Linux Audio

Check our new training course

Loading...
v4.10.11
  1/*
  2 * x86 instruction analysis
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write to the Free Software
 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 17 *
 18 * Copyright (C) IBM Corporation, 2002, 2004, 2009
 19 */
 20
 21#ifdef __KERNEL__
 22#include <linux/string.h>
 23#else
 24#include <string.h>
 25#endif
 26#include <asm/inat.h>
 27#include <asm/insn.h>
 28
 29/* Verify next sizeof(t) bytes can be on the same instruction */
 30#define validate_next(t, insn, n)	\
 31	((insn)->next_byte + sizeof(t) + n <= (insn)->end_kaddr)
 32
 33#define __get_next(t, insn)	\
 34	({ t r = *(t*)insn->next_byte; insn->next_byte += sizeof(t); r; })
 35
 36#define __peek_nbyte_next(t, insn, n)	\
 37	({ t r = *(t*)((insn)->next_byte + n); r; })
 38
 39#define get_next(t, insn)	\
 40	({ if (unlikely(!validate_next(t, insn, 0))) goto err_out; __get_next(t, insn); })
 41
 42#define peek_nbyte_next(t, insn, n)	\
 43	({ if (unlikely(!validate_next(t, insn, n))) goto err_out; __peek_nbyte_next(t, insn, n); })
 44
 45#define peek_next(t, insn)	peek_nbyte_next(t, insn, 0)
 46
 47/**
 48 * insn_init() - initialize struct insn
 49 * @insn:	&struct insn to be initialized
 50 * @kaddr:	address (in kernel memory) of instruction (or copy thereof)
 51 * @x86_64:	!0 for 64-bit kernel or 64-bit app
 52 */
 53void insn_init(struct insn *insn, const void *kaddr, int buf_len, int x86_64)
 54{
 55	/*
 56	 * Instructions longer than MAX_INSN_SIZE (15 bytes) are invalid
 57	 * even if the input buffer is long enough to hold them.
 58	 */
 59	if (buf_len > MAX_INSN_SIZE)
 60		buf_len = MAX_INSN_SIZE;
 61
 62	memset(insn, 0, sizeof(*insn));
 63	insn->kaddr = kaddr;
 64	insn->end_kaddr = kaddr + buf_len;
 65	insn->next_byte = kaddr;
 66	insn->x86_64 = x86_64 ? 1 : 0;
 67	insn->opnd_bytes = 4;
 68	if (x86_64)
 69		insn->addr_bytes = 8;
 70	else
 71		insn->addr_bytes = 4;
 72}
 73
 74/**
 75 * insn_get_prefixes - scan x86 instruction prefix bytes
 76 * @insn:	&struct insn containing instruction
 77 *
 78 * Populates the @insn->prefixes bitmap, and updates @insn->next_byte
 79 * to point to the (first) opcode.  No effect if @insn->prefixes.got
 80 * is already set.
 81 */
 82void insn_get_prefixes(struct insn *insn)
 83{
 84	struct insn_field *prefixes = &insn->prefixes;
 85	insn_attr_t attr;
 86	insn_byte_t b, lb;
 87	int i, nb;
 88
 89	if (prefixes->got)
 90		return;
 91
 92	nb = 0;
 93	lb = 0;
 94	b = peek_next(insn_byte_t, insn);
 95	attr = inat_get_opcode_attribute(b);
 96	while (inat_is_legacy_prefix(attr)) {
 97		/* Skip if same prefix */
 98		for (i = 0; i < nb; i++)
 99			if (prefixes->bytes[i] == b)
100				goto found;
101		if (nb == 4)
102			/* Invalid instruction */
103			break;
104		prefixes->bytes[nb++] = b;
105		if (inat_is_address_size_prefix(attr)) {
106			/* address size switches 2/4 or 4/8 */
107			if (insn->x86_64)
108				insn->addr_bytes ^= 12;
109			else
110				insn->addr_bytes ^= 6;
111		} else if (inat_is_operand_size_prefix(attr)) {
112			/* oprand size switches 2/4 */
113			insn->opnd_bytes ^= 6;
114		}
115found:
116		prefixes->nbytes++;
117		insn->next_byte++;
118		lb = b;
119		b = peek_next(insn_byte_t, insn);
120		attr = inat_get_opcode_attribute(b);
121	}
122	/* Set the last prefix */
123	if (lb && lb != insn->prefixes.bytes[3]) {
124		if (unlikely(insn->prefixes.bytes[3])) {
125			/* Swap the last prefix */
126			b = insn->prefixes.bytes[3];
127			for (i = 0; i < nb; i++)
128				if (prefixes->bytes[i] == lb)
129					prefixes->bytes[i] = b;
130		}
131		insn->prefixes.bytes[3] = lb;
132	}
133
134	/* Decode REX prefix */
135	if (insn->x86_64) {
136		b = peek_next(insn_byte_t, insn);
137		attr = inat_get_opcode_attribute(b);
138		if (inat_is_rex_prefix(attr)) {
139			insn->rex_prefix.value = b;
140			insn->rex_prefix.nbytes = 1;
141			insn->next_byte++;
142			if (X86_REX_W(b))
143				/* REX.W overrides opnd_size */
144				insn->opnd_bytes = 8;
145		}
146	}
147	insn->rex_prefix.got = 1;
148
149	/* Decode VEX prefix */
150	b = peek_next(insn_byte_t, insn);
151	attr = inat_get_opcode_attribute(b);
152	if (inat_is_vex_prefix(attr)) {
153		insn_byte_t b2 = peek_nbyte_next(insn_byte_t, insn, 1);
154		if (!insn->x86_64) {
155			/*
156			 * In 32-bits mode, if the [7:6] bits (mod bits of
157			 * ModRM) on the second byte are not 11b, it is
158			 * LDS or LES or BOUND.
159			 */
160			if (X86_MODRM_MOD(b2) != 3)
161				goto vex_end;
162		}
163		insn->vex_prefix.bytes[0] = b;
164		insn->vex_prefix.bytes[1] = b2;
165		if (inat_is_evex_prefix(attr)) {
166			b2 = peek_nbyte_next(insn_byte_t, insn, 2);
167			insn->vex_prefix.bytes[2] = b2;
168			b2 = peek_nbyte_next(insn_byte_t, insn, 3);
169			insn->vex_prefix.bytes[3] = b2;
170			insn->vex_prefix.nbytes = 4;
171			insn->next_byte += 4;
172			if (insn->x86_64 && X86_VEX_W(b2))
173				/* VEX.W overrides opnd_size */
174				insn->opnd_bytes = 8;
175		} else if (inat_is_vex3_prefix(attr)) {
176			b2 = peek_nbyte_next(insn_byte_t, insn, 2);
177			insn->vex_prefix.bytes[2] = b2;
178			insn->vex_prefix.nbytes = 3;
179			insn->next_byte += 3;
180			if (insn->x86_64 && X86_VEX_W(b2))
181				/* VEX.W overrides opnd_size */
182				insn->opnd_bytes = 8;
183		} else {
184			/*
185			 * For VEX2, fake VEX3-like byte#2.
186			 * Makes it easier to decode vex.W, vex.vvvv,
187			 * vex.L and vex.pp. Masking with 0x7f sets vex.W == 0.
188			 */
189			insn->vex_prefix.bytes[2] = b2 & 0x7f;
190			insn->vex_prefix.nbytes = 2;
191			insn->next_byte += 2;
192		}
193	}
194vex_end:
195	insn->vex_prefix.got = 1;
196
197	prefixes->got = 1;
198
199err_out:
200	return;
201}
202
203/**
204 * insn_get_opcode - collect opcode(s)
205 * @insn:	&struct insn containing instruction
206 *
207 * Populates @insn->opcode, updates @insn->next_byte to point past the
208 * opcode byte(s), and set @insn->attr (except for groups).
209 * If necessary, first collects any preceding (prefix) bytes.
210 * Sets @insn->opcode.value = opcode1.  No effect if @insn->opcode.got
211 * is already 1.
212 */
213void insn_get_opcode(struct insn *insn)
214{
215	struct insn_field *opcode = &insn->opcode;
216	insn_byte_t op;
217	int pfx_id;
218	if (opcode->got)
219		return;
220	if (!insn->prefixes.got)
221		insn_get_prefixes(insn);
222
223	/* Get first opcode */
224	op = get_next(insn_byte_t, insn);
225	opcode->bytes[0] = op;
226	opcode->nbytes = 1;
227
228	/* Check if there is VEX prefix or not */
229	if (insn_is_avx(insn)) {
230		insn_byte_t m, p;
231		m = insn_vex_m_bits(insn);
232		p = insn_vex_p_bits(insn);
233		insn->attr = inat_get_avx_attribute(op, m, p);
234		if ((inat_must_evex(insn->attr) && !insn_is_evex(insn)) ||
235		    (!inat_accept_vex(insn->attr) &&
236		     !inat_is_group(insn->attr)))
237			insn->attr = 0;	/* This instruction is bad */
238		goto end;	/* VEX has only 1 byte for opcode */
239	}
240
241	insn->attr = inat_get_opcode_attribute(op);
242	while (inat_is_escape(insn->attr)) {
243		/* Get escaped opcode */
244		op = get_next(insn_byte_t, insn);
245		opcode->bytes[opcode->nbytes++] = op;
246		pfx_id = insn_last_prefix_id(insn);
247		insn->attr = inat_get_escape_attribute(op, pfx_id, insn->attr);
248	}
249	if (inat_must_vex(insn->attr))
250		insn->attr = 0;	/* This instruction is bad */
251end:
252	opcode->got = 1;
253
254err_out:
255	return;
256}
257
258/**
259 * insn_get_modrm - collect ModRM byte, if any
260 * @insn:	&struct insn containing instruction
261 *
262 * Populates @insn->modrm and updates @insn->next_byte to point past the
263 * ModRM byte, if any.  If necessary, first collects the preceding bytes
264 * (prefixes and opcode(s)).  No effect if @insn->modrm.got is already 1.
265 */
266void insn_get_modrm(struct insn *insn)
267{
268	struct insn_field *modrm = &insn->modrm;
269	insn_byte_t pfx_id, mod;
270	if (modrm->got)
271		return;
272	if (!insn->opcode.got)
273		insn_get_opcode(insn);
274
275	if (inat_has_modrm(insn->attr)) {
276		mod = get_next(insn_byte_t, insn);
277		modrm->value = mod;
278		modrm->nbytes = 1;
279		if (inat_is_group(insn->attr)) {
280			pfx_id = insn_last_prefix_id(insn);
281			insn->attr = inat_get_group_attribute(mod, pfx_id,
282							      insn->attr);
283			if (insn_is_avx(insn) && !inat_accept_vex(insn->attr))
284				insn->attr = 0;	/* This is bad */
285		}
286	}
287
288	if (insn->x86_64 && inat_is_force64(insn->attr))
289		insn->opnd_bytes = 8;
290	modrm->got = 1;
291
292err_out:
293	return;
294}
295
296
297/**
298 * insn_rip_relative() - Does instruction use RIP-relative addressing mode?
299 * @insn:	&struct insn containing instruction
300 *
301 * If necessary, first collects the instruction up to and including the
302 * ModRM byte.  No effect if @insn->x86_64 is 0.
303 */
304int insn_rip_relative(struct insn *insn)
305{
306	struct insn_field *modrm = &insn->modrm;
307
308	if (!insn->x86_64)
309		return 0;
310	if (!modrm->got)
311		insn_get_modrm(insn);
312	/*
313	 * For rip-relative instructions, the mod field (top 2 bits)
314	 * is zero and the r/m field (bottom 3 bits) is 0x5.
315	 */
316	return (modrm->nbytes && (modrm->value & 0xc7) == 0x5);
317}
318
319/**
320 * insn_get_sib() - Get the SIB byte of instruction
321 * @insn:	&struct insn containing instruction
322 *
323 * If necessary, first collects the instruction up to and including the
324 * ModRM byte.
325 */
326void insn_get_sib(struct insn *insn)
327{
328	insn_byte_t modrm;
329
330	if (insn->sib.got)
331		return;
332	if (!insn->modrm.got)
333		insn_get_modrm(insn);
334	if (insn->modrm.nbytes) {
335		modrm = (insn_byte_t)insn->modrm.value;
336		if (insn->addr_bytes != 2 &&
337		    X86_MODRM_MOD(modrm) != 3 && X86_MODRM_RM(modrm) == 4) {
338			insn->sib.value = get_next(insn_byte_t, insn);
339			insn->sib.nbytes = 1;
340		}
341	}
342	insn->sib.got = 1;
343
344err_out:
345	return;
346}
347
348
349/**
350 * insn_get_displacement() - Get the displacement of instruction
351 * @insn:	&struct insn containing instruction
352 *
353 * If necessary, first collects the instruction up to and including the
354 * SIB byte.
355 * Displacement value is sign-expanded.
356 */
357void insn_get_displacement(struct insn *insn)
358{
359	insn_byte_t mod, rm, base;
360
361	if (insn->displacement.got)
362		return;
363	if (!insn->sib.got)
364		insn_get_sib(insn);
365	if (insn->modrm.nbytes) {
366		/*
367		 * Interpreting the modrm byte:
368		 * mod = 00 - no displacement fields (exceptions below)
369		 * mod = 01 - 1-byte displacement field
370		 * mod = 10 - displacement field is 4 bytes, or 2 bytes if
371		 * 	address size = 2 (0x67 prefix in 32-bit mode)
372		 * mod = 11 - no memory operand
373		 *
374		 * If address size = 2...
375		 * mod = 00, r/m = 110 - displacement field is 2 bytes
376		 *
377		 * If address size != 2...
378		 * mod != 11, r/m = 100 - SIB byte exists
379		 * mod = 00, SIB base = 101 - displacement field is 4 bytes
380		 * mod = 00, r/m = 101 - rip-relative addressing, displacement
381		 * 	field is 4 bytes
382		 */
383		mod = X86_MODRM_MOD(insn->modrm.value);
384		rm = X86_MODRM_RM(insn->modrm.value);
385		base = X86_SIB_BASE(insn->sib.value);
386		if (mod == 3)
387			goto out;
388		if (mod == 1) {
389			insn->displacement.value = get_next(signed char, insn);
390			insn->displacement.nbytes = 1;
391		} else if (insn->addr_bytes == 2) {
392			if ((mod == 0 && rm == 6) || mod == 2) {
393				insn->displacement.value =
394					 get_next(short, insn);
395				insn->displacement.nbytes = 2;
396			}
397		} else {
398			if ((mod == 0 && rm == 5) || mod == 2 ||
399			    (mod == 0 && base == 5)) {
400				insn->displacement.value = get_next(int, insn);
401				insn->displacement.nbytes = 4;
402			}
403		}
404	}
405out:
406	insn->displacement.got = 1;
407
408err_out:
409	return;
410}
411
412/* Decode moffset16/32/64. Return 0 if failed */
413static int __get_moffset(struct insn *insn)
414{
415	switch (insn->addr_bytes) {
416	case 2:
417		insn->moffset1.value = get_next(short, insn);
418		insn->moffset1.nbytes = 2;
419		break;
420	case 4:
421		insn->moffset1.value = get_next(int, insn);
422		insn->moffset1.nbytes = 4;
423		break;
424	case 8:
425		insn->moffset1.value = get_next(int, insn);
426		insn->moffset1.nbytes = 4;
427		insn->moffset2.value = get_next(int, insn);
428		insn->moffset2.nbytes = 4;
429		break;
430	default:	/* opnd_bytes must be modified manually */
431		goto err_out;
432	}
433	insn->moffset1.got = insn->moffset2.got = 1;
434
435	return 1;
436
437err_out:
438	return 0;
439}
440
441/* Decode imm v32(Iz). Return 0 if failed */
442static int __get_immv32(struct insn *insn)
443{
444	switch (insn->opnd_bytes) {
445	case 2:
446		insn->immediate.value = get_next(short, insn);
447		insn->immediate.nbytes = 2;
448		break;
449	case 4:
450	case 8:
451		insn->immediate.value = get_next(int, insn);
452		insn->immediate.nbytes = 4;
453		break;
454	default:	/* opnd_bytes must be modified manually */
455		goto err_out;
456	}
457
458	return 1;
459
460err_out:
461	return 0;
462}
463
464/* Decode imm v64(Iv/Ov), Return 0 if failed */
465static int __get_immv(struct insn *insn)
466{
467	switch (insn->opnd_bytes) {
468	case 2:
469		insn->immediate1.value = get_next(short, insn);
470		insn->immediate1.nbytes = 2;
471		break;
472	case 4:
473		insn->immediate1.value = get_next(int, insn);
474		insn->immediate1.nbytes = 4;
475		break;
476	case 8:
477		insn->immediate1.value = get_next(int, insn);
478		insn->immediate1.nbytes = 4;
479		insn->immediate2.value = get_next(int, insn);
480		insn->immediate2.nbytes = 4;
481		break;
482	default:	/* opnd_bytes must be modified manually */
483		goto err_out;
484	}
485	insn->immediate1.got = insn->immediate2.got = 1;
486
487	return 1;
488err_out:
489	return 0;
490}
491
492/* Decode ptr16:16/32(Ap) */
493static int __get_immptr(struct insn *insn)
494{
495	switch (insn->opnd_bytes) {
496	case 2:
497		insn->immediate1.value = get_next(short, insn);
498		insn->immediate1.nbytes = 2;
499		break;
500	case 4:
501		insn->immediate1.value = get_next(int, insn);
502		insn->immediate1.nbytes = 4;
503		break;
504	case 8:
505		/* ptr16:64 is not exist (no segment) */
506		return 0;
507	default:	/* opnd_bytes must be modified manually */
508		goto err_out;
509	}
510	insn->immediate2.value = get_next(unsigned short, insn);
511	insn->immediate2.nbytes = 2;
512	insn->immediate1.got = insn->immediate2.got = 1;
513
514	return 1;
515err_out:
516	return 0;
517}
518
519/**
520 * insn_get_immediate() - Get the immediates of instruction
521 * @insn:	&struct insn containing instruction
522 *
523 * If necessary, first collects the instruction up to and including the
524 * displacement bytes.
525 * Basically, most of immediates are sign-expanded. Unsigned-value can be
526 * get by bit masking with ((1 << (nbytes * 8)) - 1)
527 */
528void insn_get_immediate(struct insn *insn)
529{
530	if (insn->immediate.got)
531		return;
532	if (!insn->displacement.got)
533		insn_get_displacement(insn);
534
535	if (inat_has_moffset(insn->attr)) {
536		if (!__get_moffset(insn))
537			goto err_out;
538		goto done;
539	}
540
541	if (!inat_has_immediate(insn->attr))
542		/* no immediates */
543		goto done;
544
545	switch (inat_immediate_size(insn->attr)) {
546	case INAT_IMM_BYTE:
547		insn->immediate.value = get_next(signed char, insn);
548		insn->immediate.nbytes = 1;
549		break;
550	case INAT_IMM_WORD:
551		insn->immediate.value = get_next(short, insn);
552		insn->immediate.nbytes = 2;
553		break;
554	case INAT_IMM_DWORD:
555		insn->immediate.value = get_next(int, insn);
556		insn->immediate.nbytes = 4;
557		break;
558	case INAT_IMM_QWORD:
559		insn->immediate1.value = get_next(int, insn);
560		insn->immediate1.nbytes = 4;
561		insn->immediate2.value = get_next(int, insn);
562		insn->immediate2.nbytes = 4;
563		break;
564	case INAT_IMM_PTR:
565		if (!__get_immptr(insn))
566			goto err_out;
567		break;
568	case INAT_IMM_VWORD32:
569		if (!__get_immv32(insn))
570			goto err_out;
571		break;
572	case INAT_IMM_VWORD:
573		if (!__get_immv(insn))
574			goto err_out;
575		break;
576	default:
577		/* Here, insn must have an immediate, but failed */
578		goto err_out;
579	}
580	if (inat_has_second_immediate(insn->attr)) {
581		insn->immediate2.value = get_next(signed char, insn);
582		insn->immediate2.nbytes = 1;
583	}
584done:
585	insn->immediate.got = 1;
586
587err_out:
588	return;
589}
590
591/**
592 * insn_get_length() - Get the length of instruction
593 * @insn:	&struct insn containing instruction
594 *
595 * If necessary, first collects the instruction up to and including the
596 * immediates bytes.
597 */
598void insn_get_length(struct insn *insn)
599{
600	if (insn->length)
601		return;
602	if (!insn->immediate.got)
603		insn_get_immediate(insn);
604	insn->length = (unsigned char)((unsigned long)insn->next_byte
605				     - (unsigned long)insn->kaddr);
606}
v3.5.6
  1/*
  2 * x86 instruction analysis
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write to the Free Software
 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 17 *
 18 * Copyright (C) IBM Corporation, 2002, 2004, 2009
 19 */
 20
 
 21#include <linux/string.h>
 
 
 
 22#include <asm/inat.h>
 23#include <asm/insn.h>
 24
 25/* Verify next sizeof(t) bytes can be on the same instruction */
 26#define validate_next(t, insn, n)	\
 27	((insn)->next_byte + sizeof(t) + n - (insn)->kaddr <= MAX_INSN_SIZE)
 28
 29#define __get_next(t, insn)	\
 30	({ t r = *(t*)insn->next_byte; insn->next_byte += sizeof(t); r; })
 31
 32#define __peek_nbyte_next(t, insn, n)	\
 33	({ t r = *(t*)((insn)->next_byte + n); r; })
 34
 35#define get_next(t, insn)	\
 36	({ if (unlikely(!validate_next(t, insn, 0))) goto err_out; __get_next(t, insn); })
 37
 38#define peek_nbyte_next(t, insn, n)	\
 39	({ if (unlikely(!validate_next(t, insn, n))) goto err_out; __peek_nbyte_next(t, insn, n); })
 40
 41#define peek_next(t, insn)	peek_nbyte_next(t, insn, 0)
 42
 43/**
 44 * insn_init() - initialize struct insn
 45 * @insn:	&struct insn to be initialized
 46 * @kaddr:	address (in kernel memory) of instruction (or copy thereof)
 47 * @x86_64:	!0 for 64-bit kernel or 64-bit app
 48 */
 49void insn_init(struct insn *insn, const void *kaddr, int x86_64)
 50{
 
 
 
 
 
 
 
 51	memset(insn, 0, sizeof(*insn));
 52	insn->kaddr = kaddr;
 
 53	insn->next_byte = kaddr;
 54	insn->x86_64 = x86_64 ? 1 : 0;
 55	insn->opnd_bytes = 4;
 56	if (x86_64)
 57		insn->addr_bytes = 8;
 58	else
 59		insn->addr_bytes = 4;
 60}
 61
 62/**
 63 * insn_get_prefixes - scan x86 instruction prefix bytes
 64 * @insn:	&struct insn containing instruction
 65 *
 66 * Populates the @insn->prefixes bitmap, and updates @insn->next_byte
 67 * to point to the (first) opcode.  No effect if @insn->prefixes.got
 68 * is already set.
 69 */
 70void insn_get_prefixes(struct insn *insn)
 71{
 72	struct insn_field *prefixes = &insn->prefixes;
 73	insn_attr_t attr;
 74	insn_byte_t b, lb;
 75	int i, nb;
 76
 77	if (prefixes->got)
 78		return;
 79
 80	nb = 0;
 81	lb = 0;
 82	b = peek_next(insn_byte_t, insn);
 83	attr = inat_get_opcode_attribute(b);
 84	while (inat_is_legacy_prefix(attr)) {
 85		/* Skip if same prefix */
 86		for (i = 0; i < nb; i++)
 87			if (prefixes->bytes[i] == b)
 88				goto found;
 89		if (nb == 4)
 90			/* Invalid instruction */
 91			break;
 92		prefixes->bytes[nb++] = b;
 93		if (inat_is_address_size_prefix(attr)) {
 94			/* address size switches 2/4 or 4/8 */
 95			if (insn->x86_64)
 96				insn->addr_bytes ^= 12;
 97			else
 98				insn->addr_bytes ^= 6;
 99		} else if (inat_is_operand_size_prefix(attr)) {
100			/* oprand size switches 2/4 */
101			insn->opnd_bytes ^= 6;
102		}
103found:
104		prefixes->nbytes++;
105		insn->next_byte++;
106		lb = b;
107		b = peek_next(insn_byte_t, insn);
108		attr = inat_get_opcode_attribute(b);
109	}
110	/* Set the last prefix */
111	if (lb && lb != insn->prefixes.bytes[3]) {
112		if (unlikely(insn->prefixes.bytes[3])) {
113			/* Swap the last prefix */
114			b = insn->prefixes.bytes[3];
115			for (i = 0; i < nb; i++)
116				if (prefixes->bytes[i] == lb)
117					prefixes->bytes[i] = b;
118		}
119		insn->prefixes.bytes[3] = lb;
120	}
121
122	/* Decode REX prefix */
123	if (insn->x86_64) {
124		b = peek_next(insn_byte_t, insn);
125		attr = inat_get_opcode_attribute(b);
126		if (inat_is_rex_prefix(attr)) {
127			insn->rex_prefix.value = b;
128			insn->rex_prefix.nbytes = 1;
129			insn->next_byte++;
130			if (X86_REX_W(b))
131				/* REX.W overrides opnd_size */
132				insn->opnd_bytes = 8;
133		}
134	}
135	insn->rex_prefix.got = 1;
136
137	/* Decode VEX prefix */
138	b = peek_next(insn_byte_t, insn);
139	attr = inat_get_opcode_attribute(b);
140	if (inat_is_vex_prefix(attr)) {
141		insn_byte_t b2 = peek_nbyte_next(insn_byte_t, insn, 1);
142		if (!insn->x86_64) {
143			/*
144			 * In 32-bits mode, if the [7:6] bits (mod bits of
145			 * ModRM) on the second byte are not 11b, it is
146			 * LDS or LES.
147			 */
148			if (X86_MODRM_MOD(b2) != 3)
149				goto vex_end;
150		}
151		insn->vex_prefix.bytes[0] = b;
152		insn->vex_prefix.bytes[1] = b2;
153		if (inat_is_vex3_prefix(attr)) {
 
 
 
 
 
 
 
 
 
 
154			b2 = peek_nbyte_next(insn_byte_t, insn, 2);
155			insn->vex_prefix.bytes[2] = b2;
156			insn->vex_prefix.nbytes = 3;
157			insn->next_byte += 3;
158			if (insn->x86_64 && X86_VEX_W(b2))
159				/* VEX.W overrides opnd_size */
160				insn->opnd_bytes = 8;
161		} else {
 
 
 
 
 
 
162			insn->vex_prefix.nbytes = 2;
163			insn->next_byte += 2;
164		}
165	}
166vex_end:
167	insn->vex_prefix.got = 1;
168
169	prefixes->got = 1;
170
171err_out:
172	return;
173}
174
175/**
176 * insn_get_opcode - collect opcode(s)
177 * @insn:	&struct insn containing instruction
178 *
179 * Populates @insn->opcode, updates @insn->next_byte to point past the
180 * opcode byte(s), and set @insn->attr (except for groups).
181 * If necessary, first collects any preceding (prefix) bytes.
182 * Sets @insn->opcode.value = opcode1.  No effect if @insn->opcode.got
183 * is already 1.
184 */
185void insn_get_opcode(struct insn *insn)
186{
187	struct insn_field *opcode = &insn->opcode;
188	insn_byte_t op;
189	int pfx_id;
190	if (opcode->got)
191		return;
192	if (!insn->prefixes.got)
193		insn_get_prefixes(insn);
194
195	/* Get first opcode */
196	op = get_next(insn_byte_t, insn);
197	opcode->bytes[0] = op;
198	opcode->nbytes = 1;
199
200	/* Check if there is VEX prefix or not */
201	if (insn_is_avx(insn)) {
202		insn_byte_t m, p;
203		m = insn_vex_m_bits(insn);
204		p = insn_vex_p_bits(insn);
205		insn->attr = inat_get_avx_attribute(op, m, p);
206		if (!inat_accept_vex(insn->attr) && !inat_is_group(insn->attr))
 
 
207			insn->attr = 0;	/* This instruction is bad */
208		goto end;	/* VEX has only 1 byte for opcode */
209	}
210
211	insn->attr = inat_get_opcode_attribute(op);
212	while (inat_is_escape(insn->attr)) {
213		/* Get escaped opcode */
214		op = get_next(insn_byte_t, insn);
215		opcode->bytes[opcode->nbytes++] = op;
216		pfx_id = insn_last_prefix_id(insn);
217		insn->attr = inat_get_escape_attribute(op, pfx_id, insn->attr);
218	}
219	if (inat_must_vex(insn->attr))
220		insn->attr = 0;	/* This instruction is bad */
221end:
222	opcode->got = 1;
223
224err_out:
225	return;
226}
227
228/**
229 * insn_get_modrm - collect ModRM byte, if any
230 * @insn:	&struct insn containing instruction
231 *
232 * Populates @insn->modrm and updates @insn->next_byte to point past the
233 * ModRM byte, if any.  If necessary, first collects the preceding bytes
234 * (prefixes and opcode(s)).  No effect if @insn->modrm.got is already 1.
235 */
236void insn_get_modrm(struct insn *insn)
237{
238	struct insn_field *modrm = &insn->modrm;
239	insn_byte_t pfx_id, mod;
240	if (modrm->got)
241		return;
242	if (!insn->opcode.got)
243		insn_get_opcode(insn);
244
245	if (inat_has_modrm(insn->attr)) {
246		mod = get_next(insn_byte_t, insn);
247		modrm->value = mod;
248		modrm->nbytes = 1;
249		if (inat_is_group(insn->attr)) {
250			pfx_id = insn_last_prefix_id(insn);
251			insn->attr = inat_get_group_attribute(mod, pfx_id,
252							      insn->attr);
253			if (insn_is_avx(insn) && !inat_accept_vex(insn->attr))
254				insn->attr = 0;	/* This is bad */
255		}
256	}
257
258	if (insn->x86_64 && inat_is_force64(insn->attr))
259		insn->opnd_bytes = 8;
260	modrm->got = 1;
261
262err_out:
263	return;
264}
265
266
267/**
268 * insn_rip_relative() - Does instruction use RIP-relative addressing mode?
269 * @insn:	&struct insn containing instruction
270 *
271 * If necessary, first collects the instruction up to and including the
272 * ModRM byte.  No effect if @insn->x86_64 is 0.
273 */
274int insn_rip_relative(struct insn *insn)
275{
276	struct insn_field *modrm = &insn->modrm;
277
278	if (!insn->x86_64)
279		return 0;
280	if (!modrm->got)
281		insn_get_modrm(insn);
282	/*
283	 * For rip-relative instructions, the mod field (top 2 bits)
284	 * is zero and the r/m field (bottom 3 bits) is 0x5.
285	 */
286	return (modrm->nbytes && (modrm->value & 0xc7) == 0x5);
287}
288
289/**
290 * insn_get_sib() - Get the SIB byte of instruction
291 * @insn:	&struct insn containing instruction
292 *
293 * If necessary, first collects the instruction up to and including the
294 * ModRM byte.
295 */
296void insn_get_sib(struct insn *insn)
297{
298	insn_byte_t modrm;
299
300	if (insn->sib.got)
301		return;
302	if (!insn->modrm.got)
303		insn_get_modrm(insn);
304	if (insn->modrm.nbytes) {
305		modrm = (insn_byte_t)insn->modrm.value;
306		if (insn->addr_bytes != 2 &&
307		    X86_MODRM_MOD(modrm) != 3 && X86_MODRM_RM(modrm) == 4) {
308			insn->sib.value = get_next(insn_byte_t, insn);
309			insn->sib.nbytes = 1;
310		}
311	}
312	insn->sib.got = 1;
313
314err_out:
315	return;
316}
317
318
319/**
320 * insn_get_displacement() - Get the displacement of instruction
321 * @insn:	&struct insn containing instruction
322 *
323 * If necessary, first collects the instruction up to and including the
324 * SIB byte.
325 * Displacement value is sign-expanded.
326 */
327void insn_get_displacement(struct insn *insn)
328{
329	insn_byte_t mod, rm, base;
330
331	if (insn->displacement.got)
332		return;
333	if (!insn->sib.got)
334		insn_get_sib(insn);
335	if (insn->modrm.nbytes) {
336		/*
337		 * Interpreting the modrm byte:
338		 * mod = 00 - no displacement fields (exceptions below)
339		 * mod = 01 - 1-byte displacement field
340		 * mod = 10 - displacement field is 4 bytes, or 2 bytes if
341		 * 	address size = 2 (0x67 prefix in 32-bit mode)
342		 * mod = 11 - no memory operand
343		 *
344		 * If address size = 2...
345		 * mod = 00, r/m = 110 - displacement field is 2 bytes
346		 *
347		 * If address size != 2...
348		 * mod != 11, r/m = 100 - SIB byte exists
349		 * mod = 00, SIB base = 101 - displacement field is 4 bytes
350		 * mod = 00, r/m = 101 - rip-relative addressing, displacement
351		 * 	field is 4 bytes
352		 */
353		mod = X86_MODRM_MOD(insn->modrm.value);
354		rm = X86_MODRM_RM(insn->modrm.value);
355		base = X86_SIB_BASE(insn->sib.value);
356		if (mod == 3)
357			goto out;
358		if (mod == 1) {
359			insn->displacement.value = get_next(char, insn);
360			insn->displacement.nbytes = 1;
361		} else if (insn->addr_bytes == 2) {
362			if ((mod == 0 && rm == 6) || mod == 2) {
363				insn->displacement.value =
364					 get_next(short, insn);
365				insn->displacement.nbytes = 2;
366			}
367		} else {
368			if ((mod == 0 && rm == 5) || mod == 2 ||
369			    (mod == 0 && base == 5)) {
370				insn->displacement.value = get_next(int, insn);
371				insn->displacement.nbytes = 4;
372			}
373		}
374	}
375out:
376	insn->displacement.got = 1;
377
378err_out:
379	return;
380}
381
382/* Decode moffset16/32/64. Return 0 if failed */
383static int __get_moffset(struct insn *insn)
384{
385	switch (insn->addr_bytes) {
386	case 2:
387		insn->moffset1.value = get_next(short, insn);
388		insn->moffset1.nbytes = 2;
389		break;
390	case 4:
391		insn->moffset1.value = get_next(int, insn);
392		insn->moffset1.nbytes = 4;
393		break;
394	case 8:
395		insn->moffset1.value = get_next(int, insn);
396		insn->moffset1.nbytes = 4;
397		insn->moffset2.value = get_next(int, insn);
398		insn->moffset2.nbytes = 4;
399		break;
400	default:	/* opnd_bytes must be modified manually */
401		goto err_out;
402	}
403	insn->moffset1.got = insn->moffset2.got = 1;
404
405	return 1;
406
407err_out:
408	return 0;
409}
410
411/* Decode imm v32(Iz). Return 0 if failed */
412static int __get_immv32(struct insn *insn)
413{
414	switch (insn->opnd_bytes) {
415	case 2:
416		insn->immediate.value = get_next(short, insn);
417		insn->immediate.nbytes = 2;
418		break;
419	case 4:
420	case 8:
421		insn->immediate.value = get_next(int, insn);
422		insn->immediate.nbytes = 4;
423		break;
424	default:	/* opnd_bytes must be modified manually */
425		goto err_out;
426	}
427
428	return 1;
429
430err_out:
431	return 0;
432}
433
434/* Decode imm v64(Iv/Ov), Return 0 if failed */
435static int __get_immv(struct insn *insn)
436{
437	switch (insn->opnd_bytes) {
438	case 2:
439		insn->immediate1.value = get_next(short, insn);
440		insn->immediate1.nbytes = 2;
441		break;
442	case 4:
443		insn->immediate1.value = get_next(int, insn);
444		insn->immediate1.nbytes = 4;
445		break;
446	case 8:
447		insn->immediate1.value = get_next(int, insn);
448		insn->immediate1.nbytes = 4;
449		insn->immediate2.value = get_next(int, insn);
450		insn->immediate2.nbytes = 4;
451		break;
452	default:	/* opnd_bytes must be modified manually */
453		goto err_out;
454	}
455	insn->immediate1.got = insn->immediate2.got = 1;
456
457	return 1;
458err_out:
459	return 0;
460}
461
462/* Decode ptr16:16/32(Ap) */
463static int __get_immptr(struct insn *insn)
464{
465	switch (insn->opnd_bytes) {
466	case 2:
467		insn->immediate1.value = get_next(short, insn);
468		insn->immediate1.nbytes = 2;
469		break;
470	case 4:
471		insn->immediate1.value = get_next(int, insn);
472		insn->immediate1.nbytes = 4;
473		break;
474	case 8:
475		/* ptr16:64 is not exist (no segment) */
476		return 0;
477	default:	/* opnd_bytes must be modified manually */
478		goto err_out;
479	}
480	insn->immediate2.value = get_next(unsigned short, insn);
481	insn->immediate2.nbytes = 2;
482	insn->immediate1.got = insn->immediate2.got = 1;
483
484	return 1;
485err_out:
486	return 0;
487}
488
489/**
490 * insn_get_immediate() - Get the immediates of instruction
491 * @insn:	&struct insn containing instruction
492 *
493 * If necessary, first collects the instruction up to and including the
494 * displacement bytes.
495 * Basically, most of immediates are sign-expanded. Unsigned-value can be
496 * get by bit masking with ((1 << (nbytes * 8)) - 1)
497 */
498void insn_get_immediate(struct insn *insn)
499{
500	if (insn->immediate.got)
501		return;
502	if (!insn->displacement.got)
503		insn_get_displacement(insn);
504
505	if (inat_has_moffset(insn->attr)) {
506		if (!__get_moffset(insn))
507			goto err_out;
508		goto done;
509	}
510
511	if (!inat_has_immediate(insn->attr))
512		/* no immediates */
513		goto done;
514
515	switch (inat_immediate_size(insn->attr)) {
516	case INAT_IMM_BYTE:
517		insn->immediate.value = get_next(char, insn);
518		insn->immediate.nbytes = 1;
519		break;
520	case INAT_IMM_WORD:
521		insn->immediate.value = get_next(short, insn);
522		insn->immediate.nbytes = 2;
523		break;
524	case INAT_IMM_DWORD:
525		insn->immediate.value = get_next(int, insn);
526		insn->immediate.nbytes = 4;
527		break;
528	case INAT_IMM_QWORD:
529		insn->immediate1.value = get_next(int, insn);
530		insn->immediate1.nbytes = 4;
531		insn->immediate2.value = get_next(int, insn);
532		insn->immediate2.nbytes = 4;
533		break;
534	case INAT_IMM_PTR:
535		if (!__get_immptr(insn))
536			goto err_out;
537		break;
538	case INAT_IMM_VWORD32:
539		if (!__get_immv32(insn))
540			goto err_out;
541		break;
542	case INAT_IMM_VWORD:
543		if (!__get_immv(insn))
544			goto err_out;
545		break;
546	default:
547		/* Here, insn must have an immediate, but failed */
548		goto err_out;
549	}
550	if (inat_has_second_immediate(insn->attr)) {
551		insn->immediate2.value = get_next(char, insn);
552		insn->immediate2.nbytes = 1;
553	}
554done:
555	insn->immediate.got = 1;
556
557err_out:
558	return;
559}
560
561/**
562 * insn_get_length() - Get the length of instruction
563 * @insn:	&struct insn containing instruction
564 *
565 * If necessary, first collects the instruction up to and including the
566 * immediates bytes.
567 */
568void insn_get_length(struct insn *insn)
569{
570	if (insn->length)
571		return;
572	if (!insn->immediate.got)
573		insn_get_immediate(insn);
574	insn->length = (unsigned char)((unsigned long)insn->next_byte
575				     - (unsigned long)insn->kaddr);
576}