 * first one in the file */
1446
1447	ex = path[depth].p_ext;
1448	ee_len = ext4_ext_get_actual_len(ex);
1449	if (*logical < le32_to_cpu(ex->ee_block)) {
1450		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1451			EXT4_ERROR_INODE(inode,
1452					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1453					 *logical, le32_to_cpu(ex->ee_block));
1454			return -EFSCORRUPTED;
1455		}
1456		while (--depth >= 0) {
1457			ix = path[depth].p_idx;
1458			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1459				EXT4_ERROR_INODE(inode,
1460				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1461				  ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1462				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1463		le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1464				  depth);
1465				return -EFSCORRUPTED;
1466			}
1467		}
1468		return 0;
1469	}
1470
1471	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1472		EXT4_ERROR_INODE(inode,
1473				 "logical %d < ee_block %d + ee_len %d!",
1474				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1475		return -EFSCORRUPTED;
1476	}
1477
1478	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1479	*phys = ext4_ext_pblock(ex) + ee_len - 1;
1480	return 0;
1481}
1482
1483/*
1484 * search the closest allocated block to the right for *logical
1485 * and returns it at @logical + it's physical address at @phys
1486 * if *logical is the largest allocated block, the function
1487 * returns 0 at @phys
1488 * return value contains 0 (success) or error code
1489 */
1490static int ext4_ext_search_right(struct inode *inode,
1491				 struct ext4_ext_path *path,
1492				 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1493				 struct ext4_extent **ret_ex)
1494{
1495	struct buffer_head *bh = NULL;
1496	struct ext4_extent_header *eh;
1497	struct ext4_extent_idx *ix;
1498	struct ext4_extent *ex;
1499	ext4_fsblk_t block;
1500	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1501	int ee_len;
1502
1503	if (unlikely(path == NULL)) {
1504		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1505		return -EFSCORRUPTED;
1506	}
1507	depth = path->p_depth;
1508	*phys = 0;
1509
1510	if (depth == 0 && path->p_ext == NULL)
1511		return 0;
1512
1513	/* usually extent in the path covers blocks smaller
1514	 * then *logical, but it can be that extent is the
1515	 * first one in the file */
1516
1517	ex = path[depth].p_ext;
1518	ee_len = ext4_ext_get_actual_len(ex);
1519	if (*logical < le32_to_cpu(ex->ee_block)) {
1520		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1521			EXT4_ERROR_INODE(inode,
1522					 "first_extent(path[%d].p_hdr) != ex",
1523					 depth);
1524			return -EFSCORRUPTED;
1525		}
1526		while (--depth >= 0) {
1527			ix = path[depth].p_idx;
1528			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1529				EXT4_ERROR_INODE(inode,
1530						 "ix != EXT_FIRST_INDEX *logical %d!",
1531						 *logical);
1532				return -EFSCORRUPTED;
1533			}
1534		}
1535		goto found_extent;
1536	}
1537
1538	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1539		EXT4_ERROR_INODE(inode,
1540				 "logical %d < ee_block %d + ee_len %d!",
1541				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1542		return -EFSCORRUPTED;
1543	}
1544
1545	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1546		/* next allocated block in this leaf */
1547		ex++;
1548		goto found_extent;
1549	}
1550
1551	/* go up and search for index to the right */
1552	while (--depth >= 0) {
1553		ix = path[depth].p_idx;
1554		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1555			goto got_index;
1556	}
1557
1558	/* we've gone up to the root and found no index to the right */
1559	return 0;
1560
1561got_index:
1562	/* we've found index to the right, let's
1563	 * follow it and find the closest allocated
1564	 * block to the right */
1565	ix++;
1566	block = ext4_idx_pblock(ix);
1567	while (++depth < path->p_depth) {
1568		/* subtract from p_depth to get proper eh_depth */
1569		bh = read_extent_tree_block(inode, block,
1570					    path->p_depth - depth, 0);
1571		if (IS_ERR(bh))
1572			return PTR_ERR(bh);
1573		eh = ext_block_hdr(bh);
 
 
 
 
 
 
1574		ix = EXT_FIRST_INDEX(eh);
1575		block = ext4_idx_pblock(ix);
1576		put_bh(bh);
1577	}
1578
1579	bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0);
1580	if (IS_ERR(bh))
1581		return PTR_ERR(bh);
1582	eh = ext_block_hdr(bh);
 
 
 
 
1583	ex = EXT_FIRST_EXTENT(eh);
1584found_extent:
1585	*logical = le32_to_cpu(ex->ee_block);
1586	*phys = ext4_ext_pblock(ex);
1587	*ret_ex = ex;
1588	if (bh)
1589		put_bh(bh);
1590	return 0;
1591}
1592
1593/*
1594 * ext4_ext_next_allocated_block:
1595 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1596 * NOTE: it considers block number from index entry as
1597 * allocated block. Thus, index entries have to be consistent
1598 * with leaves.
1599 */
1600ext4_lblk_t
1601ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1602{
1603	int depth;
1604
1605	BUG_ON(path == NULL);
1606	depth = path->p_depth;
1607
1608	if (depth == 0 && path->p_ext == NULL)
1609		return EXT_MAX_BLOCKS;
1610
1611	while (depth >= 0) {
1612		if (depth == path->p_depth) {
1613			/* leaf */
1614			if (path[depth].p_ext &&
1615				path[depth].p_ext !=
1616					EXT_LAST_EXTENT(path[depth].p_hdr))
1617			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1618		} else {
1619			/* index */
1620			if (path[depth].p_idx !=
1621					EXT_LAST_INDEX(path[depth].p_hdr))
1622			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1623		}
1624		depth--;
1625	}
1626
1627	return EXT_MAX_BLOCKS;
1628}
1629
1630/*
1631 * ext4_ext_next_leaf_block:
1632 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1633 */
1634static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1635{
1636	int depth;
1637
1638	BUG_ON(path == NULL);
1639	depth = path->p_depth;
1640
1641	/* zero-tree has no leaf blocks at all */
1642	if (depth == 0)
1643		return EXT_MAX_BLOCKS;
1644
1645	/* go to index block */
1646	depth--;
1647
1648	while (depth >= 0) {
1649		if (path[depth].p_idx !=
1650				EXT_LAST_INDEX(path[depth].p_hdr))
1651			return (ext4_lblk_t)
1652				le32_to_cpu(path[depth].p_idx[1].ei_block);
1653		depth--;
1654	}
1655
1656	return EXT_MAX_BLOCKS;
1657}
1658
1659/*
1660 * ext4_ext_correct_indexes:
1661 * if leaf gets modified and modified extent is first in the leaf,
1662 * then we have to correct all indexes above.
1663 * TODO: do we need to correct tree in all cases?
1664 */
1665static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1666				struct ext4_ext_path *path)
1667{
1668	struct ext4_extent_header *eh;
1669	int depth = ext_depth(inode);
1670	struct ext4_extent *ex;
1671	__le32 border;
1672	int k, err = 0;
1673
1674	eh = path[depth].p_hdr;
1675	ex = path[depth].p_ext;
1676
1677	if (unlikely(ex == NULL || eh == NULL)) {
1678		EXT4_ERROR_INODE(inode,
1679				 "ex %p == NULL or eh %p == NULL", ex, eh);
1680		return -EFSCORRUPTED;
1681	}
1682
1683	if (depth == 0) {
1684		/* there is no tree at all */
1685		return 0;
1686	}
1687
1688	if (ex != EXT_FIRST_EXTENT(eh)) {
1689		/* we correct tree if first leaf got modified only */
1690		return 0;
1691	}
1692
1693	/*
1694	 * TODO: we need correction if border is smaller than current one
1695	 */
1696	k = depth - 1;
1697	border = path[depth].p_ext->ee_block;
1698	err = ext4_ext_get_access(handle, inode, path + k);
1699	if (err)
1700		return err;
1701	path[k].p_idx->ei_block = border;
1702	err = ext4_ext_dirty(handle, inode, path + k);
1703	if (err)
1704		return err;
1705
1706	while (k--) {
1707		/* change all left-side indexes */
1708		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1709			break;
1710		err = ext4_ext_get_access(handle, inode, path + k);
1711		if (err)
1712			break;
1713		path[k].p_idx->ei_block = border;
1714		err = ext4_ext_dirty(handle, inode, path + k);
1715		if (err)
1716			break;
1717	}
1718
1719	return err;
1720}
1721
1722int
1723ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1724				struct ext4_extent *ex2)
1725{
1726	unsigned short ext1_ee_len, ext2_ee_len;
1727
1728	if (ext4_ext_is_unwritten(ex1) != ext4_ext_is_unwritten(ex2))
 
 
 
 
1729		return 0;
1730
 
 
 
 
 
1731	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1732	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1733
1734	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1735			le32_to_cpu(ex2->ee_block))
1736		return 0;
1737
1738	/*
1739	 * To allow future support for preallocated extents to be added
1740	 * as an RO_COMPAT feature, refuse to merge to extents if
1741	 * this can result in the top bit of ee_len being set.
1742	 */
1743	if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN)
1744		return 0;
1745	/*
1746	 * The check for IO to unwritten extent is somewhat racy as we
1747	 * increment i_unwritten / set EXT4_STATE_DIO_UNWRITTEN only after
1748	 * dropping i_data_sem. But reserved blocks should save us in that
1749	 * case.
1750	 */
1751	if (ext4_ext_is_unwritten(ex1) &&
1752	    (ext4_test_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN) ||
1753	     atomic_read(&EXT4_I(inode)->i_unwritten) ||
1754	     (ext1_ee_len + ext2_ee_len > EXT_UNWRITTEN_MAX_LEN)))
1755		return 0;
1756#ifdef AGGRESSIVE_TEST
1757	if (ext1_ee_len >= 4)
1758		return 0;
1759#endif
1760
1761	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1762		return 1;
1763	return 0;
1764}
1765
1766/*
1767 * This function tries to merge the "ex" extent to the next extent in the tree.
1768 * It always tries to merge towards right. If you want to merge towards
1769 * left, pass "ex - 1" as argument instead of "ex".
1770 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1771 * 1 if they got merged.
1772 */
1773static int ext4_ext_try_to_merge_right(struct inode *inode,
1774				 struct ext4_ext_path *path,
1775				 struct ext4_extent *ex)
1776{
1777	struct ext4_extent_header *eh;
1778	unsigned int depth, len;
1779	int merge_done = 0, unwritten;
 
1780
1781	depth = ext_depth(inode);
1782	BUG_ON(path[depth].p_hdr == NULL);
1783	eh = path[depth].p_hdr;
1784
1785	while (ex < EXT_LAST_EXTENT(eh)) {
1786		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1787			break;
1788		/* merge with next extent! */
1789		unwritten = ext4_ext_is_unwritten(ex);
 
1790		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1791				+ ext4_ext_get_actual_len(ex + 1));
1792		if (unwritten)
1793			ext4_ext_mark_unwritten(ex);
1794
1795		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1796			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1797				* sizeof(struct ext4_extent);
1798			memmove(ex + 1, ex + 2, len);
1799		}
1800		le16_add_cpu(&eh->eh_entries, -1);
1801		merge_done = 1;
1802		WARN_ON(eh->eh_entries == 0);
1803		if (!eh->eh_entries)
1804			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1805	}
1806
1807	return merge_done;
1808}
1809
1810/*
1811 * This function does a very simple check to see if we can collapse
1812 * an extent tree with a single extent tree leaf block into the inode.
1813 */
1814static void ext4_ext_try_to_merge_up(handle_t *handle,
1815				     struct inode *inode,
1816				     struct ext4_ext_path *path)
1817{
1818	size_t s;
1819	unsigned max_root = ext4_ext_space_root(inode, 0);
1820	ext4_fsblk_t blk;
1821
1822	if ((path[0].p_depth != 1) ||
1823	    (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1824	    (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1825		return;
1826
1827	/*
1828	 * We need to modify the block allocation bitmap and the block
1829	 * group descriptor to release the extent tree block.  If we
1830	 * can't get the journal credits, give up.
1831	 */
1832	if (ext4_journal_extend(handle, 2))
1833		return;
1834
1835	/*
1836	 * Copy the extent data up to the inode
1837	 */
1838	blk = ext4_idx_pblock(path[0].p_idx);
1839	s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1840		sizeof(struct ext4_extent_idx);
1841	s += sizeof(struct ext4_extent_header);
1842
1843	path[1].p_maxdepth = path[0].p_maxdepth;
1844	memcpy(path[0].p_hdr, path[1].p_hdr, s);
1845	path[0].p_depth = 0;
1846	path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1847		(path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1848	path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1849
1850	brelse(path[1].p_bh);
1851	ext4_free_blocks(handle, inode, NULL, blk, 1,
1852			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1853}
1854
1855/*
1856 * This function tries to merge the @ex extent to neighbours in the tree.
1857 * return 1 if merge left else 0.
1858 */
1859static void ext4_ext_try_to_merge(handle_t *handle,
1860				  struct inode *inode,
1861				  struct ext4_ext_path *path,
1862				  struct ext4_extent *ex) {
1863	struct ext4_extent_header *eh;
1864	unsigned int depth;
1865	int merge_done = 0;
 
1866
1867	depth = ext_depth(inode);
1868	BUG_ON(path[depth].p_hdr == NULL);
1869	eh = path[depth].p_hdr;
1870
1871	if (ex > EXT_FIRST_EXTENT(eh))
1872		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1873
1874	if (!merge_done)
1875		(void) ext4_ext_try_to_merge_right(inode, path, ex);
1876
1877	ext4_ext_try_to_merge_up(handle, inode, path);
1878}
1879
1880/*
1881 * check if a portion of the "newext" extent overlaps with an
1882 * existing extent.
1883 *
1884 * If there is an overlap discovered, it updates the length of the newext
1885 * such that there will be no overlap, and then returns 1.
1886 * If there is no overlap found, it returns 0.
1887 */
1888static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1889					   struct inode *inode,
1890					   struct ext4_extent *newext,
1891					   struct ext4_ext_path *path)
1892{
1893	ext4_lblk_t b1, b2;
1894	unsigned int depth, len1;
1895	unsigned int ret = 0;
1896
1897	b1 = le32_to_cpu(newext->ee_block);
1898	len1 = ext4_ext_get_actual_len(newext);
1899	depth = ext_depth(inode);
1900	if (!path[depth].p_ext)
1901		goto out;
1902	b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block));
 
1903
1904	/*
1905	 * get the next allocated block if the extent in the path
1906	 * is before the requested block(s)
1907	 */
1908	if (b2 < b1) {
1909		b2 = ext4_ext_next_allocated_block(path);
1910		if (b2 == EXT_MAX_BLOCKS)
1911			goto out;
1912		b2 = EXT4_LBLK_CMASK(sbi, b2);
1913	}
1914
1915	/* check for wrap through zero on extent logical start block*/
1916	if (b1 + len1 < b1) {
1917		len1 = EXT_MAX_BLOCKS - b1;
1918		newext->ee_len = cpu_to_le16(len1);
1919		ret = 1;
1920	}
1921
1922	/* check for overlap */
1923	if (b1 + len1 > b2) {
1924		newext->ee_len = cpu_to_le16(b2 - b1);
1925		ret = 1;
1926	}
1927out:
1928	return ret;
1929}
1930
1931/*
1932 * ext4_ext_insert_extent:
1933 * tries to merge requsted extent into the existing extent or
1934 * inserts requested extent as new one into the tree,
1935 * creating new leaf in the no-space case.
1936 */
1937int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1938				struct ext4_ext_path **ppath,
1939				struct ext4_extent *newext, int gb_flags)
1940{
1941	struct ext4_ext_path *path = *ppath;
1942	struct ext4_extent_header *eh;
1943	struct ext4_extent *ex, *fex;
1944	struct ext4_extent *nearex; /* nearest extent */
1945	struct ext4_ext_path *npath = NULL;
1946	int depth, len, err;
1947	ext4_lblk_t next;
1948	int mb_flags = 0, unwritten;
 
1949
1950	if (gb_flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1951		mb_flags |= EXT4_MB_DELALLOC_RESERVED;
1952	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1953		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1954		return -EFSCORRUPTED;
1955	}
1956	depth = ext_depth(inode);
1957	ex = path[depth].p_ext;
1958	eh = path[depth].p_hdr;
1959	if (unlikely(path[depth].p_hdr == NULL)) {
1960		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1961		return -EFSCORRUPTED;
1962	}
1963
1964	/* try to insert block into found extent and return */
1965	if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) {
 
 
 
 
 
 
 
 
 
 
 
1966
1967		/*
1968		 * Try to see whether we should rather test the extent on
1969		 * right from ex, or from the left of ex. This is because
1970		 * ext4_find_extent() can return either extent on the
1971		 * left, or on the right from the searched position. This
1972		 * will make merging more effective.
1973		 */
1974		if (ex < EXT_LAST_EXTENT(eh) &&
1975		    (le32_to_cpu(ex->ee_block) +
1976		    ext4_ext_get_actual_len(ex) <
1977		    le32_to_cpu(newext->ee_block))) {
1978			ex += 1;
1979			goto prepend;
1980		} else if ((ex > EXT_FIRST_EXTENT(eh)) &&
1981			   (le32_to_cpu(newext->ee_block) +
1982			   ext4_ext_get_actual_len(newext) <
1983			   le32_to_cpu(ex->ee_block)))
1984			ex -= 1;
1985
1986		/* Try to append newex to the ex */
1987		if (ext4_can_extents_be_merged(inode, ex, newext)) {
1988			ext_debug("append [%d]%d block to %u:[%d]%d"
1989				  "(from %llu)\n",
1990				  ext4_ext_is_unwritten(newext),
1991				  ext4_ext_get_actual_len(newext),
1992				  le32_to_cpu(ex->ee_block),
1993				  ext4_ext_is_unwritten(ex),
1994				  ext4_ext_get_actual_len(ex),
1995				  ext4_ext_pblock(ex));
1996			err = ext4_ext_get_access(handle, inode,
1997						  path + depth);
1998			if (err)
1999				return err;
2000			unwritten = ext4_ext_is_unwritten(ex);
2001			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
2002					+ ext4_ext_get_actual_len(newext));
2003			if (unwritten)
2004				ext4_ext_mark_unwritten(ex);
2005			eh = path[depth].p_hdr;
2006			nearex = ex;
2007			goto merge;
2008		}
2009
2010prepend:
2011		/* Try to prepend newex to the ex */
2012		if (ext4_can_extents_be_merged(inode, newext, ex)) {
2013			ext_debug("prepend %u[%d]%d block to %u:[%d]%d"
2014				  "(from %llu)\n",
2015				  le32_to_cpu(newext->ee_block),
2016				  ext4_ext_is_unwritten(newext),
2017				  ext4_ext_get_actual_len(newext),
2018				  le32_to_cpu(ex->ee_block),
2019				  ext4_ext_is_unwritten(ex),
2020				  ext4_ext_get_actual_len(ex),
2021				  ext4_ext_pblock(ex));
2022			err = ext4_ext_get_access(handle, inode,
2023						  path + depth);
2024			if (err)
2025				return err;
2026
2027			unwritten = ext4_ext_is_unwritten(ex);
2028			ex->ee_block = newext->ee_block;
2029			ext4_ext_store_pblock(ex, ext4_ext_pblock(newext));
2030			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
2031					+ ext4_ext_get_actual_len(newext));
2032			if (unwritten)
2033				ext4_ext_mark_unwritten(ex);
2034			eh = path[depth].p_hdr;
2035			nearex = ex;
2036			goto merge;
2037		}
2038	}
2039
2040	depth = ext_depth(inode);
2041	eh = path[depth].p_hdr;
2042	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
2043		goto has_space;
2044
2045	/* probably next leaf has space for us? */
2046	fex = EXT_LAST_EXTENT(eh);
2047	next = EXT_MAX_BLOCKS;
2048	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
2049		next = ext4_ext_next_leaf_block(path);
2050	if (next != EXT_MAX_BLOCKS) {
2051		ext_debug("next leaf block - %u\n", next);
2052		BUG_ON(npath != NULL);
2053		npath = ext4_find_extent(inode, next, NULL, 0);
2054		if (IS_ERR(npath))
2055			return PTR_ERR(npath);
2056		BUG_ON(npath->p_depth != path->p_depth);
2057		eh = npath[depth].p_hdr;
2058		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
2059			ext_debug("next leaf isn't full(%d)\n",
2060				  le16_to_cpu(eh->eh_entries));
2061			path = npath;
2062			goto has_space;
2063		}
2064		ext_debug("next leaf has no free space(%d,%d)\n",
2065			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
2066	}
2067
2068	/*
2069	 * There is no free space in the found leaf.
2070	 * We're gonna add a new leaf in the tree.
2071	 */
2072	if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
2073		mb_flags |= EXT4_MB_USE_RESERVED;
2074	err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags,
2075				       ppath, newext);
2076	if (err)
2077		goto cleanup;
2078	depth = ext_depth(inode);
2079	eh = path[depth].p_hdr;
2080
2081has_space:
2082	nearex = path[depth].p_ext;
2083
2084	err = ext4_ext_get_access(handle, inode, path + depth);
2085	if (err)
2086		goto cleanup;
2087
2088	if (!nearex) {
2089		/* there is no extent in this leaf, create first one */
2090		ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
2091				le32_to_cpu(newext->ee_block),
2092				ext4_ext_pblock(newext),
2093				ext4_ext_is_unwritten(newext),
2094				ext4_ext_get_actual_len(newext));
2095		nearex = EXT_FIRST_EXTENT(eh);
2096	} else {
2097		if (le32_to_cpu(newext->ee_block)
2098			   > le32_to_cpu(nearex->ee_block)) {
2099			/* Insert after */
2100			ext_debug("insert %u:%llu:[%d]%d before: "
2101					"nearest %p\n",
2102					le32_to_cpu(newext->ee_block),
2103					ext4_ext_pblock(newext),
2104					ext4_ext_is_unwritten(newext),
2105					ext4_ext_get_actual_len(newext),
2106					nearex);
2107			nearex++;
2108		} else {
2109			/* Insert before */
2110			BUG_ON(newext->ee_block == nearex->ee_block);
2111			ext_debug("insert %u:%llu:[%d]%d after: "
2112					"nearest %p\n",
2113					le32_to_cpu(newext->ee_block),
2114					ext4_ext_pblock(newext),
2115					ext4_ext_is_unwritten(newext),
2116					ext4_ext_get_actual_len(newext),
2117					nearex);
2118		}
2119		len = EXT_LAST_EXTENT(eh) - nearex + 1;
2120		if (len > 0) {
2121			ext_debug("insert %u:%llu:[%d]%d: "
2122					"move %d extents from 0x%p to 0x%p\n",
2123					le32_to_cpu(newext->ee_block),
2124					ext4_ext_pblock(newext),
2125					ext4_ext_is_unwritten(newext),
2126					ext4_ext_get_actual_len(newext),
2127					len, nearex, nearex + 1);
2128			memmove(nearex + 1, nearex,
2129				len * sizeof(struct ext4_extent));
2130		}
2131	}
2132
2133	le16_add_cpu(&eh->eh_entries, 1);
2134	path[depth].p_ext = nearex;
2135	nearex->ee_block = newext->ee_block;
2136	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
2137	nearex->ee_len = newext->ee_len;
2138
2139merge:
2140	/* try to merge extents */
2141	if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO))
2142		ext4_ext_try_to_merge(handle, inode, path, nearex);
2143
 
2144
2145	/* time to correct all indexes above */
2146	err = ext4_ext_correct_indexes(handle, inode, path);
2147	if (err)
2148		goto cleanup;
2149
2150	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2151
2152cleanup:
2153	ext4_ext_drop_refs(npath);
2154	kfree(npath);
 
 
 
2155	return err;
2156}
2157
2158static int ext4_fill_fiemap_extents(struct inode *inode,
2159				    ext4_lblk_t block, ext4_lblk_t num,
2160				    struct fiemap_extent_info *fieinfo)
2161{
2162	struct ext4_ext_path *path = NULL;
 
2163	struct ext4_extent *ex;
2164	struct extent_status es;
2165	ext4_lblk_t next, next_del, start = 0, end = 0;
2166	ext4_lblk_t last = block + num;
2167	int exists, depth = 0, err = 0;
2168	unsigned int flags = 0;
2169	unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
 
2170
2171	while (block < last && block != EXT_MAX_BLOCKS) {
2172		num = last - block;
2173		/* find extent for this block */
2174		down_read(&EXT4_I(inode)->i_data_sem);
2175
2176		path = ext4_find_extent(inode, block, &path, 0);
2177		if (IS_ERR(path)) {
2178			up_read(&EXT4_I(inode)->i_data_sem);
2179			err = PTR_ERR(path);
2180			path = NULL;
2181			break;
2182		}
2183
2184		depth = ext_depth(inode);
2185		if (unlikely(path[depth].p_hdr == NULL)) {
2186			up_read(&EXT4_I(inode)->i_data_sem);
2187			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2188			err = -EFSCORRUPTED;
2189			break;
2190		}
2191		ex = path[depth].p_ext;
2192		next = ext4_ext_next_allocated_block(path);
2193
2194		flags = 0;
2195		exists = 0;
2196		if (!ex) {
2197			/* there is no extent yet, so try to allocate
2198			 * all requested space */
2199			start = block;
2200			end = block + num;
2201		} else if (le32_to_cpu(ex->ee_block) > block) {
2202			/* need to allocate space before found extent */
2203			start = block;
2204			end = le32_to_cpu(ex->ee_block);
2205			if (block + num < end)
2206				end = block + num;
2207		} else if (block >= le32_to_cpu(ex->ee_block)
2208					+ ext4_ext_get_actual_len(ex)) {
2209			/* need to allocate space after found extent */
2210			start = block;
2211			end = block + num;
2212			if (end >= next)
2213				end = next;
2214		} else if (block >= le32_to_cpu(ex->ee_block)) {
2215			/*
2216			 * some part of requested space is covered
2217			 * by found extent
2218			 */
2219			start = block;
2220			end = le32_to_cpu(ex->ee_block)
2221				+ ext4_ext_get_actual_len(ex);
2222			if (block + num < end)
2223				end = block + num;
2224			exists = 1;
2225		} else {
2226			BUG();
2227		}
2228		BUG_ON(end <= start);
2229
2230		if (!exists) {
2231			es.es_lblk = start;
2232			es.es_len = end - start;
2233			es.es_pblk = 0;
2234		} else {
2235			es.es_lblk = le32_to_cpu(ex->ee_block);
2236			es.es_len = ext4_ext_get_actual_len(ex);
2237			es.es_pblk = ext4_ext_pblock(ex);
2238			if (ext4_ext_is_unwritten(ex))
2239				flags |= FIEMAP_EXTENT_UNWRITTEN;
2240		}
2241
2242		/*
2243		 * Find delayed extent and update es accordingly. We call
2244		 * it even in !exists case to find out whether es is the
2245		 * last existing extent or not.
2246		 */
2247		next_del = ext4_find_delayed_extent(inode, &es);
2248		if (!exists && next_del) {
2249			exists = 1;
2250			flags |= (FIEMAP_EXTENT_DELALLOC |
2251				  FIEMAP_EXTENT_UNKNOWN);
2252		}
2253		up_read(&EXT4_I(inode)->i_data_sem);
 
2254
2255		if (unlikely(es.es_len == 0)) {
2256			EXT4_ERROR_INODE(inode, "es.es_len == 0");
2257			err = -EFSCORRUPTED;
2258			break;
2259		}
2260
2261		/*
2262		 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2263		 * we need to check next == EXT_MAX_BLOCKS because it is
2264		 * possible that an extent is with unwritten and delayed
2265		 * status due to when an extent is delayed allocated and
2266		 * is allocated by fallocate status tree will track both of
2267		 * them in a extent.
2268		 *
2269		 * So we could return a unwritten and delayed extent, and
2270		 * its block is equal to 'next'.
2271		 */
2272		if (next == next_del && next == EXT_MAX_BLOCKS) {
2273			flags |= FIEMAP_EXTENT_LAST;
2274			if (unlikely(next_del != EXT_MAX_BLOCKS ||
2275				     next != EXT_MAX_BLOCKS)) {
2276				EXT4_ERROR_INODE(inode,
2277						 "next extent == %u, next "
2278						 "delalloc extent = %u",
2279						 next, next_del);
2280				err = -EFSCORRUPTED;
2281				break;
2282			}
2283		}
2284
2285		if (exists) {
2286			err = fiemap_fill_next_extent(fieinfo,
2287				(__u64)es.es_lblk << blksize_bits,
2288				(__u64)es.es_pblk << blksize_bits,
2289				(__u64)es.es_len << blksize_bits,
2290				flags);
2291			if (err < 0)
2292				break;
2293			if (err == 1) {
2294				err = 0;
2295				break;
2296			}
2297		}
2298
2299		block = es.es_lblk + es.es_len;
 
 
 
 
 
2300	}
2301
2302	ext4_ext_drop_refs(path);
2303	kfree(path);
2304	return err;
2305}
2306
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2307/*
2308 * ext4_ext_determine_hole - determine hole around given block
2309 * @inode:	inode we lookup in
2310 * @path:	path in extent tree to @lblk
2311 * @lblk:	pointer to logical block around which we want to determine hole
2312 *
2313 * Determine hole length (and start if easily possible) around given logical
2314 * block. We don't try too hard to find the beginning of the hole but @path
2315 * actually points to extent before @lblk, we provide it.
2316 *
2317 * The function returns the length of a hole starting at @lblk. We update @lblk
2318 * to the beginning of the hole if we managed to find it.
2319 */
2320static ext4_lblk_t ext4_ext_determine_hole(struct inode *inode,
2321					   struct ext4_ext_path *path,
2322					   ext4_lblk_t *lblk)
2323{
2324	int depth = ext_depth(inode);
 
 
2325	struct ext4_extent *ex;
2326	ext4_lblk_t len;
2327
2328	ex = path[depth].p_ext;
2329	if (ex == NULL) {
2330		/* there is no extent yet, so gap is [0;-] */
2331		*lblk = 0;
2332		len = EXT_MAX_BLOCKS;
2333	} else if (*lblk < le32_to_cpu(ex->ee_block)) {
2334		len = le32_to_cpu(ex->ee_block) - *lblk;
2335	} else if (*lblk >= le32_to_cpu(ex->ee_block)
 
 
 
 
 
 
2336			+ ext4_ext_get_actual_len(ex)) {
2337		ext4_lblk_t next;
 
 
2338
2339		*lblk = le32_to_cpu(ex->ee_block) + ext4_ext_get_actual_len(ex);
2340		next = ext4_ext_next_allocated_block(path);
2341		BUG_ON(next == *lblk);
2342		len = next - *lblk;
 
 
 
 
2343	} else {
 
2344		BUG();
2345	}
2346	return len;
 
 
2347}
2348
2349/*
2350 * ext4_ext_put_gap_in_cache:
2351 * calculate boundaries of the gap that the requested block fits into
2352 * and cache this gap
 
 
 
 
 
 
 
 
 
 
 
2353 */
2354static void
2355ext4_ext_put_gap_in_cache(struct inode *inode, ext4_lblk_t hole_start,
2356			  ext4_lblk_t hole_len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2357{
2358	struct extent_status es;
 
 
 
 
 
 
 
 
2359
2360	ext4_es_find_delayed_extent_range(inode, hole_start,
2361					  hole_start + hole_len - 1, &es);
2362	if (es.es_len) {
2363		/* There's delayed extent containing lblock? */
2364		if (es.es_lblk <= hole_start)
2365			return;
2366		hole_len = min(es.es_lblk - hole_start, hole_len);
2367	}
2368	ext_debug(" -> %u:%u\n", hole_start, hole_len);
2369	ext4_es_insert_extent(inode, hole_start, hole_len, ~0,
2370			      EXTENT_STATUS_HOLE);
2371}
2372
 
2373/*
2374 * ext4_ext_rm_idx:
2375 * removes index from the index block.
2376 */
2377static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2378			struct ext4_ext_path *path, int depth)
2379{
2380	int err;
2381	ext4_fsblk_t leaf;
2382
2383	/* free index block */
2384	depth--;
2385	path = path + depth;
2386	leaf = ext4_idx_pblock(path->p_idx);
2387	if (unlikely(path->p_hdr->eh_entries == 0)) {
2388		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2389		return -EFSCORRUPTED;
2390	}
2391	err = ext4_ext_get_access(handle, inode, path);
2392	if (err)
2393		return err;
2394
2395	if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2396		int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2397		len *= sizeof(struct ext4_extent_idx);
2398		memmove(path->p_idx, path->p_idx + 1, len);
2399	}
2400
2401	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2402	err = ext4_ext_dirty(handle, inode, path);
2403	if (err)
2404		return err;
2405	ext_debug("index is empty, remove it, free block %llu\n", leaf);
2406	trace_ext4_ext_rm_idx(inode, leaf);
2407
2408	ext4_free_blocks(handle, inode, NULL, leaf, 1,
2409			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2410
2411	while (--depth >= 0) {
2412		if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2413			break;
2414		path--;
2415		err = ext4_ext_get_access(handle, inode, path);
2416		if (err)
2417			break;
2418		path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2419		err = ext4_ext_dirty(handle, inode, path);
2420		if (err)
2421			break;
2422	}
2423	return err;
2424}
2425
2426/*
2427 * ext4_ext_calc_credits_for_single_extent:
2428 * This routine returns max. credits that needed to insert an extent
2429 * to the extent tree.
2430 * When pass the actual path, the caller should calculate credits
2431 * under i_data_sem.
2432 */
2433int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2434						struct ext4_ext_path *path)
2435{
2436	if (path) {
2437		int depth = ext_depth(inode);
2438		int ret = 0;
2439
2440		/* probably there is space in leaf? */
2441		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2442				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2443
2444			/*
2445			 *  There are some space in the leaf tree, no
2446			 *  need to account for leaf block credit
2447			 *
2448			 *  bitmaps and block group descriptor blocks
2449			 *  and other metadata blocks still need to be
2450			 *  accounted.
2451			 */
2452			/* 1 bitmap, 1 block group descriptor */
2453			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2454			return ret;
2455		}
2456	}
2457
2458	return ext4_chunk_trans_blocks(inode, nrblocks);
2459}
2460
2461/*
2462 * How many index/leaf blocks need to change/allocate to add @extents extents?
2463 *
2464 * If we add a single extent, then in the worse case, each tree level
2465 * index/leaf need to be changed in case of the tree split.
 
 
2466 *
2467 * If more extents are inserted, they could cause the whole tree split more
2468 * than once, but this is really rare.
2469 */
2470int ext4_ext_index_trans_blocks(struct inode *inode, int extents)
2471{
2472	int index;
2473	int depth;
2474
2475	/* If we are converting the inline data, only one is needed here. */
2476	if (ext4_has_inline_data(inode))
2477		return 1;
2478
2479	depth = ext_depth(inode);
2480
2481	if (extents <= 1)
2482		index = depth * 2;
2483	else
2484		index = depth * 3;
2485
2486	return index;
2487}
2488
2489static inline int get_default_free_blocks_flags(struct inode *inode)
2490{
2491	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2492		return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2493	else if (ext4_should_journal_data(inode))
2494		return EXT4_FREE_BLOCKS_FORGET;
2495	return 0;
2496}
2497
2498static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2499			      struct ext4_extent *ex,
2500			      long long *partial_cluster,
2501			      ext4_lblk_t from, ext4_lblk_t to)
2502{
2503	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2504	unsigned short ee_len = ext4_ext_get_actual_len(ex);
2505	ext4_fsblk_t pblk;
2506	int flags = get_default_free_blocks_flags(inode);
2507
 
 
2508	/*
2509	 * For bigalloc file systems, we never free a partial cluster
2510	 * at the beginning of the extent.  Instead, we make a note
2511	 * that we tried freeing the cluster, and check to see if we
2512	 * need to free it on a subsequent call to ext4_remove_blocks,
2513	 * or at the end of ext4_ext_rm_leaf or ext4_ext_remove_space.
2514	 */
2515	flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2516
2517	trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2518	/*
2519	 * If we have a partial cluster, and it's different from the
2520	 * cluster of the last block, we need to explicitly free the
2521	 * partial cluster here.
2522	 */
2523	pblk = ext4_ext_pblock(ex) + ee_len - 1;
2524	if (*partial_cluster > 0 &&
2525	    *partial_cluster != (long long) EXT4_B2C(sbi, pblk)) {
2526		ext4_free_blocks(handle, inode, NULL,
2527				 EXT4_C2B(sbi, *partial_cluster),
2528				 sbi->s_cluster_ratio, flags);
2529		*partial_cluster = 0;
2530	}
2531
2532#ifdef EXTENTS_STATS
2533	{
2534		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2535		spin_lock(&sbi->s_ext_stats_lock);
2536		sbi->s_ext_blocks += ee_len;
2537		sbi->s_ext_extents++;
2538		if (ee_len < sbi->s_ext_min)
2539			sbi->s_ext_min = ee_len;
2540		if (ee_len > sbi->s_ext_max)
2541			sbi->s_ext_max = ee_len;
2542		if (ext_depth(inode) > sbi->s_depth_max)
2543			sbi->s_depth_max = ext_depth(inode);
2544		spin_unlock(&sbi->s_ext_stats_lock);
2545	}
2546#endif
2547	if (from >= le32_to_cpu(ex->ee_block)
2548	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2549		/* tail removal */
2550		ext4_lblk_t num;
2551		long long first_cluster;
2552
2553		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2554		pblk = ext4_ext_pblock(ex) + ee_len - num;
2555		/*
2556		 * Usually we want to free partial cluster at the end of the
2557		 * extent, except for the situation when the cluster is still
2558		 * used by any other extent (partial_cluster is negative).
2559		 */
2560		if (*partial_cluster < 0 &&
2561		    *partial_cluster == -(long long) EXT4_B2C(sbi, pblk+num-1))
2562			flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER;
2563
2564		ext_debug("free last %u blocks starting %llu partial %lld\n",
2565			  num, pblk, *partial_cluster);
2566		ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2567		/*
2568		 * If the block range to be freed didn't start at the
2569		 * beginning of a cluster, and we removed the entire
2570		 * extent and the cluster is not used by any other extent,
2571		 * save the partial cluster here, since we might need to
2572		 * delete if we determine that the truncate or punch hole
2573		 * operation has removed all of the blocks in the cluster.
2574		 * If that cluster is used by another extent, preserve its
2575		 * negative value so it isn't freed later on.
2576		 *
2577		 * If the whole extent wasn't freed, we've reached the
2578		 * start of the truncated/punched region and have finished
2579		 * removing blocks.  If there's a partial cluster here it's
2580		 * shared with the remainder of the extent and is no longer
2581		 * a candidate for removal.
2582		 */
2583		if (EXT4_PBLK_COFF(sbi, pblk) && ee_len == num) {
2584			first_cluster = (long long) EXT4_B2C(sbi, pblk);
2585			if (first_cluster != -*partial_cluster)
2586				*partial_cluster = first_cluster;
2587		} else {
2588			*partial_cluster = 0;
2589		}
2590	} else
2591		ext4_error(sbi->s_sb, "strange request: removal(2) "
2592			   "%u-%u from %u:%u",
2593			   from, to, le32_to_cpu(ex->ee_block), ee_len);
 
 
 
 
 
 
 
 
 
 
 
 
2594	return 0;
2595}
2596
2597
2598/*
2599 * ext4_ext_rm_leaf() Removes the extents associated with the
2600 * blocks appearing between "start" and "end".  Both "start"
2601 * and "end" must appear in the same extent or EIO is returned.
2602 *
2603 * @handle: The journal handle
2604 * @inode:  The files inode
2605 * @path:   The path to the leaf
2606 * @partial_cluster: The cluster which we'll have to free if all extents
2607 *                   has been released from it.  However, if this value is
2608 *                   negative, it's a cluster just to the right of the
2609 *                   punched region and it must not be freed.
2610 * @start:  The first block to remove
2611 * @end:   The last block to remove
2612 */
2613static int
2614ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2615		 struct ext4_ext_path *path,
2616		 long long *partial_cluster,
2617		 ext4_lblk_t start, ext4_lblk_t end)
2618{
2619	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2620	int err = 0, correct_index = 0;
2621	int depth = ext_depth(inode), credits;
2622	struct ext4_extent_header *eh;
2623	ext4_lblk_t a, b;
2624	unsigned num;
2625	ext4_lblk_t ex_ee_block;
2626	unsigned short ex_ee_len;
2627	unsigned unwritten = 0;
2628	struct ext4_extent *ex;
2629	ext4_fsblk_t pblk;
2630
2631	/* the header must be checked already in ext4_ext_remove_space() */
2632	ext_debug("truncate since %u in leaf to %u\n", start, end);
2633	if (!path[depth].p_hdr)
2634		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2635	eh = path[depth].p_hdr;
2636	if (unlikely(path[depth].p_hdr == NULL)) {
2637		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2638		return -EFSCORRUPTED;
2639	}
2640	/* find where to start removing */
2641	ex = path[depth].p_ext;
2642	if (!ex)
2643		ex = EXT_LAST_EXTENT(eh);
2644
2645	ex_ee_block = le32_to_cpu(ex->ee_block);
2646	ex_ee_len = ext4_ext_get_actual_len(ex);
2647
2648	trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2649
2650	while (ex >= EXT_FIRST_EXTENT(eh) &&
2651			ex_ee_block + ex_ee_len > start) {
2652
2653		if (ext4_ext_is_unwritten(ex))
2654			unwritten = 1;
2655		else
2656			unwritten = 0;
2657
2658		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2659			  unwritten, ex_ee_len);
2660		path[depth].p_ext = ex;
2661
2662		a = ex_ee_block > start ? ex_ee_block : start;
2663		b = ex_ee_block+ex_ee_len - 1 < end ?
2664			ex_ee_block+ex_ee_len - 1 : end;
2665
2666		ext_debug("  border %u:%u\n", a, b);
2667
2668		/* If this extent is beyond the end of the hole, skip it */
2669		if (end < ex_ee_block) {
2670			/*
2671			 * We're going to skip this extent and move to another,
2672			 * so note that its first cluster is in use to avoid
2673			 * freeing it when removing blocks.  Eventually, the
2674			 * right edge of the truncated/punched region will
2675			 * be just to the left.
2676			 */
2677			if (sbi->s_cluster_ratio > 1) {
2678				pblk = ext4_ext_pblock(ex);
2679				*partial_cluster =
2680					-(long long) EXT4_B2C(sbi, pblk);
2681			}
2682			ex--;
2683			ex_ee_block = le32_to_cpu(ex->ee_block);
2684			ex_ee_len = ext4_ext_get_actual_len(ex);
2685			continue;
2686		} else if (b != ex_ee_block + ex_ee_len - 1) {
2687			EXT4_ERROR_INODE(inode,
2688					 "can not handle truncate %u:%u "
2689					 "on extent %u:%u",
2690					 start, end, ex_ee_block,
2691					 ex_ee_block + ex_ee_len - 1);
2692			err = -EFSCORRUPTED;
2693			goto out;
2694		} else if (a != ex_ee_block) {
2695			/* remove tail of the extent */
2696			num = a - ex_ee_block;
2697		} else {
2698			/* remove whole extent: excellent! */
2699			num = 0;
2700		}
2701		/*
2702		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2703		 * descriptor) for each block group; assume two block
2704		 * groups plus ex_ee_len/blocks_per_block_group for
2705		 * the worst case
2706		 */
2707		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2708		if (ex == EXT_FIRST_EXTENT(eh)) {
2709			correct_index = 1;
2710			credits += (ext_depth(inode)) + 1;
2711		}
2712		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2713
2714		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2715		if (err)
2716			goto out;
2717
2718		err = ext4_ext_get_access(handle, inode, path + depth);
2719		if (err)
2720			goto out;
2721
2722		err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2723					 a, b);
2724		if (err)
2725			goto out;
2726
2727		if (num == 0)
2728			/* this extent is removed; mark slot entirely unused */
2729			ext4_ext_store_pblock(ex, 0);
2730
2731		ex->ee_len = cpu_to_le16(num);
2732		/*
2733		 * Do not mark unwritten if all the blocks in the
2734		 * extent have been removed.
2735		 */
2736		if (unwritten && num)
2737			ext4_ext_mark_unwritten(ex);
2738		/*
2739		 * If the extent was completely released,
2740		 * we need to remove it from the leaf
2741		 */
2742		if (num == 0) {
2743			if (end != EXT_MAX_BLOCKS - 1) {
2744				/*
2745				 * For hole punching, we need to scoot all the
2746				 * extents up when an extent is removed so that
2747				 * we dont have blank extents in the middle
2748				 */
2749				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2750					sizeof(struct ext4_extent));
2751
2752				/* Now get rid of the one at the end */
2753				memset(EXT_LAST_EXTENT(eh), 0,
2754					sizeof(struct ext4_extent));
2755			}
2756			le16_add_cpu(&eh->eh_entries, -1);
2757		}
 
2758
2759		err = ext4_ext_dirty(handle, inode, path + depth);
2760		if (err)
2761			goto out;
2762
2763		ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2764				ext4_ext_pblock(ex));
2765		ex--;
2766		ex_ee_block = le32_to_cpu(ex->ee_block);
2767		ex_ee_len = ext4_ext_get_actual_len(ex);
2768	}
2769
2770	if (correct_index && eh->eh_entries)
2771		err = ext4_ext_correct_indexes(handle, inode, path);
2772
2773	/*
2774	 * If there's a partial cluster and at least one extent remains in
2775	 * the leaf, free the partial cluster if it isn't shared with the
2776	 * current extent.  If it is shared with the current extent
2777	 * we zero partial_cluster because we've reached the start of the
2778	 * truncated/punched region and we're done removing blocks.
2779	 */
2780	if (*partial_cluster > 0 && ex >= EXT_FIRST_EXTENT(eh)) {
2781		pblk = ext4_ext_pblock(ex) + ex_ee_len - 1;
2782		if (*partial_cluster != (long long) EXT4_B2C(sbi, pblk)) {
2783			ext4_free_blocks(handle, inode, NULL,
2784					 EXT4_C2B(sbi, *partial_cluster),
2785					 sbi->s_cluster_ratio,
2786					 get_default_free_blocks_flags(inode));
2787		}
 
2788		*partial_cluster = 0;
2789	}
2790
2791	/* if this leaf is free, then we should
2792	 * remove it from index block above */
2793	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2794		err = ext4_ext_rm_idx(handle, inode, path, depth);
2795
2796out:
2797	return err;
2798}
2799
2800/*
2801 * ext4_ext_more_to_rm:
2802 * returns 1 if current index has to be freed (even partial)
2803 */
2804static int
2805ext4_ext_more_to_rm(struct ext4_ext_path *path)
2806{
2807	BUG_ON(path->p_idx == NULL);
2808
2809	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2810		return 0;
2811
2812	/*
2813	 * if truncate on deeper level happened, it wasn't partial,
2814	 * so we have to consider current index for truncation
2815	 */
2816	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2817		return 0;
2818	return 1;
2819}
2820
2821int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2822			  ext4_lblk_t end)
2823{
2824	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2825	int depth = ext_depth(inode);
2826	struct ext4_ext_path *path = NULL;
2827	long long partial_cluster = 0;
2828	handle_t *handle;
2829	int i = 0, err = 0;
2830
2831	ext_debug("truncate since %u to %u\n", start, end);
2832
2833	/* probably first extent we're gonna free will be last in block */
2834	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2835	if (IS_ERR(handle))
2836		return PTR_ERR(handle);
2837
2838again:
2839	trace_ext4_ext_remove_space(inode, start, end, depth);
 
 
2840
2841	/*
2842	 * Check if we are removing extents inside the extent tree. If that
2843	 * is the case, we are going to punch a hole inside the extent tree
2844	 * so we have to check whether we need to split the extent covering
2845	 * the last block to remove so we can easily remove the part of it
2846	 * in ext4_ext_rm_leaf().
2847	 */
2848	if (end < EXT_MAX_BLOCKS - 1) {
2849		struct ext4_extent *ex;
2850		ext4_lblk_t ee_block, ex_end, lblk;
2851		ext4_fsblk_t pblk;
2852
2853		/* find extent for or closest extent to this block */
2854		path = ext4_find_extent(inode, end, NULL, EXT4_EX_NOCACHE);
2855		if (IS_ERR(path)) {
2856			ext4_journal_stop(handle);
2857			return PTR_ERR(path);
2858		}
2859		depth = ext_depth(inode);
2860		/* Leaf not may not exist only if inode has no blocks at all */
2861		ex = path[depth].p_ext;
2862		if (!ex) {
2863			if (depth) {
2864				EXT4_ERROR_INODE(inode,
2865						 "path[%d].p_hdr == NULL",
2866						 depth);
2867				err = -EFSCORRUPTED;
2868			}
2869			goto out;
2870		}
2871
2872		ee_block = le32_to_cpu(ex->ee_block);
2873		ex_end = ee_block + ext4_ext_get_actual_len(ex) - 1;
2874
2875		/*
2876		 * See if the last block is inside the extent, if so split
2877		 * the extent at 'end' block so we can easily remove the
2878		 * tail of the first part of the split extent in
2879		 * ext4_ext_rm_leaf().
2880		 */
2881		if (end >= ee_block && end < ex_end) {
2882
2883			/*
2884			 * If we're going to split the extent, note that
2885			 * the cluster containing the block after 'end' is
2886			 * in use to avoid freeing it when removing blocks.
2887			 */
2888			if (sbi->s_cluster_ratio > 1) {
2889				pblk = ext4_ext_pblock(ex) + end - ee_block + 2;
2890				partial_cluster =
2891					-(long long) EXT4_B2C(sbi, pblk);
2892			}
2893
2894			/*
2895			 * Split the extent in two so that 'end' is the last
2896			 * block in the first new extent. Also we should not
2897			 * fail removing space due to ENOSPC so try to use
2898			 * reserved block if that happens.
2899			 */
2900			err = ext4_force_split_extent_at(handle, inode, &path,
2901							 end + 1, 1);
2902			if (err < 0)
2903				goto out;
2904
2905		} else if (sbi->s_cluster_ratio > 1 && end >= ex_end) {
2906			/*
2907			 * If there's an extent to the right its first cluster
2908			 * contains the immediate right boundary of the
2909			 * truncated/punched region.  Set partial_cluster to
2910			 * its negative value so it won't be freed if shared
2911			 * with the current extent.  The end < ee_block case
2912			 * is handled in ext4_ext_rm_leaf().
2913			 */
2914			lblk = ex_end + 1;
2915			err = ext4_ext_search_right(inode, path, &lblk, &pblk,
2916						    &ex);
2917			if (err)
2918				goto out;
2919			if (pblk)
2920				partial_cluster =
2921					-(long long) EXT4_B2C(sbi, pblk);
2922		}
2923	}
 
 
2924	/*
2925	 * We start scanning from right side, freeing all the blocks
2926	 * after i_size and walking into the tree depth-wise.
2927	 */
2928	depth = ext_depth(inode);
2929	if (path) {
2930		int k = i = depth;
2931		while (--k > 0)
2932			path[k].p_block =
2933				le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2934	} else {
2935		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2936			       GFP_NOFS);
2937		if (path == NULL) {
2938			ext4_journal_stop(handle);
2939			return -ENOMEM;
2940		}
2941		path[0].p_maxdepth = path[0].p_depth = depth;
2942		path[0].p_hdr = ext_inode_hdr(inode);
2943		i = 0;
2944
2945		if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) {
2946			err = -EFSCORRUPTED;
2947			goto out;
2948		}
2949	}
2950	err = 0;
2951
2952	while (i >= 0 && err == 0) {
2953		if (i == depth) {
2954			/* this is leaf block */
2955			err = ext4_ext_rm_leaf(handle, inode, path,
2956					       &partial_cluster, start,
2957					       end);
2958			/* root level has p_bh == NULL, brelse() eats this */
2959			brelse(path[i].p_bh);
2960			path[i].p_bh = NULL;
2961			i--;
2962			continue;
2963		}
2964
2965		/* this is index block */
2966		if (!path[i].p_hdr) {
2967			ext_debug("initialize header\n");
2968			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2969		}
2970
2971		if (!path[i].p_idx) {
2972			/* this level hasn't been touched yet */
2973			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2974			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2975			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2976				  path[i].p_hdr,
2977				  le16_to_cpu(path[i].p_hdr->eh_entries));
2978		} else {
2979			/* we were already here, see at next index */
2980			path[i].p_idx--;
2981		}
2982
2983		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2984				i, EXT_FIRST_INDEX(path[i].p_hdr),
2985				path[i].p_idx);
2986		if (ext4_ext_more_to_rm(path + i)) {
2987			struct buffer_head *bh;
2988			/* go to the next level */
2989			ext_debug("move to level %d (block %llu)\n",
2990				  i + 1, ext4_idx_pblock(path[i].p_idx));
2991			memset(path + i + 1, 0, sizeof(*path));
2992			bh = read_extent_tree_block(inode,
2993				ext4_idx_pblock(path[i].p_idx), depth - i - 1,
2994				EXT4_EX_NOCACHE);
2995			if (IS_ERR(bh)) {
2996				/* should we reset i_size? */
2997				err = PTR_ERR(bh);
2998				break;
2999			}
3000			/* Yield here to deal with large extent trees.
3001			 * Should be a no-op if we did IO above. */
3002			cond_resched();
3003			if (WARN_ON(i + 1 > depth)) {
3004				err = -EFSCORRUPTED;
 
 
 
 
 
3005				break;
3006			}
3007			path[i + 1].p_bh = bh;
3008
3009			/* save actual number of indexes since this
3010			 * number is changed at the next iteration */
3011			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
3012			i++;
3013		} else {
3014			/* we finished processing this index, go up */
3015			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
3016				/* index is empty, remove it;
3017				 * handle must be already prepared by the
3018				 * truncatei_leaf() */
3019				err = ext4_ext_rm_idx(handle, inode, path, i);
3020			}
3021			/* root level has p_bh == NULL, brelse() eats this */
3022			brelse(path[i].p_bh);
3023			path[i].p_bh = NULL;
3024			i--;
3025			ext_debug("return to level %d\n", i);
3026		}
3027	}
3028
3029	trace_ext4_ext_remove_space_done(inode, start, end, depth,
3030			partial_cluster, path->p_hdr->eh_entries);
3031
3032	/*
3033	 * If we still have something in the partial cluster and we have removed
3034	 * even the first extent, then we should free the blocks in the partial
3035	 * cluster as well.  (This code will only run when there are no leaves
3036	 * to the immediate left of the truncated/punched region.)
3037	 */
3038	if (partial_cluster > 0 && err == 0) {
3039		/* don't zero partial_cluster since it's not used afterwards */
 
 
3040		ext4_free_blocks(handle, inode, NULL,
3041				 EXT4_C2B(sbi, partial_cluster),
3042				 sbi->s_cluster_ratio,
3043				 get_default_free_blocks_flags(inode));
3044	}
3045
3046	/* TODO: flexible tree reduction should be here */
3047	if (path->p_hdr->eh_entries == 0) {
3048		/*
3049		 * truncate to zero freed all the tree,
3050		 * so we need to correct eh_depth
3051		 */
3052		err = ext4_ext_get_access(handle, inode, path);
3053		if (err == 0) {
3054			ext_inode_hdr(inode)->eh_depth = 0;
3055			ext_inode_hdr(inode)->eh_max =
3056				cpu_to_le16(ext4_ext_space_root(inode, 0));
3057			err = ext4_ext_dirty(handle, inode, path);
3058		}
3059	}
3060out:
3061	ext4_ext_drop_refs(path);
3062	kfree(path);
3063	path = NULL;
3064	if (err == -EAGAIN)
3065		goto again;
 
3066	ext4_journal_stop(handle);
3067
3068	return err;
3069}
3070
3071/*
3072 * called at mount time
3073 */
3074void ext4_ext_init(struct super_block *sb)
3075{
3076	/*
3077	 * possible initialization would be here
3078	 */
3079
3080	if (ext4_has_feature_extents(sb)) {
3081#if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
3082		printk(KERN_INFO "EXT4-fs: file extents enabled"
3083#ifdef AGGRESSIVE_TEST
3084		       ", aggressive tests"
3085#endif
3086#ifdef CHECK_BINSEARCH
3087		       ", check binsearch"
3088#endif
3089#ifdef EXTENTS_STATS
3090		       ", stats"
3091#endif
3092		       "\n");
3093#endif
3094#ifdef EXTENTS_STATS
3095		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
3096		EXT4_SB(sb)->s_ext_min = 1 << 30;
3097		EXT4_SB(sb)->s_ext_max = 0;
3098#endif
3099	}
3100}
3101
3102/*
3103 * called at umount time
3104 */
3105void ext4_ext_release(struct super_block *sb)
3106{
3107	if (!ext4_has_feature_extents(sb))
3108		return;
3109
3110#ifdef EXTENTS_STATS
3111	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
3112		struct ext4_sb_info *sbi = EXT4_SB(sb);
3113		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
3114			sbi->s_ext_blocks, sbi->s_ext_extents,
3115			sbi->s_ext_blocks / sbi->s_ext_extents);
3116		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
3117			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
3118	}
3119#endif
3120}
3121
3122static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex)
3123{
3124	ext4_lblk_t  ee_block;
3125	ext4_fsblk_t ee_pblock;
3126	unsigned int ee_len;
3127
3128	ee_block  = le32_to_cpu(ex->ee_block);
3129	ee_len    = ext4_ext_get_actual_len(ex);
3130	ee_pblock = ext4_ext_pblock(ex);
3131
3132	if (ee_len == 0)
3133		return 0;
3134
3135	return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock,
3136				     EXTENT_STATUS_WRITTEN);
3137}
3138
3139/* FIXME!! we need to try to merge to left or right after zero-out  */
3140static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
3141{
3142	ext4_fsblk_t ee_pblock;
3143	unsigned int ee_len;
 
3144
3145	ee_len    = ext4_ext_get_actual_len(ex);
3146	ee_pblock = ext4_ext_pblock(ex);
3147	return ext4_issue_zeroout(inode, le32_to_cpu(ex->ee_block), ee_pblock,
3148				  ee_len);
 
 
 
 
3149}
3150
3151/*
3152 * ext4_split_extent_at() splits an extent at given block.
3153 *
3154 * @handle: the journal handle
3155 * @inode: the file inode
3156 * @path: the path to the extent
3157 * @split: the logical block where the extent is splitted.
3158 * @split_flags: indicates if the extent could be zeroout if split fails, and
3159 *		 the states(init or unwritten) of new extents.
3160 * @flags: flags used to insert new extent to extent tree.
3161 *
3162 *
3163 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
3164 * of which are deterimined by split_flag.
3165 *
3166 * There are two cases:
3167 *  a> the extent are splitted into two extent.
3168 *  b> split is not needed, and just mark the extent.
3169 *
3170 * return 0 on success.
3171 */
3172static int ext4_split_extent_at(handle_t *handle,
3173			     struct inode *inode,
3174			     struct ext4_ext_path **ppath,
3175			     ext4_lblk_t split,
3176			     int split_flag,
3177			     int flags)
3178{
3179	struct ext4_ext_path *path = *ppath;
3180	ext4_fsblk_t newblock;
3181	ext4_lblk_t ee_block;
3182	struct ext4_extent *ex, newex, orig_ex, zero_ex;
3183	struct ext4_extent *ex2 = NULL;
3184	unsigned int ee_len, depth;
3185	int err = 0;
3186
3187	BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
3188	       (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
3189
3190	ext_debug("ext4_split_extents_at: inode %lu, logical"
3191		"block %llu\n", inode->i_ino, (unsigned long long)split);
3192
3193	ext4_ext_show_leaf(inode, path);
3194
3195	depth = ext_depth(inode);
3196	ex = path[depth].p_ext;
3197	ee_block = le32_to_cpu(ex->ee_block);
3198	ee_len = ext4_ext_get_actual_len(ex);
3199	newblock = split - ee_block + ext4_ext_pblock(ex);
3200
3201	BUG_ON(split < ee_block || split >= (ee_block + ee_len));
3202	BUG_ON(!ext4_ext_is_unwritten(ex) &&
3203	       split_flag & (EXT4_EXT_MAY_ZEROOUT |
3204			     EXT4_EXT_MARK_UNWRIT1 |
3205			     EXT4_EXT_MARK_UNWRIT2));
3206
3207	err = ext4_ext_get_access(handle, inode, path + depth);
3208	if (err)
3209		goto out;
3210
3211	if (split == ee_block) {
3212		/*
3213		 * case b: block @split is the block that the extent begins with
3214		 * then we just change the state of the extent, and splitting
3215		 * is not needed.
3216		 */
3217		if (split_flag & EXT4_EXT_MARK_UNWRIT2)
3218			ext4_ext_mark_unwritten(ex);
3219		else
3220			ext4_ext_mark_initialized(ex);
3221
3222		if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3223			ext4_ext_try_to_merge(handle, inode, path, ex);
3224
3225		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3226		goto out;
3227	}
3228
3229	/* case a */
3230	memcpy(&orig_ex, ex, sizeof(orig_ex));
3231	ex->ee_len = cpu_to_le16(split - ee_block);
3232	if (split_flag & EXT4_EXT_MARK_UNWRIT1)
3233		ext4_ext_mark_unwritten(ex);
3234
3235	/*
3236	 * path may lead to new leaf, not to original leaf any more
3237	 * after ext4_ext_insert_extent() returns,
3238	 */
3239	err = ext4_ext_dirty(handle, inode, path + depth);
3240	if (err)
3241		goto fix_extent_len;
3242
3243	ex2 = &newex;
3244	ex2->ee_block = cpu_to_le32(split);
3245	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
3246	ext4_ext_store_pblock(ex2, newblock);
3247	if (split_flag & EXT4_EXT_MARK_UNWRIT2)
3248		ext4_ext_mark_unwritten(ex2);
3249
3250	err = ext4_ext_insert_extent(handle, inode, ppath, &newex, flags);
3251	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3252		if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3253			if (split_flag & EXT4_EXT_DATA_VALID1) {
3254				err = ext4_ext_zeroout(inode, ex2);
3255				zero_ex.ee_block = ex2->ee_block;
3256				zero_ex.ee_len = cpu_to_le16(
3257						ext4_ext_get_actual_len(ex2));
3258				ext4_ext_store_pblock(&zero_ex,
3259						      ext4_ext_pblock(ex2));
3260			} else {
3261				err = ext4_ext_zeroout(inode, ex);
3262				zero_ex.ee_block = ex->ee_block;
3263				zero_ex.ee_len = cpu_to_le16(
3264						ext4_ext_get_actual_len(ex));
3265				ext4_ext_store_pblock(&zero_ex,
3266						      ext4_ext_pblock(ex));
3267			}
3268		} else {
3269			err = ext4_ext_zeroout(inode, &orig_ex);
3270			zero_ex.ee_block = orig_ex.ee_block;
3271			zero_ex.ee_len = cpu_to_le16(
3272						ext4_ext_get_actual_len(&orig_ex));
3273			ext4_ext_store_pblock(&zero_ex,
3274					      ext4_ext_pblock(&orig_ex));
3275		}
3276
3277		if (err)
3278			goto fix_extent_len;
3279		/* update the extent length and mark as initialized */
3280		ex->ee_len = cpu_to_le16(ee_len);
3281		ext4_ext_try_to_merge(handle, inode, path, ex);
3282		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3283		if (err)
3284			goto fix_extent_len;
3285
3286		/* update extent status tree */
3287		err = ext4_zeroout_es(inode, &zero_ex);
3288
3289		goto out;
3290	} else if (err)
3291		goto fix_extent_len;
3292
3293out:
3294	ext4_ext_show_leaf(inode, path);
3295	return err;
3296
3297fix_extent_len:
3298	ex->ee_len = orig_ex.ee_len;
3299	ext4_ext_dirty(handle, inode, path + path->p_depth);
3300	return err;
3301}
3302
3303/*
3304 * ext4_split_extents() splits an extent and mark extent which is covered
3305 * by @map as split_flags indicates
3306 *
3307 * It may result in splitting the extent into multiple extents (up to three)
3308 * There are three possibilities:
3309 *   a> There is no split required
3310 *   b> Splits in two extents: Split is happening at either end of the extent
3311 *   c> Splits in three extents: Somone is splitting in middle of the extent
3312 *
3313 */
3314static int ext4_split_extent(handle_t *handle,
3315			      struct inode *inode,
3316			      struct ext4_ext_path **ppath,
3317			      struct ext4_map_blocks *map,
3318			      int split_flag,
3319			      int flags)
3320{
3321	struct ext4_ext_path *path = *ppath;
3322	ext4_lblk_t ee_block;
3323	struct ext4_extent *ex;
3324	unsigned int ee_len, depth;
3325	int err = 0;
3326	int unwritten;
3327	int split_flag1, flags1;
3328	int allocated = map->m_len;
3329
3330	depth = ext_depth(inode);
3331	ex = path[depth].p_ext;
3332	ee_block = le32_to_cpu(ex->ee_block);
3333	ee_len = ext4_ext_get_actual_len(ex);
3334	unwritten = ext4_ext_is_unwritten(ex);
3335
3336	if (map->m_lblk + map->m_len < ee_block + ee_len) {
3337		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
 
3338		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3339		if (unwritten)
3340			split_flag1 |= EXT4_EXT_MARK_UNWRIT1 |
3341				       EXT4_EXT_MARK_UNWRIT2;
3342		if (split_flag & EXT4_EXT_DATA_VALID2)
3343			split_flag1 |= EXT4_EXT_DATA_VALID1;
3344		err = ext4_split_extent_at(handle, inode, ppath,
3345				map->m_lblk + map->m_len, split_flag1, flags1);
3346		if (err)
3347			goto out;
3348	} else {
3349		allocated = ee_len - (map->m_lblk - ee_block);
3350	}
3351	/*
3352	 * Update path is required because previous ext4_split_extent_at() may
3353	 * result in split of original leaf or extent zeroout.
3354	 */
3355	path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3356	if (IS_ERR(path))
3357		return PTR_ERR(path);
3358	depth = ext_depth(inode);
3359	ex = path[depth].p_ext;
3360	if (!ex) {
3361		EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
3362				 (unsigned long) map->m_lblk);
3363		return -EFSCORRUPTED;
3364	}
3365	unwritten = ext4_ext_is_unwritten(ex);
3366	split_flag1 = 0;
3367
3368	if (map->m_lblk >= ee_block) {
3369		split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
3370		if (unwritten) {
3371			split_flag1 |= EXT4_EXT_MARK_UNWRIT1;
3372			split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
3373						     EXT4_EXT_MARK_UNWRIT2);
3374		}
3375		err = ext4_split_extent_at(handle, inode, ppath,
3376				map->m_lblk, split_flag1, flags);
3377		if (err)
3378			goto out;
3379	}
3380
3381	ext4_ext_show_leaf(inode, path);
3382out:
3383	return err ? err : allocated;
3384}
3385
 
3386/*
3387 * This function is called by ext4_ext_map_blocks() if someone tries to write
3388 * to an unwritten extent. It may result in splitting the unwritten
3389 * extent into multiple extents (up to three - one initialized and two
3390 * unwritten).
3391 * There are three possibilities:
3392 *   a> There is no split required: Entire extent should be initialized
3393 *   b> Splits in two extents: Write is happening at either end of the extent
3394 *   c> Splits in three extents: Somone is writing in middle of the extent
3395 *
3396 * Pre-conditions:
3397 *  - The extent pointed to by 'path' is unwritten.
3398 *  - The extent pointed to by 'path' contains a superset
3399 *    of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3400 *
3401 * Post-conditions on success:
3402 *  - the returned value is the number of blocks beyond map->l_lblk
3403 *    that are allocated and initialized.
3404 *    It is guaranteed to be >= map->m_len.
3405 */
3406static int ext4_ext_convert_to_initialized(handle_t *handle,
3407					   struct inode *inode,
3408					   struct ext4_map_blocks *map,
3409					   struct ext4_ext_path **ppath,
3410					   int flags)
3411{
3412	struct ext4_ext_path *path = *ppath;
3413	struct ext4_sb_info *sbi;
3414	struct ext4_extent_header *eh;
3415	struct ext4_map_blocks split_map;
3416	struct ext4_extent zero_ex;
3417	struct ext4_extent *ex, *abut_ex;
3418	ext4_lblk_t ee_block, eof_block;
3419	unsigned int ee_len, depth, map_len = map->m_len;
3420	int allocated = 0, max_zeroout = 0;
3421	int err = 0;
3422	int split_flag = 0;
3423
3424	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3425		"block %llu, max_blocks %u\n", inode->i_ino,
3426		(unsigned long long)map->m_lblk, map_len);
3427
3428	sbi = EXT4_SB(inode->i_sb);
3429	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3430		inode->i_sb->s_blocksize_bits;
3431	if (eof_block < map->m_lblk + map_len)
3432		eof_block = map->m_lblk + map_len;
3433
3434	depth = ext_depth(inode);
3435	eh = path[depth].p_hdr;
3436	ex = path[depth].p_ext;
3437	ee_block = le32_to_cpu(ex->ee_block);
3438	ee_len = ext4_ext_get_actual_len(ex);
3439	zero_ex.ee_len = 0;
3440
3441	trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3442
3443	/* Pre-conditions */
3444	BUG_ON(!ext4_ext_is_unwritten(ex));
3445	BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3446
3447	/*
3448	 * Attempt to transfer newly initialized blocks from the currently
3449	 * unwritten extent to its neighbor. This is much cheaper
3450	 * than an insertion followed by a merge as those involve costly
3451	 * memmove() calls. Transferring to the left is the common case in
3452	 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE)
3453	 * followed by append writes.
3454	 *
3455	 * Limitations of the current logic:
3456	 *  - L1: we do not deal with writes covering the whole extent.
 
 
 
3457	 *    This would require removing the extent if the transfer
3458	 *    is possible.
3459	 *  - L2: we only attempt to merge with an extent stored in the
3460	 *    same extent tree node.
3461	 */
3462	if ((map->m_lblk == ee_block) &&
3463		/* See if we can merge left */
3464		(map_len < ee_len) &&		/*L1*/
3465		(ex > EXT_FIRST_EXTENT(eh))) {	/*L2*/
3466		ext4_lblk_t prev_lblk;
3467		ext4_fsblk_t prev_pblk, ee_pblk;
3468		unsigned int prev_len;
3469
3470		abut_ex = ex - 1;
3471		prev_lblk = le32_to_cpu(abut_ex->ee_block);
3472		prev_len = ext4_ext_get_actual_len(abut_ex);
3473		prev_pblk = ext4_ext_pblock(abut_ex);
3474		ee_pblk = ext4_ext_pblock(ex);
 
3475
3476		/*
3477		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3478		 * upon those conditions:
3479		 * - C1: abut_ex is initialized,
3480		 * - C2: abut_ex is logically abutting ex,
3481		 * - C3: abut_ex is physically abutting ex,
3482		 * - C4: abut_ex can receive the additional blocks without
3483		 *   overflowing the (initialized) length limit.
3484		 */
3485		if ((!ext4_ext_is_unwritten(abut_ex)) &&		/*C1*/
3486			((prev_lblk + prev_len) == ee_block) &&		/*C2*/
3487			((prev_pblk + prev_len) == ee_pblk) &&		/*C3*/
3488			(prev_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
3489			err = ext4_ext_get_access(handle, inode, path + depth);
3490			if (err)
3491				goto out;
3492
3493			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3494				map, ex, abut_ex);
3495
3496			/* Shift the start of ex by 'map_len' blocks */
3497			ex->ee_block = cpu_to_le32(ee_block + map_len);
3498			ext4_ext_store_pblock(ex, ee_pblk + map_len);
3499			ex->ee_len = cpu_to_le16(ee_len - map_len);
3500			ext4_ext_mark_unwritten(ex); /* Restore the flag */
3501
3502			/* Extend abut_ex by 'map_len' blocks */
3503			abut_ex->ee_len = cpu_to_le16(prev_len + map_len);
3504
3505			/* Result: number of initialized blocks past m_lblk */
3506			allocated = map_len;
3507		}
3508	} else if (((map->m_lblk + map_len) == (ee_block + ee_len)) &&
3509		   (map_len < ee_len) &&	/*L1*/
3510		   ex < EXT_LAST_EXTENT(eh)) {	/*L2*/
3511		/* See if we can merge right */
3512		ext4_lblk_t next_lblk;
3513		ext4_fsblk_t next_pblk, ee_pblk;
3514		unsigned int next_len;
3515
3516		abut_ex = ex + 1;
3517		next_lblk = le32_to_cpu(abut_ex->ee_block);
3518		next_len = ext4_ext_get_actual_len(abut_ex);
3519		next_pblk = ext4_ext_pblock(abut_ex);
3520		ee_pblk = ext4_ext_pblock(ex);
3521
3522		/*
3523		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3524		 * upon those conditions:
3525		 * - C1: abut_ex is initialized,
3526		 * - C2: abut_ex is logically abutting ex,
3527		 * - C3: abut_ex is physically abutting ex,
3528		 * - C4: abut_ex can receive the additional blocks without
3529		 *   overflowing the (initialized) length limit.
3530		 */
3531		if ((!ext4_ext_is_unwritten(abut_ex)) &&		/*C1*/
3532		    ((map->m_lblk + map_len) == next_lblk) &&		/*C2*/
3533		    ((ee_pblk + ee_len) == next_pblk) &&		/*C3*/
3534		    (next_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
3535			err = ext4_ext_get_access(handle, inode, path + depth);
3536			if (err)
3537				goto out;
3538
3539			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3540				map, ex, abut_ex);
3541
3542			/* Shift the start of abut_ex by 'map_len' blocks */
3543			abut_ex->ee_block = cpu_to_le32(next_lblk - map_len);
3544			ext4_ext_store_pblock(abut_ex, next_pblk - map_len);
3545			ex->ee_len = cpu_to_le16(ee_len - map_len);
3546			ext4_ext_mark_unwritten(ex); /* Restore the flag */
3547
3548			/* Extend abut_ex by 'map_len' blocks */
3549			abut_ex->ee_len = cpu_to_le16(next_len + map_len);
3550
3551			/* Result: number of initialized blocks past m_lblk */
3552			allocated = map_len;
 
3553		}
3554	}
3555	if (allocated) {
3556		/* Mark the block containing both extents as dirty */
3557		ext4_ext_dirty(handle, inode, path + depth);
3558
3559		/* Update path to point to the right extent */
3560		path[depth].p_ext = abut_ex;
3561		goto out;
3562	} else
3563		allocated = ee_len - (map->m_lblk - ee_block);
3564
3565	WARN_ON(map->m_lblk < ee_block);
3566	/*
3567	 * It is safe to convert extent to initialized via explicit
3568	 * zeroout only if extent is fully inside i_size or new_size.
3569	 */
3570	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3571
3572	if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3573		max_zeroout = sbi->s_extent_max_zeroout_kb >>
3574			(inode->i_sb->s_blocksize_bits - 10);
3575
3576	if (ext4_encrypted_inode(inode))
3577		max_zeroout = 0;
3578
3579	/* If extent is less than s_max_zeroout_kb, zeroout directly */
3580	if (max_zeroout && (ee_len <= max_zeroout)) {
3581		err = ext4_ext_zeroout(inode, ex);
3582		if (err)
3583			goto out;
3584		zero_ex.ee_block = ex->ee_block;
3585		zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex));
3586		ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex));
3587
3588		err = ext4_ext_get_access(handle, inode, path + depth);
3589		if (err)
3590			goto out;
3591		ext4_ext_mark_initialized(ex);
3592		ext4_ext_try_to_merge(handle, inode, path, ex);
3593		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3594		goto out;
3595	}
3596
3597	/*
3598	 * four cases:
3599	 * 1. split the extent into three extents.
3600	 * 2. split the extent into two extents, zeroout the first half.
3601	 * 3. split the extent into two extents, zeroout the second half.
3602	 * 4. split the extent into two extents with out zeroout.
3603	 */
3604	split_map.m_lblk = map->m_lblk;
3605	split_map.m_len = map->m_len;
3606
3607	if (max_zeroout && (allocated > map->m_len)) {
3608		if (allocated <= max_zeroout) {
 
3609			/* case 3 */
3610			zero_ex.ee_block =
3611					 cpu_to_le32(map->m_lblk);
3612			zero_ex.ee_len = cpu_to_le16(allocated);
3613			ext4_ext_store_pblock(&zero_ex,
3614				ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3615			err = ext4_ext_zeroout(inode, &zero_ex);
3616			if (err)
3617				goto out;
3618			split_map.m_lblk = map->m_lblk;
3619			split_map.m_len = allocated;
3620		} else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
 
 
3621			/* case 2 */
3622			if (map->m_lblk != ee_block) {
3623				zero_ex.ee_block = ex->ee_block;
3624				zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3625							ee_block);
3626				ext4_ext_store_pblock(&zero_ex,
3627						      ext4_ext_pblock(ex));
3628				err = ext4_ext_zeroout(inode, &zero_ex);
3629				if (err)
3630					goto out;
3631			}
3632
3633			split_map.m_lblk = ee_block;
3634			split_map.m_len = map->m_lblk - ee_block + map->m_len;
3635			allocated = map->m_len;
3636		}
3637	}
3638
3639	err = ext4_split_extent(handle, inode, ppath, &split_map, split_flag,
3640				flags);
3641	if (err > 0)
3642		err = 0;
 
3643out:
3644	/* If we have gotten a failure, don't zero out status tree */
3645	if (!err)
3646		err = ext4_zeroout_es(inode, &zero_ex);
3647	return err ? err : allocated;
3648}
3649
3650/*
3651 * This function is called by ext4_ext_map_blocks() from
3652 * ext4_get_blocks_dio_write() when DIO to write
3653 * to an unwritten extent.
3654 *
3655 * Writing to an unwritten extent may result in splitting the unwritten
3656 * extent into multiple initialized/unwritten extents (up to three)
3657 * There are three possibilities:
3658 *   a> There is no split required: Entire extent should be unwritten
3659 *   b> Splits in two extents: Write is happening at either end of the extent
3660 *   c> Splits in three extents: Somone is writing in middle of the extent
3661 *
3662 * This works the same way in the case of initialized -> unwritten conversion.
3663 *
3664 * One of more index blocks maybe needed if the extent tree grow after
3665 * the unwritten extent split. To prevent ENOSPC occur at the IO
3666 * complete, we need to split the unwritten extent before DIO submit
3667 * the IO. The unwritten extent called at this time will be split
3668 * into three unwritten extent(at most). After IO complete, the part
3669 * being filled will be convert to initialized by the end_io callback function
3670 * via ext4_convert_unwritten_extents().
3671 *
3672 * Returns the size of unwritten extent to be written on success.
3673 */
3674static int ext4_split_convert_extents(handle_t *handle,
3675					struct inode *inode,
3676					struct ext4_map_blocks *map,
3677					struct ext4_ext_path **ppath,
3678					int flags)
3679{
3680	struct ext4_ext_path *path = *ppath;
3681	ext4_lblk_t eof_block;
3682	ext4_lblk_t ee_block;
3683	struct ext4_extent *ex;
3684	unsigned int ee_len;
3685	int split_flag = 0, depth;
3686
3687	ext_debug("%s: inode %lu, logical block %llu, max_blocks %u\n",
3688		  __func__, inode->i_ino,
3689		  (unsigned long long)map->m_lblk, map->m_len);
3690
3691	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3692		inode->i_sb->s_blocksize_bits;
3693	if (eof_block < map->m_lblk + map->m_len)
3694		eof_block = map->m_lblk + map->m_len;
3695	/*
3696	 * It is safe to convert extent to initialized via explicit
3697	 * zeroout only if extent is fully insde i_size or new_size.
3698	 */
3699	depth = ext_depth(inode);
3700	ex = path[depth].p_ext;
3701	ee_block = le32_to_cpu(ex->ee_block);
3702	ee_len = ext4_ext_get_actual_len(ex);
3703
3704	/* Convert to unwritten */
3705	if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) {
3706		split_flag |= EXT4_EXT_DATA_VALID1;
3707	/* Convert to initialized */
3708	} else if (flags & EXT4_GET_BLOCKS_CONVERT) {
3709		split_flag |= ee_block + ee_len <= eof_block ?
3710			      EXT4_EXT_MAY_ZEROOUT : 0;
3711		split_flag |= (EXT4_EXT_MARK_UNWRIT2 | EXT4_EXT_DATA_VALID2);
3712	}
3713	flags |= EXT4_GET_BLOCKS_PRE_IO;
3714	return ext4_split_extent(handle, inode, ppath, map, split_flag, flags);
3715}
3716
3717static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3718						struct inode *inode,
3719						struct ext4_map_blocks *map,
3720						struct ext4_ext_path **ppath)
3721{
3722	struct ext4_ext_path *path = *ppath;
3723	struct ext4_extent *ex;
3724	ext4_lblk_t ee_block;
3725	unsigned int ee_len;
3726	int depth;
3727	int err = 0;
3728
3729	depth = ext_depth(inode);
3730	ex = path[depth].p_ext;
3731	ee_block = le32_to_cpu(ex->ee_block);
3732	ee_len = ext4_ext_get_actual_len(ex);
3733
3734	ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3735		"block %llu, max_blocks %u\n", inode->i_ino,
3736		  (unsigned long long)ee_block, ee_len);
3737
3738	/* If extent is larger than requested it is a clear sign that we still
3739	 * have some extent state machine issues left. So extent_split is still
3740	 * required.
3741	 * TODO: Once all related issues will be fixed this situation should be
3742	 * illegal.
3743	 */
3744	if (ee_block != map->m_lblk || ee_len > map->m_len) {
3745#ifdef EXT4_DEBUG
3746		ext4_warning("Inode (%ld) finished: extent logical block %llu,"
3747			     " len %u; IO logical block %llu, len %u",
3748			     inode->i_ino, (unsigned long long)ee_block, ee_len,
3749			     (unsigned long long)map->m_lblk, map->m_len);
3750#endif
3751		err = ext4_split_convert_extents(handle, inode, map, ppath,
3752						 EXT4_GET_BLOCKS_CONVERT);
3753		if (err < 0)
3754			return err;
3755		path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3756		if (IS_ERR(path))
3757			return PTR_ERR(path);
3758		depth = ext_depth(inode);
3759		ex = path[depth].p_ext;
3760	}
3761
3762	err = ext4_ext_get_access(handle, inode, path + depth);
3763	if (err)
3764		goto out;
3765	/* first mark the extent as initialized */
3766	ext4_ext_mark_initialized(ex);
3767
3768	/* note: ext4_ext_correct_indexes() isn't needed here because
3769	 * borders are not changed
3770	 */
3771	ext4_ext_try_to_merge(handle, inode, path, ex);
3772
3773	/* Mark modified extent as dirty */
3774	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3775out:
3776	ext4_ext_show_leaf(inode, path);
3777	return err;
3778}
3779
 
 
 
 
 
 
 
 
3780/*
3781 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3782 */
3783static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3784			      ext4_lblk_t lblk,
3785			      struct ext4_ext_path *path,
3786			      unsigned int len)
3787{
3788	int i, depth;
3789	struct ext4_extent_header *eh;
3790	struct ext4_extent *last_ex;
3791
3792	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3793		return 0;
3794
3795	depth = ext_depth(inode);
3796	eh = path[depth].p_hdr;
3797
3798	/*
3799	 * We're going to remove EOFBLOCKS_FL entirely in future so we
3800	 * do not care for this case anymore. Simply remove the flag
3801	 * if there are no extents.
3802	 */
3803	if (unlikely(!eh->eh_entries))
3804		goto out;
3805	last_ex = EXT_LAST_EXTENT(eh);
3806	/*
3807	 * We should clear the EOFBLOCKS_FL flag if we are writing the
3808	 * last block in the last extent in the file.  We test this by
3809	 * first checking to see if the caller to
3810	 * ext4_ext_get_blocks() was interested in the last block (or
3811	 * a block beyond the last block) in the current extent.  If
3812	 * this turns out to be false, we can bail out from this
3813	 * function immediately.
3814	 */
3815	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3816	    ext4_ext_get_actual_len(last_ex))
3817		return 0;
3818	/*
3819	 * If the caller does appear to be planning to write at or
3820	 * beyond the end of the current extent, we then test to see
3821	 * if the current extent is the last extent in the file, by
3822	 * checking to make sure it was reached via the rightmost node
3823	 * at each level of the tree.
3824	 */
3825	for (i = depth-1; i >= 0; i--)
3826		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3827			return 0;
3828out:
3829	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3830	return ext4_mark_inode_dirty(handle, inode);
3831}
3832
3833/**
3834 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3835 *
3836 * Return 1 if there is a delalloc block in the range, otherwise 0.
3837 */
3838int ext4_find_delalloc_range(struct inode *inode,
3839			     ext4_lblk_t lblk_start,
3840			     ext4_lblk_t lblk_end)
3841{
3842	struct extent_status es;
3843
3844	ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es);
3845	if (es.es_len == 0)
3846		return 0; /* there is no delay extent in this tree */
3847	else if (es.es_lblk <= lblk_start &&
3848		 lblk_start < es.es_lblk + es.es_len)
3849		return 1;
3850	else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3851		return 1;
3852	else
 
 
 
 
 
3853		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3854}
3855
3856int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
 
3857{
3858	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3859	ext4_lblk_t lblk_start, lblk_end;
3860	lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
3861	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3862
3863	return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
 
3864}
3865
3866/**
3867 * Determines how many complete clusters (out of those specified by the 'map')
3868 * are under delalloc and were reserved quota for.
3869 * This function is called when we are writing out the blocks that were
3870 * originally written with their allocation delayed, but then the space was
3871 * allocated using fallocate() before the delayed allocation could be resolved.
3872 * The cases to look for are:
3873 * ('=' indicated delayed allocated blocks
3874 *  '-' indicates non-delayed allocated blocks)
3875 * (a) partial clusters towards beginning and/or end outside of allocated range
3876 *     are not delalloc'ed.
3877 *	Ex:
3878 *	|----c---=|====c====|====c====|===-c----|
3879 *	         |++++++ allocated ++++++|
3880 *	==> 4 complete clusters in above example
3881 *
3882 * (b) partial cluster (outside of allocated range) towards either end is
3883 *     marked for delayed allocation. In this case, we will exclude that
3884 *     cluster.
3885 *	Ex:
3886 *	|----====c========|========c========|
3887 *	     |++++++ allocated ++++++|
3888 *	==> 1 complete clusters in above example
3889 *
3890 *	Ex:
3891 *	|================c================|
3892 *            |++++++ allocated ++++++|
3893 *	==> 0 complete clusters in above example
3894 *
3895 * The ext4_da_update_reserve_space will be called only if we
3896 * determine here that there were some "entire" clusters that span
3897 * this 'allocated' range.
3898 * In the non-bigalloc case, this function will just end up returning num_blks
3899 * without ever calling ext4_find_delalloc_range.
3900 */
3901static unsigned int
3902get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3903			   unsigned int num_blks)
3904{
3905	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3906	ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3907	ext4_lblk_t lblk_from, lblk_to, c_offset;
3908	unsigned int allocated_clusters = 0;
3909
3910	alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3911	alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3912
3913	/* max possible clusters for this allocation */
3914	allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3915
3916	trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3917
3918	/* Check towards left side */
3919	c_offset = EXT4_LBLK_COFF(sbi, lblk_start);
3920	if (c_offset) {
3921		lblk_from = EXT4_LBLK_CMASK(sbi, lblk_start);
3922		lblk_to = lblk_from + c_offset - 1;
3923
3924		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3925			allocated_clusters--;
3926	}
3927
3928	/* Now check towards right. */
3929	c_offset = EXT4_LBLK_COFF(sbi, lblk_start + num_blks);
3930	if (allocated_clusters && c_offset) {
3931		lblk_from = lblk_start + num_blks;
3932		lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3933
3934		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3935			allocated_clusters--;
3936	}
3937
3938	return allocated_clusters;
3939}
3940
3941static int
3942convert_initialized_extent(handle_t *handle, struct inode *inode,
3943			   struct ext4_map_blocks *map,
3944			   struct ext4_ext_path **ppath,
3945			   unsigned int allocated)
3946{
3947	struct ext4_ext_path *path = *ppath;
3948	struct ext4_extent *ex;
3949	ext4_lblk_t ee_block;
3950	unsigned int ee_len;
3951	int depth;
3952	int err = 0;
3953
3954	/*
3955	 * Make sure that the extent is no bigger than we support with
3956	 * unwritten extent
3957	 */
3958	if (map->m_len > EXT_UNWRITTEN_MAX_LEN)
3959		map->m_len = EXT_UNWRITTEN_MAX_LEN / 2;
3960
3961	depth = ext_depth(inode);
3962	ex = path[depth].p_ext;
3963	ee_block = le32_to_cpu(ex->ee_block);
3964	ee_len = ext4_ext_get_actual_len(ex);
3965
3966	ext_debug("%s: inode %lu, logical"
3967		"block %llu, max_blocks %u\n", __func__, inode->i_ino,
3968		  (unsigned long long)ee_block, ee_len);
3969
3970	if (ee_block != map->m_lblk || ee_len > map->m_len) {
3971		err = ext4_split_convert_extents(handle, inode, map, ppath,
3972				EXT4_GET_BLOCKS_CONVERT_UNWRITTEN);
3973		if (err < 0)
3974			return err;
3975		path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3976		if (IS_ERR(path))
3977			return PTR_ERR(path);
3978		depth = ext_depth(inode);
3979		ex = path[depth].p_ext;
3980		if (!ex) {
3981			EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
3982					 (unsigned long) map->m_lblk);
3983			return -EFSCORRUPTED;
3984		}
3985	}
3986
3987	err = ext4_ext_get_access(handle, inode, path + depth);
3988	if (err)
3989		return err;
3990	/* first mark the extent as unwritten */
3991	ext4_ext_mark_unwritten(ex);
3992
3993	/* note: ext4_ext_correct_indexes() isn't needed here because
3994	 * borders are not changed
3995	 */
3996	ext4_ext_try_to_merge(handle, inode, path, ex);
3997
3998	/* Mark modified extent as dirty */
3999	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
4000	if (err)
4001		return err;
4002	ext4_ext_show_leaf(inode, path);
4003
4004	ext4_update_inode_fsync_trans(handle, inode, 1);
4005	err = check_eofblocks_fl(handle, inode, map->m_lblk, path, map->m_len);
4006	if (err)
4007		return err;
4008	map->m_flags |= EXT4_MAP_UNWRITTEN;
4009	if (allocated > map->m_len)
4010		allocated = map->m_len;
4011	map->m_len = allocated;
4012	return allocated;
4013}
4014
4015static int
4016ext4_ext_handle_unwritten_extents(handle_t *handle, struct inode *inode,
4017			struct ext4_map_blocks *map,
4018			struct ext4_ext_path **ppath, int flags,
4019			unsigned int allocated, ext4_fsblk_t newblock)
4020{
4021	struct ext4_ext_path *path = *ppath;
4022	int ret = 0;
4023	int err = 0;
 
4024
4025	ext_debug("ext4_ext_handle_unwritten_extents: inode %lu, logical "
4026		  "block %llu, max_blocks %u, flags %x, allocated %u\n",
4027		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
4028		  flags, allocated);
4029	ext4_ext_show_leaf(inode, path);
4030
4031	/*
4032	 * When writing into unwritten space, we should not fail to
4033	 * allocate metadata blocks for the new extent block if needed.
4034	 */
4035	flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL;
4036
4037	trace_ext4_ext_handle_unwritten_extents(inode, map, flags,
4038						    allocated, newblock);
4039
4040	/* get_block() before submit the IO, split the extent */
4041	if (flags & EXT4_GET_BLOCKS_PRE_IO) {
4042		ret = ext4_split_convert_extents(handle, inode, map, ppath,
4043					 flags | EXT4_GET_BLOCKS_CONVERT);
4044		if (ret <= 0)
4045			goto out;
4046		map->m_flags |= EXT4_MAP_UNWRITTEN;
 
 
 
 
 
 
 
 
4047		goto out;
4048	}
4049	/* IO end_io complete, convert the filled extent to written */
4050	if (flags & EXT4_GET_BLOCKS_CONVERT) {
4051		if (flags & EXT4_GET_BLOCKS_ZERO) {
4052			if (allocated > map->m_len)
4053				allocated = map->m_len;
4054			err = ext4_issue_zeroout(inode, map->m_lblk, newblock,
4055						 allocated);
4056			if (err < 0)
4057				goto out2;
4058		}
4059		ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
4060							   ppath);
4061		if (ret >= 0) {
4062			ext4_update_inode_fsync_trans(handle, inode, 1);
4063			err = check_eofblocks_fl(handle, inode, map->m_lblk,
4064						 path, map->m_len);
4065		} else
4066			err = ret;
4067		map->m_flags |= EXT4_MAP_MAPPED;
4068		map->m_pblk = newblock;
4069		if (allocated > map->m_len)
4070			allocated = map->m_len;
4071		map->m_len = allocated;
4072		goto out2;
4073	}
4074	/* buffered IO case */
4075	/*
4076	 * repeat fallocate creation request
4077	 * we already have an unwritten extent
4078	 */
4079	if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) {
4080		map->m_flags |= EXT4_MAP_UNWRITTEN;
4081		goto map_out;
4082	}
4083
4084	/* buffered READ or buffered write_begin() lookup */
4085	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4086		/*
4087		 * We have blocks reserved already.  We
4088		 * return allocated blocks so that delalloc
4089		 * won't do block reservation for us.  But
4090		 * the buffer head will be unmapped so that
4091		 * a read from the block returns 0s.
4092		 */
4093		map->m_flags |= EXT4_MAP_UNWRITTEN;
4094		goto out1;
4095	}
4096
4097	/* buffered write, writepage time, convert*/
4098	ret = ext4_ext_convert_to_initialized(handle, inode, map, ppath, flags);
4099	if (ret >= 0)
4100		ext4_update_inode_fsync_trans(handle, inode, 1);
4101out:
4102	if (ret <= 0) {
4103		err = ret;
4104		goto out2;
4105	} else
4106		allocated = ret;
4107	map->m_flags |= EXT4_MAP_NEW;
4108	/*
4109	 * if we allocated more blocks than requested
4110	 * we need to make sure we unmap the extra block
4111	 * allocated. The actual needed block will get
4112	 * unmapped later when we find the buffer_head marked
4113	 * new.
4114	 */
4115	if (allocated > map->m_len) {
4116		clean_bdev_aliases(inode->i_sb->s_bdev, newblock + map->m_len,
4117				   allocated - map->m_len);
 
4118		allocated = map->m_len;
4119	}
4120	map->m_len = allocated;
4121
4122	/*
4123	 * If we have done fallocate with the offset that is already
4124	 * delayed allocated, we would have block reservation
4125	 * and quota reservation done in the delayed write path.
4126	 * But fallocate would have already updated quota and block
4127	 * count for this offset. So cancel these reservation
4128	 */
4129	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4130		unsigned int reserved_clusters;
4131		reserved_clusters = get_reserved_cluster_alloc(inode,
4132				map->m_lblk, map->m_len);
4133		if (reserved_clusters)
4134			ext4_da_update_reserve_space(inode,
4135						     reserved_clusters,
4136						     0);
4137	}
4138
4139map_out:
4140	map->m_flags |= EXT4_MAP_MAPPED;
4141	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
4142		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
4143					 map->m_len);
4144		if (err < 0)
4145			goto out2;
4146	}
4147out1:
4148	if (allocated > map->m_len)
4149		allocated = map->m_len;
4150	ext4_ext_show_leaf(inode, path);
4151	map->m_pblk = newblock;
4152	map->m_len = allocated;
4153out2:
 
 
 
 
4154	return err ? err : allocated;
4155}
4156
4157/*
4158 * get_implied_cluster_alloc - check to see if the requested
4159 * allocation (in the map structure) overlaps with a cluster already
4160 * allocated in an extent.
4161 *	@sb	The filesystem superblock structure
4162 *	@map	The requested lblk->pblk mapping
4163 *	@ex	The extent structure which might contain an implied
4164 *			cluster allocation
4165 *
4166 * This function is called by ext4_ext_map_blocks() after we failed to
4167 * find blocks that were already in the inode's extent tree.  Hence,
4168 * we know that the beginning of the requested region cannot overlap
4169 * the extent from the inode's extent tree.  There are three cases we
4170 * want to catch.  The first is this case:
4171 *
4172 *		 |--- cluster # N--|
4173 *    |--- extent ---|	|---- requested region ---|
4174 *			|==========|
4175 *
4176 * The second case that we need to test for is this one:
4177 *
4178 *   |--------- cluster # N ----------------|
4179 *	   |--- requested region --|   |------- extent ----|
4180 *	   |=======================|
4181 *
4182 * The third case is when the requested region lies between two extents
4183 * within the same cluster:
4184 *          |------------- cluster # N-------------|
4185 * |----- ex -----|                  |---- ex_right ----|
4186 *                  |------ requested region ------|
4187 *                  |================|
4188 *
4189 * In each of the above cases, we need to set the map->m_pblk and
4190 * map->m_len so it corresponds to the return the extent labelled as
4191 * "|====|" from cluster #N, since it is already in use for data in
4192 * cluster EXT4_B2C(sbi, map->m_lblk).	We will then return 1 to
4193 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
4194 * as a new "allocated" block region.  Otherwise, we will return 0 and
4195 * ext4_ext_map_blocks() will then allocate one or more new clusters
4196 * by calling ext4_mb_new_blocks().
4197 */
4198static int get_implied_cluster_alloc(struct super_block *sb,
4199				     struct ext4_map_blocks *map,
4200				     struct ext4_extent *ex,
4201				     struct ext4_ext_path *path)
4202{
4203	struct ext4_sb_info *sbi = EXT4_SB(sb);
4204	ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4205	ext4_lblk_t ex_cluster_start, ex_cluster_end;
4206	ext4_lblk_t rr_cluster_start;
4207	ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4208	ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4209	unsigned short ee_len = ext4_ext_get_actual_len(ex);
4210
4211	/* The extent passed in that we are trying to match */
4212	ex_cluster_start = EXT4_B2C(sbi, ee_block);
4213	ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
4214
4215	/* The requested region passed into ext4_map_blocks() */
4216	rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
4217
4218	if ((rr_cluster_start == ex_cluster_end) ||
4219	    (rr_cluster_start == ex_cluster_start)) {
4220		if (rr_cluster_start == ex_cluster_end)
4221			ee_start += ee_len - 1;
4222		map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset;
 
4223		map->m_len = min(map->m_len,
4224				 (unsigned) sbi->s_cluster_ratio - c_offset);
4225		/*
4226		 * Check for and handle this case:
4227		 *
4228		 *   |--------- cluster # N-------------|
4229		 *		       |------- extent ----|
4230		 *	   |--- requested region ---|
4231		 *	   |===========|
4232		 */
4233
4234		if (map->m_lblk < ee_block)
4235			map->m_len = min(map->m_len, ee_block - map->m_lblk);
4236
4237		/*
4238		 * Check for the case where there is already another allocated
4239		 * block to the right of 'ex' but before the end of the cluster.
4240		 *
4241		 *          |------------- cluster # N-------------|
4242		 * |----- ex -----|                  |---- ex_right ----|
4243		 *                  |------ requested region ------|
4244		 *                  |================|
4245		 */
4246		if (map->m_lblk > ee_block) {
4247			ext4_lblk_t next = ext4_ext_next_allocated_block(path);
4248			map->m_len = min(map->m_len, next - map->m_lblk);
4249		}
4250
4251		trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
4252		return 1;
4253	}
4254
4255	trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
4256	return 0;
4257}
4258
4259
4260/*
4261 * Block allocation/map/preallocation routine for extents based files
4262 *
4263 *
4264 * Need to be called with
4265 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
4266 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
4267 *
4268 * return > 0, number of of blocks already mapped/allocated
4269 *          if create == 0 and these are pre-allocated blocks
4270 *          	buffer head is unmapped
4271 *          otherwise blocks are mapped
4272 *
4273 * return = 0, if plain look up failed (blocks have not been allocated)
4274 *          buffer head is unmapped
4275 *
4276 * return < 0, error case.
4277 */
4278int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
4279			struct ext4_map_blocks *map, int flags)
4280{
4281	struct ext4_ext_path *path = NULL;
4282	struct ext4_extent newex, *ex, *ex2;
4283	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4284	ext4_fsblk_t newblock = 0;
4285	int free_on_err = 0, err = 0, depth, ret;
4286	unsigned int allocated = 0, offset = 0;
4287	unsigned int allocated_clusters = 0;
4288	struct ext4_allocation_request ar;
 
4289	ext4_lblk_t cluster_offset;
4290	bool map_from_cluster = false;
4291
4292	ext_debug("blocks %u/%u requested for inode %lu\n",
4293		  map->m_lblk, map->m_len, inode->i_ino);
4294	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
4295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4296	/* find extent for this block */
4297	path = ext4_find_extent(inode, map->m_lblk, NULL, 0);
4298	if (IS_ERR(path)) {
4299		err = PTR_ERR(path);
4300		path = NULL;
4301		goto out2;
4302	}
4303
4304	depth = ext_depth(inode);
4305
4306	/*
4307	 * consistent leaf must not be empty;
4308	 * this situation is possible, though, _during_ tree modification;
4309	 * this is why assert can't be put in ext4_find_extent()
4310	 */
4311	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
4312		EXT4_ERROR_INODE(inode, "bad extent address "
4313				 "lblock: %lu, depth: %d pblock %lld",
4314				 (unsigned long) map->m_lblk, depth,
4315				 path[depth].p_block);
4316		err = -EFSCORRUPTED;
4317		goto out2;
4318	}
4319
4320	ex = path[depth].p_ext;
4321	if (ex) {
4322		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4323		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4324		unsigned short ee_len;
4325
4326
4327		/*
4328		 * unwritten extents are treated as holes, except that
4329		 * we split out initialized portions during a write.
4330		 */
4331		ee_len = ext4_ext_get_actual_len(ex);
4332
4333		trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
4334
4335		/* if found extent covers block, simply return it */
4336		if (in_range(map->m_lblk, ee_block, ee_len)) {
4337			newblock = map->m_lblk - ee_block + ee_start;
4338			/* number of remaining blocks in the extent */
4339			allocated = ee_len - (map->m_lblk - ee_block);
4340			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
4341				  ee_block, ee_len, newblock);
4342
4343			/*
4344			 * If the extent is initialized check whether the
4345			 * caller wants to convert it to unwritten.
4346			 */
4347			if ((!ext4_ext_is_unwritten(ex)) &&
4348			    (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) {
4349				allocated = convert_initialized_extent(
4350						handle, inode, map, &path,
4351						allocated);
4352				goto out2;
4353			} else if (!ext4_ext_is_unwritten(ex))
4354				goto out;
4355
4356			ret = ext4_ext_handle_unwritten_extents(
4357				handle, inode, map, &path, flags,
4358				allocated, newblock);
4359			if (ret < 0)
4360				err = ret;
4361			else
4362				allocated = ret;
4363			goto out2;
4364		}
4365	}
4366
 
 
 
 
4367	/*
4368	 * requested block isn't allocated yet;
4369	 * we couldn't try to create block if create flag is zero
4370	 */
4371	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4372		ext4_lblk_t hole_start, hole_len;
4373
4374		hole_start = map->m_lblk;
4375		hole_len = ext4_ext_determine_hole(inode, path, &hole_start);
4376		/*
4377		 * put just found gap into cache to speed up
4378		 * subsequent requests
4379		 */
4380		ext4_ext_put_gap_in_cache(inode, hole_start, hole_len);
4381
4382		/* Update hole_len to reflect hole size after map->m_lblk */
4383		if (hole_start != map->m_lblk)
4384			hole_len -= map->m_lblk - hole_start;
4385		map->m_pblk = 0;
4386		map->m_len = min_t(unsigned int, map->m_len, hole_len);
4387
4388		goto out2;
4389	}
4390
4391	/*
4392	 * Okay, we need to do block allocation.
4393	 */
 
4394	newex.ee_block = cpu_to_le32(map->m_lblk);
4395	cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4396
4397	/*
4398	 * If we are doing bigalloc, check to see if the extent returned
4399	 * by ext4_find_extent() implies a cluster we can use.
4400	 */
4401	if (cluster_offset && ex &&
4402	    get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4403		ar.len = allocated = map->m_len;
4404		newblock = map->m_pblk;
4405		map_from_cluster = true;
4406		goto got_allocated_blocks;
4407	}
4408
4409	/* find neighbour allocated blocks */
4410	ar.lleft = map->m_lblk;
4411	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4412	if (err)
4413		goto out2;
4414	ar.lright = map->m_lblk;
4415	ex2 = NULL;
4416	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4417	if (err)
4418		goto out2;
4419
4420	/* Check if the extent after searching to the right implies a
4421	 * cluster we can use. */
4422	if ((sbi->s_cluster_ratio > 1) && ex2 &&
4423	    get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4424		ar.len = allocated = map->m_len;
4425		newblock = map->m_pblk;
4426		map_from_cluster = true;
4427		goto got_allocated_blocks;
4428	}
4429
4430	/*
4431	 * See if request is beyond maximum number of blocks we can have in
4432	 * a single extent. For an initialized extent this limit is
4433	 * EXT_INIT_MAX_LEN and for an unwritten extent this limit is
4434	 * EXT_UNWRITTEN_MAX_LEN.
4435	 */
4436	if (map->m_len > EXT_INIT_MAX_LEN &&
4437	    !(flags & EXT4_GET_BLOCKS_UNWRIT_EXT))
4438		map->m_len = EXT_INIT_MAX_LEN;
4439	else if (map->m_len > EXT_UNWRITTEN_MAX_LEN &&
4440		 (flags & EXT4_GET_BLOCKS_UNWRIT_EXT))
4441		map->m_len = EXT_UNWRITTEN_MAX_LEN;
4442
4443	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4444	newex.ee_len = cpu_to_le16(map->m_len);
4445	err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4446	if (err)
4447		allocated = ext4_ext_get_actual_len(&newex);
4448	else
4449		allocated = map->m_len;
4450
4451	/* allocate new block */
4452	ar.inode = inode;
4453	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4454	ar.logical = map->m_lblk;
4455	/*
4456	 * We calculate the offset from the beginning of the cluster
4457	 * for the logical block number, since when we allocate a
4458	 * physical cluster, the physical block should start at the
4459	 * same offset from the beginning of the cluster.  This is
4460	 * needed so that future calls to get_implied_cluster_alloc()
4461	 * work correctly.
4462	 */
4463	offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4464	ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4465	ar.goal -= offset;
4466	ar.logical -= offset;
4467	if (S_ISREG(inode->i_mode))
4468		ar.flags = EXT4_MB_HINT_DATA;
4469	else
4470		/* disable in-core preallocation for non-regular files */
4471		ar.flags = 0;
4472	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4473		ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4474	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
4475		ar.flags |= EXT4_MB_DELALLOC_RESERVED;
4476	if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
4477		ar.flags |= EXT4_MB_USE_RESERVED;
4478	newblock = ext4_mb_new_blocks(handle, &ar, &err);
4479	if (!newblock)
4480		goto out2;
4481	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4482		  ar.goal, newblock, allocated);
4483	free_on_err = 1;
4484	allocated_clusters = ar.len;
4485	ar.len = EXT4_C2B(sbi, ar.len) - offset;
4486	if (ar.len > allocated)
4487		ar.len = allocated;
4488
4489got_allocated_blocks:
4490	/* try to insert new extent into found leaf and return */
4491	ext4_ext_store_pblock(&newex, newblock + offset);
4492	newex.ee_len = cpu_to_le16(ar.len);
4493	/* Mark unwritten */
4494	if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT){
4495		ext4_ext_mark_unwritten(&newex);
4496		map->m_flags |= EXT4_MAP_UNWRITTEN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4497	}
4498
4499	err = 0;
4500	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4501		err = check_eofblocks_fl(handle, inode, map->m_lblk,
4502					 path, ar.len);
4503	if (!err)
4504		err = ext4_ext_insert_extent(handle, inode, &path,
4505					     &newex, flags);
4506
4507	if (err && free_on_err) {
4508		int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4509			EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4510		/* free data blocks we just allocated */
4511		/* not a good idea to call discard here directly,
4512		 * but otherwise we'd need to call it every free() */
4513		ext4_discard_preallocations(inode);
4514		ext4_free_blocks(handle, inode, NULL, newblock,
4515				 EXT4_C2B(sbi, allocated_clusters), fb_flags);
4516		goto out2;
4517	}
4518
4519	/* previous routine could use block we allocated */
4520	newblock = ext4_ext_pblock(&newex);
4521	allocated = ext4_ext_get_actual_len(&newex);
4522	if (allocated > map->m_len)
4523		allocated = map->m_len;
4524	map->m_flags |= EXT4_MAP_NEW;
4525
4526	/*
4527	 * Update reserved blocks/metadata blocks after successful
4528	 * block allocation which had been deferred till now.
4529	 */
4530	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4531		unsigned int reserved_clusters;
4532		/*
4533		 * Check how many clusters we had reserved this allocated range
4534		 */
4535		reserved_clusters = get_reserved_cluster_alloc(inode,
4536						map->m_lblk, allocated);
4537		if (!map_from_cluster) {
 
 
 
 
 
 
 
 
 
 
 
 
4538			BUG_ON(allocated_clusters < reserved_clusters);
 
 
 
4539			if (reserved_clusters < allocated_clusters) {
4540				struct ext4_inode_info *ei = EXT4_I(inode);
4541				int reservation = allocated_clusters -
4542						  reserved_clusters;
4543				/*
4544				 * It seems we claimed few clusters outside of
4545				 * the range of this allocation. We should give
4546				 * it back to the reservation pool. This can
4547				 * happen in the following case:
4548				 *
4549				 * * Suppose s_cluster_ratio is 4 (i.e., each
4550				 *   cluster has 4 blocks. Thus, the clusters
4551				 *   are [0-3],[4-7],[8-11]...
4552				 * * First comes delayed allocation write for
4553				 *   logical blocks 10 & 11. Since there were no
4554				 *   previous delayed allocated blocks in the
4555				 *   range [8-11], we would reserve 1 cluster
4556				 *   for this write.
4557				 * * Next comes write for logical blocks 3 to 8.
4558				 *   In this case, we will reserve 2 clusters
4559				 *   (for [0-3] and [4-7]; and not for [8-11] as
4560				 *   that range has a delayed allocated blocks.
4561				 *   Thus total reserved clusters now becomes 3.
4562				 * * Now, during the delayed allocation writeout
4563				 *   time, we will first write blocks [3-8] and
4564				 *   allocate 3 clusters for writing these
4565				 *   blocks. Also, we would claim all these
4566				 *   three clusters above.
4567				 * * Now when we come here to writeout the
4568				 *   blocks [10-11], we would expect to claim
4569				 *   the reservation of 1 cluster we had made
4570				 *   (and we would claim it since there are no
4571				 *   more delayed allocated blocks in the range
4572				 *   [8-11]. But our reserved cluster count had
4573				 *   already gone to 0.
4574				 *
4575				 *   Thus, at the step 4 above when we determine
4576				 *   that there are still some unwritten delayed
4577				 *   allocated blocks outside of our current
4578				 *   block range, we should increment the
4579				 *   reserved clusters count so that when the
4580				 *   remaining blocks finally gets written, we
4581				 *   could claim them.
4582				 */
4583				dquot_reserve_block(inode,
4584						EXT4_C2B(sbi, reservation));
4585				spin_lock(&ei->i_block_reservation_lock);
4586				ei->i_reserved_data_blocks += reservation;
4587				spin_unlock(&ei->i_block_reservation_lock);
4588			}
4589			/*
4590			 * We will claim quota for all newly allocated blocks.
4591			 * We're updating the reserved space *after* the
4592			 * correction above so we do not accidentally free
4593			 * all the metadata reservation because we might
4594			 * actually need it later on.
4595			 */
4596			ext4_da_update_reserve_space(inode, allocated_clusters,
4597							1);
4598		}
4599	}
4600
4601	/*
4602	 * Cache the extent and update transaction to commit on fdatasync only
4603	 * when it is _not_ an unwritten extent.
4604	 */
4605	if ((flags & EXT4_GET_BLOCKS_UNWRIT_EXT) == 0)
 
4606		ext4_update_inode_fsync_trans(handle, inode, 1);
4607	else
4608		ext4_update_inode_fsync_trans(handle, inode, 0);
4609out:
4610	if (allocated > map->m_len)
4611		allocated = map->m_len;
4612	ext4_ext_show_leaf(inode, path);
4613	map->m_flags |= EXT4_MAP_MAPPED;
4614	map->m_pblk = newblock;
4615	map->m_len = allocated;
4616out2:
4617	ext4_ext_drop_refs(path);
4618	kfree(path);
 
 
 
 
 
4619
4620	trace_ext4_ext_map_blocks_exit(inode, flags, map,
4621				       err ? err : allocated);
4622	return err ? err : allocated;
4623}
4624
4625int ext4_ext_truncate(handle_t *handle, struct inode *inode)
4626{
 
4627	struct super_block *sb = inode->i_sb;
4628	ext4_lblk_t last_block;
 
 
4629	int err = 0;
4630
4631	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4632	 * TODO: optimization is possible here.
4633	 * Probably we need not scan at all,
4634	 * because page truncation is enough.
4635	 */
4636
4637	/* we have to know where to truncate from in crash case */
4638	EXT4_I(inode)->i_disksize = inode->i_size;
4639	err = ext4_mark_inode_dirty(handle, inode);
4640	if (err)
4641		return err;
4642
4643	last_block = (inode->i_size + sb->s_blocksize - 1)
4644			>> EXT4_BLOCK_SIZE_BITS(sb);
4645retry:
4646	err = ext4_es_remove_extent(inode, last_block,
4647				    EXT_MAX_BLOCKS - last_block);
4648	if (err == -ENOMEM) {
4649		cond_resched();
4650		congestion_wait(BLK_RW_ASYNC, HZ/50);
4651		goto retry;
4652	}
4653	if (err)
4654		return err;
4655	return ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4656}
4657
4658static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset,
4659				  ext4_lblk_t len, loff_t new_size,
4660				  int flags, int mode)
4661{
4662	struct inode *inode = file_inode(file);
4663	handle_t *handle;
4664	int ret = 0;
4665	int ret2 = 0;
4666	int retries = 0;
4667	int depth = 0;
4668	struct ext4_map_blocks map;
4669	unsigned int credits;
4670	loff_t epos;
4671
4672	BUG_ON(!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS));
4673	map.m_lblk = offset;
4674	map.m_len = len;
4675	/*
4676	 * Don't normalize the request if it can fit in one extent so
4677	 * that it doesn't get unnecessarily split into multiple
4678	 * extents.
4679	 */
4680	if (len <= EXT_UNWRITTEN_MAX_LEN)
4681		flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
 
 
4682
 
4683	/*
4684	 * credits to insert 1 extent into extent tree
 
 
 
 
4685	 */
4686	credits = ext4_chunk_trans_blocks(inode, len);
4687	depth = ext_depth(inode);
4688
4689retry:
4690	while (ret >= 0 && len) {
4691		/*
4692		 * Recalculate credits when extent tree depth changes.
4693		 */
4694		if (depth != ext_depth(inode)) {
4695			credits = ext4_chunk_trans_blocks(inode, len);
4696			depth = ext_depth(inode);
4697		}
4698
4699		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4700					    credits);
4701		if (IS_ERR(handle)) {
4702			ret = PTR_ERR(handle);
4703			break;
4704		}
4705		ret = ext4_map_blocks(handle, inode, &map, flags);
4706		if (ret <= 0) {
4707			ext4_debug("inode #%lu: block %u: len %u: "
4708				   "ext4_ext_map_blocks returned %d",
4709				   inode->i_ino, map.m_lblk,
4710				   map.m_len, ret);
4711			ext4_mark_inode_dirty(handle, inode);
4712			ret2 = ext4_journal_stop(handle);
4713			break;
4714		}
4715		map.m_lblk += ret;
4716		map.m_len = len = len - ret;
4717		epos = (loff_t)map.m_lblk << inode->i_blkbits;
4718		inode->i_ctime = current_time(inode);
4719		if (new_size) {
4720			if (epos > new_size)
4721				epos = new_size;
4722			if (ext4_update_inode_size(inode, epos) & 0x1)
4723				inode->i_mtime = inode->i_ctime;
4724		} else {
4725			if (epos > inode->i_size)
4726				ext4_set_inode_flag(inode,
4727						    EXT4_INODE_EOFBLOCKS);
4728		}
4729		ext4_mark_inode_dirty(handle, inode);
4730		ret2 = ext4_journal_stop(handle);
4731		if (ret2)
4732			break;
4733	}
4734	if (ret == -ENOSPC &&
4735			ext4_should_retry_alloc(inode->i_sb, &retries)) {
4736		ret = 0;
4737		goto retry;
4738	}
4739
4740	return ret > 0 ? ret2 : ret;
 
 
4741}
4742
4743static long ext4_zero_range(struct file *file, loff_t offset,
4744			    loff_t len, int mode)
4745{
4746	struct inode *inode = file_inode(file);
4747	handle_t *handle = NULL;
4748	unsigned int max_blocks;
4749	loff_t new_size = 0;
4750	int ret = 0;
4751	int flags;
4752	int credits;
4753	int partial_begin, partial_end;
4754	loff_t start, end;
4755	ext4_lblk_t lblk;
4756	unsigned int blkbits = inode->i_blkbits;
4757
4758	trace_ext4_zero_range(inode, offset, len, mode);
4759
4760	if (!S_ISREG(inode->i_mode))
4761		return -EINVAL;
4762
4763	/* Call ext4_force_commit to flush all data in case of data=journal. */
4764	if (ext4_should_journal_data(inode)) {
4765		ret = ext4_force_commit(inode->i_sb);
4766		if (ret)
4767			return ret;
4768	}
4769
4770	/*
4771	 * Round up offset. This is not fallocate, we neet to zero out
4772	 * blocks, so convert interior block aligned part of the range to
4773	 * unwritten and possibly manually zero out unaligned parts of the
4774	 * range.
4775	 */
4776	start = round_up(offset, 1 << blkbits);
4777	end = round_down((offset + len), 1 << blkbits);
4778
4779	if (start < offset || end > offset + len)
4780		return -EINVAL;
4781	partial_begin = offset & ((1 << blkbits) - 1);
4782	partial_end = (offset + len) & ((1 << blkbits) - 1);
4783
4784	lblk = start >> blkbits;
4785	max_blocks = (end >> blkbits);
4786	if (max_blocks < lblk)
4787		max_blocks = 0;
4788	else
4789		max_blocks -= lblk;
4790
4791	inode_lock(inode);
4792
 
 
 
 
 
4793	/*
4794	 * Indirect files do not support unwritten extnets
 
4795	 */
4796	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4797		ret = -EOPNOTSUPP;
4798		goto out_mutex;
4799	}
4800
4801	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4802	     offset + len > i_size_read(inode)) {
4803		new_size = offset + len;
4804		ret = inode_newsize_ok(inode, new_size);
4805		if (ret)
4806			goto out_mutex;
4807	}
4808
4809	flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT;
4810	if (mode & FALLOC_FL_KEEP_SIZE)
4811		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4812
4813	/* Wait all existing dio workers, newcomers will block on i_mutex */
4814	ext4_inode_block_unlocked_dio(inode);
4815	inode_dio_wait(inode);
4816
4817	/* Preallocate the range including the unaligned edges */
4818	if (partial_begin || partial_end) {
4819		ret = ext4_alloc_file_blocks(file,
4820				round_down(offset, 1 << blkbits) >> blkbits,
4821				(round_up((offset + len), 1 << blkbits) -
4822				 round_down(offset, 1 << blkbits)) >> blkbits,
4823				new_size, flags, mode);
4824		if (ret)
4825			goto out_dio;
4826
4827	}
4828
4829	/* Zero range excluding the unaligned edges */
4830	if (max_blocks > 0) {
4831		flags |= (EXT4_GET_BLOCKS_CONVERT_UNWRITTEN |
4832			  EXT4_EX_NOCACHE);
4833
4834		/*
4835		 * Prevent page faults from reinstantiating pages we have
4836		 * released from page cache.
4837		 */
4838		down_write(&EXT4_I(inode)->i_mmap_sem);
4839		ret = ext4_update_disksize_before_punch(inode, offset, len);
4840		if (ret) {
4841			up_write(&EXT4_I(inode)->i_mmap_sem);
4842			goto out_dio;
4843		}
4844		/* Now release the pages and zero block aligned part of pages */
4845		truncate_pagecache_range(inode, start, end - 1);
4846		inode->i_mtime = inode->i_ctime = current_time(inode);
4847
4848		ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size,
4849					     flags, mode);
4850		up_write(&EXT4_I(inode)->i_mmap_sem);
4851		if (ret)
4852			goto out_dio;
4853	}
4854	if (!partial_begin && !partial_end)
4855		goto out_dio;
4856
4857	/*
4858	 * In worst case we have to writeout two nonadjacent unwritten
4859	 * blocks and update the inode
4860	 */
4861	credits = (2 * ext4_ext_index_trans_blocks(inode, 2)) + 1;
4862	if (ext4_should_journal_data(inode))
4863		credits += 2;
4864	handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
4865	if (IS_ERR(handle)) {
4866		ret = PTR_ERR(handle);
4867		ext4_std_error(inode->i_sb, ret);
4868		goto out_dio;
4869	}
4870
4871	inode->i_mtime = inode->i_ctime = current_time(inode);
4872	if (new_size) {
4873		ext4_update_inode_size(inode, new_size);
4874	} else {
4875		/*
4876		* Mark that we allocate beyond EOF so the subsequent truncate
4877		* can proceed even if the new size is the same as i_size.
4878		*/
4879		if ((offset + len) > i_size_read(inode))
4880			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4881	}
4882	ext4_mark_inode_dirty(handle, inode);
4883
4884	/* Zero out partial block at the edges of the range */
4885	ret = ext4_zero_partial_blocks(handle, inode, offset, len);
4886
4887	if (file->f_flags & O_SYNC)
4888		ext4_handle_sync(handle);
4889
4890	ext4_journal_stop(handle);
4891out_dio:
4892	ext4_inode_resume_unlocked_dio(inode);
4893out_mutex:
4894	inode_unlock(inode);
4895	return ret;
4896}
4897
4898/*
4899 * preallocate space for a file. This implements ext4's fallocate file
4900 * operation, which gets called from sys_fallocate system call.
4901 * For block-mapped files, posix_fallocate should fall back to the method
4902 * of writing zeroes to the required new blocks (the same behavior which is
4903 * expected for file systems which do not support fallocate() system call).
4904 */
4905long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4906{
4907	struct inode *inode = file_inode(file);
4908	loff_t new_size = 0;
 
4909	unsigned int max_blocks;
4910	int ret = 0;
 
 
4911	int flags;
4912	ext4_lblk_t lblk;
4913	unsigned int blkbits = inode->i_blkbits;
4914
4915	/*
4916	 * Encrypted inodes can't handle collapse range or insert
4917	 * range since we would need to re-encrypt blocks with a
4918	 * different IV or XTS tweak (which are based on the logical
4919	 * block number).
4920	 *
4921	 * XXX It's not clear why zero range isn't working, but we'll
4922	 * leave it disabled for encrypted inodes for now.  This is a
4923	 * bug we should fix....
4924	 */
4925	if (ext4_encrypted_inode(inode) &&
4926	    (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE |
4927		     FALLOC_FL_ZERO_RANGE)))
4928		return -EOPNOTSUPP;
4929
4930	/* Return error if mode is not supported */
4931	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
4932		     FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
4933		     FALLOC_FL_INSERT_RANGE))
4934		return -EOPNOTSUPP;
4935
4936	if (mode & FALLOC_FL_PUNCH_HOLE)
4937		return ext4_punch_hole(inode, offset, len);
4938
4939	ret = ext4_convert_inline_data(inode);
4940	if (ret)
4941		return ret;
4942
4943	if (mode & FALLOC_FL_COLLAPSE_RANGE)
4944		return ext4_collapse_range(inode, offset, len);
4945
4946	if (mode & FALLOC_FL_INSERT_RANGE)
4947		return ext4_insert_range(inode, offset, len);
4948
4949	if (mode & FALLOC_FL_ZERO_RANGE)
4950		return ext4_zero_range(file, offset, len, mode);
4951
4952	trace_ext4_fallocate_enter(inode, offset, len, mode);
4953	lblk = offset >> blkbits;
4954
4955	max_blocks = EXT4_MAX_BLOCKS(len, offset, blkbits);
4956	flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4957	if (mode & FALLOC_FL_KEEP_SIZE)
4958		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4959
4960	inode_lock(inode);
4961
4962	/*
4963	 * We only support preallocation for extent-based files only
 
 
4964	 */
4965	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4966		ret = -EOPNOTSUPP;
4967		goto out;
4968	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4969
4970	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4971	     offset + len > i_size_read(inode)) {
4972		new_size = offset + len;
4973		ret = inode_newsize_ok(inode, new_size);
4974		if (ret)
4975			goto out;
4976	}
4977
4978	/* Wait all existing dio workers, newcomers will block on i_mutex */
4979	ext4_inode_block_unlocked_dio(inode);
4980	inode_dio_wait(inode);
4981
4982	ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size,
4983				     flags, mode);
4984	ext4_inode_resume_unlocked_dio(inode);
4985	if (ret)
4986		goto out;
4987
4988	if (file->f_flags & O_SYNC && EXT4_SB(inode->i_sb)->s_journal) {
4989		ret = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
4990						EXT4_I(inode)->i_sync_tid);
4991	}
4992out:
4993	inode_unlock(inode);
4994	trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4995	return ret;
4996}
4997
4998/*
4999 * This function convert a range of blocks to written extents
5000 * The caller of this function will pass the start offset and the size.
5001 * all unwritten extents within this range will be converted to
5002 * written extents.
5003 *
5004 * This function is called from the direct IO end io call back
5005 * function, to convert the fallocated extents after IO is completed.
5006 * Returns 0 on success.
5007 */
5008int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode,
5009				   loff_t offset, ssize_t len)
5010{
 
5011	unsigned int max_blocks;
5012	int ret = 0;
5013	int ret2 = 0;
5014	struct ext4_map_blocks map;
5015	unsigned int credits, blkbits = inode->i_blkbits;
5016
5017	map.m_lblk = offset >> blkbits;
5018	max_blocks = EXT4_MAX_BLOCKS(len, offset, blkbits);
5019
5020	/*
5021	 * This is somewhat ugly but the idea is clear: When transaction is
5022	 * reserved, everything goes into it. Otherwise we rather start several
5023	 * smaller transactions for conversion of each extent separately.
5024	 */
5025	if (handle) {
5026		handle = ext4_journal_start_reserved(handle,
5027						     EXT4_HT_EXT_CONVERT);
5028		if (IS_ERR(handle))
5029			return PTR_ERR(handle);
5030		credits = 0;
5031	} else {
5032		/*
5033		 * credits to insert 1 extent into extent tree
5034		 */
5035		credits = ext4_chunk_trans_blocks(inode, max_blocks);
5036	}
5037	while (ret >= 0 && ret < max_blocks) {
5038		map.m_lblk += ret;
5039		map.m_len = (max_blocks -= ret);
5040		if (credits) {
5041			handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
5042						    credits);
5043			if (IS_ERR(handle)) {
5044				ret = PTR_ERR(handle);
5045				break;
5046			}
5047		}
5048		ret = ext4_map_blocks(handle, inode, &map,
5049				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
5050		if (ret <= 0)
5051			ext4_warning(inode->i_sb,
5052				     "inode #%lu: block %u: len %u: "
5053				     "ext4_ext_map_blocks returned %d",
5054				     inode->i_ino, map.m_lblk,
5055				     map.m_len, ret);
 
 
5056		ext4_mark_inode_dirty(handle, inode);
5057		if (credits)
5058			ret2 = ext4_journal_stop(handle);
5059		if (ret <= 0 || ret2)
5060			break;
5061	}
5062	if (!credits)
5063		ret2 = ext4_journal_stop(handle);
5064	return ret > 0 ? ret2 : ret;
5065}
5066
5067/*
5068 * If newes is not existing extent (newes->ec_pblk equals zero) find
5069 * delayed extent at start of newes and update newes accordingly and
5070 * return start of the next delayed extent.
5071 *
5072 * If newes is existing extent (newes->ec_pblk is not equal zero)
5073 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
5074 * extent found. Leave newes unmodified.
5075 */
5076static int ext4_find_delayed_extent(struct inode *inode,
5077				    struct extent_status *newes)
5078{
5079	struct extent_status es;
5080	ext4_lblk_t block, next_del;
5081
5082	if (newes->es_pblk == 0) {
5083		ext4_es_find_delayed_extent_range(inode, newes->es_lblk,
5084				newes->es_lblk + newes->es_len - 1, &es);
5085
 
 
 
 
5086		/*
5087		 * No extent in extent-tree contains block @newes->es_pblk,
5088		 * then the block may stay in 1)a hole or 2)delayed-extent.
 
 
 
 
 
 
 
 
 
 
5089		 */
5090		if (es.es_len == 0)
5091			/* A hole found. */
5092			return 0;
 
 
 
 
 
 
5093
5094		if (es.es_lblk > newes->es_lblk) {
5095			/* A hole found. */
5096			newes->es_len = min(es.es_lblk - newes->es_lblk,
5097					    newes->es_len);
5098			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5099		}
5100
5101		newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
 
 
5102	}
5103
5104	block = newes->es_lblk + newes->es_len;
5105	ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es);
5106	if (es.es_len == 0)
5107		next_del = EXT_MAX_BLOCKS;
5108	else
5109		next_del = es.es_lblk;
5110
5111	return next_del;
 
 
 
 
 
 
 
 
 
 
 
 
5112}
5113/* fiemap flags we can handle specified here */
5114#define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
5115
5116static int ext4_xattr_fiemap(struct inode *inode,
5117				struct fiemap_extent_info *fieinfo)
5118{
5119	__u64 physical = 0;
5120	__u64 length;
5121	__u32 flags = FIEMAP_EXTENT_LAST;
5122	int blockbits = inode->i_sb->s_blocksize_bits;
5123	int error = 0;
5124
5125	/* in-inode? */
5126	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
5127		struct ext4_iloc iloc;
5128		int offset;	/* offset of xattr in inode */
5129
5130		error = ext4_get_inode_loc(inode, &iloc);
5131		if (error)
5132			return error;
5133		physical = (__u64)iloc.bh->b_blocknr << blockbits;
5134		offset = EXT4_GOOD_OLD_INODE_SIZE +
5135				EXT4_I(inode)->i_extra_isize;
5136		physical += offset;
5137		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
5138		flags |= FIEMAP_EXTENT_DATA_INLINE;
5139		brelse(iloc.bh);
5140	} else { /* external block */
5141		physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
5142		length = inode->i_sb->s_blocksize;
5143	}
5144
5145	if (physical)
5146		error = fiemap_fill_next_extent(fieinfo, 0, physical,
5147						length, flags);
5148	return (error < 0 ? error : 0);
5149}
5150
5151int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
5152		__u64 start, __u64 len)
5153{
5154	ext4_lblk_t start_blk;
5155	int error = 0;
5156
5157	if (ext4_has_inline_data(inode)) {
5158		int has_inline = 1;
5159
5160		error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline,
5161						start, len);
5162
5163		if (has_inline)
5164			return error;
5165	}
5166
5167	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
5168		error = ext4_ext_precache(inode);
5169		if (error)
5170			return error;
5171	}
5172
5173	/* fallback to generic here if not in extents fmt */
5174	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5175		return generic_block_fiemap(inode, fieinfo, start, len,
5176			ext4_get_block);
5177
5178	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
5179		return -EBADR;
5180
5181	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
5182		error = ext4_xattr_fiemap(inode, fieinfo);
5183	} else {
5184		ext4_lblk_t len_blks;
5185		__u64 last_blk;
5186
5187		start_blk = start >> inode->i_sb->s_blocksize_bits;
5188		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
5189		if (last_blk >= EXT_MAX_BLOCKS)
5190			last_blk = EXT_MAX_BLOCKS-1;
5191		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
5192
5193		/*
5194		 * Walk the extent tree gathering extent information
5195		 * and pushing extents back to the user.
5196		 */
5197		error = ext4_fill_fiemap_extents(inode, start_blk,
5198						 len_blks, fieinfo);
5199	}
5200	return error;
5201}
5202
5203/*
5204 * ext4_access_path:
5205 * Function to access the path buffer for marking it dirty.
5206 * It also checks if there are sufficient credits left in the journal handle
5207 * to update path.
 
 
 
 
 
 
5208 */
5209static int
5210ext4_access_path(handle_t *handle, struct inode *inode,
5211		struct ext4_ext_path *path)
5212{
5213	int credits, err;
 
 
 
 
 
 
 
5214
5215	if (!ext4_handle_valid(handle))
 
5216		return 0;
5217
5218	/*
5219	 * Check if need to extend journal credits
5220	 * 3 for leaf, sb, and inode plus 2 (bmap and group
5221	 * descriptor) for each block group; assume two block
5222	 * groups
5223	 */
5224	if (handle->h_buffer_credits < 7) {
5225		credits = ext4_writepage_trans_blocks(inode);
5226		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
5227		/* EAGAIN is success */
5228		if (err && err != -EAGAIN)
5229			return err;
5230	}
5231
5232	err = ext4_ext_get_access(handle, inode, path);
5233	return err;
5234}
5235
5236/*
5237 * ext4_ext_shift_path_extents:
5238 * Shift the extents of a path structure lying between path[depth].p_ext
5239 * and EXT_LAST_EXTENT(path[depth].p_hdr), by @shift blocks. @SHIFT tells
5240 * if it is right shift or left shift operation.
5241 */
5242static int
5243ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift,
5244			    struct inode *inode, handle_t *handle,
5245			    enum SHIFT_DIRECTION SHIFT)
5246{
5247	int depth, err = 0;
5248	struct ext4_extent *ex_start, *ex_last;
5249	bool update = 0;
5250	depth = path->p_depth;
5251
5252	while (depth >= 0) {
5253		if (depth == path->p_depth) {
5254			ex_start = path[depth].p_ext;
5255			if (!ex_start)
5256				return -EFSCORRUPTED;
5257
5258			ex_last = EXT_LAST_EXTENT(path[depth].p_hdr);
5259
5260			err = ext4_access_path(handle, inode, path + depth);
5261			if (err)
5262				goto out;
5263
5264			if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr))
5265				update = 1;
5266
5267			while (ex_start <= ex_last) {
5268				if (SHIFT == SHIFT_LEFT) {
5269					le32_add_cpu(&ex_start->ee_block,
5270						-shift);
5271					/* Try to merge to the left. */
5272					if ((ex_start >
5273					    EXT_FIRST_EXTENT(path[depth].p_hdr))
5274					    &&
5275					    ext4_ext_try_to_merge_right(inode,
5276					    path, ex_start - 1))
5277						ex_last--;
5278					else
5279						ex_start++;
5280				} else {
5281					le32_add_cpu(&ex_last->ee_block, shift);
5282					ext4_ext_try_to_merge_right(inode, path,
5283						ex_last);
5284					ex_last--;
5285				}
5286			}
5287			err = ext4_ext_dirty(handle, inode, path + depth);
5288			if (err)
5289				goto out;
5290
5291			if (--depth < 0 || !update)
5292				break;
5293		}
5294
5295		/* Update index too */
5296		err = ext4_access_path(handle, inode, path + depth);
5297		if (err)
5298			goto out;
5299
5300		if (SHIFT == SHIFT_LEFT)
5301			le32_add_cpu(&path[depth].p_idx->ei_block, -shift);
5302		else
5303			le32_add_cpu(&path[depth].p_idx->ei_block, shift);
5304		err = ext4_ext_dirty(handle, inode, path + depth);
5305		if (err)
5306			goto out;
5307
5308		/* we are done if current index is not a starting index */
5309		if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr))
5310			break;
5311
5312		depth--;
 
 
 
5313	}
5314
5315out:
5316	return err;
5317}
5318
5319/*
5320 * ext4_ext_shift_extents:
5321 * All the extents which lies in the range from @start to the last allocated
5322 * block for the @inode are shifted either towards left or right (depending
5323 * upon @SHIFT) by @shift blocks.
5324 * On success, 0 is returned, error otherwise.
5325 */
5326static int
5327ext4_ext_shift_extents(struct inode *inode, handle_t *handle,
5328		       ext4_lblk_t start, ext4_lblk_t shift,
5329		       enum SHIFT_DIRECTION SHIFT)
5330{
5331	struct ext4_ext_path *path;
5332	int ret = 0, depth;
5333	struct ext4_extent *extent;
5334	ext4_lblk_t stop, *iterator, ex_start, ex_end;
5335
5336	/* Let path point to the last extent */
5337	path = ext4_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL,
5338				EXT4_EX_NOCACHE);
5339	if (IS_ERR(path))
5340		return PTR_ERR(path);
5341
5342	depth = path->p_depth;
5343	extent = path[depth].p_ext;
5344	if (!extent)
5345		goto out;
5346
5347	stop = le32_to_cpu(extent->ee_block);
5348
5349       /*
5350	 * In case of left shift, Don't start shifting extents until we make
5351	 * sure the hole is big enough to accommodate the shift.
5352	*/
5353	if (SHIFT == SHIFT_LEFT) {
5354		path = ext4_find_extent(inode, start - 1, &path,
5355					EXT4_EX_NOCACHE);
5356		if (IS_ERR(path))
5357			return PTR_ERR(path);
5358		depth = path->p_depth;
5359		extent =  path[depth].p_ext;
5360		if (extent) {
5361			ex_start = le32_to_cpu(extent->ee_block);
5362			ex_end = le32_to_cpu(extent->ee_block) +
5363				ext4_ext_get_actual_len(extent);
5364		} else {
5365			ex_start = 0;
5366			ex_end = 0;
5367		}
5368
5369		if ((start == ex_start && shift > ex_start) ||
5370		    (shift > start - ex_end)) {
5371			ext4_ext_drop_refs(path);
5372			kfree(path);
5373			return -EINVAL;
5374		}
5375	}
5376
5377	/*
5378	 * In case of left shift, iterator points to start and it is increased
5379	 * till we reach stop. In case of right shift, iterator points to stop
5380	 * and it is decreased till we reach start.
 
5381	 */
5382	if (SHIFT == SHIFT_LEFT)
5383		iterator = &start;
5384	else
5385		iterator = &stop;
 
 
 
5386
5387	/*
5388	 * Its safe to start updating extents.  Start and stop are unsigned, so
5389	 * in case of right shift if extent with 0 block is reached, iterator
5390	 * becomes NULL to indicate the end of the loop.
5391	 */
5392	while (iterator && start <= stop) {
5393		path = ext4_find_extent(inode, *iterator, &path,
5394					EXT4_EX_NOCACHE);
5395		if (IS_ERR(path))
5396			return PTR_ERR(path);
5397		depth = path->p_depth;
5398		extent = path[depth].p_ext;
5399		if (!extent) {
5400			EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
5401					 (unsigned long) *iterator);
5402			return -EFSCORRUPTED;
5403		}
5404		if (SHIFT == SHIFT_LEFT && *iterator >
5405		    le32_to_cpu(extent->ee_block)) {
5406			/* Hole, move to the next extent */
5407			if (extent < EXT_LAST_EXTENT(path[depth].p_hdr)) {
5408				path[depth].p_ext++;
5409			} else {
5410				*iterator = ext4_ext_next_allocated_block(path);
5411				continue;
5412			}
5413		}
5414
5415		if (SHIFT == SHIFT_LEFT) {
5416			extent = EXT_LAST_EXTENT(path[depth].p_hdr);
5417			*iterator = le32_to_cpu(extent->ee_block) +
5418					ext4_ext_get_actual_len(extent);
5419		} else {
5420			extent = EXT_FIRST_EXTENT(path[depth].p_hdr);
5421			if (le32_to_cpu(extent->ee_block) > 0)
5422				*iterator = le32_to_cpu(extent->ee_block) - 1;
5423			else
5424				/* Beginning is reached, end of the loop */
5425				iterator = NULL;
5426			/* Update path extent in case we need to stop */
5427			while (le32_to_cpu(extent->ee_block) < start)
5428				extent++;
5429			path[depth].p_ext = extent;
5430		}
5431		ret = ext4_ext_shift_path_extents(path, shift, inode,
5432				handle, SHIFT);
5433		if (ret)
5434			break;
5435	}
5436out:
5437	ext4_ext_drop_refs(path);
5438	kfree(path);
5439	return ret;
5440}
5441
5442/*
5443 * ext4_collapse_range:
5444 * This implements the fallocate's collapse range functionality for ext4
5445 * Returns: 0 and non-zero on error.
5446 */
5447int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len)
5448{
5449	struct super_block *sb = inode->i_sb;
5450	ext4_lblk_t punch_start, punch_stop;
5451	handle_t *handle;
5452	unsigned int credits;
5453	loff_t new_size, ioffset;
5454	int ret;
5455
5456	/*
5457	 * We need to test this early because xfstests assumes that a
5458	 * collapse range of (0, 1) will return EOPNOTSUPP if the file
5459	 * system does not support collapse range.
5460	 */
5461	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5462		return -EOPNOTSUPP;
5463
5464	/* Collapse range works only on fs block size aligned offsets. */
5465	if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) ||
5466	    len & (EXT4_CLUSTER_SIZE(sb) - 1))
5467		return -EINVAL;
5468
5469	if (!S_ISREG(inode->i_mode))
5470		return -EINVAL;
5471
5472	trace_ext4_collapse_range(inode, offset, len);
5473
5474	punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb);
5475	punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb);
5476
5477	/* Call ext4_force_commit to flush all data in case of data=journal. */
5478	if (ext4_should_journal_data(inode)) {
5479		ret = ext4_force_commit(inode->i_sb);
5480		if (ret)
5481			return ret;
5482	}
5483
5484	inode_lock(inode);
5485	/*
5486	 * There is no need to overlap collapse range with EOF, in which case
5487	 * it is effectively a truncate operation
5488	 */
5489	if (offset + len >= i_size_read(inode)) {
5490		ret = -EINVAL;
5491		goto out_mutex;
5492	}
5493
5494	/* Currently just for extent based files */
5495	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5496		ret = -EOPNOTSUPP;
5497		goto out_mutex;
5498	}
5499
5500	/* Wait for existing dio to complete */
5501	ext4_inode_block_unlocked_dio(inode);
5502	inode_dio_wait(inode);
5503
5504	/*
5505	 * Prevent page faults from reinstantiating pages we have released from
5506	 * page cache.
5507	 */
5508	down_write(&EXT4_I(inode)->i_mmap_sem);
5509	/*
5510	 * Need to round down offset to be aligned with page size boundary
5511	 * for page size > block size.
5512	 */
5513	ioffset = round_down(offset, PAGE_SIZE);
5514	/*
5515	 * Write tail of the last page before removed range since it will get
5516	 * removed from the page cache below.
5517	 */
5518	ret = filemap_write_and_wait_range(inode->i_mapping, ioffset, offset);
5519	if (ret)
5520		goto out_mmap;
5521	/*
5522	 * Write data that will be shifted to preserve them when discarding
5523	 * page cache below. We are also protected from pages becoming dirty
5524	 * by i_mmap_sem.
5525	 */
5526	ret = filemap_write_and_wait_range(inode->i_mapping, offset + len,
5527					   LLONG_MAX);
5528	if (ret)
5529		goto out_mmap;
5530	truncate_pagecache(inode, ioffset);
5531
5532	credits = ext4_writepage_trans_blocks(inode);
5533	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
5534	if (IS_ERR(handle)) {
5535		ret = PTR_ERR(handle);
5536		goto out_mmap;
5537	}
5538
5539	down_write(&EXT4_I(inode)->i_data_sem);
 
5540	ext4_discard_preallocations(inode);
5541
5542	ret = ext4_es_remove_extent(inode, punch_start,
5543				    EXT_MAX_BLOCKS - punch_start);
5544	if (ret) {
5545		up_write(&EXT4_I(inode)->i_data_sem);
5546		goto out_stop;
5547	}
5548
5549	ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1);
5550	if (ret) {
5551		up_write(&EXT4_I(inode)->i_data_sem);
5552		goto out_stop;
5553	}
5554	ext4_discard_preallocations(inode);
5555
5556	ret = ext4_ext_shift_extents(inode, handle, punch_stop,
5557				     punch_stop - punch_start, SHIFT_LEFT);
5558	if (ret) {
5559		up_write(&EXT4_I(inode)->i_data_sem);
5560		goto out_stop;
5561	}
5562
5563	new_size = i_size_read(inode) - len;
5564	i_size_write(inode, new_size);
5565	EXT4_I(inode)->i_disksize = new_size;
5566
5567	up_write(&EXT4_I(inode)->i_data_sem);
5568	if (IS_SYNC(inode))
5569		ext4_handle_sync(handle);
5570	inode->i_mtime = inode->i_ctime = current_time(inode);
5571	ext4_mark_inode_dirty(handle, inode);
5572
5573out_stop:
5574	ext4_journal_stop(handle);
5575out_mmap:
5576	up_write(&EXT4_I(inode)->i_mmap_sem);
5577	ext4_inode_resume_unlocked_dio(inode);
5578out_mutex:
5579	inode_unlock(inode);
5580	return ret;
5581}
5582
5583/*
5584 * ext4_insert_range:
5585 * This function implements the FALLOC_FL_INSERT_RANGE flag of fallocate.
5586 * The data blocks starting from @offset to the EOF are shifted by @len
5587 * towards right to create a hole in the @inode. Inode size is increased
5588 * by len bytes.
5589 * Returns 0 on success, error otherwise.
5590 */
5591int ext4_insert_range(struct inode *inode, loff_t offset, loff_t len)
5592{
5593	struct super_block *sb = inode->i_sb;
5594	handle_t *handle;
5595	struct ext4_ext_path *path;
5596	struct ext4_extent *extent;
5597	ext4_lblk_t offset_lblk, len_lblk, ee_start_lblk = 0;
5598	unsigned int credits, ee_len;
5599	int ret = 0, depth, split_flag = 0;
5600	loff_t ioffset;
5601
5602	/*
5603	 * We need to test this early because xfstests assumes that an
5604	 * insert range of (0, 1) will return EOPNOTSUPP if the file
5605	 * system does not support insert range.
5606	 */
5607	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5608		return -EOPNOTSUPP;
5609
5610	/* Insert range works only on fs block size aligned offsets. */
5611	if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) ||
5612			len & (EXT4_CLUSTER_SIZE(sb) - 1))
5613		return -EINVAL;
5614
5615	if (!S_ISREG(inode->i_mode))
5616		return -EOPNOTSUPP;
5617
5618	trace_ext4_insert_range(inode, offset, len);
5619
5620	offset_lblk = offset >> EXT4_BLOCK_SIZE_BITS(sb);
5621	len_lblk = len >> EXT4_BLOCK_SIZE_BITS(sb);
5622
5623	/* Call ext4_force_commit to flush all data in case of data=journal */
5624	if (ext4_should_journal_data(inode)) {
5625		ret = ext4_force_commit(inode->i_sb);
5626		if (ret)
5627			return ret;
5628	}
5629
5630	inode_lock(inode);
5631	/* Currently just for extent based files */
5632	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5633		ret = -EOPNOTSUPP;
5634		goto out_mutex;
5635	}
5636
5637	/* Check for wrap through zero */
5638	if (inode->i_size + len > inode->i_sb->s_maxbytes) {
5639		ret = -EFBIG;
5640		goto out_mutex;
5641	}
5642
5643	/* Offset should be less than i_size */
5644	if (offset >= i_size_read(inode)) {
5645		ret = -EINVAL;
5646		goto out_mutex;
5647	}
5648
5649	/* Wait for existing dio to complete */
5650	ext4_inode_block_unlocked_dio(inode);
5651	inode_dio_wait(inode);
5652
5653	/*
5654	 * Prevent page faults from reinstantiating pages we have released from
5655	 * page cache.
5656	 */
5657	down_write(&EXT4_I(inode)->i_mmap_sem);
5658	/*
5659	 * Need to round down to align start offset to page size boundary
5660	 * for page size > block size.
5661	 */
5662	ioffset = round_down(offset, PAGE_SIZE);
5663	/* Write out all dirty pages */
5664	ret = filemap_write_and_wait_range(inode->i_mapping, ioffset,
5665			LLONG_MAX);
5666	if (ret)
5667		goto out_mmap;
5668	truncate_pagecache(inode, ioffset);
5669
5670	credits = ext4_writepage_trans_blocks(inode);
5671	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
5672	if (IS_ERR(handle)) {
5673		ret = PTR_ERR(handle);
5674		goto out_mmap;
5675	}
5676
5677	/* Expand file to avoid data loss if there is error while shifting */
5678	inode->i_size += len;
5679	EXT4_I(inode)->i_disksize += len;
5680	inode->i_mtime = inode->i_ctime = current_time(inode);
5681	ret = ext4_mark_inode_dirty(handle, inode);
5682	if (ret)
5683		goto out_stop;
5684
5685	down_write(&EXT4_I(inode)->i_data_sem);
5686	ext4_discard_preallocations(inode);
5687
5688	path = ext4_find_extent(inode, offset_lblk, NULL, 0);
5689	if (IS_ERR(path)) {
5690		up_write(&EXT4_I(inode)->i_data_sem);
5691		goto out_stop;
5692	}
5693
5694	depth = ext_depth(inode);
5695	extent = path[depth].p_ext;
5696	if (extent) {
5697		ee_start_lblk = le32_to_cpu(extent->ee_block);
5698		ee_len = ext4_ext_get_actual_len(extent);
5699
5700		/*
5701		 * If offset_lblk is not the starting block of extent, split
5702		 * the extent @offset_lblk
5703		 */
5704		if ((offset_lblk > ee_start_lblk) &&
5705				(offset_lblk < (ee_start_lblk + ee_len))) {
5706			if (ext4_ext_is_unwritten(extent))
5707				split_flag = EXT4_EXT_MARK_UNWRIT1 |
5708					EXT4_EXT_MARK_UNWRIT2;
5709			ret = ext4_split_extent_at(handle, inode, &path,
5710					offset_lblk, split_flag,
5711					EXT4_EX_NOCACHE |
5712					EXT4_GET_BLOCKS_PRE_IO |
5713					EXT4_GET_BLOCKS_METADATA_NOFAIL);
5714		}
5715
5716		ext4_ext_drop_refs(path);
5717		kfree(path);
5718		if (ret < 0) {
5719			up_write(&EXT4_I(inode)->i_data_sem);
5720			goto out_stop;
5721		}
5722	} else {
5723		ext4_ext_drop_refs(path);
5724		kfree(path);
5725	}
5726
5727	ret = ext4_es_remove_extent(inode, offset_lblk,
5728			EXT_MAX_BLOCKS - offset_lblk);
5729	if (ret) {
5730		up_write(&EXT4_I(inode)->i_data_sem);
5731		goto out_stop;
5732	}
5733
5734	/*
5735	 * if offset_lblk lies in a hole which is at start of file, use
5736	 * ee_start_lblk to shift extents
5737	 */
5738	ret = ext4_ext_shift_extents(inode, handle,
5739		ee_start_lblk > offset_lblk ? ee_start_lblk : offset_lblk,
5740		len_lblk, SHIFT_RIGHT);
5741
5742	up_write(&EXT4_I(inode)->i_data_sem);
5743	if (IS_SYNC(inode))
5744		ext4_handle_sync(handle);
5745
5746out_stop:
 
 
 
5747	ext4_journal_stop(handle);
5748out_mmap:
5749	up_write(&EXT4_I(inode)->i_mmap_sem);
5750	ext4_inode_resume_unlocked_dio(inode);
5751out_mutex:
5752	inode_unlock(inode);
5753	return ret;
5754}
 
 
 
 
 
5755
5756/**
5757 * ext4_swap_extents - Swap extents between two inodes
5758 *
5759 * @inode1:	First inode
5760 * @inode2:	Second inode
5761 * @lblk1:	Start block for first inode
5762 * @lblk2:	Start block for second inode
5763 * @count:	Number of blocks to swap
5764 * @mark_unwritten: Mark second inode's extents as unwritten after swap
5765 * @erp:	Pointer to save error value
5766 *
5767 * This helper routine does exactly what is promise "swap extents". All other
5768 * stuff such as page-cache locking consistency, bh mapping consistency or
5769 * extent's data copying must be performed by caller.
5770 * Locking:
5771 * 		i_mutex is held for both inodes
5772 * 		i_data_sem is locked for write for both inodes
5773 * Assumptions:
5774 *		All pages from requested range are locked for both inodes
5775 */
5776int
5777ext4_swap_extents(handle_t *handle, struct inode *inode1,
5778		     struct inode *inode2, ext4_lblk_t lblk1, ext4_lblk_t lblk2,
5779		  ext4_lblk_t count, int unwritten, int *erp)
5780{
5781	struct ext4_ext_path *path1 = NULL;
5782	struct ext4_ext_path *path2 = NULL;
5783	int replaced_count = 0;
5784
5785	BUG_ON(!rwsem_is_locked(&EXT4_I(inode1)->i_data_sem));
5786	BUG_ON(!rwsem_is_locked(&EXT4_I(inode2)->i_data_sem));
5787	BUG_ON(!inode_is_locked(inode1));
5788	BUG_ON(!inode_is_locked(inode2));
5789
5790	*erp = ext4_es_remove_extent(inode1, lblk1, count);
5791	if (unlikely(*erp))
5792		return 0;
5793	*erp = ext4_es_remove_extent(inode2, lblk2, count);
5794	if (unlikely(*erp))
5795		return 0;
5796
5797	while (count) {
5798		struct ext4_extent *ex1, *ex2, tmp_ex;
5799		ext4_lblk_t e1_blk, e2_blk;
5800		int e1_len, e2_len, len;
5801		int split = 0;
5802
5803		path1 = ext4_find_extent(inode1, lblk1, NULL, EXT4_EX_NOCACHE);
5804		if (IS_ERR(path1)) {
5805			*erp = PTR_ERR(path1);
5806			path1 = NULL;
5807		finish:
5808			count = 0;
5809			goto repeat;
5810		}
5811		path2 = ext4_find_extent(inode2, lblk2, NULL, EXT4_EX_NOCACHE);
5812		if (IS_ERR(path2)) {
5813			*erp = PTR_ERR(path2);
5814			path2 = NULL;
5815			goto finish;
5816		}
5817		ex1 = path1[path1->p_depth].p_ext;
5818		ex2 = path2[path2->p_depth].p_ext;
5819		/* Do we have somthing to swap ? */
5820		if (unlikely(!ex2 || !ex1))
5821			goto finish;
5822
5823		e1_blk = le32_to_cpu(ex1->ee_block);
5824		e2_blk = le32_to_cpu(ex2->ee_block);
5825		e1_len = ext4_ext_get_actual_len(ex1);
5826		e2_len = ext4_ext_get_actual_len(ex2);
5827
5828		/* Hole handling */
5829		if (!in_range(lblk1, e1_blk, e1_len) ||
5830		    !in_range(lblk2, e2_blk, e2_len)) {
5831			ext4_lblk_t next1, next2;
5832
5833			/* if hole after extent, then go to next extent */
5834			next1 = ext4_ext_next_allocated_block(path1);
5835			next2 = ext4_ext_next_allocated_block(path2);
5836			/* If hole before extent, then shift to that extent */
5837			if (e1_blk > lblk1)
5838				next1 = e1_blk;
5839			if (e2_blk > lblk2)
5840				next2 = e1_blk;
5841			/* Do we have something to swap */
5842			if (next1 == EXT_MAX_BLOCKS || next2 == EXT_MAX_BLOCKS)
5843				goto finish;
5844			/* Move to the rightest boundary */
5845			len = next1 - lblk1;
5846			if (len < next2 - lblk2)
5847				len = next2 - lblk2;
5848			if (len > count)
5849				len = count;
5850			lblk1 += len;
5851			lblk2 += len;
5852			count -= len;
5853			goto repeat;
5854		}
5855
5856		/* Prepare left boundary */
5857		if (e1_blk < lblk1) {
5858			split = 1;
5859			*erp = ext4_force_split_extent_at(handle, inode1,
5860						&path1, lblk1, 0);
5861			if (unlikely(*erp))
5862				goto finish;
5863		}
5864		if (e2_blk < lblk2) {
5865			split = 1;
5866			*erp = ext4_force_split_extent_at(handle, inode2,
5867						&path2,  lblk2, 0);
5868			if (unlikely(*erp))
5869				goto finish;
5870		}
5871		/* ext4_split_extent_at() may result in leaf extent split,
5872		 * path must to be revalidated. */
5873		if (split)
5874			goto repeat;
5875
5876		/* Prepare right boundary */
5877		len = count;
5878		if (len > e1_blk + e1_len - lblk1)
5879			len = e1_blk + e1_len - lblk1;
5880		if (len > e2_blk + e2_len - lblk2)
5881			len = e2_blk + e2_len - lblk2;
5882
5883		if (len != e1_len) {
5884			split = 1;
5885			*erp = ext4_force_split_extent_at(handle, inode1,
5886						&path1, lblk1 + len, 0);
5887			if (unlikely(*erp))
5888				goto finish;
5889		}
5890		if (len != e2_len) {
5891			split = 1;
5892			*erp = ext4_force_split_extent_at(handle, inode2,
5893						&path2, lblk2 + len, 0);
5894			if (*erp)
5895				goto finish;
5896		}
5897		/* ext4_split_extent_at() may result in leaf extent split,
5898		 * path must to be revalidated. */
5899		if (split)
5900			goto repeat;
5901
5902		BUG_ON(e2_len != e1_len);
5903		*erp = ext4_ext_get_access(handle, inode1, path1 + path1->p_depth);
5904		if (unlikely(*erp))
5905			goto finish;
5906		*erp = ext4_ext_get_access(handle, inode2, path2 + path2->p_depth);
5907		if (unlikely(*erp))
5908			goto finish;
5909
5910		/* Both extents are fully inside boundaries. Swap it now */
5911		tmp_ex = *ex1;
5912		ext4_ext_store_pblock(ex1, ext4_ext_pblock(ex2));
5913		ext4_ext_store_pblock(ex2, ext4_ext_pblock(&tmp_ex));
5914		ex1->ee_len = cpu_to_le16(e2_len);
5915		ex2->ee_len = cpu_to_le16(e1_len);
5916		if (unwritten)
5917			ext4_ext_mark_unwritten(ex2);
5918		if (ext4_ext_is_unwritten(&tmp_ex))
5919			ext4_ext_mark_unwritten(ex1);
5920
5921		ext4_ext_try_to_merge(handle, inode2, path2, ex2);
5922		ext4_ext_try_to_merge(handle, inode1, path1, ex1);
5923		*erp = ext4_ext_dirty(handle, inode2, path2 +
5924				      path2->p_depth);
5925		if (unlikely(*erp))
5926			goto finish;
5927		*erp = ext4_ext_dirty(handle, inode1, path1 +
5928				      path1->p_depth);
5929		/*
5930		 * Looks scarry ah..? second inode already points to new blocks,
5931		 * and it was successfully dirtied. But luckily error may happen
5932		 * only due to journal error, so full transaction will be
5933		 * aborted anyway.
5934		 */
5935		if (unlikely(*erp))
5936			goto finish;
5937		lblk1 += len;
5938		lblk2 += len;
5939		replaced_count += len;
5940		count -= len;
5941
5942	repeat:
5943		ext4_ext_drop_refs(path1);
5944		kfree(path1);
5945		ext4_ext_drop_refs(path2);
5946		kfree(path2);
5947		path1 = path2 = NULL;
5948	}
5949	return replaced_count;
 
5950}
v3.5.6
   1/*
   2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
   3 * Written by Alex Tomas <alex@clusterfs.com>
   4 *
   5 * Architecture independence:
   6 *   Copyright (c) 2005, Bull S.A.
   7 *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public Licens
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
  21 */
  22
  23/*
  24 * Extents support for EXT4
  25 *
  26 * TODO:
  27 *   - ext4*_error() should be used in some situations
  28 *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
  29 *   - smart tree reduction
  30 */
  31
  32#include <linux/fs.h>
  33#include <linux/time.h>
  34#include <linux/jbd2.h>
  35#include <linux/highuid.h>
  36#include <linux/pagemap.h>
  37#include <linux/quotaops.h>
  38#include <linux/string.h>
  39#include <linux/slab.h>
  40#include <linux/falloc.h>
  41#include <asm/uaccess.h>
  42#include <linux/fiemap.h>
 
  43#include "ext4_jbd2.h"
 
 
  44
  45#include <trace/events/ext4.h>
  46
  47/*
  48 * used by extent splitting.
  49 */
  50#define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \
  51					due to ENOSPC */
  52#define EXT4_EXT_MARK_UNINIT1	0x2  /* mark first half uninitialized */
  53#define EXT4_EXT_MARK_UNINIT2	0x4  /* mark second half uninitialized */
 
 
 
  54
  55static __le32 ext4_extent_block_csum(struct inode *inode,
  56				     struct ext4_extent_header *eh)
  57{
  58	struct ext4_inode_info *ei = EXT4_I(inode);
  59	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  60	__u32 csum;
  61
  62	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
  63			   EXT4_EXTENT_TAIL_OFFSET(eh));
  64	return cpu_to_le32(csum);
  65}
  66
  67static int ext4_extent_block_csum_verify(struct inode *inode,
  68					 struct ext4_extent_header *eh)
  69{
  70	struct ext4_extent_tail *et;
  71
  72	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
  73		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
  74		return 1;
  75
  76	et = find_ext4_extent_tail(eh);
  77	if (et->et_checksum != ext4_extent_block_csum(inode, eh))
  78		return 0;
  79	return 1;
  80}
  81
  82static void ext4_extent_block_csum_set(struct inode *inode,
  83				       struct ext4_extent_header *eh)
  84{
  85	struct ext4_extent_tail *et;
  86
  87	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
  88		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
  89		return;
  90
  91	et = find_ext4_extent_tail(eh);
  92	et->et_checksum = ext4_extent_block_csum(inode, eh);
  93}
  94
  95static int ext4_split_extent(handle_t *handle,
  96				struct inode *inode,
  97				struct ext4_ext_path *path,
  98				struct ext4_map_blocks *map,
  99				int split_flag,
 100				int flags);
 101
 102static int ext4_split_extent_at(handle_t *handle,
 103			     struct inode *inode,
 104			     struct ext4_ext_path *path,
 105			     ext4_lblk_t split,
 106			     int split_flag,
 107			     int flags);
 108
 
 
 
 109static int ext4_ext_truncate_extend_restart(handle_t *handle,
 110					    struct inode *inode,
 111					    int needed)
 112{
 113	int err;
 114
 115	if (!ext4_handle_valid(handle))
 116		return 0;
 117	if (handle->h_buffer_credits > needed)
 118		return 0;
 119	err = ext4_journal_extend(handle, needed);
 
 
 
 
 
 120	if (err <= 0)
 121		return err;
 122	err = ext4_truncate_restart_trans(handle, inode, needed);
 123	if (err == 0)
 124		err = -EAGAIN;
 125
 126	return err;
 127}
 128
 129/*
 130 * could return:
 131 *  - EROFS
 132 *  - ENOMEM
 133 */
 134static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
 135				struct ext4_ext_path *path)
 136{
 137	if (path->p_bh) {
 138		/* path points to block */
 
 139		return ext4_journal_get_write_access(handle, path->p_bh);
 140	}
 141	/* path points to leaf/index in inode body */
 142	/* we use in-core data, no need to protect them */
 143	return 0;
 144}
 145
 146/*
 147 * could return:
 148 *  - EROFS
 149 *  - ENOMEM
 150 *  - EIO
 151 */
 152#define ext4_ext_dirty(handle, inode, path) \
 153		__ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
 154static int __ext4_ext_dirty(const char *where, unsigned int line,
 155			    handle_t *handle, struct inode *inode,
 156			    struct ext4_ext_path *path)
 157{
 158	int err;
 
 
 159	if (path->p_bh) {
 160		ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
 161		/* path points to block */
 162		err = __ext4_handle_dirty_metadata(where, line, handle,
 163						   inode, path->p_bh);
 164	} else {
 165		/* path points to leaf/index in inode body */
 166		err = ext4_mark_inode_dirty(handle, inode);
 167	}
 168	return err;
 169}
 170
 171static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
 172			      struct ext4_ext_path *path,
 173			      ext4_lblk_t block)
 174{
 175	if (path) {
 176		int depth = path->p_depth;
 177		struct ext4_extent *ex;
 178
 179		/*
 180		 * Try to predict block placement assuming that we are
 181		 * filling in a file which will eventually be
 182		 * non-sparse --- i.e., in the case of libbfd writing
 183		 * an ELF object sections out-of-order but in a way
 184		 * the eventually results in a contiguous object or
 185		 * executable file, or some database extending a table
 186		 * space file.  However, this is actually somewhat
 187		 * non-ideal if we are writing a sparse file such as
 188		 * qemu or KVM writing a raw image file that is going
 189		 * to stay fairly sparse, since it will end up
 190		 * fragmenting the file system's free space.  Maybe we
 191		 * should have some hueristics or some way to allow
 192		 * userspace to pass a hint to file system,
 193		 * especially if the latter case turns out to be
 194		 * common.
 195		 */
 196		ex = path[depth].p_ext;
 197		if (ex) {
 198			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
 199			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
 200
 201			if (block > ext_block)
 202				return ext_pblk + (block - ext_block);
 203			else
 204				return ext_pblk - (ext_block - block);
 205		}
 206
 207		/* it looks like index is empty;
 208		 * try to find starting block from index itself */
 209		if (path[depth].p_bh)
 210			return path[depth].p_bh->b_blocknr;
 211	}
 212
 213	/* OK. use inode's group */
 214	return ext4_inode_to_goal_block(inode);
 215}
 216
 217/*
 218 * Allocation for a meta data block
 219 */
 220static ext4_fsblk_t
 221ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
 222			struct ext4_ext_path *path,
 223			struct ext4_extent *ex, int *err, unsigned int flags)
 224{
 225	ext4_fsblk_t goal, newblock;
 226
 227	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
 228	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
 229					NULL, err);
 230	return newblock;
 231}
 232
 233static inline int ext4_ext_space_block(struct inode *inode, int check)
 234{
 235	int size;
 236
 237	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
 238			/ sizeof(struct ext4_extent);
 239#ifdef AGGRESSIVE_TEST
 240	if (!check && size > 6)
 241		size = 6;
 242#endif
 243	return size;
 244}
 245
 246static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
 247{
 248	int size;
 249
 250	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
 251			/ sizeof(struct ext4_extent_idx);
 252#ifdef AGGRESSIVE_TEST
 253	if (!check && size > 5)
 254		size = 5;
 255#endif
 256	return size;
 257}
 258
 259static inline int ext4_ext_space_root(struct inode *inode, int check)
 260{
 261	int size;
 262
 263	size = sizeof(EXT4_I(inode)->i_data);
 264	size -= sizeof(struct ext4_extent_header);
 265	size /= sizeof(struct ext4_extent);
 266#ifdef AGGRESSIVE_TEST
 267	if (!check && size > 3)
 268		size = 3;
 269#endif
 270	return size;
 271}
 272
 273static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
 274{
 275	int size;
 276
 277	size = sizeof(EXT4_I(inode)->i_data);
 278	size -= sizeof(struct ext4_extent_header);
 279	size /= sizeof(struct ext4_extent_idx);
 280#ifdef AGGRESSIVE_TEST
 281	if (!check && size > 4)
 282		size = 4;
 283#endif
 284	return size;
 285}
 286
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 287/*
 288 * Calculate the number of metadata blocks needed
 289 * to allocate @blocks
 290 * Worse case is one block per extent
 291 */
 292int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
 293{
 294	struct ext4_inode_info *ei = EXT4_I(inode);
 295	int idxs;
 296
 297	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
 298		/ sizeof(struct ext4_extent_idx));
 299
 300	/*
 301	 * If the new delayed allocation block is contiguous with the
 302	 * previous da block, it can share index blocks with the
 303	 * previous block, so we only need to allocate a new index
 304	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
 305	 * an additional index block, and at ldxs**3 blocks, yet
 306	 * another index blocks.
 307	 */
 308	if (ei->i_da_metadata_calc_len &&
 309	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
 310		int num = 0;
 311
 312		if ((ei->i_da_metadata_calc_len % idxs) == 0)
 313			num++;
 314		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
 315			num++;
 316		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
 317			num++;
 318			ei->i_da_metadata_calc_len = 0;
 319		} else
 320			ei->i_da_metadata_calc_len++;
 321		ei->i_da_metadata_calc_last_lblock++;
 322		return num;
 323	}
 324
 325	/*
 326	 * In the worst case we need a new set of index blocks at
 327	 * every level of the inode's extent tree.
 328	 */
 329	ei->i_da_metadata_calc_len = 1;
 330	ei->i_da_metadata_calc_last_lblock = lblock;
 331	return ext_depth(inode) + 1;
 332}
 333
 334static int
 335ext4_ext_max_entries(struct inode *inode, int depth)
 336{
 337	int max;
 338
 339	if (depth == ext_depth(inode)) {
 340		if (depth == 0)
 341			max = ext4_ext_space_root(inode, 1);
 342		else
 343			max = ext4_ext_space_root_idx(inode, 1);
 344	} else {
 345		if (depth == 0)
 346			max = ext4_ext_space_block(inode, 1);
 347		else
 348			max = ext4_ext_space_block_idx(inode, 1);
 349	}
 350
 351	return max;
 352}
 353
 354static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
 355{
 356	ext4_fsblk_t block = ext4_ext_pblock(ext);
 357	int len = ext4_ext_get_actual_len(ext);
 
 358
 359	if (len == 0)
 
 
 
 
 
 360		return 0;
 361	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
 362}
 363
 364static int ext4_valid_extent_idx(struct inode *inode,
 365				struct ext4_extent_idx *ext_idx)
 366{
 367	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
 368
 369	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
 370}
 371
 372static int ext4_valid_extent_entries(struct inode *inode,
 373				struct ext4_extent_header *eh,
 374				int depth)
 375{
 376	unsigned short entries;
 377	if (eh->eh_entries == 0)
 378		return 1;
 379
 380	entries = le16_to_cpu(eh->eh_entries);
 381
 382	if (depth == 0) {
 383		/* leaf entries */
 384		struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
 
 
 
 
 
 385		while (entries) {
 386			if (!ext4_valid_extent(inode, ext))
 387				return 0;
 
 
 
 
 
 
 
 
 
 388			ext++;
 389			entries--;
 
 390		}
 391	} else {
 392		struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
 393		while (entries) {
 394			if (!ext4_valid_extent_idx(inode, ext_idx))
 395				return 0;
 396			ext_idx++;
 397			entries--;
 398		}
 399	}
 400	return 1;
 401}
 402
 403static int __ext4_ext_check(const char *function, unsigned int line,
 404			    struct inode *inode, struct ext4_extent_header *eh,
 405			    int depth)
 406{
 407	const char *error_msg;
 408	int max = 0;
 409
 410	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
 411		error_msg = "invalid magic";
 412		goto corrupted;
 413	}
 414	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
 415		error_msg = "unexpected eh_depth";
 416		goto corrupted;
 417	}
 418	if (unlikely(eh->eh_max == 0)) {
 419		error_msg = "invalid eh_max";
 420		goto corrupted;
 421	}
 422	max = ext4_ext_max_entries(inode, depth);
 423	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
 424		error_msg = "too large eh_max";
 425		goto corrupted;
 426	}
 427	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
 428		error_msg = "invalid eh_entries";
 429		goto corrupted;
 430	}
 431	if (!ext4_valid_extent_entries(inode, eh, depth)) {
 432		error_msg = "invalid extent entries";
 433		goto corrupted;
 434	}
 
 
 
 
 435	/* Verify checksum on non-root extent tree nodes */
 436	if (ext_depth(inode) != depth &&
 437	    !ext4_extent_block_csum_verify(inode, eh)) {
 438		error_msg = "extent tree corrupted";
 
 439		goto corrupted;
 440	}
 441	return 0;
 442
 443corrupted:
 444	ext4_error_inode(inode, function, line, 0,
 445			"bad header/extent: %s - magic %x, "
 446			"entries %u, max %u(%u), depth %u(%u)",
 447			error_msg, le16_to_cpu(eh->eh_magic),
 448			le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
 449			max, le16_to_cpu(eh->eh_depth), depth);
 450
 451	return -EIO;
 452}
 453
 454#define ext4_ext_check(inode, eh, depth)	\
 455	__ext4_ext_check(__func__, __LINE__, inode, eh, depth)
 456
 457int ext4_ext_check_inode(struct inode *inode)
 458{
 459	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
 460}
 461
 462static int __ext4_ext_check_block(const char *function, unsigned int line,
 463				  struct inode *inode,
 464				  struct ext4_extent_header *eh,
 465				  int depth,
 466				  struct buffer_head *bh)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 467{
 468	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 469
 470	if (buffer_verified(bh))
 471		return 0;
 472	ret = ext4_ext_check(inode, eh, depth);
 
 
 473	if (ret)
 474		return ret;
 475	set_buffer_verified(bh);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 476	return ret;
 477}
 478
 479#define ext4_ext_check_block(inode, eh, depth, bh)	\
 480	__ext4_ext_check_block(__func__, __LINE__, inode, eh, depth, bh)
 481
 482#ifdef EXT_DEBUG
 483static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
 484{
 485	int k, l = path->p_depth;
 486
 487	ext_debug("path:");
 488	for (k = 0; k <= l; k++, path++) {
 489		if (path->p_idx) {
 490		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
 491			    ext4_idx_pblock(path->p_idx));
 492		} else if (path->p_ext) {
 493			ext_debug("  %d:[%d]%d:%llu ",
 494				  le32_to_cpu(path->p_ext->ee_block),
 495				  ext4_ext_is_uninitialized(path->p_ext),
 496				  ext4_ext_get_actual_len(path->p_ext),
 497				  ext4_ext_pblock(path->p_ext));
 498		} else
 499			ext_debug("  []");
 500	}
 501	ext_debug("\n");
 502}
 503
 504static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
 505{
 506	int depth = ext_depth(inode);
 507	struct ext4_extent_header *eh;
 508	struct ext4_extent *ex;
 509	int i;
 510
 511	if (!path)
 512		return;
 513
 514	eh = path[depth].p_hdr;
 515	ex = EXT_FIRST_EXTENT(eh);
 516
 517	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
 518
 519	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
 520		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
 521			  ext4_ext_is_uninitialized(ex),
 522			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
 523	}
 524	ext_debug("\n");
 525}
 526
 527static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
 528			ext4_fsblk_t newblock, int level)
 529{
 530	int depth = ext_depth(inode);
 531	struct ext4_extent *ex;
 532
 533	if (depth != level) {
 534		struct ext4_extent_idx *idx;
 535		idx = path[level].p_idx;
 536		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
 537			ext_debug("%d: move %d:%llu in new index %llu\n", level,
 538					le32_to_cpu(idx->ei_block),
 539					ext4_idx_pblock(idx),
 540					newblock);
 541			idx++;
 542		}
 543
 544		return;
 545	}
 546
 547	ex = path[depth].p_ext;
 548	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
 549		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
 550				le32_to_cpu(ex->ee_block),
 551				ext4_ext_pblock(ex),
 552				ext4_ext_is_uninitialized(ex),
 553				ext4_ext_get_actual_len(ex),
 554				newblock);
 555		ex++;
 556	}
 557}
 558
 559#else
 560#define ext4_ext_show_path(inode, path)
 561#define ext4_ext_show_leaf(inode, path)
 562#define ext4_ext_show_move(inode, path, newblock, level)
 563#endif
 564
 565void ext4_ext_drop_refs(struct ext4_ext_path *path)
 566{
 567	int depth = path->p_depth;
 568	int i;
 569
 
 
 
 570	for (i = 0; i <= depth; i++, path++)
 571		if (path->p_bh) {
 572			brelse(path->p_bh);
 573			path->p_bh = NULL;
 574		}
 575}
 576
 577/*
 578 * ext4_ext_binsearch_idx:
 579 * binary search for the closest index of the given block
 580 * the header must be checked before calling this
 581 */
 582static void
 583ext4_ext_binsearch_idx(struct inode *inode,
 584			struct ext4_ext_path *path, ext4_lblk_t block)
 585{
 586	struct ext4_extent_header *eh = path->p_hdr;
 587	struct ext4_extent_idx *r, *l, *m;
 588
 589
 590	ext_debug("binsearch for %u(idx):  ", block);
 591
 592	l = EXT_FIRST_INDEX(eh) + 1;
 593	r = EXT_LAST_INDEX(eh);
 594	while (l <= r) {
 595		m = l + (r - l) / 2;
 596		if (block < le32_to_cpu(m->ei_block))
 597			r = m - 1;
 598		else
 599			l = m + 1;
 600		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
 601				m, le32_to_cpu(m->ei_block),
 602				r, le32_to_cpu(r->ei_block));
 603	}
 604
 605	path->p_idx = l - 1;
 606	ext_debug("  -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
 607		  ext4_idx_pblock(path->p_idx));
 608
 609#ifdef CHECK_BINSEARCH
 610	{
 611		struct ext4_extent_idx *chix, *ix;
 612		int k;
 613
 614		chix = ix = EXT_FIRST_INDEX(eh);
 615		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
 616		  if (k != 0 &&
 617		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
 618				printk(KERN_DEBUG "k=%d, ix=0x%p, "
 619				       "first=0x%p\n", k,
 620				       ix, EXT_FIRST_INDEX(eh));
 621				printk(KERN_DEBUG "%u <= %u\n",
 622				       le32_to_cpu(ix->ei_block),
 623				       le32_to_cpu(ix[-1].ei_block));
 624			}
 625			BUG_ON(k && le32_to_cpu(ix->ei_block)
 626					   <= le32_to_cpu(ix[-1].ei_block));
 627			if (block < le32_to_cpu(ix->ei_block))
 628				break;
 629			chix = ix;
 630		}
 631		BUG_ON(chix != path->p_idx);
 632	}
 633#endif
 634
 635}
 636
 637/*
 638 * ext4_ext_binsearch:
 639 * binary search for closest extent of the given block
 640 * the header must be checked before calling this
 641 */
 642static void
 643ext4_ext_binsearch(struct inode *inode,
 644		struct ext4_ext_path *path, ext4_lblk_t block)
 645{
 646	struct ext4_extent_header *eh = path->p_hdr;
 647	struct ext4_extent *r, *l, *m;
 648
 649	if (eh->eh_entries == 0) {
 650		/*
 651		 * this leaf is empty:
 652		 * we get such a leaf in split/add case
 653		 */
 654		return;
 655	}
 656
 657	ext_debug("binsearch for %u:  ", block);
 658
 659	l = EXT_FIRST_EXTENT(eh) + 1;
 660	r = EXT_LAST_EXTENT(eh);
 661
 662	while (l <= r) {
 663		m = l + (r - l) / 2;
 664		if (block < le32_to_cpu(m->ee_block))
 665			r = m - 1;
 666		else
 667			l = m + 1;
 668		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
 669				m, le32_to_cpu(m->ee_block),
 670				r, le32_to_cpu(r->ee_block));
 671	}
 672
 673	path->p_ext = l - 1;
 674	ext_debug("  -> %d:%llu:[%d]%d ",
 675			le32_to_cpu(path->p_ext->ee_block),
 676			ext4_ext_pblock(path->p_ext),
 677			ext4_ext_is_uninitialized(path->p_ext),
 678			ext4_ext_get_actual_len(path->p_ext));
 679
 680#ifdef CHECK_BINSEARCH
 681	{
 682		struct ext4_extent *chex, *ex;
 683		int k;
 684
 685		chex = ex = EXT_FIRST_EXTENT(eh);
 686		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
 687			BUG_ON(k && le32_to_cpu(ex->ee_block)
 688					  <= le32_to_cpu(ex[-1].ee_block));
 689			if (block < le32_to_cpu(ex->ee_block))
 690				break;
 691			chex = ex;
 692		}
 693		BUG_ON(chex != path->p_ext);
 694	}
 695#endif
 696
 697}
 698
 699int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
 700{
 701	struct ext4_extent_header *eh;
 702
 703	eh = ext_inode_hdr(inode);
 704	eh->eh_depth = 0;
 705	eh->eh_entries = 0;
 706	eh->eh_magic = EXT4_EXT_MAGIC;
 707	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
 708	ext4_mark_inode_dirty(handle, inode);
 709	ext4_ext_invalidate_cache(inode);
 710	return 0;
 711}
 712
 713struct ext4_ext_path *
 714ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
 715					struct ext4_ext_path *path)
 716{
 717	struct ext4_extent_header *eh;
 718	struct buffer_head *bh;
 719	short int depth, i, ppos = 0, alloc = 0;
 
 
 720
 721	eh = ext_inode_hdr(inode);
 722	depth = ext_depth(inode);
 723
 724	/* account possible depth increase */
 
 
 
 
 
 
 725	if (!path) {
 
 726		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
 727				GFP_NOFS);
 728		if (!path)
 729			return ERR_PTR(-ENOMEM);
 730		alloc = 1;
 731	}
 732	path[0].p_hdr = eh;
 733	path[0].p_bh = NULL;
 734
 735	i = depth;
 736	/* walk through the tree */
 737	while (i) {
 738		ext_debug("depth %d: num %d, max %d\n",
 739			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
 740
 741		ext4_ext_binsearch_idx(inode, path + ppos, block);
 742		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
 743		path[ppos].p_depth = i;
 744		path[ppos].p_ext = NULL;
 745
 746		bh = sb_getblk(inode->i_sb, path[ppos].p_block);
 747		if (unlikely(!bh))
 
 
 748			goto err;
 749		if (!bh_uptodate_or_lock(bh)) {
 750			trace_ext4_ext_load_extent(inode, block,
 751						path[ppos].p_block);
 752			if (bh_submit_read(bh) < 0) {
 753				put_bh(bh);
 754				goto err;
 755			}
 756		}
 
 757		eh = ext_block_hdr(bh);
 758		ppos++;
 759		if (unlikely(ppos > depth)) {
 760			put_bh(bh);
 761			EXT4_ERROR_INODE(inode,
 762					 "ppos %d > depth %d", ppos, depth);
 763			goto err;
 764		}
 765		path[ppos].p_bh = bh;
 766		path[ppos].p_hdr = eh;
 767		i--;
 768
 769		if (ext4_ext_check_block(inode, eh, i, bh))
 770			goto err;
 771	}
 772
 773	path[ppos].p_depth = i;
 774	path[ppos].p_ext = NULL;
 775	path[ppos].p_idx = NULL;
 776
 777	/* find extent */
 778	ext4_ext_binsearch(inode, path + ppos, block);
 779	/* if not an empty leaf */
 780	if (path[ppos].p_ext)
 781		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
 782
 783	ext4_ext_show_path(inode, path);
 784
 785	return path;
 786
 787err:
 788	ext4_ext_drop_refs(path);
 789	if (alloc)
 790		kfree(path);
 791	return ERR_PTR(-EIO);
 
 792}
 793
 794/*
 795 * ext4_ext_insert_index:
 796 * insert new index [@logical;@ptr] into the block at @curp;
 797 * check where to insert: before @curp or after @curp
 798 */
 799static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
 800				 struct ext4_ext_path *curp,
 801				 int logical, ext4_fsblk_t ptr)
 802{
 803	struct ext4_extent_idx *ix;
 804	int len, err;
 805
 806	err = ext4_ext_get_access(handle, inode, curp);
 807	if (err)
 808		return err;
 809
 810	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
 811		EXT4_ERROR_INODE(inode,
 812				 "logical %d == ei_block %d!",
 813				 logical, le32_to_cpu(curp->p_idx->ei_block));
 814		return -EIO;
 815	}
 816
 817	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
 818			     >= le16_to_cpu(curp->p_hdr->eh_max))) {
 819		EXT4_ERROR_INODE(inode,
 820				 "eh_entries %d >= eh_max %d!",
 821				 le16_to_cpu(curp->p_hdr->eh_entries),
 822				 le16_to_cpu(curp->p_hdr->eh_max));
 823		return -EIO;
 824	}
 825
 826	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
 827		/* insert after */
 828		ext_debug("insert new index %d after: %llu\n", logical, ptr);
 829		ix = curp->p_idx + 1;
 830	} else {
 831		/* insert before */
 832		ext_debug("insert new index %d before: %llu\n", logical, ptr);
 833		ix = curp->p_idx;
 834	}
 835
 836	len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
 837	BUG_ON(len < 0);
 838	if (len > 0) {
 839		ext_debug("insert new index %d: "
 840				"move %d indices from 0x%p to 0x%p\n",
 841				logical, len, ix, ix + 1);
 842		memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
 843	}
 844
 845	if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
 846		EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
 847		return -EIO;
 848	}
 849
 850	ix->ei_block = cpu_to_le32(logical);
 851	ext4_idx_store_pblock(ix, ptr);
 852	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
 853
 854	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
 855		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
 856		return -EIO;
 857	}
 858
 859	err = ext4_ext_dirty(handle, inode, curp);
 860	ext4_std_error(inode->i_sb, err);
 861
 862	return err;
 863}
 864
 865/*
 866 * ext4_ext_split:
 867 * inserts new subtree into the path, using free index entry
 868 * at depth @at:
 869 * - allocates all needed blocks (new leaf and all intermediate index blocks)
 870 * - makes decision where to split
 871 * - moves remaining extents and index entries (right to the split point)
 872 *   into the newly allocated blocks
 873 * - initializes subtree
 874 */
 875static int ext4_ext_split(handle_t *handle, struct inode *inode,
 876			  unsigned int flags,
 877			  struct ext4_ext_path *path,
 878			  struct ext4_extent *newext, int at)
 879{
 880	struct buffer_head *bh = NULL;
 881	int depth = ext_depth(inode);
 882	struct ext4_extent_header *neh;
 883	struct ext4_extent_idx *fidx;
 884	int i = at, k, m, a;
 885	ext4_fsblk_t newblock, oldblock;
 886	__le32 border;
 887	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
 888	int err = 0;
 889
 890	/* make decision: where to split? */
 891	/* FIXME: now decision is simplest: at current extent */
 892
 893	/* if current leaf will be split, then we should use
 894	 * border from split point */
 895	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
 896		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
 897		return -EIO;
 898	}
 899	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
 900		border = path[depth].p_ext[1].ee_block;
 901		ext_debug("leaf will be split."
 902				" next leaf starts at %d\n",
 903				  le32_to_cpu(border));
 904	} else {
 905		border = newext->ee_block;
 906		ext_debug("leaf will be added."
 907				" next leaf starts at %d\n",
 908				le32_to_cpu(border));
 909	}
 910
 911	/*
 912	 * If error occurs, then we break processing
 913	 * and mark filesystem read-only. index won't
 914	 * be inserted and tree will be in consistent
 915	 * state. Next mount will repair buffers too.
 916	 */
 917
 918	/*
 919	 * Get array to track all allocated blocks.
 920	 * We need this to handle errors and free blocks
 921	 * upon them.
 922	 */
 923	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
 924	if (!ablocks)
 925		return -ENOMEM;
 926
 927	/* allocate all needed blocks */
 928	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
 929	for (a = 0; a < depth - at; a++) {
 930		newblock = ext4_ext_new_meta_block(handle, inode, path,
 931						   newext, &err, flags);
 932		if (newblock == 0)
 933			goto cleanup;
 934		ablocks[a] = newblock;
 935	}
 936
 937	/* initialize new leaf */
 938	newblock = ablocks[--a];
 939	if (unlikely(newblock == 0)) {
 940		EXT4_ERROR_INODE(inode, "newblock == 0!");
 941		err = -EIO;
 942		goto cleanup;
 943	}
 944	bh = sb_getblk(inode->i_sb, newblock);
 945	if (!bh) {
 946		err = -EIO;
 947		goto cleanup;
 948	}
 949	lock_buffer(bh);
 950
 951	err = ext4_journal_get_create_access(handle, bh);
 952	if (err)
 953		goto cleanup;
 954
 955	neh = ext_block_hdr(bh);
 956	neh->eh_entries = 0;
 957	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
 958	neh->eh_magic = EXT4_EXT_MAGIC;
 959	neh->eh_depth = 0;
 960
 961	/* move remainder of path[depth] to the new leaf */
 962	if (unlikely(path[depth].p_hdr->eh_entries !=
 963		     path[depth].p_hdr->eh_max)) {
 964		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
 965				 path[depth].p_hdr->eh_entries,
 966				 path[depth].p_hdr->eh_max);
 967		err = -EIO;
 968		goto cleanup;
 969	}
 970	/* start copy from next extent */
 971	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
 972	ext4_ext_show_move(inode, path, newblock, depth);
 973	if (m) {
 974		struct ext4_extent *ex;
 975		ex = EXT_FIRST_EXTENT(neh);
 976		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
 977		le16_add_cpu(&neh->eh_entries, m);
 978	}
 979
 980	ext4_extent_block_csum_set(inode, neh);
 981	set_buffer_uptodate(bh);
 982	unlock_buffer(bh);
 983
 984	err = ext4_handle_dirty_metadata(handle, inode, bh);
 985	if (err)
 986		goto cleanup;
 987	brelse(bh);
 988	bh = NULL;
 989
 990	/* correct old leaf */
 991	if (m) {
 992		err = ext4_ext_get_access(handle, inode, path + depth);
 993		if (err)
 994			goto cleanup;
 995		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
 996		err = ext4_ext_dirty(handle, inode, path + depth);
 997		if (err)
 998			goto cleanup;
 999
1000	}
1001
1002	/* create intermediate indexes */
1003	k = depth - at - 1;
1004	if (unlikely(k < 0)) {
1005		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1006		err = -EIO;
1007		goto cleanup;
1008	}
1009	if (k)
1010		ext_debug("create %d intermediate indices\n", k);
1011	/* insert new index into current index block */
1012	/* current depth stored in i var */
1013	i = depth - 1;
1014	while (k--) {
1015		oldblock = newblock;
1016		newblock = ablocks[--a];
1017		bh = sb_getblk(inode->i_sb, newblock);
1018		if (!bh) {
1019			err = -EIO;
1020			goto cleanup;
1021		}
1022		lock_buffer(bh);
1023
1024		err = ext4_journal_get_create_access(handle, bh);
1025		if (err)
1026			goto cleanup;
1027
1028		neh = ext_block_hdr(bh);
1029		neh->eh_entries = cpu_to_le16(1);
1030		neh->eh_magic = EXT4_EXT_MAGIC;
1031		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1032		neh->eh_depth = cpu_to_le16(depth - i);
1033		fidx = EXT_FIRST_INDEX(neh);
1034		fidx->ei_block = border;
1035		ext4_idx_store_pblock(fidx, oldblock);
1036
1037		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1038				i, newblock, le32_to_cpu(border), oldblock);
1039
1040		/* move remainder of path[i] to the new index block */
1041		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1042					EXT_LAST_INDEX(path[i].p_hdr))) {
1043			EXT4_ERROR_INODE(inode,
1044					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1045					 le32_to_cpu(path[i].p_ext->ee_block));
1046			err = -EIO;
1047			goto cleanup;
1048		}
1049		/* start copy indexes */
1050		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1051		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1052				EXT_MAX_INDEX(path[i].p_hdr));
1053		ext4_ext_show_move(inode, path, newblock, i);
1054		if (m) {
1055			memmove(++fidx, path[i].p_idx,
1056				sizeof(struct ext4_extent_idx) * m);
1057			le16_add_cpu(&neh->eh_entries, m);
1058		}
1059		ext4_extent_block_csum_set(inode, neh);
1060		set_buffer_uptodate(bh);
1061		unlock_buffer(bh);
1062
1063		err = ext4_handle_dirty_metadata(handle, inode, bh);
1064		if (err)
1065			goto cleanup;
1066		brelse(bh);
1067		bh = NULL;
1068
1069		/* correct old index */
1070		if (m) {
1071			err = ext4_ext_get_access(handle, inode, path + i);
1072			if (err)
1073				goto cleanup;
1074			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1075			err = ext4_ext_dirty(handle, inode, path + i);
1076			if (err)
1077				goto cleanup;
1078		}
1079
1080		i--;
1081	}
1082
1083	/* insert new index */
1084	err = ext4_ext_insert_index(handle, inode, path + at,
1085				    le32_to_cpu(border), newblock);
1086
1087cleanup:
1088	if (bh) {
1089		if (buffer_locked(bh))
1090			unlock_buffer(bh);
1091		brelse(bh);
1092	}
1093
1094	if (err) {
1095		/* free all allocated blocks in error case */
1096		for (i = 0; i < depth; i++) {
1097			if (!ablocks[i])
1098				continue;
1099			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1100					 EXT4_FREE_BLOCKS_METADATA);
1101		}
1102	}
1103	kfree(ablocks);
1104
1105	return err;
1106}
1107
1108/*
1109 * ext4_ext_grow_indepth:
1110 * implements tree growing procedure:
1111 * - allocates new block
1112 * - moves top-level data (index block or leaf) into the new block
1113 * - initializes new top-level, creating index that points to the
1114 *   just created block
1115 */
1116static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1117				 unsigned int flags,
1118				 struct ext4_extent *newext)
1119{
1120	struct ext4_extent_header *neh;
1121	struct buffer_head *bh;
1122	ext4_fsblk_t newblock;
 
1123	int err = 0;
1124
1125	newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1126		newext, &err, flags);
 
 
 
 
 
 
 
 
1127	if (newblock == 0)
1128		return err;
1129
1130	bh = sb_getblk(inode->i_sb, newblock);
1131	if (!bh) {
1132		err = -EIO;
1133		ext4_std_error(inode->i_sb, err);
1134		return err;
1135	}
1136	lock_buffer(bh);
1137
1138	err = ext4_journal_get_create_access(handle, bh);
1139	if (err) {
1140		unlock_buffer(bh);
1141		goto out;
1142	}
1143
1144	/* move top-level index/leaf into new block */
1145	memmove(bh->b_data, EXT4_I(inode)->i_data,
1146		sizeof(EXT4_I(inode)->i_data));
1147
1148	/* set size of new block */
1149	neh = ext_block_hdr(bh);
1150	/* old root could have indexes or leaves
1151	 * so calculate e_max right way */
1152	if (ext_depth(inode))
1153		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1154	else
1155		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1156	neh->eh_magic = EXT4_EXT_MAGIC;
1157	ext4_extent_block_csum_set(inode, neh);
1158	set_buffer_uptodate(bh);
1159	unlock_buffer(bh);
1160
1161	err = ext4_handle_dirty_metadata(handle, inode, bh);
1162	if (err)
1163		goto out;
1164
1165	/* Update top-level index: num,max,pointer */
1166	neh = ext_inode_hdr(inode);
1167	neh->eh_entries = cpu_to_le16(1);
1168	ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1169	if (neh->eh_depth == 0) {
1170		/* Root extent block becomes index block */
1171		neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1172		EXT_FIRST_INDEX(neh)->ei_block =
1173			EXT_FIRST_EXTENT(neh)->ee_block;
1174	}
1175	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1176		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1177		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1178		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1179
1180	neh->eh_depth = cpu_to_le16(le16_to_cpu(neh->eh_depth) + 1);
1181	ext4_mark_inode_dirty(handle, inode);
1182out:
1183	brelse(bh);
1184
1185	return err;
1186}
1187
1188/*
1189 * ext4_ext_create_new_leaf:
1190 * finds empty index and adds new leaf.
1191 * if no free index is found, then it requests in-depth growing.
1192 */
1193static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1194				    unsigned int flags,
1195				    struct ext4_ext_path *path,
 
1196				    struct ext4_extent *newext)
1197{
 
1198	struct ext4_ext_path *curp;
1199	int depth, i, err = 0;
1200
1201repeat:
1202	i = depth = ext_depth(inode);
1203
1204	/* walk up to the tree and look for free index entry */
1205	curp = path + depth;
1206	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1207		i--;
1208		curp--;
1209	}
1210
1211	/* we use already allocated block for index block,
1212	 * so subsequent data blocks should be contiguous */
1213	if (EXT_HAS_FREE_INDEX(curp)) {
1214		/* if we found index with free entry, then use that
1215		 * entry: create all needed subtree and add new leaf */
1216		err = ext4_ext_split(handle, inode, flags, path, newext, i);
1217		if (err)
1218			goto out;
1219
1220		/* refill path */
1221		ext4_ext_drop_refs(path);
1222		path = ext4_ext_find_extent(inode,
1223				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1224				    path);
1225		if (IS_ERR(path))
1226			err = PTR_ERR(path);
1227	} else {
1228		/* tree is full, time to grow in depth */
1229		err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1230		if (err)
1231			goto out;
1232
1233		/* refill path */
1234		ext4_ext_drop_refs(path);
1235		path = ext4_ext_find_extent(inode,
1236				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1237				    path);
1238		if (IS_ERR(path)) {
1239			err = PTR_ERR(path);
1240			goto out;
1241		}
1242
1243		/*
1244		 * only first (depth 0 -> 1) produces free space;
1245		 * in all other cases we have to split the grown tree
1246		 */
1247		depth = ext_depth(inode);
1248		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1249			/* now we need to split */
1250			goto repeat;
1251		}
1252	}
1253
1254out:
1255	return err;
1256}
1257
1258/*
1259 * search the closest allocated block to the left for *logical
1260 * and returns it at @logical + it's physical address at @phys
1261 * if *logical is the smallest allocated block, the function
1262 * returns 0 at @phys
1263 * return value contains 0 (success) or error code
1264 */
1265static int ext4_ext_search_left(struct inode *inode,
1266				struct ext4_ext_path *path,
1267				ext4_lblk_t *logical, ext4_fsblk_t *phys)
1268{
1269	struct ext4_extent_idx *ix;
1270	struct ext4_extent *ex;
1271	int depth, ee_len;
1272
1273	if (unlikely(path == NULL)) {
1274		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1275		return -EIO;
1276	}
1277	depth = path->p_depth;
1278	*phys = 0;
1279
1280	if (depth == 0 && path->p_ext == NULL)
1281		return 0;
1282
1283	/* usually extent in the path covers blocks smaller
1284	 * then *logical, but it can be that extent is the
1285	 * first one in the file */
1286
1287	ex = path[depth].p_ext;
1288	ee_len = ext4_ext_get_actual_len(ex);
1289	if (*logical < le32_to_cpu(ex->ee_block)) {
1290		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1291			EXT4_ERROR_INODE(inode,
1292					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1293					 *logical, le32_to_cpu(ex->ee_block));
1294			return -EIO;
1295		}
1296		while (--depth >= 0) {
1297			ix = path[depth].p_idx;
1298			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1299				EXT4_ERROR_INODE(inode,
1300				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1301				  ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1302				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1303		le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1304				  depth);
1305				return -EIO;
1306			}
1307		}
1308		return 0;
1309	}
1310
1311	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1312		EXT4_ERROR_INODE(inode,
1313				 "logical %d < ee_block %d + ee_len %d!",
1314				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1315		return -EIO;
1316	}
1317
1318	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1319	*phys = ext4_ext_pblock(ex) + ee_len - 1;
1320	return 0;
1321}
1322
1323/*
1324 * search the closest allocated block to the right for *logical
1325 * and returns it at @logical + it's physical address at @phys
1326 * if *logical is the largest allocated block, the function
1327 * returns 0 at @phys
1328 * return value contains 0 (success) or error code
1329 */
1330static int ext4_ext_search_right(struct inode *inode,
1331				 struct ext4_ext_path *path,
1332				 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1333				 struct ext4_extent **ret_ex)
1334{
1335	struct buffer_head *bh = NULL;
1336	struct ext4_extent_header *eh;
1337	struct ext4_extent_idx *ix;
1338	struct ext4_extent *ex;
1339	ext4_fsblk_t block;
1340	int depth;	/* Note, NOT eh_depth; depth from top of tree */
1341	int ee_len;
1342
1343	if (unlikely(path == NULL)) {
1344		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1345		return -EIO;
1346	}
1347	depth = path->p_depth;
1348	*phys = 0;
1349
1350	if (depth == 0 && path->p_ext == NULL)
1351		return 0;
1352
1353	/* usually extent in the path covers blocks smaller
1354	 * then *logical, but it can be that extent is the
1355	 * first one in the file */
1356
1357	ex = path[depth].p_ext;
1358	ee_len = ext4_ext_get_actual_len(ex);
1359	if (*logical < le32_to_cpu(ex->ee_block)) {
1360		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1361			EXT4_ERROR_INODE(inode,
1362					 "first_extent(path[%d].p_hdr) != ex",
1363					 depth);
1364			return -EIO;
1365		}
1366		while (--depth >= 0) {
1367			ix = path[depth].p_idx;
1368			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1369				EXT4_ERROR_INODE(inode,
1370						 "ix != EXT_FIRST_INDEX *logical %d!",
1371						 *logical);
1372				return -EIO;
1373			}
1374		}
1375		goto found_extent;
1376	}
1377
1378	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1379		EXT4_ERROR_INODE(inode,
1380				 "logical %d < ee_block %d + ee_len %d!",
1381				 *logical, le32_to_cpu(ex->ee_block), ee_len);
1382		return -EIO;
1383	}
1384
1385	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1386		/* next allocated block in this leaf */
1387		ex++;
1388		goto found_extent;
1389	}
1390
1391	/* go up and search for index to the right */
1392	while (--depth >= 0) {
1393		ix = path[depth].p_idx;
1394		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1395			goto got_index;
1396	}
1397
1398	/* we've gone up to the root and found no index to the right */
1399	return 0;
1400
1401got_index:
1402	/* we've found index to the right, let's
1403	 * follow it and find the closest allocated
1404	 * block to the right */
1405	ix++;
1406	block = ext4_idx_pblock(ix);
1407	while (++depth < path->p_depth) {
1408		bh = sb_bread(inode->i_sb, block);
1409		if (bh == NULL)
1410			return -EIO;
 
 
1411		eh = ext_block_hdr(bh);
1412		/* subtract from p_depth to get proper eh_depth */
1413		if (ext4_ext_check_block(inode, eh,
1414					 path->p_depth - depth, bh)) {
1415			put_bh(bh);
1416			return -EIO;
1417		}
1418		ix = EXT_FIRST_INDEX(eh);
1419		block = ext4_idx_pblock(ix);
1420		put_bh(bh);
1421	}
1422
1423	bh = sb_bread(inode->i_sb, block);
1424	if (bh == NULL)
1425		return -EIO;
1426	eh = ext_block_hdr(bh);
1427	if (ext4_ext_check_block(inode, eh, path->p_depth - depth, bh)) {
1428		put_bh(bh);
1429		return -EIO;
1430	}
1431	ex = EXT_FIRST_EXTENT(eh);
1432found_extent:
1433	*logical = le32_to_cpu(ex->ee_block);
1434	*phys = ext4_ext_pblock(ex);
1435	*ret_ex = ex;
1436	if (bh)
1437		put_bh(bh);
1438	return 0;
1439}
1440
1441/*
1442 * ext4_ext_next_allocated_block:
1443 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1444 * NOTE: it considers block number from index entry as
1445 * allocated block. Thus, index entries have to be consistent
1446 * with leaves.
1447 */
1448static ext4_lblk_t
1449ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1450{
1451	int depth;
1452
1453	BUG_ON(path == NULL);
1454	depth = path->p_depth;
1455
1456	if (depth == 0 && path->p_ext == NULL)
1457		return EXT_MAX_BLOCKS;
1458
1459	while (depth >= 0) {
1460		if (depth == path->p_depth) {
1461			/* leaf */
1462			if (path[depth].p_ext &&
1463				path[depth].p_ext !=
1464					EXT_LAST_EXTENT(path[depth].p_hdr))
1465			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
1466		} else {
1467			/* index */
1468			if (path[depth].p_idx !=
1469					EXT_LAST_INDEX(path[depth].p_hdr))
1470			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
1471		}
1472		depth--;
1473	}
1474
1475	return EXT_MAX_BLOCKS;
1476}
1477
1478/*
1479 * ext4_ext_next_leaf_block:
1480 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1481 */
1482static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1483{
1484	int depth;
1485
1486	BUG_ON(path == NULL);
1487	depth = path->p_depth;
1488
1489	/* zero-tree has no leaf blocks at all */
1490	if (depth == 0)
1491		return EXT_MAX_BLOCKS;
1492
1493	/* go to index block */
1494	depth--;
1495
1496	while (depth >= 0) {
1497		if (path[depth].p_idx !=
1498				EXT_LAST_INDEX(path[depth].p_hdr))
1499			return (ext4_lblk_t)
1500				le32_to_cpu(path[depth].p_idx[1].ei_block);
1501		depth--;
1502	}
1503
1504	return EXT_MAX_BLOCKS;
1505}
1506
1507/*
1508 * ext4_ext_correct_indexes:
1509 * if leaf gets modified and modified extent is first in the leaf,
1510 * then we have to correct all indexes above.
1511 * TODO: do we need to correct tree in all cases?
1512 */
1513static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1514				struct ext4_ext_path *path)
1515{
1516	struct ext4_extent_header *eh;
1517	int depth = ext_depth(inode);
1518	struct ext4_extent *ex;
1519	__le32 border;
1520	int k, err = 0;
1521
1522	eh = path[depth].p_hdr;
1523	ex = path[depth].p_ext;
1524
1525	if (unlikely(ex == NULL || eh == NULL)) {
1526		EXT4_ERROR_INODE(inode,
1527				 "ex %p == NULL or eh %p == NULL", ex, eh);
1528		return -EIO;
1529	}
1530
1531	if (depth == 0) {
1532		/* there is no tree at all */
1533		return 0;
1534	}
1535
1536	if (ex != EXT_FIRST_EXTENT(eh)) {
1537		/* we correct tree if first leaf got modified only */
1538		return 0;
1539	}
1540
1541	/*
1542	 * TODO: we need correction if border is smaller than current one
1543	 */
1544	k = depth - 1;
1545	border = path[depth].p_ext->ee_block;
1546	err = ext4_ext_get_access(handle, inode, path + k);
1547	if (err)
1548		return err;
1549	path[k].p_idx->ei_block = border;
1550	err = ext4_ext_dirty(handle, inode, path + k);
1551	if (err)
1552		return err;
1553
1554	while (k--) {
1555		/* change all left-side indexes */
1556		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1557			break;
1558		err = ext4_ext_get_access(handle, inode, path + k);
1559		if (err)
1560			break;
1561		path[k].p_idx->ei_block = border;
1562		err = ext4_ext_dirty(handle, inode, path + k);
1563		if (err)
1564			break;
1565	}
1566
1567	return err;
1568}
1569
1570int
1571ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1572				struct ext4_extent *ex2)
1573{
1574	unsigned short ext1_ee_len, ext2_ee_len, max_len;
1575
1576	/*
1577	 * Make sure that either both extents are uninitialized, or
1578	 * both are _not_.
1579	 */
1580	if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1581		return 0;
1582
1583	if (ext4_ext_is_uninitialized(ex1))
1584		max_len = EXT_UNINIT_MAX_LEN;
1585	else
1586		max_len = EXT_INIT_MAX_LEN;
1587
1588	ext1_ee_len = ext4_ext_get_actual_len(ex1);
1589	ext2_ee_len = ext4_ext_get_actual_len(ex2);
1590
1591	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1592			le32_to_cpu(ex2->ee_block))
1593		return 0;
1594
1595	/*
1596	 * To allow future support for preallocated extents to be added
1597	 * as an RO_COMPAT feature, refuse to merge to extents if
1598	 * this can result in the top bit of ee_len being set.
1599	 */
1600	if (ext1_ee_len + ext2_ee_len > max_len)
 
 
 
 
 
 
 
 
 
 
 
1601		return 0;
1602#ifdef AGGRESSIVE_TEST
1603	if (ext1_ee_len >= 4)
1604		return 0;
1605#endif
1606
1607	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1608		return 1;
1609	return 0;
1610}
1611
1612/*
1613 * This function tries to merge the "ex" extent to the next extent in the tree.
1614 * It always tries to merge towards right. If you want to merge towards
1615 * left, pass "ex - 1" as argument instead of "ex".
1616 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1617 * 1 if they got merged.
1618 */
1619static int ext4_ext_try_to_merge_right(struct inode *inode,
1620				 struct ext4_ext_path *path,
1621				 struct ext4_extent *ex)
1622{
1623	struct ext4_extent_header *eh;
1624	unsigned int depth, len;
1625	int merge_done = 0;
1626	int uninitialized = 0;
1627
1628	depth = ext_depth(inode);
1629	BUG_ON(path[depth].p_hdr == NULL);
1630	eh = path[depth].p_hdr;
1631
1632	while (ex < EXT_LAST_EXTENT(eh)) {
1633		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1634			break;
1635		/* merge with next extent! */
1636		if (ext4_ext_is_uninitialized(ex))
1637			uninitialized = 1;
1638		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1639				+ ext4_ext_get_actual_len(ex + 1));
1640		if (uninitialized)
1641			ext4_ext_mark_uninitialized(ex);
1642
1643		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1644			len = (EXT_LAST_EXTENT(eh) - ex - 1)
1645				* sizeof(struct ext4_extent);
1646			memmove(ex + 1, ex + 2, len);
1647		}
1648		le16_add_cpu(&eh->eh_entries, -1);
1649		merge_done = 1;
1650		WARN_ON(eh->eh_entries == 0);
1651		if (!eh->eh_entries)
1652			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1653	}
1654
1655	return merge_done;
1656}
1657
1658/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1659 * This function tries to merge the @ex extent to neighbours in the tree.
1660 * return 1 if merge left else 0.
1661 */
1662static int ext4_ext_try_to_merge(struct inode *inode,
 
1663				  struct ext4_ext_path *path,
1664				  struct ext4_extent *ex) {
1665	struct ext4_extent_header *eh;
1666	unsigned int depth;
1667	int merge_done = 0;
1668	int ret = 0;
1669
1670	depth = ext_depth(inode);
1671	BUG_ON(path[depth].p_hdr == NULL);
1672	eh = path[depth].p_hdr;
1673
1674	if (ex > EXT_FIRST_EXTENT(eh))
1675		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1676
1677	if (!merge_done)
1678		ret = ext4_ext_try_to_merge_right(inode, path, ex);
1679
1680	return ret;
1681}
1682
1683/*
1684 * check if a portion of the "newext" extent overlaps with an
1685 * existing extent.
1686 *
1687 * If there is an overlap discovered, it updates the length of the newext
1688 * such that there will be no overlap, and then returns 1.
1689 * If there is no overlap found, it returns 0.
1690 */
1691static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1692					   struct inode *inode,
1693					   struct ext4_extent *newext,
1694					   struct ext4_ext_path *path)
1695{
1696	ext4_lblk_t b1, b2;
1697	unsigned int depth, len1;
1698	unsigned int ret = 0;
1699
1700	b1 = le32_to_cpu(newext->ee_block);
1701	len1 = ext4_ext_get_actual_len(newext);
1702	depth = ext_depth(inode);
1703	if (!path[depth].p_ext)
1704		goto out;
1705	b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1706	b2 &= ~(sbi->s_cluster_ratio - 1);
1707
1708	/*
1709	 * get the next allocated block if the extent in the path
1710	 * is before the requested block(s)
1711	 */
1712	if (b2 < b1) {
1713		b2 = ext4_ext_next_allocated_block(path);
1714		if (b2 == EXT_MAX_BLOCKS)
1715			goto out;
1716		b2 &= ~(sbi->s_cluster_ratio - 1);
1717	}
1718
1719	/* check for wrap through zero on extent logical start block*/
1720	if (b1 + len1 < b1) {
1721		len1 = EXT_MAX_BLOCKS - b1;
1722		newext->ee_len = cpu_to_le16(len1);
1723		ret = 1;
1724	}
1725
1726	/* check for overlap */
1727	if (b1 + len1 > b2) {
1728		newext->ee_len = cpu_to_le16(b2 - b1);
1729		ret = 1;
1730	}
1731out:
1732	return ret;
1733}
1734
1735/*
1736 * ext4_ext_insert_extent:
1737 * tries to merge requsted extent into the existing extent or
1738 * inserts requested extent as new one into the tree,
1739 * creating new leaf in the no-space case.
1740 */
1741int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1742				struct ext4_ext_path *path,
1743				struct ext4_extent *newext, int flag)
1744{
 
1745	struct ext4_extent_header *eh;
1746	struct ext4_extent *ex, *fex;
1747	struct ext4_extent *nearex; /* nearest extent */
1748	struct ext4_ext_path *npath = NULL;
1749	int depth, len, err;
1750	ext4_lblk_t next;
1751	unsigned uninitialized = 0;
1752	int flags = 0;
1753
 
 
1754	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1755		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1756		return -EIO;
1757	}
1758	depth = ext_depth(inode);
1759	ex = path[depth].p_ext;
 
1760	if (unlikely(path[depth].p_hdr == NULL)) {
1761		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1762		return -EIO;
1763	}
1764
1765	/* try to insert block into found extent and return */
1766	if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1767		&& ext4_can_extents_be_merged(inode, ex, newext)) {
1768		ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1769			  ext4_ext_is_uninitialized(newext),
1770			  ext4_ext_get_actual_len(newext),
1771			  le32_to_cpu(ex->ee_block),
1772			  ext4_ext_is_uninitialized(ex),
1773			  ext4_ext_get_actual_len(ex),
1774			  ext4_ext_pblock(ex));
1775		err = ext4_ext_get_access(handle, inode, path + depth);
1776		if (err)
1777			return err;
1778
1779		/*
1780		 * ext4_can_extents_be_merged should have checked that either
1781		 * both extents are uninitialized, or both aren't. Thus we
1782		 * need to check only one of them here.
 
 
1783		 */
1784		if (ext4_ext_is_uninitialized(ex))
1785			uninitialized = 1;
1786		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1787					+ ext4_ext_get_actual_len(newext));
1788		if (uninitialized)
1789			ext4_ext_mark_uninitialized(ex);
1790		eh = path[depth].p_hdr;
1791		nearex = ex;
1792		goto merge;
 
1793	}
1794
1795	depth = ext_depth(inode);
1796	eh = path[depth].p_hdr;
1797	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1798		goto has_space;
1799
1800	/* probably next leaf has space for us? */
1801	fex = EXT_LAST_EXTENT(eh);
1802	next = EXT_MAX_BLOCKS;
1803	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1804		next = ext4_ext_next_leaf_block(path);
1805	if (next != EXT_MAX_BLOCKS) {
1806		ext_debug("next leaf block - %u\n", next);
1807		BUG_ON(npath != NULL);
1808		npath = ext4_ext_find_extent(inode, next, NULL);
1809		if (IS_ERR(npath))
1810			return PTR_ERR(npath);
1811		BUG_ON(npath->p_depth != path->p_depth);
1812		eh = npath[depth].p_hdr;
1813		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1814			ext_debug("next leaf isn't full(%d)\n",
1815				  le16_to_cpu(eh->eh_entries));
1816			path = npath;
1817			goto has_space;
1818		}
1819		ext_debug("next leaf has no free space(%d,%d)\n",
1820			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1821	}
1822
1823	/*
1824	 * There is no free space in the found leaf.
1825	 * We're gonna add a new leaf in the tree.
1826	 */
1827	if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1828		flags = EXT4_MB_USE_ROOT_BLOCKS;
1829	err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
 
1830	if (err)
1831		goto cleanup;
1832	depth = ext_depth(inode);
1833	eh = path[depth].p_hdr;
1834
1835has_space:
1836	nearex = path[depth].p_ext;
1837
1838	err = ext4_ext_get_access(handle, inode, path + depth);
1839	if (err)
1840		goto cleanup;
1841
1842	if (!nearex) {
1843		/* there is no extent in this leaf, create first one */
1844		ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1845				le32_to_cpu(newext->ee_block),
1846				ext4_ext_pblock(newext),
1847				ext4_ext_is_uninitialized(newext),
1848				ext4_ext_get_actual_len(newext));
1849		nearex = EXT_FIRST_EXTENT(eh);
1850	} else {
1851		if (le32_to_cpu(newext->ee_block)
1852			   > le32_to_cpu(nearex->ee_block)) {
1853			/* Insert after */
1854			ext_debug("insert %u:%llu:[%d]%d before: "
1855					"nearest %p\n",
1856					le32_to_cpu(newext->ee_block),
1857					ext4_ext_pblock(newext),
1858					ext4_ext_is_uninitialized(newext),
1859					ext4_ext_get_actual_len(newext),
1860					nearex);
1861			nearex++;
1862		} else {
1863			/* Insert before */
1864			BUG_ON(newext->ee_block == nearex->ee_block);
1865			ext_debug("insert %u:%llu:[%d]%d after: "
1866					"nearest %p\n",
1867					le32_to_cpu(newext->ee_block),
1868					ext4_ext_pblock(newext),
1869					ext4_ext_is_uninitialized(newext),
1870					ext4_ext_get_actual_len(newext),
1871					nearex);
1872		}
1873		len = EXT_LAST_EXTENT(eh) - nearex + 1;
1874		if (len > 0) {
1875			ext_debug("insert %u:%llu:[%d]%d: "
1876					"move %d extents from 0x%p to 0x%p\n",
1877					le32_to_cpu(newext->ee_block),
1878					ext4_ext_pblock(newext),
1879					ext4_ext_is_uninitialized(newext),
1880					ext4_ext_get_actual_len(newext),
1881					len, nearex, nearex + 1);
1882			memmove(nearex + 1, nearex,
1883				len * sizeof(struct ext4_extent));
1884		}
1885	}
1886
1887	le16_add_cpu(&eh->eh_entries, 1);
1888	path[depth].p_ext = nearex;
1889	nearex->ee_block = newext->ee_block;
1890	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1891	nearex->ee_len = newext->ee_len;
1892
1893merge:
1894	/* try to merge extents to the right */
1895	if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1896		ext4_ext_try_to_merge(inode, path, nearex);
1897
1898	/* try to merge extents to the left */
1899
1900	/* time to correct all indexes above */
1901	err = ext4_ext_correct_indexes(handle, inode, path);
1902	if (err)
1903		goto cleanup;
1904
1905	err = ext4_ext_dirty(handle, inode, path + depth);
1906
1907cleanup:
1908	if (npath) {
1909		ext4_ext_drop_refs(npath);
1910		kfree(npath);
1911	}
1912	ext4_ext_invalidate_cache(inode);
1913	return err;
1914}
1915
1916static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1917			       ext4_lblk_t num, ext_prepare_callback func,
1918			       void *cbdata)
1919{
1920	struct ext4_ext_path *path = NULL;
1921	struct ext4_ext_cache cbex;
1922	struct ext4_extent *ex;
1923	ext4_lblk_t next, start = 0, end = 0;
 
1924	ext4_lblk_t last = block + num;
1925	int depth, exists, err = 0;
1926
1927	BUG_ON(func == NULL);
1928	BUG_ON(inode == NULL);
1929
1930	while (block < last && block != EXT_MAX_BLOCKS) {
1931		num = last - block;
1932		/* find extent for this block */
1933		down_read(&EXT4_I(inode)->i_data_sem);
1934		path = ext4_ext_find_extent(inode, block, path);
1935		up_read(&EXT4_I(inode)->i_data_sem);
1936		if (IS_ERR(path)) {
 
1937			err = PTR_ERR(path);
1938			path = NULL;
1939			break;
1940		}
1941
1942		depth = ext_depth(inode);
1943		if (unlikely(path[depth].p_hdr == NULL)) {
 
1944			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1945			err = -EIO;
1946			break;
1947		}
1948		ex = path[depth].p_ext;
1949		next = ext4_ext_next_allocated_block(path);
1950
 
1951		exists = 0;
1952		if (!ex) {
1953			/* there is no extent yet, so try to allocate
1954			 * all requested space */
1955			start = block;
1956			end = block + num;
1957		} else if (le32_to_cpu(ex->ee_block) > block) {
1958			/* need to allocate space before found extent */
1959			start = block;
1960			end = le32_to_cpu(ex->ee_block);
1961			if (block + num < end)
1962				end = block + num;
1963		} else if (block >= le32_to_cpu(ex->ee_block)
1964					+ ext4_ext_get_actual_len(ex)) {
1965			/* need to allocate space after found extent */
1966			start = block;
1967			end = block + num;
1968			if (end >= next)
1969				end = next;
1970		} else if (block >= le32_to_cpu(ex->ee_block)) {
1971			/*
1972			 * some part of requested space is covered
1973			 * by found extent
1974			 */
1975			start = block;
1976			end = le32_to_cpu(ex->ee_block)
1977				+ ext4_ext_get_actual_len(ex);
1978			if (block + num < end)
1979				end = block + num;
1980			exists = 1;
1981		} else {
1982			BUG();
1983		}
1984		BUG_ON(end <= start);
1985
1986		if (!exists) {
1987			cbex.ec_block = start;
1988			cbex.ec_len = end - start;
1989			cbex.ec_start = 0;
1990		} else {
1991			cbex.ec_block = le32_to_cpu(ex->ee_block);
1992			cbex.ec_len = ext4_ext_get_actual_len(ex);
1993			cbex.ec_start = ext4_ext_pblock(ex);
 
 
1994		}
1995
1996		if (unlikely(cbex.ec_len == 0)) {
1997			EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
1998			err = -EIO;
1999			break;
 
 
 
 
 
 
2000		}
2001		err = func(inode, next, &cbex, ex, cbdata);
2002		ext4_ext_drop_refs(path);
2003
2004		if (err < 0)
 
 
2005			break;
 
2006
2007		if (err == EXT_REPEAT)
2008			continue;
2009		else if (err == EXT_BREAK) {
2010			err = 0;
2011			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2012		}
2013
2014		if (ext_depth(inode) != depth) {
2015			/* depth was changed. we have to realloc path */
2016			kfree(path);
2017			path = NULL;
 
 
 
 
 
 
 
 
2018		}
2019
2020		block = cbex.ec_block + cbex.ec_len;
2021	}
2022
2023	if (path) {
2024		ext4_ext_drop_refs(path);
2025		kfree(path);
2026	}
2027
 
 
2028	return err;
2029}
2030
2031static void
2032ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
2033			__u32 len, ext4_fsblk_t start)
2034{
2035	struct ext4_ext_cache *cex;
2036	BUG_ON(len == 0);
2037	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2038	trace_ext4_ext_put_in_cache(inode, block, len, start);
2039	cex = &EXT4_I(inode)->i_cached_extent;
2040	cex->ec_block = block;
2041	cex->ec_len = len;
2042	cex->ec_start = start;
2043	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2044}
2045
2046/*
2047 * ext4_ext_put_gap_in_cache:
2048 * calculate boundaries of the gap that the requested block fits into
2049 * and cache this gap
 
 
 
 
 
 
 
 
2050 */
2051static void
2052ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2053				ext4_lblk_t block)
2054{
2055	int depth = ext_depth(inode);
2056	unsigned long len;
2057	ext4_lblk_t lblock;
2058	struct ext4_extent *ex;
 
2059
2060	ex = path[depth].p_ext;
2061	if (ex == NULL) {
2062		/* there is no extent yet, so gap is [0;-] */
2063		lblock = 0;
2064		len = EXT_MAX_BLOCKS;
2065		ext_debug("cache gap(whole file):");
2066	} else if (block < le32_to_cpu(ex->ee_block)) {
2067		lblock = block;
2068		len = le32_to_cpu(ex->ee_block) - block;
2069		ext_debug("cache gap(before): %u [%u:%u]",
2070				block,
2071				le32_to_cpu(ex->ee_block),
2072				 ext4_ext_get_actual_len(ex));
2073	} else if (block >= le32_to_cpu(ex->ee_block)
2074			+ ext4_ext_get_actual_len(ex)) {
2075		ext4_lblk_t next;
2076		lblock = le32_to_cpu(ex->ee_block)
2077			+ ext4_ext_get_actual_len(ex);
2078
 
2079		next = ext4_ext_next_allocated_block(path);
2080		ext_debug("cache gap(after): [%u:%u] %u",
2081				le32_to_cpu(ex->ee_block),
2082				ext4_ext_get_actual_len(ex),
2083				block);
2084		BUG_ON(next == lblock);
2085		len = next - lblock;
2086	} else {
2087		lblock = len = 0;
2088		BUG();
2089	}
2090
2091	ext_debug(" -> %u:%lu\n", lblock, len);
2092	ext4_ext_put_in_cache(inode, lblock, len, 0);
2093}
2094
2095/*
2096 * ext4_ext_check_cache()
2097 * Checks to see if the given block is in the cache.
2098 * If it is, the cached extent is stored in the given
2099 * cache extent pointer.  If the cached extent is a hole,
2100 * this routine should be used instead of
2101 * ext4_ext_in_cache if the calling function needs to
2102 * know the size of the hole.
2103 *
2104 * @inode: The files inode
2105 * @block: The block to look for in the cache
2106 * @ex:    Pointer where the cached extent will be stored
2107 *         if it contains block
2108 *
2109 * Return 0 if cache is invalid; 1 if the cache is valid
2110 */
2111static int ext4_ext_check_cache(struct inode *inode, ext4_lblk_t block,
2112	struct ext4_ext_cache *ex){
2113	struct ext4_ext_cache *cex;
2114	struct ext4_sb_info *sbi;
2115	int ret = 0;
2116
2117	/*
2118	 * We borrow i_block_reservation_lock to protect i_cached_extent
2119	 */
2120	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2121	cex = &EXT4_I(inode)->i_cached_extent;
2122	sbi = EXT4_SB(inode->i_sb);
2123
2124	/* has cache valid data? */
2125	if (cex->ec_len == 0)
2126		goto errout;
2127
2128	if (in_range(block, cex->ec_block, cex->ec_len)) {
2129		memcpy(ex, cex, sizeof(struct ext4_ext_cache));
2130		ext_debug("%u cached by %u:%u:%llu\n",
2131				block,
2132				cex->ec_block, cex->ec_len, cex->ec_start);
2133		ret = 1;
2134	}
2135errout:
2136	trace_ext4_ext_in_cache(inode, block, ret);
2137	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2138	return ret;
2139}
2140
2141/*
2142 * ext4_ext_in_cache()
2143 * Checks to see if the given block is in the cache.
2144 * If it is, the cached extent is stored in the given
2145 * extent pointer.
2146 *
2147 * @inode: The files inode
2148 * @block: The block to look for in the cache
2149 * @ex:    Pointer where the cached extent will be stored
2150 *         if it contains block
2151 *
2152 * Return 0 if cache is invalid; 1 if the cache is valid
2153 */
2154static int
2155ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2156			struct ext4_extent *ex)
2157{
2158	struct ext4_ext_cache cex;
2159	int ret = 0;
2160
2161	if (ext4_ext_check_cache(inode, block, &cex)) {
2162		ex->ee_block = cpu_to_le32(cex.ec_block);
2163		ext4_ext_store_pblock(ex, cex.ec_start);
2164		ex->ee_len = cpu_to_le16(cex.ec_len);
2165		ret = 1;
2166	}
2167
2168	return ret;
 
 
 
 
 
 
 
 
 
 
2169}
2170
2171
2172/*
2173 * ext4_ext_rm_idx:
2174 * removes index from the index block.
2175 */
2176static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2177			struct ext4_ext_path *path)
2178{
2179	int err;
2180	ext4_fsblk_t leaf;
2181
2182	/* free index block */
2183	path--;
 
2184	leaf = ext4_idx_pblock(path->p_idx);
2185	if (unlikely(path->p_hdr->eh_entries == 0)) {
2186		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2187		return -EIO;
2188	}
2189	err = ext4_ext_get_access(handle, inode, path);
2190	if (err)
2191		return err;
2192
2193	if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2194		int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2195		len *= sizeof(struct ext4_extent_idx);
2196		memmove(path->p_idx, path->p_idx + 1, len);
2197	}
2198
2199	le16_add_cpu(&path->p_hdr->eh_entries, -1);
2200	err = ext4_ext_dirty(handle, inode, path);
2201	if (err)
2202		return err;
2203	ext_debug("index is empty, remove it, free block %llu\n", leaf);
2204	trace_ext4_ext_rm_idx(inode, leaf);
2205
2206	ext4_free_blocks(handle, inode, NULL, leaf, 1,
2207			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
 
 
 
 
 
 
 
 
 
 
 
 
 
2208	return err;
2209}
2210
2211/*
2212 * ext4_ext_calc_credits_for_single_extent:
2213 * This routine returns max. credits that needed to insert an extent
2214 * to the extent tree.
2215 * When pass the actual path, the caller should calculate credits
2216 * under i_data_sem.
2217 */
2218int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2219						struct ext4_ext_path *path)
2220{
2221	if (path) {
2222		int depth = ext_depth(inode);
2223		int ret = 0;
2224
2225		/* probably there is space in leaf? */
2226		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2227				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
2228
2229			/*
2230			 *  There are some space in the leaf tree, no
2231			 *  need to account for leaf block credit
2232			 *
2233			 *  bitmaps and block group descriptor blocks
2234			 *  and other metadata blocks still need to be
2235			 *  accounted.
2236			 */
2237			/* 1 bitmap, 1 block group descriptor */
2238			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2239			return ret;
2240		}
2241	}
2242
2243	return ext4_chunk_trans_blocks(inode, nrblocks);
2244}
2245
2246/*
2247 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2248 *
2249 * if nrblocks are fit in a single extent (chunk flag is 1), then
2250 * in the worse case, each tree level index/leaf need to be changed
2251 * if the tree split due to insert a new extent, then the old tree
2252 * index/leaf need to be updated too
2253 *
2254 * If the nrblocks are discontiguous, they could cause
2255 * the whole tree split more than once, but this is really rare.
2256 */
2257int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2258{
2259	int index;
2260	int depth = ext_depth(inode);
 
 
 
 
 
 
2261
2262	if (chunk)
2263		index = depth * 2;
2264	else
2265		index = depth * 3;
2266
2267	return index;
2268}
2269
 
 
 
 
 
 
 
 
 
2270static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2271			      struct ext4_extent *ex,
2272			      ext4_fsblk_t *partial_cluster,
2273			      ext4_lblk_t from, ext4_lblk_t to)
2274{
2275	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2276	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2277	ext4_fsblk_t pblk;
2278	int flags = EXT4_FREE_BLOCKS_FORGET;
2279
2280	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2281		flags |= EXT4_FREE_BLOCKS_METADATA;
2282	/*
2283	 * For bigalloc file systems, we never free a partial cluster
2284	 * at the beginning of the extent.  Instead, we make a note
2285	 * that we tried freeing the cluster, and check to see if we
2286	 * need to free it on a subsequent call to ext4_remove_blocks,
2287	 * or at the end of the ext4_truncate() operation.
2288	 */
2289	flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2290
2291	trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2292	/*
2293	 * If we have a partial cluster, and it's different from the
2294	 * cluster of the last block, we need to explicitly free the
2295	 * partial cluster here.
2296	 */
2297	pblk = ext4_ext_pblock(ex) + ee_len - 1;
2298	if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
 
2299		ext4_free_blocks(handle, inode, NULL,
2300				 EXT4_C2B(sbi, *partial_cluster),
2301				 sbi->s_cluster_ratio, flags);
2302		*partial_cluster = 0;
2303	}
2304
2305#ifdef EXTENTS_STATS
2306	{
2307		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2308		spin_lock(&sbi->s_ext_stats_lock);
2309		sbi->s_ext_blocks += ee_len;
2310		sbi->s_ext_extents++;
2311		if (ee_len < sbi->s_ext_min)
2312			sbi->s_ext_min = ee_len;
2313		if (ee_len > sbi->s_ext_max)
2314			sbi->s_ext_max = ee_len;
2315		if (ext_depth(inode) > sbi->s_depth_max)
2316			sbi->s_depth_max = ext_depth(inode);
2317		spin_unlock(&sbi->s_ext_stats_lock);
2318	}
2319#endif
2320	if (from >= le32_to_cpu(ex->ee_block)
2321	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2322		/* tail removal */
2323		ext4_lblk_t num;
 
2324
2325		num = le32_to_cpu(ex->ee_block) + ee_len - from;
2326		pblk = ext4_ext_pblock(ex) + ee_len - num;
2327		ext_debug("free last %u blocks starting %llu\n", num, pblk);
 
 
 
 
 
 
 
 
 
 
2328		ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2329		/*
2330		 * If the block range to be freed didn't start at the
2331		 * beginning of a cluster, and we removed the entire
2332		 * extent, save the partial cluster here, since we
2333		 * might need to delete if we determine that the
2334		 * truncate operation has removed all of the blocks in
2335		 * the cluster.
 
 
 
 
 
 
 
 
2336		 */
2337		if (pblk & (sbi->s_cluster_ratio - 1) &&
2338		    (ee_len == num))
2339			*partial_cluster = EXT4_B2C(sbi, pblk);
2340		else
 
2341			*partial_cluster = 0;
2342	} else if (from == le32_to_cpu(ex->ee_block)
2343		   && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2344		/* head removal */
2345		ext4_lblk_t num;
2346		ext4_fsblk_t start;
2347
2348		num = to - from;
2349		start = ext4_ext_pblock(ex);
2350
2351		ext_debug("free first %u blocks starting %llu\n", num, start);
2352		ext4_free_blocks(handle, inode, NULL, start, num, flags);
2353
2354	} else {
2355		printk(KERN_INFO "strange request: removal(2) "
2356				"%u-%u from %u:%u\n",
2357				from, to, le32_to_cpu(ex->ee_block), ee_len);
2358	}
2359	return 0;
2360}
2361
2362
2363/*
2364 * ext4_ext_rm_leaf() Removes the extents associated with the
2365 * blocks appearing between "start" and "end", and splits the extents
2366 * if "start" and "end" appear in the same extent
2367 *
2368 * @handle: The journal handle
2369 * @inode:  The files inode
2370 * @path:   The path to the leaf
 
 
 
 
2371 * @start:  The first block to remove
2372 * @end:   The last block to remove
2373 */
2374static int
2375ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2376		 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
 
2377		 ext4_lblk_t start, ext4_lblk_t end)
2378{
2379	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2380	int err = 0, correct_index = 0;
2381	int depth = ext_depth(inode), credits;
2382	struct ext4_extent_header *eh;
2383	ext4_lblk_t a, b;
2384	unsigned num;
2385	ext4_lblk_t ex_ee_block;
2386	unsigned short ex_ee_len;
2387	unsigned uninitialized = 0;
2388	struct ext4_extent *ex;
 
2389
2390	/* the header must be checked already in ext4_ext_remove_space() */
2391	ext_debug("truncate since %u in leaf to %u\n", start, end);
2392	if (!path[depth].p_hdr)
2393		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2394	eh = path[depth].p_hdr;
2395	if (unlikely(path[depth].p_hdr == NULL)) {
2396		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2397		return -EIO;
2398	}
2399	/* find where to start removing */
2400	ex = EXT_LAST_EXTENT(eh);
 
 
2401
2402	ex_ee_block = le32_to_cpu(ex->ee_block);
2403	ex_ee_len = ext4_ext_get_actual_len(ex);
2404
2405	trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2406
2407	while (ex >= EXT_FIRST_EXTENT(eh) &&
2408			ex_ee_block + ex_ee_len > start) {
2409
2410		if (ext4_ext_is_uninitialized(ex))
2411			uninitialized = 1;
2412		else
2413			uninitialized = 0;
2414
2415		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2416			 uninitialized, ex_ee_len);
2417		path[depth].p_ext = ex;
2418
2419		a = ex_ee_block > start ? ex_ee_block : start;
2420		b = ex_ee_block+ex_ee_len - 1 < end ?
2421			ex_ee_block+ex_ee_len - 1 : end;
2422
2423		ext_debug("  border %u:%u\n", a, b);
2424
2425		/* If this extent is beyond the end of the hole, skip it */
2426		if (end < ex_ee_block) {
 
 
 
 
 
 
 
 
 
 
 
 
2427			ex--;
2428			ex_ee_block = le32_to_cpu(ex->ee_block);
2429			ex_ee_len = ext4_ext_get_actual_len(ex);
2430			continue;
2431		} else if (b != ex_ee_block + ex_ee_len - 1) {
2432			EXT4_ERROR_INODE(inode,
2433					 "can not handle truncate %u:%u "
2434					 "on extent %u:%u",
2435					 start, end, ex_ee_block,
2436					 ex_ee_block + ex_ee_len - 1);
2437			err = -EIO;
2438			goto out;
2439		} else if (a != ex_ee_block) {
2440			/* remove tail of the extent */
2441			num = a - ex_ee_block;
2442		} else {
2443			/* remove whole extent: excellent! */
2444			num = 0;
2445		}
2446		/*
2447		 * 3 for leaf, sb, and inode plus 2 (bmap and group
2448		 * descriptor) for each block group; assume two block
2449		 * groups plus ex_ee_len/blocks_per_block_group for
2450		 * the worst case
2451		 */
2452		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2453		if (ex == EXT_FIRST_EXTENT(eh)) {
2454			correct_index = 1;
2455			credits += (ext_depth(inode)) + 1;
2456		}
2457		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2458
2459		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2460		if (err)
2461			goto out;
2462
2463		err = ext4_ext_get_access(handle, inode, path + depth);
2464		if (err)
2465			goto out;
2466
2467		err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2468					 a, b);
2469		if (err)
2470			goto out;
2471
2472		if (num == 0)
2473			/* this extent is removed; mark slot entirely unused */
2474			ext4_ext_store_pblock(ex, 0);
2475
2476		ex->ee_len = cpu_to_le16(num);
2477		/*
2478		 * Do not mark uninitialized if all the blocks in the
2479		 * extent have been removed.
2480		 */
2481		if (uninitialized && num)
2482			ext4_ext_mark_uninitialized(ex);
2483		/*
2484		 * If the extent was completely released,
2485		 * we need to remove it from the leaf
2486		 */
2487		if (num == 0) {
2488			if (end != EXT_MAX_BLOCKS - 1) {
2489				/*
2490				 * For hole punching, we need to scoot all the
2491				 * extents up when an extent is removed so that
2492				 * we dont have blank extents in the middle
2493				 */
2494				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2495					sizeof(struct ext4_extent));
2496
2497				/* Now get rid of the one at the end */
2498				memset(EXT_LAST_EXTENT(eh), 0,
2499					sizeof(struct ext4_extent));
2500			}
2501			le16_add_cpu(&eh->eh_entries, -1);
2502		} else
2503			*partial_cluster = 0;
2504
2505		err = ext4_ext_dirty(handle, inode, path + depth);
2506		if (err)
2507			goto out;
2508
2509		ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2510				ext4_ext_pblock(ex));
2511		ex--;
2512		ex_ee_block = le32_to_cpu(ex->ee_block);
2513		ex_ee_len = ext4_ext_get_actual_len(ex);
2514	}
2515
2516	if (correct_index && eh->eh_entries)
2517		err = ext4_ext_correct_indexes(handle, inode, path);
2518
2519	/*
2520	 * If there is still a entry in the leaf node, check to see if
2521	 * it references the partial cluster.  This is the only place
2522	 * where it could; if it doesn't, we can free the cluster.
2523	 */
2524	if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
2525	    (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2526	     *partial_cluster)) {
2527		int flags = EXT4_FREE_BLOCKS_FORGET;
2528
2529		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2530			flags |= EXT4_FREE_BLOCKS_METADATA;
2531
2532		ext4_free_blocks(handle, inode, NULL,
2533				 EXT4_C2B(sbi, *partial_cluster),
2534				 sbi->s_cluster_ratio, flags);
2535		*partial_cluster = 0;
2536	}
2537
2538	/* if this leaf is free, then we should
2539	 * remove it from index block above */
2540	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2541		err = ext4_ext_rm_idx(handle, inode, path + depth);
2542
2543out:
2544	return err;
2545}
2546
2547/*
2548 * ext4_ext_more_to_rm:
2549 * returns 1 if current index has to be freed (even partial)
2550 */
2551static int
2552ext4_ext_more_to_rm(struct ext4_ext_path *path)
2553{
2554	BUG_ON(path->p_idx == NULL);
2555
2556	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2557		return 0;
2558
2559	/*
2560	 * if truncate on deeper level happened, it wasn't partial,
2561	 * so we have to consider current index for truncation
2562	 */
2563	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2564		return 0;
2565	return 1;
2566}
2567
2568static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2569				 ext4_lblk_t end)
2570{
2571	struct super_block *sb = inode->i_sb;
2572	int depth = ext_depth(inode);
2573	struct ext4_ext_path *path = NULL;
2574	ext4_fsblk_t partial_cluster = 0;
2575	handle_t *handle;
2576	int i = 0, err;
2577
2578	ext_debug("truncate since %u to %u\n", start, end);
2579
2580	/* probably first extent we're gonna free will be last in block */
2581	handle = ext4_journal_start(inode, depth + 1);
2582	if (IS_ERR(handle))
2583		return PTR_ERR(handle);
2584
2585again:
2586	ext4_ext_invalidate_cache(inode);
2587
2588	trace_ext4_ext_remove_space(inode, start, depth);
2589
2590	/*
2591	 * Check if we are removing extents inside the extent tree. If that
2592	 * is the case, we are going to punch a hole inside the extent tree
2593	 * so we have to check whether we need to split the extent covering
2594	 * the last block to remove so we can easily remove the part of it
2595	 * in ext4_ext_rm_leaf().
2596	 */
2597	if (end < EXT_MAX_BLOCKS - 1) {
2598		struct ext4_extent *ex;
2599		ext4_lblk_t ee_block;
 
2600
2601		/* find extent for this block */
2602		path = ext4_ext_find_extent(inode, end, NULL);
2603		if (IS_ERR(path)) {
2604			ext4_journal_stop(handle);
2605			return PTR_ERR(path);
2606		}
2607		depth = ext_depth(inode);
 
2608		ex = path[depth].p_ext;
2609		if (!ex) {
2610			ext4_ext_drop_refs(path);
2611			kfree(path);
2612			path = NULL;
2613			goto cont;
 
 
 
2614		}
2615
2616		ee_block = le32_to_cpu(ex->ee_block);
 
2617
2618		/*
2619		 * See if the last block is inside the extent, if so split
2620		 * the extent at 'end' block so we can easily remove the
2621		 * tail of the first part of the split extent in
2622		 * ext4_ext_rm_leaf().
2623		 */
2624		if (end >= ee_block &&
2625		    end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2626			int split_flag = 0;
2627
2628			if (ext4_ext_is_uninitialized(ex))
2629				split_flag = EXT4_EXT_MARK_UNINIT1 |
2630					     EXT4_EXT_MARK_UNINIT2;
 
 
 
 
 
2631
2632			/*
2633			 * Split the extent in two so that 'end' is the last
2634			 * block in the first new extent
 
 
2635			 */
2636			err = ext4_split_extent_at(handle, inode, path,
2637						end + 1, split_flag,
2638						EXT4_GET_BLOCKS_PRE_IO |
2639						EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
2640
2641			if (err < 0)
 
 
 
 
 
 
 
 
 
 
 
 
2642				goto out;
 
 
 
2643		}
2644	}
2645cont:
2646
2647	/*
2648	 * We start scanning from right side, freeing all the blocks
2649	 * after i_size and walking into the tree depth-wise.
2650	 */
2651	depth = ext_depth(inode);
2652	if (path) {
2653		int k = i = depth;
2654		while (--k > 0)
2655			path[k].p_block =
2656				le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2657	} else {
2658		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2659			       GFP_NOFS);
2660		if (path == NULL) {
2661			ext4_journal_stop(handle);
2662			return -ENOMEM;
2663		}
2664		path[0].p_depth = depth;
2665		path[0].p_hdr = ext_inode_hdr(inode);
2666		i = 0;
2667
2668		if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2669			err = -EIO;
2670			goto out;
2671		}
2672	}
2673	err = 0;
2674
2675	while (i >= 0 && err == 0) {
2676		if (i == depth) {
2677			/* this is leaf block */
2678			err = ext4_ext_rm_leaf(handle, inode, path,
2679					       &partial_cluster, start,
2680					       end);
2681			/* root level has p_bh == NULL, brelse() eats this */
2682			brelse(path[i].p_bh);
2683			path[i].p_bh = NULL;
2684			i--;
2685			continue;
2686		}
2687
2688		/* this is index block */
2689		if (!path[i].p_hdr) {
2690			ext_debug("initialize header\n");
2691			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2692		}
2693
2694		if (!path[i].p_idx) {
2695			/* this level hasn't been touched yet */
2696			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2697			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2698			ext_debug("init index ptr: hdr 0x%p, num %d\n",
2699				  path[i].p_hdr,
2700				  le16_to_cpu(path[i].p_hdr->eh_entries));
2701		} else {
2702			/* we were already here, see at next index */
2703			path[i].p_idx--;
2704		}
2705
2706		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2707				i, EXT_FIRST_INDEX(path[i].p_hdr),
2708				path[i].p_idx);
2709		if (ext4_ext_more_to_rm(path + i)) {
2710			struct buffer_head *bh;
2711			/* go to the next level */
2712			ext_debug("move to level %d (block %llu)\n",
2713				  i + 1, ext4_idx_pblock(path[i].p_idx));
2714			memset(path + i + 1, 0, sizeof(*path));
2715			bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2716			if (!bh) {
 
 
2717				/* should we reset i_size? */
2718				err = -EIO;
2719				break;
2720			}
 
 
 
2721			if (WARN_ON(i + 1 > depth)) {
2722				err = -EIO;
2723				break;
2724			}
2725			if (ext4_ext_check_block(inode, ext_block_hdr(bh),
2726							depth - i - 1, bh)) {
2727				err = -EIO;
2728				break;
2729			}
2730			path[i + 1].p_bh = bh;
2731
2732			/* save actual number of indexes since this
2733			 * number is changed at the next iteration */
2734			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2735			i++;
2736		} else {
2737			/* we finished processing this index, go up */
2738			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2739				/* index is empty, remove it;
2740				 * handle must be already prepared by the
2741				 * truncatei_leaf() */
2742				err = ext4_ext_rm_idx(handle, inode, path + i);
2743			}
2744			/* root level has p_bh == NULL, brelse() eats this */
2745			brelse(path[i].p_bh);
2746			path[i].p_bh = NULL;
2747			i--;
2748			ext_debug("return to level %d\n", i);
2749		}
2750	}
2751
2752	trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster,
2753			path->p_hdr->eh_entries);
2754
2755	/* If we still have something in the partial cluster and we have removed
 
2756	 * even the first extent, then we should free the blocks in the partial
2757	 * cluster as well. */
2758	if (partial_cluster && path->p_hdr->eh_entries == 0) {
2759		int flags = EXT4_FREE_BLOCKS_FORGET;
2760
2761		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2762			flags |= EXT4_FREE_BLOCKS_METADATA;
2763
2764		ext4_free_blocks(handle, inode, NULL,
2765				 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2766				 EXT4_SB(sb)->s_cluster_ratio, flags);
2767		partial_cluster = 0;
2768	}
2769
2770	/* TODO: flexible tree reduction should be here */
2771	if (path->p_hdr->eh_entries == 0) {
2772		/*
2773		 * truncate to zero freed all the tree,
2774		 * so we need to correct eh_depth
2775		 */
2776		err = ext4_ext_get_access(handle, inode, path);
2777		if (err == 0) {
2778			ext_inode_hdr(inode)->eh_depth = 0;
2779			ext_inode_hdr(inode)->eh_max =
2780				cpu_to_le16(ext4_ext_space_root(inode, 0));
2781			err = ext4_ext_dirty(handle, inode, path);
2782		}
2783	}
2784out:
2785	ext4_ext_drop_refs(path);
2786	kfree(path);
2787	if (err == -EAGAIN) {
2788		path = NULL;
2789		goto again;
2790	}
2791	ext4_journal_stop(handle);
2792
2793	return err;
2794}
2795
2796/*
2797 * called at mount time
2798 */
2799void ext4_ext_init(struct super_block *sb)
2800{
2801	/*
2802	 * possible initialization would be here
2803	 */
2804
2805	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2806#if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2807		printk(KERN_INFO "EXT4-fs: file extents enabled"
2808#ifdef AGGRESSIVE_TEST
2809		       ", aggressive tests"
2810#endif
2811#ifdef CHECK_BINSEARCH
2812		       ", check binsearch"
2813#endif
2814#ifdef EXTENTS_STATS
2815		       ", stats"
2816#endif
2817		       "\n");
2818#endif
2819#ifdef EXTENTS_STATS
2820		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2821		EXT4_SB(sb)->s_ext_min = 1 << 30;
2822		EXT4_SB(sb)->s_ext_max = 0;
2823#endif
2824	}
2825}
2826
2827/*
2828 * called at umount time
2829 */
2830void ext4_ext_release(struct super_block *sb)
2831{
2832	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2833		return;
2834
2835#ifdef EXTENTS_STATS
2836	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2837		struct ext4_sb_info *sbi = EXT4_SB(sb);
2838		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2839			sbi->s_ext_blocks, sbi->s_ext_extents,
2840			sbi->s_ext_blocks / sbi->s_ext_extents);
2841		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2842			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2843	}
2844#endif
2845}
2846
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2847/* FIXME!! we need to try to merge to left or right after zero-out  */
2848static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2849{
2850	ext4_fsblk_t ee_pblock;
2851	unsigned int ee_len;
2852	int ret;
2853
2854	ee_len    = ext4_ext_get_actual_len(ex);
2855	ee_pblock = ext4_ext_pblock(ex);
2856
2857	ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2858	if (ret > 0)
2859		ret = 0;
2860
2861	return ret;
2862}
2863
2864/*
2865 * ext4_split_extent_at() splits an extent at given block.
2866 *
2867 * @handle: the journal handle
2868 * @inode: the file inode
2869 * @path: the path to the extent
2870 * @split: the logical block where the extent is splitted.
2871 * @split_flags: indicates if the extent could be zeroout if split fails, and
2872 *		 the states(init or uninit) of new extents.
2873 * @flags: flags used to insert new extent to extent tree.
2874 *
2875 *
2876 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2877 * of which are deterimined by split_flag.
2878 *
2879 * There are two cases:
2880 *  a> the extent are splitted into two extent.
2881 *  b> split is not needed, and just mark the extent.
2882 *
2883 * return 0 on success.
2884 */
2885static int ext4_split_extent_at(handle_t *handle,
2886			     struct inode *inode,
2887			     struct ext4_ext_path *path,
2888			     ext4_lblk_t split,
2889			     int split_flag,
2890			     int flags)
2891{
 
2892	ext4_fsblk_t newblock;
2893	ext4_lblk_t ee_block;
2894	struct ext4_extent *ex, newex, orig_ex;
2895	struct ext4_extent *ex2 = NULL;
2896	unsigned int ee_len, depth;
2897	int err = 0;
2898
 
 
 
2899	ext_debug("ext4_split_extents_at: inode %lu, logical"
2900		"block %llu\n", inode->i_ino, (unsigned long long)split);
2901
2902	ext4_ext_show_leaf(inode, path);
2903
2904	depth = ext_depth(inode);
2905	ex = path[depth].p_ext;
2906	ee_block = le32_to_cpu(ex->ee_block);
2907	ee_len = ext4_ext_get_actual_len(ex);
2908	newblock = split - ee_block + ext4_ext_pblock(ex);
2909
2910	BUG_ON(split < ee_block || split >= (ee_block + ee_len));
 
 
 
 
2911
2912	err = ext4_ext_get_access(handle, inode, path + depth);
2913	if (err)
2914		goto out;
2915
2916	if (split == ee_block) {
2917		/*
2918		 * case b: block @split is the block that the extent begins with
2919		 * then we just change the state of the extent, and splitting
2920		 * is not needed.
2921		 */
2922		if (split_flag & EXT4_EXT_MARK_UNINIT2)
2923			ext4_ext_mark_uninitialized(ex);
2924		else
2925			ext4_ext_mark_initialized(ex);
2926
2927		if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2928			ext4_ext_try_to_merge(inode, path, ex);
2929
2930		err = ext4_ext_dirty(handle, inode, path + depth);
2931		goto out;
2932	}
2933
2934	/* case a */
2935	memcpy(&orig_ex, ex, sizeof(orig_ex));
2936	ex->ee_len = cpu_to_le16(split - ee_block);
2937	if (split_flag & EXT4_EXT_MARK_UNINIT1)
2938		ext4_ext_mark_uninitialized(ex);
2939
2940	/*
2941	 * path may lead to new leaf, not to original leaf any more
2942	 * after ext4_ext_insert_extent() returns,
2943	 */
2944	err = ext4_ext_dirty(handle, inode, path + depth);
2945	if (err)
2946		goto fix_extent_len;
2947
2948	ex2 = &newex;
2949	ex2->ee_block = cpu_to_le32(split);
2950	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
2951	ext4_ext_store_pblock(ex2, newblock);
2952	if (split_flag & EXT4_EXT_MARK_UNINIT2)
2953		ext4_ext_mark_uninitialized(ex2);
2954
2955	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2956	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2957		err = ext4_ext_zeroout(inode, &orig_ex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2958		if (err)
2959			goto fix_extent_len;
2960		/* update the extent length and mark as initialized */
2961		ex->ee_len = cpu_to_le16(ee_len);
2962		ext4_ext_try_to_merge(inode, path, ex);
2963		err = ext4_ext_dirty(handle, inode, path + depth);
 
 
 
 
 
 
2964		goto out;
2965	} else if (err)
2966		goto fix_extent_len;
2967
2968out:
2969	ext4_ext_show_leaf(inode, path);
2970	return err;
2971
2972fix_extent_len:
2973	ex->ee_len = orig_ex.ee_len;
2974	ext4_ext_dirty(handle, inode, path + depth);
2975	return err;
2976}
2977
2978/*
2979 * ext4_split_extents() splits an extent and mark extent which is covered
2980 * by @map as split_flags indicates
2981 *
2982 * It may result in splitting the extent into multiple extents (upto three)
2983 * There are three possibilities:
2984 *   a> There is no split required
2985 *   b> Splits in two extents: Split is happening at either end of the extent
2986 *   c> Splits in three extents: Somone is splitting in middle of the extent
2987 *
2988 */
2989static int ext4_split_extent(handle_t *handle,
2990			      struct inode *inode,
2991			      struct ext4_ext_path *path,
2992			      struct ext4_map_blocks *map,
2993			      int split_flag,
2994			      int flags)
2995{
 
2996	ext4_lblk_t ee_block;
2997	struct ext4_extent *ex;
2998	unsigned int ee_len, depth;
2999	int err = 0;
3000	int uninitialized;
3001	int split_flag1, flags1;
 
3002
3003	depth = ext_depth(inode);
3004	ex = path[depth].p_ext;
3005	ee_block = le32_to_cpu(ex->ee_block);
3006	ee_len = ext4_ext_get_actual_len(ex);
3007	uninitialized = ext4_ext_is_uninitialized(ex);
3008
3009	if (map->m_lblk + map->m_len < ee_block + ee_len) {
3010		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
3011			      EXT4_EXT_MAY_ZEROOUT : 0;
3012		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3013		if (uninitialized)
3014			split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3015				       EXT4_EXT_MARK_UNINIT2;
3016		err = ext4_split_extent_at(handle, inode, path,
 
 
3017				map->m_lblk + map->m_len, split_flag1, flags1);
3018		if (err)
3019			goto out;
 
 
3020	}
3021
3022	ext4_ext_drop_refs(path);
3023	path = ext4_ext_find_extent(inode, map->m_lblk, path);
 
 
3024	if (IS_ERR(path))
3025		return PTR_ERR(path);
 
 
 
 
 
 
 
 
 
3026
3027	if (map->m_lblk >= ee_block) {
3028		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
3029			      EXT4_EXT_MAY_ZEROOUT : 0;
3030		if (uninitialized)
3031			split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3032		if (split_flag & EXT4_EXT_MARK_UNINIT2)
3033			split_flag1 |= EXT4_EXT_MARK_UNINIT2;
3034		err = ext4_split_extent_at(handle, inode, path,
3035				map->m_lblk, split_flag1, flags);
3036		if (err)
3037			goto out;
3038	}
3039
3040	ext4_ext_show_leaf(inode, path);
3041out:
3042	return err ? err : map->m_len;
3043}
3044
3045#define EXT4_EXT_ZERO_LEN 7
3046/*
3047 * This function is called by ext4_ext_map_blocks() if someone tries to write
3048 * to an uninitialized extent. It may result in splitting the uninitialized
3049 * extent into multiple extents (up to three - one initialized and two
3050 * uninitialized).
3051 * There are three possibilities:
3052 *   a> There is no split required: Entire extent should be initialized
3053 *   b> Splits in two extents: Write is happening at either end of the extent
3054 *   c> Splits in three extents: Somone is writing in middle of the extent
3055 *
3056 * Pre-conditions:
3057 *  - The extent pointed to by 'path' is uninitialized.
3058 *  - The extent pointed to by 'path' contains a superset
3059 *    of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3060 *
3061 * Post-conditions on success:
3062 *  - the returned value is the number of blocks beyond map->l_lblk
3063 *    that are allocated and initialized.
3064 *    It is guaranteed to be >= map->m_len.
3065 */
3066static int ext4_ext_convert_to_initialized(handle_t *handle,
3067					   struct inode *inode,
3068					   struct ext4_map_blocks *map,
3069					   struct ext4_ext_path *path)
 
3070{
 
 
3071	struct ext4_extent_header *eh;
3072	struct ext4_map_blocks split_map;
3073	struct ext4_extent zero_ex;
3074	struct ext4_extent *ex;
3075	ext4_lblk_t ee_block, eof_block;
3076	unsigned int ee_len, depth;
3077	int allocated;
3078	int err = 0;
3079	int split_flag = 0;
3080
3081	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3082		"block %llu, max_blocks %u\n", inode->i_ino,
3083		(unsigned long long)map->m_lblk, map->m_len);
3084
 
3085	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3086		inode->i_sb->s_blocksize_bits;
3087	if (eof_block < map->m_lblk + map->m_len)
3088		eof_block = map->m_lblk + map->m_len;
3089
3090	depth = ext_depth(inode);
3091	eh = path[depth].p_hdr;
3092	ex = path[depth].p_ext;
3093	ee_block = le32_to_cpu(ex->ee_block);
3094	ee_len = ext4_ext_get_actual_len(ex);
3095	allocated = ee_len - (map->m_lblk - ee_block);
3096
3097	trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3098
3099	/* Pre-conditions */
3100	BUG_ON(!ext4_ext_is_uninitialized(ex));
3101	BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3102
3103	/*
3104	 * Attempt to transfer newly initialized blocks from the currently
3105	 * uninitialized extent to its left neighbor. This is much cheaper
3106	 * than an insertion followed by a merge as those involve costly
3107	 * memmove() calls. This is the common case in steady state for
3108	 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
3109	 * writes.
3110	 *
3111	 * Limitations of the current logic:
3112	 *  - L1: we only deal with writes at the start of the extent.
3113	 *    The approach could be extended to writes at the end
3114	 *    of the extent but this scenario was deemed less common.
3115	 *  - L2: we do not deal with writes covering the whole extent.
3116	 *    This would require removing the extent if the transfer
3117	 *    is possible.
3118	 *  - L3: we only attempt to merge with an extent stored in the
3119	 *    same extent tree node.
3120	 */
3121	if ((map->m_lblk == ee_block) &&	/*L1*/
3122		(map->m_len < ee_len) &&	/*L2*/
3123		(ex > EXT_FIRST_EXTENT(eh))) {	/*L3*/
3124		struct ext4_extent *prev_ex;
3125		ext4_lblk_t prev_lblk;
3126		ext4_fsblk_t prev_pblk, ee_pblk;
3127		unsigned int prev_len, write_len;
3128
3129		prev_ex = ex - 1;
3130		prev_lblk = le32_to_cpu(prev_ex->ee_block);
3131		prev_len = ext4_ext_get_actual_len(prev_ex);
3132		prev_pblk = ext4_ext_pblock(prev_ex);
3133		ee_pblk = ext4_ext_pblock(ex);
3134		write_len = map->m_len;
3135
3136		/*
3137		 * A transfer of blocks from 'ex' to 'prev_ex' is allowed
3138		 * upon those conditions:
3139		 * - C1: prev_ex is initialized,
3140		 * - C2: prev_ex is logically abutting ex,
3141		 * - C3: prev_ex is physically abutting ex,
3142		 * - C4: prev_ex can receive the additional blocks without
3143		 *   overflowing the (initialized) length limit.
3144		 */
3145		if ((!ext4_ext_is_uninitialized(prev_ex)) &&		/*C1*/
3146			((prev_lblk + prev_len) == ee_block) &&		/*C2*/
3147			((prev_pblk + prev_len) == ee_pblk) &&		/*C3*/
3148			(prev_len < (EXT_INIT_MAX_LEN - write_len))) {	/*C4*/
3149			err = ext4_ext_get_access(handle, inode, path + depth);
3150			if (err)
3151				goto out;
3152
3153			trace_ext4_ext_convert_to_initialized_fastpath(inode,
3154				map, ex, prev_ex);
3155
3156			/* Shift the start of ex by 'write_len' blocks */
3157			ex->ee_block = cpu_to_le32(ee_block + write_len);
3158			ext4_ext_store_pblock(ex, ee_pblk + write_len);
3159			ex->ee_len = cpu_to_le16(ee_len - write_len);
3160			ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3161
3162			/* Extend prev_ex by 'write_len' blocks */
3163			prev_ex->ee_len = cpu_to_le16(prev_len + write_len);
3164
3165			/* Mark the block containing both extents as dirty */
3166			ext4_ext_dirty(handle, inode, path + depth);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3167
3168			/* Update path to point to the right extent */
3169			path[depth].p_ext = prev_ex;
 
 
 
 
 
 
3170
3171			/* Result: number of initialized blocks past m_lblk */
3172			allocated = write_len;
3173			goto out;
3174		}
3175	}
 
 
 
 
 
 
 
 
 
3176
3177	WARN_ON(map->m_lblk < ee_block);
3178	/*
3179	 * It is safe to convert extent to initialized via explicit
3180	 * zeroout only if extent is fully insde i_size or new_size.
3181	 */
3182	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3183
3184	/* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
3185	if (ee_len <= 2*EXT4_EXT_ZERO_LEN &&
3186	    (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
 
 
 
 
 
 
3187		err = ext4_ext_zeroout(inode, ex);
3188		if (err)
3189			goto out;
 
 
 
3190
3191		err = ext4_ext_get_access(handle, inode, path + depth);
3192		if (err)
3193			goto out;
3194		ext4_ext_mark_initialized(ex);
3195		ext4_ext_try_to_merge(inode, path, ex);
3196		err = ext4_ext_dirty(handle, inode, path + depth);
3197		goto out;
3198	}
3199
3200	/*
3201	 * four cases:
3202	 * 1. split the extent into three extents.
3203	 * 2. split the extent into two extents, zeroout the first half.
3204	 * 3. split the extent into two extents, zeroout the second half.
3205	 * 4. split the extent into two extents with out zeroout.
3206	 */
3207	split_map.m_lblk = map->m_lblk;
3208	split_map.m_len = map->m_len;
3209
3210	if (allocated > map->m_len) {
3211		if (allocated <= EXT4_EXT_ZERO_LEN &&
3212		    (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3213			/* case 3 */
3214			zero_ex.ee_block =
3215					 cpu_to_le32(map->m_lblk);
3216			zero_ex.ee_len = cpu_to_le16(allocated);
3217			ext4_ext_store_pblock(&zero_ex,
3218				ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3219			err = ext4_ext_zeroout(inode, &zero_ex);
3220			if (err)
3221				goto out;
3222			split_map.m_lblk = map->m_lblk;
3223			split_map.m_len = allocated;
3224		} else if ((map->m_lblk - ee_block + map->m_len <
3225			   EXT4_EXT_ZERO_LEN) &&
3226			   (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3227			/* case 2 */
3228			if (map->m_lblk != ee_block) {
3229				zero_ex.ee_block = ex->ee_block;
3230				zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3231							ee_block);
3232				ext4_ext_store_pblock(&zero_ex,
3233						      ext4_ext_pblock(ex));
3234				err = ext4_ext_zeroout(inode, &zero_ex);
3235				if (err)
3236					goto out;
3237			}
3238
3239			split_map.m_lblk = ee_block;
3240			split_map.m_len = map->m_lblk - ee_block + map->m_len;
3241			allocated = map->m_len;
3242		}
3243	}
3244
3245	allocated = ext4_split_extent(handle, inode, path,
3246				       &split_map, split_flag, 0);
3247	if (allocated < 0)
3248		err = allocated;
3249
3250out:
 
 
 
3251	return err ? err : allocated;
3252}
3253
3254/*
3255 * This function is called by ext4_ext_map_blocks() from
3256 * ext4_get_blocks_dio_write() when DIO to write
3257 * to an uninitialized extent.
3258 *
3259 * Writing to an uninitialized extent may result in splitting the uninitialized
3260 * extent into multiple /initialized uninitialized extents (up to three)
3261 * There are three possibilities:
3262 *   a> There is no split required: Entire extent should be uninitialized
3263 *   b> Splits in two extents: Write is happening at either end of the extent
3264 *   c> Splits in three extents: Somone is writing in middle of the extent
3265 *
 
 
3266 * One of more index blocks maybe needed if the extent tree grow after
3267 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3268 * complete, we need to split the uninitialized extent before DIO submit
3269 * the IO. The uninitialized extent called at this time will be split
3270 * into three uninitialized extent(at most). After IO complete, the part
3271 * being filled will be convert to initialized by the end_io callback function
3272 * via ext4_convert_unwritten_extents().
3273 *
3274 * Returns the size of uninitialized extent to be written on success.
3275 */
3276static int ext4_split_unwritten_extents(handle_t *handle,
3277					struct inode *inode,
3278					struct ext4_map_blocks *map,
3279					struct ext4_ext_path *path,
3280					int flags)
3281{
 
3282	ext4_lblk_t eof_block;
3283	ext4_lblk_t ee_block;
3284	struct ext4_extent *ex;
3285	unsigned int ee_len;
3286	int split_flag = 0, depth;
3287
3288	ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3289		"block %llu, max_blocks %u\n", inode->i_ino,
3290		(unsigned long long)map->m_lblk, map->m_len);
3291
3292	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3293		inode->i_sb->s_blocksize_bits;
3294	if (eof_block < map->m_lblk + map->m_len)
3295		eof_block = map->m_lblk + map->m_len;
3296	/*
3297	 * It is safe to convert extent to initialized via explicit
3298	 * zeroout only if extent is fully insde i_size or new_size.
3299	 */
3300	depth = ext_depth(inode);
3301	ex = path[depth].p_ext;
3302	ee_block = le32_to_cpu(ex->ee_block);
3303	ee_len = ext4_ext_get_actual_len(ex);
3304
3305	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3306	split_flag |= EXT4_EXT_MARK_UNINIT2;
3307
 
 
 
 
 
 
3308	flags |= EXT4_GET_BLOCKS_PRE_IO;
3309	return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3310}
3311
3312static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3313					      struct inode *inode,
3314					      struct ext4_ext_path *path)
 
3315{
 
3316	struct ext4_extent *ex;
 
 
3317	int depth;
3318	int err = 0;
3319
3320	depth = ext_depth(inode);
3321	ex = path[depth].p_ext;
 
 
3322
3323	ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3324		"block %llu, max_blocks %u\n", inode->i_ino,
3325		(unsigned long long)le32_to_cpu(ex->ee_block),
3326		ext4_ext_get_actual_len(ex));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3327
3328	err = ext4_ext_get_access(handle, inode, path + depth);
3329	if (err)
3330		goto out;
3331	/* first mark the extent as initialized */
3332	ext4_ext_mark_initialized(ex);
3333
3334	/* note: ext4_ext_correct_indexes() isn't needed here because
3335	 * borders are not changed
3336	 */
3337	ext4_ext_try_to_merge(inode, path, ex);
3338
3339	/* Mark modified extent as dirty */
3340	err = ext4_ext_dirty(handle, inode, path + depth);
3341out:
3342	ext4_ext_show_leaf(inode, path);
3343	return err;
3344}
3345
3346static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3347			sector_t block, int count)
3348{
3349	int i;
3350	for (i = 0; i < count; i++)
3351                unmap_underlying_metadata(bdev, block + i);
3352}
3353
3354/*
3355 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3356 */
3357static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3358			      ext4_lblk_t lblk,
3359			      struct ext4_ext_path *path,
3360			      unsigned int len)
3361{
3362	int i, depth;
3363	struct ext4_extent_header *eh;
3364	struct ext4_extent *last_ex;
3365
3366	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3367		return 0;
3368
3369	depth = ext_depth(inode);
3370	eh = path[depth].p_hdr;
3371
3372	/*
3373	 * We're going to remove EOFBLOCKS_FL entirely in future so we
3374	 * do not care for this case anymore. Simply remove the flag
3375	 * if there are no extents.
3376	 */
3377	if (unlikely(!eh->eh_entries))
3378		goto out;
3379	last_ex = EXT_LAST_EXTENT(eh);
3380	/*
3381	 * We should clear the EOFBLOCKS_FL flag if we are writing the
3382	 * last block in the last extent in the file.  We test this by
3383	 * first checking to see if the caller to
3384	 * ext4_ext_get_blocks() was interested in the last block (or
3385	 * a block beyond the last block) in the current extent.  If
3386	 * this turns out to be false, we can bail out from this
3387	 * function immediately.
3388	 */
3389	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3390	    ext4_ext_get_actual_len(last_ex))
3391		return 0;
3392	/*
3393	 * If the caller does appear to be planning to write at or
3394	 * beyond the end of the current extent, we then test to see
3395	 * if the current extent is the last extent in the file, by
3396	 * checking to make sure it was reached via the rightmost node
3397	 * at each level of the tree.
3398	 */
3399	for (i = depth-1; i >= 0; i--)
3400		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3401			return 0;
3402out:
3403	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3404	return ext4_mark_inode_dirty(handle, inode);
3405}
3406
3407/**
3408 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3409 *
3410 * Goes through the buffer heads in the range [lblk_start, lblk_end] and returns
3411 * whether there are any buffers marked for delayed allocation. It returns '1'
3412 * on the first delalloc'ed buffer head found. If no buffer head in the given
3413 * range is marked for delalloc, it returns 0.
3414 * lblk_start should always be <= lblk_end.
3415 * search_hint_reverse is to indicate that searching in reverse from lblk_end to
3416 * lblk_start might be more efficient (i.e., we will likely hit the delalloc'ed
3417 * block sooner). This is useful when blocks are truncated sequentially from
3418 * lblk_start towards lblk_end.
3419 */
3420static int ext4_find_delalloc_range(struct inode *inode,
3421				    ext4_lblk_t lblk_start,
3422				    ext4_lblk_t lblk_end,
3423				    int search_hint_reverse)
3424{
3425	struct address_space *mapping = inode->i_mapping;
3426	struct buffer_head *head, *bh = NULL;
3427	struct page *page;
3428	ext4_lblk_t i, pg_lblk;
3429	pgoff_t index;
3430
3431	if (!test_opt(inode->i_sb, DELALLOC))
3432		return 0;
3433
3434	/* reverse search wont work if fs block size is less than page size */
3435	if (inode->i_blkbits < PAGE_CACHE_SHIFT)
3436		search_hint_reverse = 0;
3437
3438	if (search_hint_reverse)
3439		i = lblk_end;
3440	else
3441		i = lblk_start;
3442
3443	index = i >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
3444
3445	while ((i >= lblk_start) && (i <= lblk_end)) {
3446		page = find_get_page(mapping, index);
3447		if (!page)
3448			goto nextpage;
3449
3450		if (!page_has_buffers(page))
3451			goto nextpage;
3452
3453		head = page_buffers(page);
3454		if (!head)
3455			goto nextpage;
3456
3457		bh = head;
3458		pg_lblk = index << (PAGE_CACHE_SHIFT -
3459						inode->i_blkbits);
3460		do {
3461			if (unlikely(pg_lblk < lblk_start)) {
3462				/*
3463				 * This is possible when fs block size is less
3464				 * than page size and our cluster starts/ends in
3465				 * middle of the page. So we need to skip the
3466				 * initial few blocks till we reach the 'lblk'
3467				 */
3468				pg_lblk++;
3469				continue;
3470			}
3471
3472			/* Check if the buffer is delayed allocated and that it
3473			 * is not yet mapped. (when da-buffers are mapped during
3474			 * their writeout, their da_mapped bit is set.)
3475			 */
3476			if (buffer_delay(bh) && !buffer_da_mapped(bh)) {
3477				page_cache_release(page);
3478				trace_ext4_find_delalloc_range(inode,
3479						lblk_start, lblk_end,
3480						search_hint_reverse,
3481						1, i);
3482				return 1;
3483			}
3484			if (search_hint_reverse)
3485				i--;
3486			else
3487				i++;
3488		} while ((i >= lblk_start) && (i <= lblk_end) &&
3489				((bh = bh->b_this_page) != head));
3490nextpage:
3491		if (page)
3492			page_cache_release(page);
3493		/*
3494		 * Move to next page. 'i' will be the first lblk in the next
3495		 * page.
3496		 */
3497		if (search_hint_reverse)
3498			index--;
3499		else
3500			index++;
3501		i = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
3502	}
3503
3504	trace_ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3505					search_hint_reverse, 0, 0);
3506	return 0;
3507}
3508
3509int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk,
3510			       int search_hint_reverse)
3511{
3512	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3513	ext4_lblk_t lblk_start, lblk_end;
3514	lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3515	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3516
3517	return ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3518					search_hint_reverse);
3519}
3520
3521/**
3522 * Determines how many complete clusters (out of those specified by the 'map')
3523 * are under delalloc and were reserved quota for.
3524 * This function is called when we are writing out the blocks that were
3525 * originally written with their allocation delayed, but then the space was
3526 * allocated using fallocate() before the delayed allocation could be resolved.
3527 * The cases to look for are:
3528 * ('=' indicated delayed allocated blocks
3529 *  '-' indicates non-delayed allocated blocks)
3530 * (a) partial clusters towards beginning and/or end outside of allocated range
3531 *     are not delalloc'ed.
3532 *	Ex:
3533 *	|----c---=|====c====|====c====|===-c----|
3534 *	         |++++++ allocated ++++++|
3535 *	==> 4 complete clusters in above example
3536 *
3537 * (b) partial cluster (outside of allocated range) towards either end is
3538 *     marked for delayed allocation. In this case, we will exclude that
3539 *     cluster.
3540 *	Ex:
3541 *	|----====c========|========c========|
3542 *	     |++++++ allocated ++++++|
3543 *	==> 1 complete clusters in above example
3544 *
3545 *	Ex:
3546 *	|================c================|
3547 *            |++++++ allocated ++++++|
3548 *	==> 0 complete clusters in above example
3549 *
3550 * The ext4_da_update_reserve_space will be called only if we
3551 * determine here that there were some "entire" clusters that span
3552 * this 'allocated' range.
3553 * In the non-bigalloc case, this function will just end up returning num_blks
3554 * without ever calling ext4_find_delalloc_range.
3555 */
3556static unsigned int
3557get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3558			   unsigned int num_blks)
3559{
3560	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3561	ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3562	ext4_lblk_t lblk_from, lblk_to, c_offset;
3563	unsigned int allocated_clusters = 0;
3564
3565	alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3566	alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3567
3568	/* max possible clusters for this allocation */
3569	allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3570
3571	trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3572
3573	/* Check towards left side */
3574	c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3575	if (c_offset) {
3576		lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3577		lblk_to = lblk_from + c_offset - 1;
3578
3579		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3580			allocated_clusters--;
3581	}
3582
3583	/* Now check towards right. */
3584	c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3585	if (allocated_clusters && c_offset) {
3586		lblk_from = lblk_start + num_blks;
3587		lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3588
3589		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3590			allocated_clusters--;
3591	}
3592
3593	return allocated_clusters;
3594}
3595
3596static int
3597ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3598			struct ext4_map_blocks *map,
3599			struct ext4_ext_path *path, int flags,
3600			unsigned int allocated, ext4_fsblk_t newblock)
3601{
 
3602	int ret = 0;
3603	int err = 0;
3604	ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3605
3606	ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3607		  "block %llu, max_blocks %u, flags %x, allocated %u\n",
3608		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3609		  flags, allocated);
3610	ext4_ext_show_leaf(inode, path);
3611
3612	trace_ext4_ext_handle_uninitialized_extents(inode, map, allocated,
3613						    newblock);
 
 
 
 
 
 
3614
3615	/* get_block() before submit the IO, split the extent */
3616	if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3617		ret = ext4_split_unwritten_extents(handle, inode, map,
3618						   path, flags);
3619		/*
3620		 * Flag the inode(non aio case) or end_io struct (aio case)
3621		 * that this IO needs to conversion to written when IO is
3622		 * completed
3623		 */
3624		if (io)
3625			ext4_set_io_unwritten_flag(inode, io);
3626		else
3627			ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3628		if (ext4_should_dioread_nolock(inode))
3629			map->m_flags |= EXT4_MAP_UNINIT;
3630		goto out;
3631	}
3632	/* IO end_io complete, convert the filled extent to written */
3633	if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3634		ret = ext4_convert_unwritten_extents_endio(handle, inode,
3635							path);
 
 
 
 
 
 
 
 
3636		if (ret >= 0) {
3637			ext4_update_inode_fsync_trans(handle, inode, 1);
3638			err = check_eofblocks_fl(handle, inode, map->m_lblk,
3639						 path, map->m_len);
3640		} else
3641			err = ret;
 
 
 
 
 
3642		goto out2;
3643	}
3644	/* buffered IO case */
3645	/*
3646	 * repeat fallocate creation request
3647	 * we already have an unwritten extent
3648	 */
3649	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
 
3650		goto map_out;
 
3651
3652	/* buffered READ or buffered write_begin() lookup */
3653	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3654		/*
3655		 * We have blocks reserved already.  We
3656		 * return allocated blocks so that delalloc
3657		 * won't do block reservation for us.  But
3658		 * the buffer head will be unmapped so that
3659		 * a read from the block returns 0s.
3660		 */
3661		map->m_flags |= EXT4_MAP_UNWRITTEN;
3662		goto out1;
3663	}
3664
3665	/* buffered write, writepage time, convert*/
3666	ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3667	if (ret >= 0)
3668		ext4_update_inode_fsync_trans(handle, inode, 1);
3669out:
3670	if (ret <= 0) {
3671		err = ret;
3672		goto out2;
3673	} else
3674		allocated = ret;
3675	map->m_flags |= EXT4_MAP_NEW;
3676	/*
3677	 * if we allocated more blocks than requested
3678	 * we need to make sure we unmap the extra block
3679	 * allocated. The actual needed block will get
3680	 * unmapped later when we find the buffer_head marked
3681	 * new.
3682	 */
3683	if (allocated > map->m_len) {
3684		unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3685					newblock + map->m_len,
3686					allocated - map->m_len);
3687		allocated = map->m_len;
3688	}
 
3689
3690	/*
3691	 * If we have done fallocate with the offset that is already
3692	 * delayed allocated, we would have block reservation
3693	 * and quota reservation done in the delayed write path.
3694	 * But fallocate would have already updated quota and block
3695	 * count for this offset. So cancel these reservation
3696	 */
3697	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3698		unsigned int reserved_clusters;
3699		reserved_clusters = get_reserved_cluster_alloc(inode,
3700				map->m_lblk, map->m_len);
3701		if (reserved_clusters)
3702			ext4_da_update_reserve_space(inode,
3703						     reserved_clusters,
3704						     0);
3705	}
3706
3707map_out:
3708	map->m_flags |= EXT4_MAP_MAPPED;
3709	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3710		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3711					 map->m_len);
3712		if (err < 0)
3713			goto out2;
3714	}
3715out1:
3716	if (allocated > map->m_len)
3717		allocated = map->m_len;
3718	ext4_ext_show_leaf(inode, path);
3719	map->m_pblk = newblock;
3720	map->m_len = allocated;
3721out2:
3722	if (path) {
3723		ext4_ext_drop_refs(path);
3724		kfree(path);
3725	}
3726	return err ? err : allocated;
3727}
3728
3729/*
3730 * get_implied_cluster_alloc - check to see if the requested
3731 * allocation (in the map structure) overlaps with a cluster already
3732 * allocated in an extent.
3733 *	@sb	The filesystem superblock structure
3734 *	@map	The requested lblk->pblk mapping
3735 *	@ex	The extent structure which might contain an implied
3736 *			cluster allocation
3737 *
3738 * This function is called by ext4_ext_map_blocks() after we failed to
3739 * find blocks that were already in the inode's extent tree.  Hence,
3740 * we know that the beginning of the requested region cannot overlap
3741 * the extent from the inode's extent tree.  There are three cases we
3742 * want to catch.  The first is this case:
3743 *
3744 *		 |--- cluster # N--|
3745 *    |--- extent ---|	|---- requested region ---|
3746 *			|==========|
3747 *
3748 * The second case that we need to test for is this one:
3749 *
3750 *   |--------- cluster # N ----------------|
3751 *	   |--- requested region --|   |------- extent ----|
3752 *	   |=======================|
3753 *
3754 * The third case is when the requested region lies between two extents
3755 * within the same cluster:
3756 *          |------------- cluster # N-------------|
3757 * |----- ex -----|                  |---- ex_right ----|
3758 *                  |------ requested region ------|
3759 *                  |================|
3760 *
3761 * In each of the above cases, we need to set the map->m_pblk and
3762 * map->m_len so it corresponds to the return the extent labelled as
3763 * "|====|" from cluster #N, since it is already in use for data in
3764 * cluster EXT4_B2C(sbi, map->m_lblk).	We will then return 1 to
3765 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3766 * as a new "allocated" block region.  Otherwise, we will return 0 and
3767 * ext4_ext_map_blocks() will then allocate one or more new clusters
3768 * by calling ext4_mb_new_blocks().
3769 */
3770static int get_implied_cluster_alloc(struct super_block *sb,
3771				     struct ext4_map_blocks *map,
3772				     struct ext4_extent *ex,
3773				     struct ext4_ext_path *path)
3774{
3775	struct ext4_sb_info *sbi = EXT4_SB(sb);
3776	ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3777	ext4_lblk_t ex_cluster_start, ex_cluster_end;
3778	ext4_lblk_t rr_cluster_start;
3779	ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3780	ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3781	unsigned short ee_len = ext4_ext_get_actual_len(ex);
3782
3783	/* The extent passed in that we are trying to match */
3784	ex_cluster_start = EXT4_B2C(sbi, ee_block);
3785	ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3786
3787	/* The requested region passed into ext4_map_blocks() */
3788	rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3789
3790	if ((rr_cluster_start == ex_cluster_end) ||
3791	    (rr_cluster_start == ex_cluster_start)) {
3792		if (rr_cluster_start == ex_cluster_end)
3793			ee_start += ee_len - 1;
3794		map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3795			c_offset;
3796		map->m_len = min(map->m_len,
3797				 (unsigned) sbi->s_cluster_ratio - c_offset);
3798		/*
3799		 * Check for and handle this case:
3800		 *
3801		 *   |--------- cluster # N-------------|
3802		 *		       |------- extent ----|
3803		 *	   |--- requested region ---|
3804		 *	   |===========|
3805		 */
3806
3807		if (map->m_lblk < ee_block)
3808			map->m_len = min(map->m_len, ee_block - map->m_lblk);
3809
3810		/*
3811		 * Check for the case where there is already another allocated
3812		 * block to the right of 'ex' but before the end of the cluster.
3813		 *
3814		 *          |------------- cluster # N-------------|
3815		 * |----- ex -----|                  |---- ex_right ----|
3816		 *                  |------ requested region ------|
3817		 *                  |================|
3818		 */
3819		if (map->m_lblk > ee_block) {
3820			ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3821			map->m_len = min(map->m_len, next - map->m_lblk);
3822		}
3823
3824		trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
3825		return 1;
3826	}
3827
3828	trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
3829	return 0;
3830}
3831
3832
3833/*
3834 * Block allocation/map/preallocation routine for extents based files
3835 *
3836 *
3837 * Need to be called with
3838 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3839 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3840 *
3841 * return > 0, number of of blocks already mapped/allocated
3842 *          if create == 0 and these are pre-allocated blocks
3843 *          	buffer head is unmapped
3844 *          otherwise blocks are mapped
3845 *
3846 * return = 0, if plain look up failed (blocks have not been allocated)
3847 *          buffer head is unmapped
3848 *
3849 * return < 0, error case.
3850 */
3851int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3852			struct ext4_map_blocks *map, int flags)
3853{
3854	struct ext4_ext_path *path = NULL;
3855	struct ext4_extent newex, *ex, *ex2;
3856	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3857	ext4_fsblk_t newblock = 0;
3858	int free_on_err = 0, err = 0, depth, ret;
3859	unsigned int allocated = 0, offset = 0;
3860	unsigned int allocated_clusters = 0;
3861	struct ext4_allocation_request ar;
3862	ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3863	ext4_lblk_t cluster_offset;
 
3864
3865	ext_debug("blocks %u/%u requested for inode %lu\n",
3866		  map->m_lblk, map->m_len, inode->i_ino);
3867	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3868
3869	/* check in cache */
3870	if (ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3871		if (!newex.ee_start_lo && !newex.ee_start_hi) {
3872			if ((sbi->s_cluster_ratio > 1) &&
3873			    ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3874				map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3875
3876			if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3877				/*
3878				 * block isn't allocated yet and
3879				 * user doesn't want to allocate it
3880				 */
3881				goto out2;
3882			}
3883			/* we should allocate requested block */
3884		} else {
3885			/* block is already allocated */
3886			if (sbi->s_cluster_ratio > 1)
3887				map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3888			newblock = map->m_lblk
3889				   - le32_to_cpu(newex.ee_block)
3890				   + ext4_ext_pblock(&newex);
3891			/* number of remaining blocks in the extent */
3892			allocated = ext4_ext_get_actual_len(&newex) -
3893				(map->m_lblk - le32_to_cpu(newex.ee_block));
3894			goto out;
3895		}
3896	}
3897
3898	/* find extent for this block */
3899	path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3900	if (IS_ERR(path)) {
3901		err = PTR_ERR(path);
3902		path = NULL;
3903		goto out2;
3904	}
3905
3906	depth = ext_depth(inode);
3907
3908	/*
3909	 * consistent leaf must not be empty;
3910	 * this situation is possible, though, _during_ tree modification;
3911	 * this is why assert can't be put in ext4_ext_find_extent()
3912	 */
3913	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3914		EXT4_ERROR_INODE(inode, "bad extent address "
3915				 "lblock: %lu, depth: %d pblock %lld",
3916				 (unsigned long) map->m_lblk, depth,
3917				 path[depth].p_block);
3918		err = -EIO;
3919		goto out2;
3920	}
3921
3922	ex = path[depth].p_ext;
3923	if (ex) {
3924		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3925		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3926		unsigned short ee_len;
3927
 
3928		/*
3929		 * Uninitialized extents are treated as holes, except that
3930		 * we split out initialized portions during a write.
3931		 */
3932		ee_len = ext4_ext_get_actual_len(ex);
3933
3934		trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
3935
3936		/* if found extent covers block, simply return it */
3937		if (in_range(map->m_lblk, ee_block, ee_len)) {
3938			newblock = map->m_lblk - ee_block + ee_start;
3939			/* number of remaining blocks in the extent */
3940			allocated = ee_len - (map->m_lblk - ee_block);
3941			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3942				  ee_block, ee_len, newblock);
3943
3944			/*
3945			 * Do not put uninitialized extent
3946			 * in the cache
3947			 */
3948			if (!ext4_ext_is_uninitialized(ex)) {
3949				ext4_ext_put_in_cache(inode, ee_block,
3950					ee_len, ee_start);
 
 
 
 
3951				goto out;
3952			}
3953			ret = ext4_ext_handle_uninitialized_extents(
3954				handle, inode, map, path, flags,
3955				allocated, newblock);
3956			return ret;
 
 
 
 
3957		}
3958	}
3959
3960	if ((sbi->s_cluster_ratio > 1) &&
3961	    ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3962		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3963
3964	/*
3965	 * requested block isn't allocated yet;
3966	 * we couldn't try to create block if create flag is zero
3967	 */
3968	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
 
 
 
 
3969		/*
3970		 * put just found gap into cache to speed up
3971		 * subsequent requests
3972		 */
3973		ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
 
 
 
 
 
 
 
3974		goto out2;
3975	}
3976
3977	/*
3978	 * Okay, we need to do block allocation.
3979	 */
3980	map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
3981	newex.ee_block = cpu_to_le32(map->m_lblk);
3982	cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3983
3984	/*
3985	 * If we are doing bigalloc, check to see if the extent returned
3986	 * by ext4_ext_find_extent() implies a cluster we can use.
3987	 */
3988	if (cluster_offset && ex &&
3989	    get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
3990		ar.len = allocated = map->m_len;
3991		newblock = map->m_pblk;
3992		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3993		goto got_allocated_blocks;
3994	}
3995
3996	/* find neighbour allocated blocks */
3997	ar.lleft = map->m_lblk;
3998	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
3999	if (err)
4000		goto out2;
4001	ar.lright = map->m_lblk;
4002	ex2 = NULL;
4003	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4004	if (err)
4005		goto out2;
4006
4007	/* Check if the extent after searching to the right implies a
4008	 * cluster we can use. */
4009	if ((sbi->s_cluster_ratio > 1) && ex2 &&
4010	    get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4011		ar.len = allocated = map->m_len;
4012		newblock = map->m_pblk;
4013		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4014		goto got_allocated_blocks;
4015	}
4016
4017	/*
4018	 * See if request is beyond maximum number of blocks we can have in
4019	 * a single extent. For an initialized extent this limit is
4020	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4021	 * EXT_UNINIT_MAX_LEN.
4022	 */
4023	if (map->m_len > EXT_INIT_MAX_LEN &&
4024	    !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4025		map->m_len = EXT_INIT_MAX_LEN;
4026	else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4027		 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4028		map->m_len = EXT_UNINIT_MAX_LEN;
4029
4030	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4031	newex.ee_len = cpu_to_le16(map->m_len);
4032	err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4033	if (err)
4034		allocated = ext4_ext_get_actual_len(&newex);
4035	else
4036		allocated = map->m_len;
4037
4038	/* allocate new block */
4039	ar.inode = inode;
4040	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4041	ar.logical = map->m_lblk;
4042	/*
4043	 * We calculate the offset from the beginning of the cluster
4044	 * for the logical block number, since when we allocate a
4045	 * physical cluster, the physical block should start at the
4046	 * same offset from the beginning of the cluster.  This is
4047	 * needed so that future calls to get_implied_cluster_alloc()
4048	 * work correctly.
4049	 */
4050	offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
4051	ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4052	ar.goal -= offset;
4053	ar.logical -= offset;
4054	if (S_ISREG(inode->i_mode))
4055		ar.flags = EXT4_MB_HINT_DATA;
4056	else
4057		/* disable in-core preallocation for non-regular files */
4058		ar.flags = 0;
4059	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4060		ar.flags |= EXT4_MB_HINT_NOPREALLOC;
 
 
 
 
4061	newblock = ext4_mb_new_blocks(handle, &ar, &err);
4062	if (!newblock)
4063		goto out2;
4064	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4065		  ar.goal, newblock, allocated);
4066	free_on_err = 1;
4067	allocated_clusters = ar.len;
4068	ar.len = EXT4_C2B(sbi, ar.len) - offset;
4069	if (ar.len > allocated)
4070		ar.len = allocated;
4071
4072got_allocated_blocks:
4073	/* try to insert new extent into found leaf and return */
4074	ext4_ext_store_pblock(&newex, newblock + offset);
4075	newex.ee_len = cpu_to_le16(ar.len);
4076	/* Mark uninitialized */
4077	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4078		ext4_ext_mark_uninitialized(&newex);
4079		/*
4080		 * io_end structure was created for every IO write to an
4081		 * uninitialized extent. To avoid unnecessary conversion,
4082		 * here we flag the IO that really needs the conversion.
4083		 * For non asycn direct IO case, flag the inode state
4084		 * that we need to perform conversion when IO is done.
4085		 */
4086		if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
4087			if (io)
4088				ext4_set_io_unwritten_flag(inode, io);
4089			else
4090				ext4_set_inode_state(inode,
4091						     EXT4_STATE_DIO_UNWRITTEN);
4092		}
4093		if (ext4_should_dioread_nolock(inode))
4094			map->m_flags |= EXT4_MAP_UNINIT;
4095	}
4096
4097	err = 0;
4098	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4099		err = check_eofblocks_fl(handle, inode, map->m_lblk,
4100					 path, ar.len);
4101	if (!err)
4102		err = ext4_ext_insert_extent(handle, inode, path,
4103					     &newex, flags);
 
4104	if (err && free_on_err) {
4105		int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4106			EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4107		/* free data blocks we just allocated */
4108		/* not a good idea to call discard here directly,
4109		 * but otherwise we'd need to call it every free() */
4110		ext4_discard_preallocations(inode);
4111		ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4112				 ext4_ext_get_actual_len(&newex), fb_flags);
4113		goto out2;
4114	}
4115
4116	/* previous routine could use block we allocated */
4117	newblock = ext4_ext_pblock(&newex);
4118	allocated = ext4_ext_get_actual_len(&newex);
4119	if (allocated > map->m_len)
4120		allocated = map->m_len;
4121	map->m_flags |= EXT4_MAP_NEW;
4122
4123	/*
4124	 * Update reserved blocks/metadata blocks after successful
4125	 * block allocation which had been deferred till now.
4126	 */
4127	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4128		unsigned int reserved_clusters;
4129		/*
4130		 * Check how many clusters we had reserved this allocated range
4131		 */
4132		reserved_clusters = get_reserved_cluster_alloc(inode,
4133						map->m_lblk, allocated);
4134		if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4135			if (reserved_clusters) {
4136				/*
4137				 * We have clusters reserved for this range.
4138				 * But since we are not doing actual allocation
4139				 * and are simply using blocks from previously
4140				 * allocated cluster, we should release the
4141				 * reservation and not claim quota.
4142				 */
4143				ext4_da_update_reserve_space(inode,
4144						reserved_clusters, 0);
4145			}
4146		} else {
4147			BUG_ON(allocated_clusters < reserved_clusters);
4148			/* We will claim quota for all newly allocated blocks.*/
4149			ext4_da_update_reserve_space(inode, allocated_clusters,
4150							1);
4151			if (reserved_clusters < allocated_clusters) {
4152				struct ext4_inode_info *ei = EXT4_I(inode);
4153				int reservation = allocated_clusters -
4154						  reserved_clusters;
4155				/*
4156				 * It seems we claimed few clusters outside of
4157				 * the range of this allocation. We should give
4158				 * it back to the reservation pool. This can
4159				 * happen in the following case:
4160				 *
4161				 * * Suppose s_cluster_ratio is 4 (i.e., each
4162				 *   cluster has 4 blocks. Thus, the clusters
4163				 *   are [0-3],[4-7],[8-11]...
4164				 * * First comes delayed allocation write for
4165				 *   logical blocks 10 & 11. Since there were no
4166				 *   previous delayed allocated blocks in the
4167				 *   range [8-11], we would reserve 1 cluster
4168				 *   for this write.
4169				 * * Next comes write for logical blocks 3 to 8.
4170				 *   In this case, we will reserve 2 clusters
4171				 *   (for [0-3] and [4-7]; and not for [8-11] as
4172				 *   that range has a delayed allocated blocks.
4173				 *   Thus total reserved clusters now becomes 3.
4174				 * * Now, during the delayed allocation writeout
4175				 *   time, we will first write blocks [3-8] and
4176				 *   allocate 3 clusters for writing these
4177				 *   blocks. Also, we would claim all these
4178				 *   three clusters above.
4179				 * * Now when we come here to writeout the
4180				 *   blocks [10-11], we would expect to claim
4181				 *   the reservation of 1 cluster we had made
4182				 *   (and we would claim it since there are no
4183				 *   more delayed allocated blocks in the range
4184				 *   [8-11]. But our reserved cluster count had
4185				 *   already gone to 0.
4186				 *
4187				 *   Thus, at the step 4 above when we determine
4188				 *   that there are still some unwritten delayed
4189				 *   allocated blocks outside of our current
4190				 *   block range, we should increment the
4191				 *   reserved clusters count so that when the
4192				 *   remaining blocks finally gets written, we
4193				 *   could claim them.
4194				 */
4195				dquot_reserve_block(inode,
4196						EXT4_C2B(sbi, reservation));
4197				spin_lock(&ei->i_block_reservation_lock);
4198				ei->i_reserved_data_blocks += reservation;
4199				spin_unlock(&ei->i_block_reservation_lock);
4200			}
 
 
 
 
 
 
 
 
 
4201		}
4202	}
4203
4204	/*
4205	 * Cache the extent and update transaction to commit on fdatasync only
4206	 * when it is _not_ an uninitialized extent.
4207	 */
4208	if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
4209		ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
4210		ext4_update_inode_fsync_trans(handle, inode, 1);
4211	} else
4212		ext4_update_inode_fsync_trans(handle, inode, 0);
4213out:
4214	if (allocated > map->m_len)
4215		allocated = map->m_len;
4216	ext4_ext_show_leaf(inode, path);
4217	map->m_flags |= EXT4_MAP_MAPPED;
4218	map->m_pblk = newblock;
4219	map->m_len = allocated;
4220out2:
4221	if (path) {
4222		ext4_ext_drop_refs(path);
4223		kfree(path);
4224	}
4225
4226	trace_ext4_ext_map_blocks_exit(inode, map->m_lblk,
4227		newblock, map->m_len, err ? err : allocated);
4228
 
 
4229	return err ? err : allocated;
4230}
4231
4232void ext4_ext_truncate(struct inode *inode)
4233{
4234	struct address_space *mapping = inode->i_mapping;
4235	struct super_block *sb = inode->i_sb;
4236	ext4_lblk_t last_block;
4237	handle_t *handle;
4238	loff_t page_len;
4239	int err = 0;
4240
4241	/*
4242	 * finish any pending end_io work so we won't run the risk of
4243	 * converting any truncated blocks to initialized later
4244	 */
4245	ext4_flush_completed_IO(inode);
4246
4247	/*
4248	 * probably first extent we're gonna free will be last in block
4249	 */
4250	err = ext4_writepage_trans_blocks(inode);
4251	handle = ext4_journal_start(inode, err);
4252	if (IS_ERR(handle))
4253		return;
4254
4255	if (inode->i_size % PAGE_CACHE_SIZE != 0) {
4256		page_len = PAGE_CACHE_SIZE -
4257			(inode->i_size & (PAGE_CACHE_SIZE - 1));
4258
4259		err = ext4_discard_partial_page_buffers(handle,
4260			mapping, inode->i_size, page_len, 0);
4261
4262		if (err)
4263			goto out_stop;
4264	}
4265
4266	if (ext4_orphan_add(handle, inode))
4267		goto out_stop;
4268
4269	down_write(&EXT4_I(inode)->i_data_sem);
4270	ext4_ext_invalidate_cache(inode);
4271
4272	ext4_discard_preallocations(inode);
4273
4274	/*
4275	 * TODO: optimization is possible here.
4276	 * Probably we need not scan at all,
4277	 * because page truncation is enough.
4278	 */
4279
4280	/* we have to know where to truncate from in crash case */
4281	EXT4_I(inode)->i_disksize = inode->i_size;
4282	ext4_mark_inode_dirty(handle, inode);
 
 
4283
4284	last_block = (inode->i_size + sb->s_blocksize - 1)
4285			>> EXT4_BLOCK_SIZE_BITS(sb);
4286	err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
 
 
 
 
 
 
 
 
 
 
 
4287
4288	/* In a multi-transaction truncate, we only make the final
4289	 * transaction synchronous.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4290	 */
4291	if (IS_SYNC(inode))
4292		ext4_handle_sync(handle);
4293
4294	up_write(&EXT4_I(inode)->i_data_sem);
4295
4296out_stop:
4297	/*
4298	 * If this was a simple ftruncate() and the file will remain alive,
4299	 * then we need to clear up the orphan record which we created above.
4300	 * However, if this was a real unlink then we were called by
4301	 * ext4_delete_inode(), and we allow that function to clean up the
4302	 * orphan info for us.
4303	 */
4304	if (inode->i_nlink)
4305		ext4_orphan_del(handle, inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4306
4307	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4308	ext4_mark_inode_dirty(handle, inode);
4309	ext4_journal_stop(handle);
4310}
4311
4312static void ext4_falloc_update_inode(struct inode *inode,
4313				int mode, loff_t new_size, int update_ctime)
4314{
4315	struct timespec now;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4316
4317	if (update_ctime) {
4318		now = current_fs_time(inode->i_sb);
4319		if (!timespec_equal(&inode->i_ctime, &now))
4320			inode->i_ctime = now;
4321	}
4322	/*
4323	 * Update only when preallocation was requested beyond
4324	 * the file size.
4325	 */
4326	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4327		if (new_size > i_size_read(inode))
4328			i_size_write(inode, new_size);
4329		if (new_size > EXT4_I(inode)->i_disksize)
4330			ext4_update_i_disksize(inode, new_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4331	} else {
4332		/*
4333		 * Mark that we allocate beyond EOF so the subsequent truncate
4334		 * can proceed even if the new size is the same as i_size.
4335		 */
4336		if (new_size > i_size_read(inode))
4337			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4338	}
 
4339
 
 
 
 
 
 
 
 
 
 
 
 
4340}
4341
4342/*
4343 * preallocate space for a file. This implements ext4's fallocate file
4344 * operation, which gets called from sys_fallocate system call.
4345 * For block-mapped files, posix_fallocate should fall back to the method
4346 * of writing zeroes to the required new blocks (the same behavior which is
4347 * expected for file systems which do not support fallocate() system call).
4348 */
4349long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4350{
4351	struct inode *inode = file->f_path.dentry->d_inode;
4352	handle_t *handle;
4353	loff_t new_size;
4354	unsigned int max_blocks;
4355	int ret = 0;
4356	int ret2 = 0;
4357	int retries = 0;
4358	int flags;
4359	struct ext4_map_blocks map;
4360	unsigned int credits, blkbits = inode->i_blkbits;
4361
4362	/*
4363	 * currently supporting (pre)allocate mode for extent-based
4364	 * files _only_
4365	 */
4366	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
 
 
 
 
 
 
 
 
4367		return -EOPNOTSUPP;
4368
4369	/* Return error if mode is not supported */
4370	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
 
 
4371		return -EOPNOTSUPP;
4372
4373	if (mode & FALLOC_FL_PUNCH_HOLE)
4374		return ext4_punch_hole(file, offset, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
4375
4376	trace_ext4_fallocate_enter(inode, offset, len, mode);
4377	map.m_lblk = offset >> blkbits;
4378	/*
4379	 * We can't just convert len to max_blocks because
4380	 * If blocksize = 4096 offset = 3072 and len = 2048
4381	 */
4382	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4383		- map.m_lblk;
4384	/*
4385	 * credits to insert 1 extent into extent tree
4386	 */
4387	credits = ext4_chunk_trans_blocks(inode, max_blocks);
4388	mutex_lock(&inode->i_mutex);
4389	ret = inode_newsize_ok(inode, (len + offset));
4390	if (ret) {
4391		mutex_unlock(&inode->i_mutex);
4392		trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4393		return ret;
4394	}
4395	flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4396	if (mode & FALLOC_FL_KEEP_SIZE)
4397		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
 
 
 
4398	/*
4399	 * Don't normalize the request if it can fit in one extent so
4400	 * that it doesn't get unnecessarily split into multiple
4401	 * extents.
4402	 */
4403	if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4404		flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4405retry:
4406	while (ret >= 0 && ret < max_blocks) {
4407		map.m_lblk = map.m_lblk + ret;
4408		map.m_len = max_blocks = max_blocks - ret;
4409		handle = ext4_journal_start(inode, credits);
4410		if (IS_ERR(handle)) {
4411			ret = PTR_ERR(handle);
4412			break;
4413		}
4414		ret = ext4_map_blocks(handle, inode, &map, flags);
4415		if (ret <= 0) {
4416#ifdef EXT4FS_DEBUG
4417			WARN_ON(ret <= 0);
4418			printk(KERN_ERR "%s: ext4_ext_map_blocks "
4419				    "returned error inode#%lu, block=%u, "
4420				    "max_blocks=%u", __func__,
4421				    inode->i_ino, map.m_lblk, max_blocks);
4422#endif
4423			ext4_mark_inode_dirty(handle, inode);
4424			ret2 = ext4_journal_stop(handle);
4425			break;
4426		}
4427		if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4428						blkbits) >> blkbits))
4429			new_size = offset + len;
4430		else
4431			new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4432
4433		ext4_falloc_update_inode(inode, mode, new_size,
4434					 (map.m_flags & EXT4_MAP_NEW));
4435		ext4_mark_inode_dirty(handle, inode);
4436		ret2 = ext4_journal_stop(handle);
4437		if (ret2)
4438			break;
4439	}
4440	if (ret == -ENOSPC &&
4441			ext4_should_retry_alloc(inode->i_sb, &retries)) {
4442		ret = 0;
4443		goto retry;
 
 
 
 
 
 
 
 
 
 
4444	}
4445	mutex_unlock(&inode->i_mutex);
4446	trace_ext4_fallocate_exit(inode, offset, max_blocks,
4447				ret > 0 ? ret2 : ret);
4448	return ret > 0 ? ret2 : ret;
4449}
4450
4451/*
4452 * This function convert a range of blocks to written extents
4453 * The caller of this function will pass the start offset and the size.
4454 * all unwritten extents within this range will be converted to
4455 * written extents.
4456 *
4457 * This function is called from the direct IO end io call back
4458 * function, to convert the fallocated extents after IO is completed.
4459 * Returns 0 on success.
4460 */
4461int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4462				    ssize_t len)
4463{
4464	handle_t *handle;
4465	unsigned int max_blocks;
4466	int ret = 0;
4467	int ret2 = 0;
4468	struct ext4_map_blocks map;
4469	unsigned int credits, blkbits = inode->i_blkbits;
4470
4471	map.m_lblk = offset >> blkbits;
 
 
4472	/*
4473	 * We can't just convert len to max_blocks because
4474	 * If blocksize = 4096 offset = 3072 and len = 2048
4475	 */
4476	max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4477		      map.m_lblk);
4478	/*
4479	 * credits to insert 1 extent into extent tree
4480	 */
4481	credits = ext4_chunk_trans_blocks(inode, max_blocks);
 
 
 
 
 
 
 
4482	while (ret >= 0 && ret < max_blocks) {
4483		map.m_lblk += ret;
4484		map.m_len = (max_blocks -= ret);
4485		handle = ext4_journal_start(inode, credits);
4486		if (IS_ERR(handle)) {
4487			ret = PTR_ERR(handle);
4488			break;
 
 
 
4489		}
4490		ret = ext4_map_blocks(handle, inode, &map,
4491				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4492		if (ret <= 0) {
4493			WARN_ON(ret <= 0);
4494			ext4_msg(inode->i_sb, KERN_ERR,
4495				 "%s:%d: inode #%lu: block %u: len %u: "
4496				 "ext4_ext_map_blocks returned %d",
4497				 __func__, __LINE__, inode->i_ino, map.m_lblk,
4498				 map.m_len, ret);
4499		}
4500		ext4_mark_inode_dirty(handle, inode);
4501		ret2 = ext4_journal_stop(handle);
4502		if (ret <= 0 || ret2 )
 
4503			break;
4504	}
 
 
4505	return ret > 0 ? ret2 : ret;
4506}
4507
4508/*
4509 * Callback function called for each extent to gather FIEMAP information.
4510 */
4511static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next,
4512		       struct ext4_ext_cache *newex, struct ext4_extent *ex,
4513		       void *data)
4514{
4515	__u64	logical;
4516	__u64	physical;
4517	__u64	length;
4518	__u32	flags = 0;
4519	int		ret = 0;
4520	struct fiemap_extent_info *fieinfo = data;
4521	unsigned char blksize_bits;
 
 
 
 
4522
4523	blksize_bits = inode->i_sb->s_blocksize_bits;
4524	logical = (__u64)newex->ec_block << blksize_bits;
4525
4526	if (newex->ec_start == 0) {
4527		/*
4528		 * No extent in extent-tree contains block @newex->ec_start,
4529		 * then the block may stay in 1)a hole or 2)delayed-extent.
4530		 *
4531		 * Holes or delayed-extents are processed as follows.
4532		 * 1. lookup dirty pages with specified range in pagecache.
4533		 *    If no page is got, then there is no delayed-extent and
4534		 *    return with EXT_CONTINUE.
4535		 * 2. find the 1st mapped buffer,
4536		 * 3. check if the mapped buffer is both in the request range
4537		 *    and a delayed buffer. If not, there is no delayed-extent,
4538		 *    then return.
4539		 * 4. a delayed-extent is found, the extent will be collected.
4540		 */
4541		ext4_lblk_t	end = 0;
4542		pgoff_t		last_offset;
4543		pgoff_t		offset;
4544		pgoff_t		index;
4545		pgoff_t		start_index = 0;
4546		struct page	**pages = NULL;
4547		struct buffer_head *bh = NULL;
4548		struct buffer_head *head = NULL;
4549		unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *);
4550
4551		pages = kmalloc(PAGE_SIZE, GFP_KERNEL);
4552		if (pages == NULL)
4553			return -ENOMEM;
4554
4555		offset = logical >> PAGE_SHIFT;
4556repeat:
4557		last_offset = offset;
4558		head = NULL;
4559		ret = find_get_pages_tag(inode->i_mapping, &offset,
4560					PAGECACHE_TAG_DIRTY, nr_pages, pages);
4561
4562		if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4563			/* First time, try to find a mapped buffer. */
4564			if (ret == 0) {
4565out:
4566				for (index = 0; index < ret; index++)
4567					page_cache_release(pages[index]);
4568				/* just a hole. */
4569				kfree(pages);
4570				return EXT_CONTINUE;
4571			}
4572			index = 0;
4573
4574next_page:
4575			/* Try to find the 1st mapped buffer. */
4576			end = ((__u64)pages[index]->index << PAGE_SHIFT) >>
4577				  blksize_bits;
4578			if (!page_has_buffers(pages[index]))
4579				goto out;
4580			head = page_buffers(pages[index]);
4581			if (!head)
4582				goto out;
4583
4584			index++;
4585			bh = head;
4586			do {
4587				if (end >= newex->ec_block +
4588					newex->ec_len)
4589					/* The buffer is out of
4590					 * the request range.
4591					 */
4592					goto out;
4593
4594				if (buffer_mapped(bh) &&
4595				    end >= newex->ec_block) {
4596					start_index = index - 1;
4597					/* get the 1st mapped buffer. */
4598					goto found_mapped_buffer;
4599				}
4600
4601				bh = bh->b_this_page;
4602				end++;
4603			} while (bh != head);
4604
4605			/* No mapped buffer in the range found in this page,
4606			 * We need to look up next page.
4607			 */
4608			if (index >= ret) {
4609				/* There is no page left, but we need to limit
4610				 * newex->ec_len.
4611				 */
4612				newex->ec_len = end - newex->ec_block;
4613				goto out;
4614			}
4615			goto next_page;
4616		} else {
4617			/*Find contiguous delayed buffers. */
4618			if (ret > 0 && pages[0]->index == last_offset)
4619				head = page_buffers(pages[0]);
4620			bh = head;
4621			index = 1;
4622			start_index = 0;
4623		}
4624
4625found_mapped_buffer:
4626		if (bh != NULL && buffer_delay(bh)) {
4627			/* 1st or contiguous delayed buffer found. */
4628			if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4629				/*
4630				 * 1st delayed buffer found, record
4631				 * the start of extent.
4632				 */
4633				flags |= FIEMAP_EXTENT_DELALLOC;
4634				newex->ec_block = end;
4635				logical = (__u64)end << blksize_bits;
4636			}
4637			/* Find contiguous delayed buffers. */
4638			do {
4639				if (!buffer_delay(bh))
4640					goto found_delayed_extent;
4641				bh = bh->b_this_page;
4642				end++;
4643			} while (bh != head);
4644
4645			for (; index < ret; index++) {
4646				if (!page_has_buffers(pages[index])) {
4647					bh = NULL;
4648					break;
4649				}
4650				head = page_buffers(pages[index]);
4651				if (!head) {
4652					bh = NULL;
4653					break;
4654				}
4655
4656				if (pages[index]->index !=
4657				    pages[start_index]->index + index
4658				    - start_index) {
4659					/* Blocks are not contiguous. */
4660					bh = NULL;
4661					break;
4662				}
4663				bh = head;
4664				do {
4665					if (!buffer_delay(bh))
4666						/* Delayed-extent ends. */
4667						goto found_delayed_extent;
4668					bh = bh->b_this_page;
4669					end++;
4670				} while (bh != head);
4671			}
4672		} else if (!(flags & FIEMAP_EXTENT_DELALLOC))
4673			/* a hole found. */
4674			goto out;
4675
4676found_delayed_extent:
4677		newex->ec_len = min(end - newex->ec_block,
4678						(ext4_lblk_t)EXT_INIT_MAX_LEN);
4679		if (ret == nr_pages && bh != NULL &&
4680			newex->ec_len < EXT_INIT_MAX_LEN &&
4681			buffer_delay(bh)) {
4682			/* Have not collected an extent and continue. */
4683			for (index = 0; index < ret; index++)
4684				page_cache_release(pages[index]);
4685			goto repeat;
4686		}
4687
4688		for (index = 0; index < ret; index++)
4689			page_cache_release(pages[index]);
4690		kfree(pages);
4691	}
4692
4693	physical = (__u64)newex->ec_start << blksize_bits;
4694	length =   (__u64)newex->ec_len << blksize_bits;
 
 
 
 
4695
4696	if (ex && ext4_ext_is_uninitialized(ex))
4697		flags |= FIEMAP_EXTENT_UNWRITTEN;
4698
4699	if (next == EXT_MAX_BLOCKS)
4700		flags |= FIEMAP_EXTENT_LAST;
4701
4702	ret = fiemap_fill_next_extent(fieinfo, logical, physical,
4703					length, flags);
4704	if (ret < 0)
4705		return ret;
4706	if (ret == 1)
4707		return EXT_BREAK;
4708	return EXT_CONTINUE;
4709}
4710/* fiemap flags we can handle specified here */
4711#define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4712
4713static int ext4_xattr_fiemap(struct inode *inode,
4714				struct fiemap_extent_info *fieinfo)
4715{
4716	__u64 physical = 0;
4717	__u64 length;
4718	__u32 flags = FIEMAP_EXTENT_LAST;
4719	int blockbits = inode->i_sb->s_blocksize_bits;
4720	int error = 0;
4721
4722	/* in-inode? */
4723	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4724		struct ext4_iloc iloc;
4725		int offset;	/* offset of xattr in inode */
4726
4727		error = ext4_get_inode_loc(inode, &iloc);
4728		if (error)
4729			return error;
4730		physical = iloc.bh->b_blocknr << blockbits;
4731		offset = EXT4_GOOD_OLD_INODE_SIZE +
4732				EXT4_I(inode)->i_extra_isize;
4733		physical += offset;
4734		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4735		flags |= FIEMAP_EXTENT_DATA_INLINE;
4736		brelse(iloc.bh);
4737	} else { /* external block */
4738		physical = EXT4_I(inode)->i_file_acl << blockbits;
4739		length = inode->i_sb->s_blocksize;
4740	}
4741
4742	if (physical)
4743		error = fiemap_fill_next_extent(fieinfo, 0, physical,
4744						length, flags);
4745	return (error < 0 ? error : 0);
4746}
4747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4748/*
4749 * ext4_ext_punch_hole
4750 *
4751 * Punches a hole of "length" bytes in a file starting
4752 * at byte "offset"
4753 *
4754 * @inode:  The inode of the file to punch a hole in
4755 * @offset: The starting byte offset of the hole
4756 * @length: The length of the hole
4757 *
4758 * Returns the number of blocks removed or negative on err
4759 */
4760int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
 
 
4761{
4762	struct inode *inode = file->f_path.dentry->d_inode;
4763	struct super_block *sb = inode->i_sb;
4764	ext4_lblk_t first_block, stop_block;
4765	struct address_space *mapping = inode->i_mapping;
4766	handle_t *handle;
4767	loff_t first_page, last_page, page_len;
4768	loff_t first_page_offset, last_page_offset;
4769	int credits, err = 0;
4770
4771	/* No need to punch hole beyond i_size */
4772	if (offset >= inode->i_size)
4773		return 0;
4774
4775	/*
4776	 * If the hole extends beyond i_size, set the hole
4777	 * to end after the page that contains i_size
 
 
4778	 */
4779	if (offset + length > inode->i_size) {
4780		length = inode->i_size +
4781		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
4782		   offset;
 
 
4783	}
4784
4785	first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4786	last_page = (offset + length) >> PAGE_CACHE_SHIFT;
 
4787
4788	first_page_offset = first_page << PAGE_CACHE_SHIFT;
4789	last_page_offset = last_page << PAGE_CACHE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4790
4791	/*
4792	 * Write out all dirty pages to avoid race conditions
4793	 * Then release them.
4794	 */
4795	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4796		err = filemap_write_and_wait_range(mapping,
4797			offset, offset + length - 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4798
 
 
 
 
 
4799		if (err)
4800			return err;
4801	}
 
 
 
4802
4803	/* Now release the pages */
4804	if (last_page_offset > first_page_offset) {
4805		truncate_pagecache_range(inode, first_page_offset,
4806					 last_page_offset - 1);
4807	}
4808
4809	/* finish any pending end_io work */
4810	ext4_flush_completed_IO(inode);
 
4811
4812	credits = ext4_writepage_trans_blocks(inode);
4813	handle = ext4_journal_start(inode, credits);
4814	if (IS_ERR(handle))
4815		return PTR_ERR(handle);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4816
4817	err = ext4_orphan_add(handle, inode);
4818	if (err)
 
4819		goto out;
4820
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4821	/*
4822	 * Now we need to zero out the non-page-aligned data in the
4823	 * pages at the start and tail of the hole, and unmap the buffer
4824	 * heads for the block aligned regions of the page that were
4825	 * completely zeroed.
4826	 */
4827	if (first_page > last_page) {
4828		/*
4829		 * If the file space being truncated is contained within a page
4830		 * just zero out and unmap the middle of that page
4831		 */
4832		err = ext4_discard_partial_page_buffers(handle,
4833			mapping, offset, length, 0);
4834
4835		if (err)
4836			goto out;
4837	} else {
4838		/*
4839		 * zero out and unmap the partial page that contains
4840		 * the start of the hole
4841		 */
4842		page_len  = first_page_offset - offset;
4843		if (page_len > 0) {
4844			err = ext4_discard_partial_page_buffers(handle, mapping,
4845						   offset, page_len, 0);
4846			if (err)
4847				goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
4848		}
4849
4850		/*
4851		 * zero out and unmap the partial page that contains
4852		 * the end of the hole
4853		 */
4854		page_len = offset + length - last_page_offset;
4855		if (page_len > 0) {
4856			err = ext4_discard_partial_page_buffers(handle, mapping,
4857					last_page_offset, page_len, 0);
4858			if (err)
4859				goto out;
4860		}
 
 
 
 
 
 
 
 
 
4861	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4862
4863	/*
4864	 * If i_size is contained in the last page, we need to
4865	 * unmap and zero the partial page after i_size
 
4866	 */
4867	if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
4868	   inode->i_size % PAGE_CACHE_SIZE != 0) {
4869
4870		page_len = PAGE_CACHE_SIZE -
4871			(inode->i_size & (PAGE_CACHE_SIZE - 1));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4872
4873		if (page_len > 0) {
4874			err = ext4_discard_partial_page_buffers(handle,
4875			  mapping, inode->i_size, page_len, 0);
 
 
 
 
 
 
4876
4877			if (err)
4878				goto out;
4879		}
 
4880	}
4881
4882	first_block = (offset + sb->s_blocksize - 1) >>
4883		EXT4_BLOCK_SIZE_BITS(sb);
4884	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4885
4886	/* If there are no blocks to remove, return now */
4887	if (first_block >= stop_block)
4888		goto out;
 
 
 
4889
4890	down_write(&EXT4_I(inode)->i_data_sem);
4891	ext4_ext_invalidate_cache(inode);
4892	ext4_discard_preallocations(inode);
4893
4894	err = ext4_ext_remove_space(inode, first_block, stop_block - 1);
 
 
 
 
 
4895
4896	ext4_ext_invalidate_cache(inode);
 
 
 
 
4897	ext4_discard_preallocations(inode);
4898
 
 
 
 
 
 
 
 
 
 
 
 
4899	if (IS_SYNC(inode))
4900		ext4_handle_sync(handle);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4901
4902	up_write(&EXT4_I(inode)->i_data_sem);
 
 
4903
4904out:
4905	ext4_orphan_del(handle, inode);
4906	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4907	ext4_mark_inode_dirty(handle, inode);
4908	ext4_journal_stop(handle);
4909	return err;
 
 
 
 
 
4910}
4911int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4912		__u64 start, __u64 len)
4913{
4914	ext4_lblk_t start_blk;
4915	int error = 0;
4916
4917	/* fallback to generic here if not in extents fmt */
4918	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4919		return generic_block_fiemap(inode, fieinfo, start, len,
4920			ext4_get_block);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4921
4922	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4923		return -EBADR;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4924
4925	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4926		error = ext4_xattr_fiemap(inode, fieinfo);
4927	} else {
4928		ext4_lblk_t len_blks;
4929		__u64 last_blk;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4930
4931		start_blk = start >> inode->i_sb->s_blocksize_bits;
4932		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4933		if (last_blk >= EXT_MAX_BLOCKS)
4934			last_blk = EXT_MAX_BLOCKS-1;
4935		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4937		/*
4938		 * Walk the extent tree gathering extent information.
4939		 * ext4_ext_fiemap_cb will push extents back to user.
 
 
4940		 */
4941		error = ext4_ext_walk_space(inode, start_blk, len_blks,
4942					  ext4_ext_fiemap_cb, fieinfo);
 
 
 
 
 
 
 
 
 
 
 
4943	}
4944
4945	return error;
4946}