Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 *
   3 * BRIEF MODULE DESCRIPTION
   4 *      The Descriptor Based DMA channel manager that first appeared
   5 *	on the Au1550.  I started with dma.c, but I think all that is
   6 *	left is this initial comment :-)
   7 *
   8 * Copyright 2004 Embedded Edge, LLC
   9 *	dan@embeddededge.com
  10 *
  11 *  This program is free software; you can redistribute  it and/or modify it
  12 *  under  the terms of  the GNU General  Public License as published by the
  13 *  Free Software Foundation;  either version 2 of the  License, or (at your
  14 *  option) any later version.
  15 *
  16 *  THIS  SOFTWARE  IS PROVIDED   ``AS  IS'' AND   ANY  EXPRESS OR IMPLIED
  17 *  WARRANTIES,   INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF
  18 *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
  19 *  NO  EVENT  SHALL   THE AUTHOR  BE    LIABLE FOR ANY   DIRECT, INDIRECT,
  20 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  21 *  NOT LIMITED   TO, PROCUREMENT OF  SUBSTITUTE GOODS  OR SERVICES; LOSS OF
  22 *  USE, DATA,  OR PROFITS; OR  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
  23 *  ANY THEORY OF LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT
  24 *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  25 *  THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26 *
  27 *  You should have received a copy of the  GNU General Public License along
  28 *  with this program; if not, write  to the Free Software Foundation, Inc.,
  29 *  675 Mass Ave, Cambridge, MA 02139, USA.
  30 *
  31 */
  32
  33#include <linux/init.h>
  34#include <linux/kernel.h>
  35#include <linux/slab.h>
  36#include <linux/spinlock.h>
  37#include <linux/interrupt.h>
  38#include <linux/module.h>
  39#include <linux/syscore_ops.h>
  40#include <asm/mach-au1x00/au1000.h>
  41#include <asm/mach-au1x00/au1xxx_dbdma.h>
  42
  43/*
  44 * The Descriptor Based DMA supports up to 16 channels.
  45 *
  46 * There are 32 devices defined. We keep an internal structure
  47 * of devices using these channels, along with additional
  48 * information.
  49 *
  50 * We allocate the descriptors and allow access to them through various
  51 * functions.  The drivers allocate the data buffers and assign them
  52 * to the descriptors.
  53 */
  54static DEFINE_SPINLOCK(au1xxx_dbdma_spin_lock);
  55
  56/* I couldn't find a macro that did this... */
  57#define ALIGN_ADDR(x, a)	((((u32)(x)) + (a-1)) & ~(a-1))
  58
  59static dbdma_global_t *dbdma_gptr =
  60			(dbdma_global_t *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
  61static int dbdma_initialized;
  62
  63static dbdev_tab_t *dbdev_tab;
  64
  65static dbdev_tab_t au1550_dbdev_tab[] __initdata = {
  66	/* UARTS */
  67	{ AU1550_DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
  68	{ AU1550_DSCR_CMD0_UART0_RX, DEV_FLAGS_IN,  0, 8, 0x11100000, 0, 0 },
  69	{ AU1550_DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x11400004, 0, 0 },
  70	{ AU1550_DSCR_CMD0_UART3_RX, DEV_FLAGS_IN,  0, 8, 0x11400000, 0, 0 },
  71
  72	/* EXT DMA */
  73	{ AU1550_DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
  74	{ AU1550_DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
  75	{ AU1550_DSCR_CMD0_DMA_REQ2, 0, 0, 0, 0x00000000, 0, 0 },
  76	{ AU1550_DSCR_CMD0_DMA_REQ3, 0, 0, 0, 0x00000000, 0, 0 },
  77
  78	/* USB DEV */
  79	{ AU1550_DSCR_CMD0_USBDEV_RX0, DEV_FLAGS_IN,  4, 8, 0x10200000, 0, 0 },
  80	{ AU1550_DSCR_CMD0_USBDEV_TX0, DEV_FLAGS_OUT, 4, 8, 0x10200004, 0, 0 },
  81	{ AU1550_DSCR_CMD0_USBDEV_TX1, DEV_FLAGS_OUT, 4, 8, 0x10200008, 0, 0 },
  82	{ AU1550_DSCR_CMD0_USBDEV_TX2, DEV_FLAGS_OUT, 4, 8, 0x1020000c, 0, 0 },
  83	{ AU1550_DSCR_CMD0_USBDEV_RX3, DEV_FLAGS_IN,  4, 8, 0x10200010, 0, 0 },
  84	{ AU1550_DSCR_CMD0_USBDEV_RX4, DEV_FLAGS_IN,  4, 8, 0x10200014, 0, 0 },
  85
  86	/* PSCs */
  87	{ AU1550_DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 },
  88	{ AU1550_DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN,  0, 0, 0x11a0001c, 0, 0 },
  89	{ AU1550_DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 },
  90	{ AU1550_DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN,  0, 0, 0x11b0001c, 0, 0 },
  91	{ AU1550_DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 0, 0x10a0001c, 0, 0 },
  92	{ AU1550_DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN,  0, 0, 0x10a0001c, 0, 0 },
  93	{ AU1550_DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 0, 0x10b0001c, 0, 0 },
  94	{ AU1550_DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN,  0, 0, 0x10b0001c, 0, 0 },
  95
  96	{ AU1550_DSCR_CMD0_PCI_WRITE,  0, 0, 0, 0x00000000, 0, 0 },  /* PCI */
  97	{ AU1550_DSCR_CMD0_NAND_FLASH, 0, 0, 0, 0x00000000, 0, 0 }, /* NAND */
  98
  99	/* MAC 0 */
 100	{ AU1550_DSCR_CMD0_MAC0_RX, DEV_FLAGS_IN,  0, 0, 0x00000000, 0, 0 },
 101	{ AU1550_DSCR_CMD0_MAC0_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
 102
 103	/* MAC 1 */
 104	{ AU1550_DSCR_CMD0_MAC1_RX, DEV_FLAGS_IN,  0, 0, 0x00000000, 0, 0 },
 105	{ AU1550_DSCR_CMD0_MAC1_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
 106
 107	{ DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
 108	{ DSCR_CMD0_ALWAYS,   DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
 109};
 110
 111static dbdev_tab_t au1200_dbdev_tab[] __initdata = {
 112	{ AU1200_DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
 113	{ AU1200_DSCR_CMD0_UART0_RX, DEV_FLAGS_IN,  0, 8, 0x11100000, 0, 0 },
 114	{ AU1200_DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x11200004, 0, 0 },
 115	{ AU1200_DSCR_CMD0_UART1_RX, DEV_FLAGS_IN,  0, 8, 0x11200000, 0, 0 },
 116
 117	{ AU1200_DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
 118	{ AU1200_DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
 119
 120	{ AU1200_DSCR_CMD0_MAE_BE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
 121	{ AU1200_DSCR_CMD0_MAE_FE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
 122	{ AU1200_DSCR_CMD0_MAE_BOTH, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
 123	{ AU1200_DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
 124
 125	{ AU1200_DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8, 0x10600000, 0, 0 },
 126	{ AU1200_DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN,  4, 8, 0x10600004, 0, 0 },
 127	{ AU1200_DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 4, 8, 0x10680000, 0, 0 },
 128	{ AU1200_DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN,  4, 8, 0x10680004, 0, 0 },
 129
 130	{ AU1200_DSCR_CMD0_AES_RX, DEV_FLAGS_IN , 4, 32, 0x10300008, 0, 0 },
 131	{ AU1200_DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 4, 32, 0x10300004, 0, 0 },
 132
 133	{ AU1200_DSCR_CMD0_PSC0_TX,   DEV_FLAGS_OUT, 0, 16, 0x11a0001c, 0, 0 },
 134	{ AU1200_DSCR_CMD0_PSC0_RX,   DEV_FLAGS_IN,  0, 16, 0x11a0001c, 0, 0 },
 135	{ AU1200_DSCR_CMD0_PSC0_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
 136	{ AU1200_DSCR_CMD0_PSC1_TX,   DEV_FLAGS_OUT, 0, 16, 0x11b0001c, 0, 0 },
 137	{ AU1200_DSCR_CMD0_PSC1_RX,   DEV_FLAGS_IN,  0, 16, 0x11b0001c, 0, 0 },
 138	{ AU1200_DSCR_CMD0_PSC1_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
 139
 140	{ AU1200_DSCR_CMD0_CIM_RXA,  DEV_FLAGS_IN, 0, 32, 0x14004020, 0, 0 },
 141	{ AU1200_DSCR_CMD0_CIM_RXB,  DEV_FLAGS_IN, 0, 32, 0x14004040, 0, 0 },
 142	{ AU1200_DSCR_CMD0_CIM_RXC,  DEV_FLAGS_IN, 0, 32, 0x14004060, 0, 0 },
 143	{ AU1200_DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
 144
 145	{ AU1200_DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
 146
 147	{ DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
 148	{ DSCR_CMD0_ALWAYS,   DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
 149};
 150
 151static dbdev_tab_t au1300_dbdev_tab[] __initdata = {
 152	{ AU1300_DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8,  0x10100004, 0, 0 },
 153	{ AU1300_DSCR_CMD0_UART0_RX, DEV_FLAGS_IN,  0, 8,  0x10100000, 0, 0 },
 154	{ AU1300_DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8,  0x10101004, 0, 0 },
 155	{ AU1300_DSCR_CMD0_UART1_RX, DEV_FLAGS_IN,  0, 8,  0x10101000, 0, 0 },
 156	{ AU1300_DSCR_CMD0_UART2_TX, DEV_FLAGS_OUT, 0, 8,  0x10102004, 0, 0 },
 157	{ AU1300_DSCR_CMD0_UART2_RX, DEV_FLAGS_IN,  0, 8,  0x10102000, 0, 0 },
 158	{ AU1300_DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8,  0x10103004, 0, 0 },
 159	{ AU1300_DSCR_CMD0_UART3_RX, DEV_FLAGS_IN,  0, 8,  0x10103000, 0, 0 },
 160
 161	{ AU1300_DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8,  0x10600000, 0, 0 },
 162	{ AU1300_DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN,  4, 8,  0x10600004, 0, 0 },
 163	{ AU1300_DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 8, 8,  0x10601000, 0, 0 },
 164	{ AU1300_DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN,  8, 8,  0x10601004, 0, 0 },
 165
 166	{ AU1300_DSCR_CMD0_AES_RX, DEV_FLAGS_IN ,   4, 32, 0x10300008, 0, 0 },
 167	{ AU1300_DSCR_CMD0_AES_TX, DEV_FLAGS_OUT,   4, 32, 0x10300004, 0, 0 },
 168
 169	{ AU1300_DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT,  0, 16, 0x10a0001c, 0, 0 },
 170	{ AU1300_DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN,   0, 16, 0x10a0001c, 0, 0 },
 171	{ AU1300_DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT,  0, 16, 0x10a0101c, 0, 0 },
 172	{ AU1300_DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN,   0, 16, 0x10a0101c, 0, 0 },
 173	{ AU1300_DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT,  0, 16, 0x10a0201c, 0, 0 },
 174	{ AU1300_DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN,   0, 16, 0x10a0201c, 0, 0 },
 175	{ AU1300_DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT,  0, 16, 0x10a0301c, 0, 0 },
 176	{ AU1300_DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN,   0, 16, 0x10a0301c, 0, 0 },
 177
 178	{ AU1300_DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE,   0, 0,  0x00000000, 0, 0 },
 179	{ AU1300_DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
 180
 181	{ AU1300_DSCR_CMD0_SDMS_TX2, DEV_FLAGS_OUT, 4, 8,  0x10602000, 0, 0 },
 182	{ AU1300_DSCR_CMD0_SDMS_RX2, DEV_FLAGS_IN,  4, 8,  0x10602004, 0, 0 },
 183
 184	{ AU1300_DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
 185
 186	{ AU1300_DSCR_CMD0_UDMA, DEV_FLAGS_ANYUSE,  0, 32, 0x14001810, 0, 0 },
 187
 188	{ AU1300_DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
 189	{ AU1300_DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
 190
 191	{ DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
 192	{ DSCR_CMD0_ALWAYS,   DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
 193};
 194
 195/* 32 predefined plus 32 custom */
 196#define DBDEV_TAB_SIZE		64
 197
 198static chan_tab_t *chan_tab_ptr[NUM_DBDMA_CHANS];
 199
 200static dbdev_tab_t *find_dbdev_id(u32 id)
 201{
 202	int i;
 203	dbdev_tab_t *p;
 204	for (i = 0; i < DBDEV_TAB_SIZE; ++i) {
 205		p = &dbdev_tab[i];
 206		if (p->dev_id == id)
 207			return p;
 208	}
 209	return NULL;
 210}
 211
 212void *au1xxx_ddma_get_nextptr_virt(au1x_ddma_desc_t *dp)
 213{
 214	return phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
 215}
 216EXPORT_SYMBOL(au1xxx_ddma_get_nextptr_virt);
 217
 218u32 au1xxx_ddma_add_device(dbdev_tab_t *dev)
 219{
 220	u32 ret = 0;
 221	dbdev_tab_t *p;
 222	static u16 new_id = 0x1000;
 223
 224	p = find_dbdev_id(~0);
 225	if (NULL != p) {
 226		memcpy(p, dev, sizeof(dbdev_tab_t));
 227		p->dev_id = DSCR_DEV2CUSTOM_ID(new_id, dev->dev_id);
 228		ret = p->dev_id;
 229		new_id++;
 230#if 0
 231		printk(KERN_DEBUG "add_device: id:%x flags:%x padd:%x\n",
 232				  p->dev_id, p->dev_flags, p->dev_physaddr);
 233#endif
 234	}
 235
 236	return ret;
 237}
 238EXPORT_SYMBOL(au1xxx_ddma_add_device);
 239
 240void au1xxx_ddma_del_device(u32 devid)
 241{
 242	dbdev_tab_t *p = find_dbdev_id(devid);
 243
 244	if (p != NULL) {
 245		memset(p, 0, sizeof(dbdev_tab_t));
 246		p->dev_id = ~0;
 247	}
 248}
 249EXPORT_SYMBOL(au1xxx_ddma_del_device);
 250
 251/* Allocate a channel and return a non-zero descriptor if successful. */
 252u32 au1xxx_dbdma_chan_alloc(u32 srcid, u32 destid,
 253       void (*callback)(int, void *), void *callparam)
 254{
 255	unsigned long	flags;
 256	u32		used, chan;
 257	u32		dcp;
 258	int		i;
 259	dbdev_tab_t	*stp, *dtp;
 260	chan_tab_t	*ctp;
 261	au1x_dma_chan_t *cp;
 262
 263	/*
 264	 * We do the initialization on the first channel allocation.
 265	 * We have to wait because of the interrupt handler initialization
 266	 * which can't be done successfully during board set up.
 267	 */
 268	if (!dbdma_initialized)
 269		return 0;
 270
 271	stp = find_dbdev_id(srcid);
 272	if (stp == NULL)
 273		return 0;
 274	dtp = find_dbdev_id(destid);
 275	if (dtp == NULL)
 276		return 0;
 277
 278	used = 0;
 279
 280	/* Check to see if we can get both channels. */
 281	spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
 282	if (!(stp->dev_flags & DEV_FLAGS_INUSE) ||
 283	     (stp->dev_flags & DEV_FLAGS_ANYUSE)) {
 284		/* Got source */
 285		stp->dev_flags |= DEV_FLAGS_INUSE;
 286		if (!(dtp->dev_flags & DEV_FLAGS_INUSE) ||
 287		     (dtp->dev_flags & DEV_FLAGS_ANYUSE)) {
 288			/* Got destination */
 289			dtp->dev_flags |= DEV_FLAGS_INUSE;
 290		} else {
 291			/* Can't get dest.  Release src. */
 292			stp->dev_flags &= ~DEV_FLAGS_INUSE;
 293			used++;
 294		}
 295	} else
 296		used++;
 297	spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
 298
 299	if (used)
 300		return 0;
 301
 302	/* Let's see if we can allocate a channel for it. */
 303	ctp = NULL;
 304	chan = 0;
 305	spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
 306	for (i = 0; i < NUM_DBDMA_CHANS; i++)
 307		if (chan_tab_ptr[i] == NULL) {
 308			/*
 309			 * If kmalloc fails, it is caught below same
 310			 * as a channel not available.
 311			 */
 312			ctp = kmalloc(sizeof(chan_tab_t), GFP_ATOMIC);
 313			chan_tab_ptr[i] = ctp;
 314			break;
 315		}
 316	spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
 317
 318	if (ctp != NULL) {
 319		memset(ctp, 0, sizeof(chan_tab_t));
 320		ctp->chan_index = chan = i;
 321		dcp = KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR);
 322		dcp += (0x0100 * chan);
 323		ctp->chan_ptr = (au1x_dma_chan_t *)dcp;
 324		cp = (au1x_dma_chan_t *)dcp;
 325		ctp->chan_src = stp;
 326		ctp->chan_dest = dtp;
 327		ctp->chan_callback = callback;
 328		ctp->chan_callparam = callparam;
 329
 330		/* Initialize channel configuration. */
 331		i = 0;
 332		if (stp->dev_intlevel)
 333			i |= DDMA_CFG_SED;
 334		if (stp->dev_intpolarity)
 335			i |= DDMA_CFG_SP;
 336		if (dtp->dev_intlevel)
 337			i |= DDMA_CFG_DED;
 338		if (dtp->dev_intpolarity)
 339			i |= DDMA_CFG_DP;
 340		if ((stp->dev_flags & DEV_FLAGS_SYNC) ||
 341			(dtp->dev_flags & DEV_FLAGS_SYNC))
 342				i |= DDMA_CFG_SYNC;
 343		cp->ddma_cfg = i;
 344		wmb(); /* drain writebuffer */
 345
 346		/*
 347		 * Return a non-zero value that can be used to find the channel
 348		 * information in subsequent operations.
 349		 */
 350		return (u32)(&chan_tab_ptr[chan]);
 351	}
 352
 353	/* Release devices */
 354	stp->dev_flags &= ~DEV_FLAGS_INUSE;
 355	dtp->dev_flags &= ~DEV_FLAGS_INUSE;
 356
 357	return 0;
 358}
 359EXPORT_SYMBOL(au1xxx_dbdma_chan_alloc);
 360
 361/*
 362 * Set the device width if source or destination is a FIFO.
 363 * Should be 8, 16, or 32 bits.
 364 */
 365u32 au1xxx_dbdma_set_devwidth(u32 chanid, int bits)
 366{
 367	u32		rv;
 368	chan_tab_t	*ctp;
 369	dbdev_tab_t	*stp, *dtp;
 370
 371	ctp = *((chan_tab_t **)chanid);
 372	stp = ctp->chan_src;
 373	dtp = ctp->chan_dest;
 374	rv = 0;
 375
 376	if (stp->dev_flags & DEV_FLAGS_IN) {	/* Source in fifo */
 377		rv = stp->dev_devwidth;
 378		stp->dev_devwidth = bits;
 379	}
 380	if (dtp->dev_flags & DEV_FLAGS_OUT) {	/* Destination out fifo */
 381		rv = dtp->dev_devwidth;
 382		dtp->dev_devwidth = bits;
 383	}
 384
 385	return rv;
 386}
 387EXPORT_SYMBOL(au1xxx_dbdma_set_devwidth);
 388
 389/* Allocate a descriptor ring, initializing as much as possible. */
 390u32 au1xxx_dbdma_ring_alloc(u32 chanid, int entries)
 391{
 392	int			i;
 393	u32			desc_base, srcid, destid;
 394	u32			cmd0, cmd1, src1, dest1;
 395	u32			src0, dest0;
 396	chan_tab_t		*ctp;
 397	dbdev_tab_t		*stp, *dtp;
 398	au1x_ddma_desc_t	*dp;
 399
 400	/*
 401	 * I guess we could check this to be within the
 402	 * range of the table......
 403	 */
 404	ctp = *((chan_tab_t **)chanid);
 405	stp = ctp->chan_src;
 406	dtp = ctp->chan_dest;
 407
 408	/*
 409	 * The descriptors must be 32-byte aligned.  There is a
 410	 * possibility the allocation will give us such an address,
 411	 * and if we try that first we are likely to not waste larger
 412	 * slabs of memory.
 413	 */
 414	desc_base = (u32)kmalloc(entries * sizeof(au1x_ddma_desc_t),
 415				 GFP_KERNEL|GFP_DMA);
 416	if (desc_base == 0)
 417		return 0;
 418
 419	if (desc_base & 0x1f) {
 420		/*
 421		 * Lost....do it again, allocate extra, and round
 422		 * the address base.
 423		 */
 424		kfree((const void *)desc_base);
 425		i = entries * sizeof(au1x_ddma_desc_t);
 426		i += (sizeof(au1x_ddma_desc_t) - 1);
 427		desc_base = (u32)kmalloc(i, GFP_KERNEL|GFP_DMA);
 428		if (desc_base == 0)
 429			return 0;
 430
 431		ctp->cdb_membase = desc_base;
 432		desc_base = ALIGN_ADDR(desc_base, sizeof(au1x_ddma_desc_t));
 433	} else
 434		ctp->cdb_membase = desc_base;
 435
 436	dp = (au1x_ddma_desc_t *)desc_base;
 437
 438	/* Keep track of the base descriptor. */
 439	ctp->chan_desc_base = dp;
 440
 441	/* Initialize the rings with as much information as we know. */
 442	srcid = stp->dev_id;
 443	destid = dtp->dev_id;
 444
 445	cmd0 = cmd1 = src1 = dest1 = 0;
 446	src0 = dest0 = 0;
 447
 448	cmd0 |= DSCR_CMD0_SID(srcid);
 449	cmd0 |= DSCR_CMD0_DID(destid);
 450	cmd0 |= DSCR_CMD0_IE | DSCR_CMD0_CV;
 451	cmd0 |= DSCR_CMD0_ST(DSCR_CMD0_ST_NOCHANGE);
 452
 453	/* Is it mem to mem transfer? */
 454	if (((DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_THROTTLE) ||
 455	     (DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_ALWAYS)) &&
 456	    ((DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_THROTTLE) ||
 457	     (DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_ALWAYS)))
 458		cmd0 |= DSCR_CMD0_MEM;
 459
 460	switch (stp->dev_devwidth) {
 461	case 8:
 462		cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_BYTE);
 463		break;
 464	case 16:
 465		cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD);
 466		break;
 467	case 32:
 468	default:
 469		cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_WORD);
 470		break;
 471	}
 472
 473	switch (dtp->dev_devwidth) {
 474	case 8:
 475		cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_BYTE);
 476		break;
 477	case 16:
 478		cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD);
 479		break;
 480	case 32:
 481	default:
 482		cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_WORD);
 483		break;
 484	}
 485
 486	/*
 487	 * If the device is marked as an in/out FIFO, ensure it is
 488	 * set non-coherent.
 489	 */
 490	if (stp->dev_flags & DEV_FLAGS_IN)
 491		cmd0 |= DSCR_CMD0_SN;		/* Source in FIFO */
 492	if (dtp->dev_flags & DEV_FLAGS_OUT)
 493		cmd0 |= DSCR_CMD0_DN;		/* Destination out FIFO */
 494
 495	/*
 496	 * Set up source1.  For now, assume no stride and increment.
 497	 * A channel attribute update can change this later.
 498	 */
 499	switch (stp->dev_tsize) {
 500	case 1:
 501		src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE1);
 502		break;
 503	case 2:
 504		src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE2);
 505		break;
 506	case 4:
 507		src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE4);
 508		break;
 509	case 8:
 510	default:
 511		src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE8);
 512		break;
 513	}
 514
 515	/* If source input is FIFO, set static address. */
 516	if (stp->dev_flags & DEV_FLAGS_IN) {
 517		if (stp->dev_flags & DEV_FLAGS_BURSTABLE)
 518			src1 |= DSCR_SRC1_SAM(DSCR_xAM_BURST);
 519		else
 520			src1 |= DSCR_SRC1_SAM(DSCR_xAM_STATIC);
 521	}
 522
 523	if (stp->dev_physaddr)
 524		src0 = stp->dev_physaddr;
 525
 526	/*
 527	 * Set up dest1.  For now, assume no stride and increment.
 528	 * A channel attribute update can change this later.
 529	 */
 530	switch (dtp->dev_tsize) {
 531	case 1:
 532		dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE1);
 533		break;
 534	case 2:
 535		dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE2);
 536		break;
 537	case 4:
 538		dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE4);
 539		break;
 540	case 8:
 541	default:
 542		dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE8);
 543		break;
 544	}
 545
 546	/* If destination output is FIFO, set static address. */
 547	if (dtp->dev_flags & DEV_FLAGS_OUT) {
 548		if (dtp->dev_flags & DEV_FLAGS_BURSTABLE)
 549			dest1 |= DSCR_DEST1_DAM(DSCR_xAM_BURST);
 550		else
 551			dest1 |= DSCR_DEST1_DAM(DSCR_xAM_STATIC);
 552	}
 553
 554	if (dtp->dev_physaddr)
 555		dest0 = dtp->dev_physaddr;
 556
 557#if 0
 558		printk(KERN_DEBUG "did:%x sid:%x cmd0:%x cmd1:%x source0:%x "
 559				  "source1:%x dest0:%x dest1:%x\n",
 560				  dtp->dev_id, stp->dev_id, cmd0, cmd1, src0,
 561				  src1, dest0, dest1);
 562#endif
 563	for (i = 0; i < entries; i++) {
 564		dp->dscr_cmd0 = cmd0;
 565		dp->dscr_cmd1 = cmd1;
 566		dp->dscr_source0 = src0;
 567		dp->dscr_source1 = src1;
 568		dp->dscr_dest0 = dest0;
 569		dp->dscr_dest1 = dest1;
 570		dp->dscr_stat = 0;
 571		dp->sw_context = 0;
 572		dp->sw_status = 0;
 573		dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(dp + 1));
 574		dp++;
 575	}
 576
 577	/* Make last descrptor point to the first. */
 578	dp--;
 579	dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(ctp->chan_desc_base));
 580	ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
 581
 582	return (u32)ctp->chan_desc_base;
 583}
 584EXPORT_SYMBOL(au1xxx_dbdma_ring_alloc);
 585
 586/*
 587 * Put a source buffer into the DMA ring.
 588 * This updates the source pointer and byte count.  Normally used
 589 * for memory to fifo transfers.
 590 */
 591u32 au1xxx_dbdma_put_source(u32 chanid, dma_addr_t buf, int nbytes, u32 flags)
 592{
 593	chan_tab_t		*ctp;
 594	au1x_ddma_desc_t	*dp;
 595
 596	/*
 597	 * I guess we could check this to be within the
 598	 * range of the table......
 599	 */
 600	ctp = *(chan_tab_t **)chanid;
 601
 602	/*
 603	 * We should have multiple callers for a particular channel,
 604	 * an interrupt doesn't affect this pointer nor the descriptor,
 605	 * so no locking should be needed.
 606	 */
 607	dp = ctp->put_ptr;
 608
 609	/*
 610	 * If the descriptor is valid, we are way ahead of the DMA
 611	 * engine, so just return an error condition.
 612	 */
 613	if (dp->dscr_cmd0 & DSCR_CMD0_V)
 614		return 0;
 615
 616	/* Load up buffer address and byte count. */
 617	dp->dscr_source0 = buf & ~0UL;
 618	dp->dscr_cmd1 = nbytes;
 619	/* Check flags */
 620	if (flags & DDMA_FLAGS_IE)
 621		dp->dscr_cmd0 |= DSCR_CMD0_IE;
 622	if (flags & DDMA_FLAGS_NOIE)
 623		dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
 624
 625	/*
 626	 * There is an errata on the Au1200/Au1550 parts that could result
 627	 * in "stale" data being DMA'ed. It has to do with the snoop logic on
 628	 * the cache eviction buffer.  DMA_NONCOHERENT is on by default for
 629	 * these parts. If it is fixed in the future, these dma_cache_inv will
 630	 * just be nothing more than empty macros. See io.h.
 631	 */
 632	dma_cache_wback_inv((unsigned long)buf, nbytes);
 633	dp->dscr_cmd0 |= DSCR_CMD0_V;	/* Let it rip */
 634	wmb(); /* drain writebuffer */
 635	dma_cache_wback_inv((unsigned long)dp, sizeof(*dp));
 636	ctp->chan_ptr->ddma_dbell = 0;
 637
 638	/* Get next descriptor pointer. */
 639	ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
 640
 641	/* Return something non-zero. */
 642	return nbytes;
 643}
 644EXPORT_SYMBOL(au1xxx_dbdma_put_source);
 645
 646/* Put a destination buffer into the DMA ring.
 647 * This updates the destination pointer and byte count.  Normally used
 648 * to place an empty buffer into the ring for fifo to memory transfers.
 649 */
 650u32 au1xxx_dbdma_put_dest(u32 chanid, dma_addr_t buf, int nbytes, u32 flags)
 651{
 652	chan_tab_t		*ctp;
 653	au1x_ddma_desc_t	*dp;
 654
 655	/* I guess we could check this to be within the
 656	 * range of the table......
 657	 */
 658	ctp = *((chan_tab_t **)chanid);
 659
 660	/* We should have multiple callers for a particular channel,
 661	 * an interrupt doesn't affect this pointer nor the descriptor,
 662	 * so no locking should be needed.
 663	 */
 664	dp = ctp->put_ptr;
 665
 666	/* If the descriptor is valid, we are way ahead of the DMA
 667	 * engine, so just return an error condition.
 668	 */
 669	if (dp->dscr_cmd0 & DSCR_CMD0_V)
 670		return 0;
 671
 672	/* Load up buffer address and byte count */
 673
 674	/* Check flags  */
 675	if (flags & DDMA_FLAGS_IE)
 676		dp->dscr_cmd0 |= DSCR_CMD0_IE;
 677	if (flags & DDMA_FLAGS_NOIE)
 678		dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
 679
 680	dp->dscr_dest0 = buf & ~0UL;
 681	dp->dscr_cmd1 = nbytes;
 682#if 0
 683	printk(KERN_DEBUG "cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n",
 684			  dp->dscr_cmd0, dp->dscr_cmd1, dp->dscr_source0,
 685			  dp->dscr_source1, dp->dscr_dest0, dp->dscr_dest1);
 686#endif
 687	/*
 688	 * There is an errata on the Au1200/Au1550 parts that could result in
 689	 * "stale" data being DMA'ed. It has to do with the snoop logic on the
 690	 * cache eviction buffer.  DMA_NONCOHERENT is on by default for these
 691	 * parts. If it is fixed in the future, these dma_cache_inv will just
 692	 * be nothing more than empty macros. See io.h.
 693	 */
 694	dma_cache_inv((unsigned long)buf, nbytes);
 695	dp->dscr_cmd0 |= DSCR_CMD0_V;	/* Let it rip */
 696	wmb(); /* drain writebuffer */
 697	dma_cache_wback_inv((unsigned long)dp, sizeof(*dp));
 698	ctp->chan_ptr->ddma_dbell = 0;
 699
 700	/* Get next descriptor pointer. */
 701	ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
 702
 703	/* Return something non-zero. */
 704	return nbytes;
 705}
 706EXPORT_SYMBOL(au1xxx_dbdma_put_dest);
 707
 708/*
 709 * Get a destination buffer into the DMA ring.
 710 * Normally used to get a full buffer from the ring during fifo
 711 * to memory transfers.  This does not set the valid bit, you will
 712 * have to put another destination buffer to keep the DMA going.
 713 */
 714u32 au1xxx_dbdma_get_dest(u32 chanid, void **buf, int *nbytes)
 715{
 716	chan_tab_t		*ctp;
 717	au1x_ddma_desc_t	*dp;
 718	u32			rv;
 719
 720	/*
 721	 * I guess we could check this to be within the
 722	 * range of the table......
 723	 */
 724	ctp = *((chan_tab_t **)chanid);
 725
 726	/*
 727	 * We should have multiple callers for a particular channel,
 728	 * an interrupt doesn't affect this pointer nor the descriptor,
 729	 * so no locking should be needed.
 730	 */
 731	dp = ctp->get_ptr;
 732
 733	/*
 734	 * If the descriptor is valid, we are way ahead of the DMA
 735	 * engine, so just return an error condition.
 736	 */
 737	if (dp->dscr_cmd0 & DSCR_CMD0_V)
 738		return 0;
 739
 740	/* Return buffer address and byte count. */
 741	*buf = (void *)(phys_to_virt(dp->dscr_dest0));
 742	*nbytes = dp->dscr_cmd1;
 743	rv = dp->dscr_stat;
 744
 745	/* Get next descriptor pointer. */
 746	ctp->get_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
 747
 748	/* Return something non-zero. */
 749	return rv;
 750}
 751EXPORT_SYMBOL_GPL(au1xxx_dbdma_get_dest);
 752
 753void au1xxx_dbdma_stop(u32 chanid)
 754{
 755	chan_tab_t	*ctp;
 756	au1x_dma_chan_t *cp;
 757	int halt_timeout = 0;
 758
 759	ctp = *((chan_tab_t **)chanid);
 760
 761	cp = ctp->chan_ptr;
 762	cp->ddma_cfg &= ~DDMA_CFG_EN;	/* Disable channel */
 763	wmb(); /* drain writebuffer */
 764	while (!(cp->ddma_stat & DDMA_STAT_H)) {
 765		udelay(1);
 766		halt_timeout++;
 767		if (halt_timeout > 100) {
 768			printk(KERN_WARNING "warning: DMA channel won't halt\n");
 769			break;
 770		}
 771	}
 772	/* clear current desc valid and doorbell */
 773	cp->ddma_stat |= (DDMA_STAT_DB | DDMA_STAT_V);
 774	wmb(); /* drain writebuffer */
 775}
 776EXPORT_SYMBOL(au1xxx_dbdma_stop);
 777
 778/*
 779 * Start using the current descriptor pointer.  If the DBDMA encounters
 780 * a non-valid descriptor, it will stop.  In this case, we can just
 781 * continue by adding a buffer to the list and starting again.
 782 */
 783void au1xxx_dbdma_start(u32 chanid)
 784{
 785	chan_tab_t	*ctp;
 786	au1x_dma_chan_t *cp;
 787
 788	ctp = *((chan_tab_t **)chanid);
 789	cp = ctp->chan_ptr;
 790	cp->ddma_desptr = virt_to_phys(ctp->cur_ptr);
 791	cp->ddma_cfg |= DDMA_CFG_EN;	/* Enable channel */
 792	wmb(); /* drain writebuffer */
 793	cp->ddma_dbell = 0;
 794	wmb(); /* drain writebuffer */
 795}
 796EXPORT_SYMBOL(au1xxx_dbdma_start);
 797
 798void au1xxx_dbdma_reset(u32 chanid)
 799{
 800	chan_tab_t		*ctp;
 801	au1x_ddma_desc_t	*dp;
 802
 803	au1xxx_dbdma_stop(chanid);
 804
 805	ctp = *((chan_tab_t **)chanid);
 806	ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
 807
 808	/* Run through the descriptors and reset the valid indicator. */
 809	dp = ctp->chan_desc_base;
 810
 811	do {
 812		dp->dscr_cmd0 &= ~DSCR_CMD0_V;
 813		/*
 814		 * Reset our software status -- this is used to determine
 815		 * if a descriptor is in use by upper level software. Since
 816		 * posting can reset 'V' bit.
 817		 */
 818		dp->sw_status = 0;
 819		dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
 820	} while (dp != ctp->chan_desc_base);
 821}
 822EXPORT_SYMBOL(au1xxx_dbdma_reset);
 823
 824u32 au1xxx_get_dma_residue(u32 chanid)
 825{
 826	chan_tab_t	*ctp;
 827	au1x_dma_chan_t *cp;
 828	u32		rv;
 829
 830	ctp = *((chan_tab_t **)chanid);
 831	cp = ctp->chan_ptr;
 832
 833	/* This is only valid if the channel is stopped. */
 834	rv = cp->ddma_bytecnt;
 835	wmb(); /* drain writebuffer */
 836
 837	return rv;
 838}
 839EXPORT_SYMBOL_GPL(au1xxx_get_dma_residue);
 840
 841void au1xxx_dbdma_chan_free(u32 chanid)
 842{
 843	chan_tab_t	*ctp;
 844	dbdev_tab_t	*stp, *dtp;
 845
 846	ctp = *((chan_tab_t **)chanid);
 847	stp = ctp->chan_src;
 848	dtp = ctp->chan_dest;
 849
 850	au1xxx_dbdma_stop(chanid);
 851
 852	kfree((void *)ctp->cdb_membase);
 853
 854	stp->dev_flags &= ~DEV_FLAGS_INUSE;
 855	dtp->dev_flags &= ~DEV_FLAGS_INUSE;
 856	chan_tab_ptr[ctp->chan_index] = NULL;
 857
 858	kfree(ctp);
 859}
 860EXPORT_SYMBOL(au1xxx_dbdma_chan_free);
 861
 862static irqreturn_t dbdma_interrupt(int irq, void *dev_id)
 863{
 864	u32 intstat;
 865	u32 chan_index;
 866	chan_tab_t		*ctp;
 867	au1x_ddma_desc_t	*dp;
 868	au1x_dma_chan_t *cp;
 869
 870	intstat = dbdma_gptr->ddma_intstat;
 871	wmb(); /* drain writebuffer */
 872	chan_index = __ffs(intstat);
 873
 874	ctp = chan_tab_ptr[chan_index];
 875	cp = ctp->chan_ptr;
 876	dp = ctp->cur_ptr;
 877
 878	/* Reset interrupt. */
 879	cp->ddma_irq = 0;
 880	wmb(); /* drain writebuffer */
 881
 882	if (ctp->chan_callback)
 883		ctp->chan_callback(irq, ctp->chan_callparam);
 884
 885	ctp->cur_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
 886	return IRQ_RETVAL(1);
 887}
 888
 889void au1xxx_dbdma_dump(u32 chanid)
 890{
 891	chan_tab_t	 *ctp;
 892	au1x_ddma_desc_t *dp;
 893	dbdev_tab_t	 *stp, *dtp;
 894	au1x_dma_chan_t	 *cp;
 895	u32 i		 = 0;
 896
 897	ctp = *((chan_tab_t **)chanid);
 898	stp = ctp->chan_src;
 899	dtp = ctp->chan_dest;
 900	cp = ctp->chan_ptr;
 901
 902	printk(KERN_DEBUG "Chan %x, stp %x (dev %d)  dtp %x (dev %d)\n",
 903			  (u32)ctp, (u32)stp, stp - dbdev_tab, (u32)dtp,
 904			  dtp - dbdev_tab);
 905	printk(KERN_DEBUG "desc base %x, get %x, put %x, cur %x\n",
 906			  (u32)(ctp->chan_desc_base), (u32)(ctp->get_ptr),
 907			  (u32)(ctp->put_ptr), (u32)(ctp->cur_ptr));
 908
 909	printk(KERN_DEBUG "dbdma chan %x\n", (u32)cp);
 910	printk(KERN_DEBUG "cfg %08x, desptr %08x, statptr %08x\n",
 911			  cp->ddma_cfg, cp->ddma_desptr, cp->ddma_statptr);
 912	printk(KERN_DEBUG "dbell %08x, irq %08x, stat %08x, bytecnt %08x\n",
 913			  cp->ddma_dbell, cp->ddma_irq, cp->ddma_stat,
 914			  cp->ddma_bytecnt);
 915
 916	/* Run through the descriptors */
 917	dp = ctp->chan_desc_base;
 918
 919	do {
 920		printk(KERN_DEBUG "Dp[%d]= %08x, cmd0 %08x, cmd1 %08x\n",
 921				  i++, (u32)dp, dp->dscr_cmd0, dp->dscr_cmd1);
 922		printk(KERN_DEBUG "src0 %08x, src1 %08x, dest0 %08x, dest1 %08x\n",
 923				  dp->dscr_source0, dp->dscr_source1,
 924				  dp->dscr_dest0, dp->dscr_dest1);
 925		printk(KERN_DEBUG "stat %08x, nxtptr %08x\n",
 926				  dp->dscr_stat, dp->dscr_nxtptr);
 927		dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
 928	} while (dp != ctp->chan_desc_base);
 929}
 930
 931/* Put a descriptor into the DMA ring.
 932 * This updates the source/destination pointers and byte count.
 933 */
 934u32 au1xxx_dbdma_put_dscr(u32 chanid, au1x_ddma_desc_t *dscr)
 935{
 936	chan_tab_t *ctp;
 937	au1x_ddma_desc_t *dp;
 938	u32 nbytes = 0;
 939
 940	/*
 941	 * I guess we could check this to be within the
 942	 * range of the table......
 943	 */
 944	ctp = *((chan_tab_t **)chanid);
 945
 946	/*
 947	 * We should have multiple callers for a particular channel,
 948	 * an interrupt doesn't affect this pointer nor the descriptor,
 949	 * so no locking should be needed.
 950	 */
 951	dp = ctp->put_ptr;
 952
 953	/*
 954	 * If the descriptor is valid, we are way ahead of the DMA
 955	 * engine, so just return an error condition.
 956	 */
 957	if (dp->dscr_cmd0 & DSCR_CMD0_V)
 958		return 0;
 959
 960	/* Load up buffer addresses and byte count. */
 961	dp->dscr_dest0 = dscr->dscr_dest0;
 962	dp->dscr_source0 = dscr->dscr_source0;
 963	dp->dscr_dest1 = dscr->dscr_dest1;
 964	dp->dscr_source1 = dscr->dscr_source1;
 965	dp->dscr_cmd1 = dscr->dscr_cmd1;
 966	nbytes = dscr->dscr_cmd1;
 967	/* Allow the caller to specify if an interrupt is generated */
 968	dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
 969	dp->dscr_cmd0 |= dscr->dscr_cmd0 | DSCR_CMD0_V;
 970	ctp->chan_ptr->ddma_dbell = 0;
 971
 972	/* Get next descriptor pointer. */
 973	ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
 974
 975	/* Return something non-zero. */
 976	return nbytes;
 977}
 978
 979
 980static unsigned long alchemy_dbdma_pm_data[NUM_DBDMA_CHANS + 1][6];
 981
 982static int alchemy_dbdma_suspend(void)
 983{
 984	int i;
 985	void __iomem *addr;
 986
 987	addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
 988	alchemy_dbdma_pm_data[0][0] = __raw_readl(addr + 0x00);
 989	alchemy_dbdma_pm_data[0][1] = __raw_readl(addr + 0x04);
 990	alchemy_dbdma_pm_data[0][2] = __raw_readl(addr + 0x08);
 991	alchemy_dbdma_pm_data[0][3] = __raw_readl(addr + 0x0c);
 992
 993	/* save channel configurations */
 994	addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR);
 995	for (i = 1; i <= NUM_DBDMA_CHANS; i++) {
 996		alchemy_dbdma_pm_data[i][0] = __raw_readl(addr + 0x00);
 997		alchemy_dbdma_pm_data[i][1] = __raw_readl(addr + 0x04);
 998		alchemy_dbdma_pm_data[i][2] = __raw_readl(addr + 0x08);
 999		alchemy_dbdma_pm_data[i][3] = __raw_readl(addr + 0x0c);
1000		alchemy_dbdma_pm_data[i][4] = __raw_readl(addr + 0x10);
1001		alchemy_dbdma_pm_data[i][5] = __raw_readl(addr + 0x14);
1002
1003		/* halt channel */
1004		__raw_writel(alchemy_dbdma_pm_data[i][0] & ~1, addr + 0x00);
1005		wmb();
1006		while (!(__raw_readl(addr + 0x14) & 1))
1007			wmb();
1008
1009		addr += 0x100;	/* next channel base */
1010	}
1011	/* disable channel interrupts */
1012	addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
1013	__raw_writel(0, addr + 0x0c);
1014	wmb();
1015
1016	return 0;
1017}
1018
1019static void alchemy_dbdma_resume(void)
1020{
1021	int i;
1022	void __iomem *addr;
1023
1024	addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
1025	__raw_writel(alchemy_dbdma_pm_data[0][0], addr + 0x00);
1026	__raw_writel(alchemy_dbdma_pm_data[0][1], addr + 0x04);
1027	__raw_writel(alchemy_dbdma_pm_data[0][2], addr + 0x08);
1028	__raw_writel(alchemy_dbdma_pm_data[0][3], addr + 0x0c);
1029
1030	/* restore channel configurations */
1031	addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR);
1032	for (i = 1; i <= NUM_DBDMA_CHANS; i++) {
1033		__raw_writel(alchemy_dbdma_pm_data[i][0], addr + 0x00);
1034		__raw_writel(alchemy_dbdma_pm_data[i][1], addr + 0x04);
1035		__raw_writel(alchemy_dbdma_pm_data[i][2], addr + 0x08);
1036		__raw_writel(alchemy_dbdma_pm_data[i][3], addr + 0x0c);
1037		__raw_writel(alchemy_dbdma_pm_data[i][4], addr + 0x10);
1038		__raw_writel(alchemy_dbdma_pm_data[i][5], addr + 0x14);
1039		wmb();
1040		addr += 0x100;	/* next channel base */
1041	}
1042}
1043
1044static struct syscore_ops alchemy_dbdma_syscore_ops = {
1045	.suspend	= alchemy_dbdma_suspend,
1046	.resume		= alchemy_dbdma_resume,
1047};
1048
1049static int __init dbdma_setup(unsigned int irq, dbdev_tab_t *idtable)
1050{
1051	int ret;
1052
1053	dbdev_tab = kzalloc(sizeof(dbdev_tab_t) * DBDEV_TAB_SIZE, GFP_KERNEL);
1054	if (!dbdev_tab)
1055		return -ENOMEM;
1056
1057	memcpy(dbdev_tab, idtable, 32 * sizeof(dbdev_tab_t));
1058	for (ret = 32; ret < DBDEV_TAB_SIZE; ret++)
1059		dbdev_tab[ret].dev_id = ~0;
1060
1061	dbdma_gptr->ddma_config = 0;
1062	dbdma_gptr->ddma_throttle = 0;
1063	dbdma_gptr->ddma_inten = 0xffff;
1064	wmb(); /* drain writebuffer */
1065
1066	ret = request_irq(irq, dbdma_interrupt, 0, "dbdma", (void *)dbdma_gptr);
1067	if (ret)
1068		printk(KERN_ERR "Cannot grab DBDMA interrupt!\n");
1069	else {
1070		dbdma_initialized = 1;
1071		register_syscore_ops(&alchemy_dbdma_syscore_ops);
1072	}
1073
1074	return ret;
1075}
1076
1077static int __init alchemy_dbdma_init(void)
1078{
1079	switch (alchemy_get_cputype()) {
1080	case ALCHEMY_CPU_AU1550:
1081		return dbdma_setup(AU1550_DDMA_INT, au1550_dbdev_tab);
1082	case ALCHEMY_CPU_AU1200:
1083		return dbdma_setup(AU1200_DDMA_INT, au1200_dbdev_tab);
1084	case ALCHEMY_CPU_AU1300:
1085		return dbdma_setup(AU1300_DDMA_INT, au1300_dbdev_tab);
1086	}
1087	return 0;
1088}
1089subsys_initcall(alchemy_dbdma_init);
v3.5.6
   1/*
   2 *
   3 * BRIEF MODULE DESCRIPTION
   4 *      The Descriptor Based DMA channel manager that first appeared
   5 *	on the Au1550.  I started with dma.c, but I think all that is
   6 *	left is this initial comment :-)
   7 *
   8 * Copyright 2004 Embedded Edge, LLC
   9 *	dan@embeddededge.com
  10 *
  11 *  This program is free software; you can redistribute  it and/or modify it
  12 *  under  the terms of  the GNU General  Public License as published by the
  13 *  Free Software Foundation;  either version 2 of the  License, or (at your
  14 *  option) any later version.
  15 *
  16 *  THIS  SOFTWARE  IS PROVIDED   ``AS  IS'' AND   ANY  EXPRESS OR IMPLIED
  17 *  WARRANTIES,   INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF
  18 *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
  19 *  NO  EVENT  SHALL   THE AUTHOR  BE    LIABLE FOR ANY   DIRECT, INDIRECT,
  20 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  21 *  NOT LIMITED   TO, PROCUREMENT OF  SUBSTITUTE GOODS  OR SERVICES; LOSS OF
  22 *  USE, DATA,  OR PROFITS; OR  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
  23 *  ANY THEORY OF LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT
  24 *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  25 *  THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26 *
  27 *  You should have received a copy of the  GNU General Public License along
  28 *  with this program; if not, write  to the Free Software Foundation, Inc.,
  29 *  675 Mass Ave, Cambridge, MA 02139, USA.
  30 *
  31 */
  32
  33#include <linux/init.h>
  34#include <linux/kernel.h>
  35#include <linux/slab.h>
  36#include <linux/spinlock.h>
  37#include <linux/interrupt.h>
  38#include <linux/module.h>
  39#include <linux/syscore_ops.h>
  40#include <asm/mach-au1x00/au1000.h>
  41#include <asm/mach-au1x00/au1xxx_dbdma.h>
  42
  43/*
  44 * The Descriptor Based DMA supports up to 16 channels.
  45 *
  46 * There are 32 devices defined. We keep an internal structure
  47 * of devices using these channels, along with additional
  48 * information.
  49 *
  50 * We allocate the descriptors and allow access to them through various
  51 * functions.  The drivers allocate the data buffers and assign them
  52 * to the descriptors.
  53 */
  54static DEFINE_SPINLOCK(au1xxx_dbdma_spin_lock);
  55
  56/* I couldn't find a macro that did this... */
  57#define ALIGN_ADDR(x, a)	((((u32)(x)) + (a-1)) & ~(a-1))
  58
  59static dbdma_global_t *dbdma_gptr =
  60			(dbdma_global_t *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
  61static int dbdma_initialized;
  62
  63static dbdev_tab_t *dbdev_tab;
  64
  65static dbdev_tab_t au1550_dbdev_tab[] __initdata = {
  66	/* UARTS */
  67	{ AU1550_DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
  68	{ AU1550_DSCR_CMD0_UART0_RX, DEV_FLAGS_IN,  0, 8, 0x11100000, 0, 0 },
  69	{ AU1550_DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x11400004, 0, 0 },
  70	{ AU1550_DSCR_CMD0_UART3_RX, DEV_FLAGS_IN,  0, 8, 0x11400000, 0, 0 },
  71
  72	/* EXT DMA */
  73	{ AU1550_DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
  74	{ AU1550_DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
  75	{ AU1550_DSCR_CMD0_DMA_REQ2, 0, 0, 0, 0x00000000, 0, 0 },
  76	{ AU1550_DSCR_CMD0_DMA_REQ3, 0, 0, 0, 0x00000000, 0, 0 },
  77
  78	/* USB DEV */
  79	{ AU1550_DSCR_CMD0_USBDEV_RX0, DEV_FLAGS_IN,  4, 8, 0x10200000, 0, 0 },
  80	{ AU1550_DSCR_CMD0_USBDEV_TX0, DEV_FLAGS_OUT, 4, 8, 0x10200004, 0, 0 },
  81	{ AU1550_DSCR_CMD0_USBDEV_TX1, DEV_FLAGS_OUT, 4, 8, 0x10200008, 0, 0 },
  82	{ AU1550_DSCR_CMD0_USBDEV_TX2, DEV_FLAGS_OUT, 4, 8, 0x1020000c, 0, 0 },
  83	{ AU1550_DSCR_CMD0_USBDEV_RX3, DEV_FLAGS_IN,  4, 8, 0x10200010, 0, 0 },
  84	{ AU1550_DSCR_CMD0_USBDEV_RX4, DEV_FLAGS_IN,  4, 8, 0x10200014, 0, 0 },
  85
  86	/* PSCs */
  87	{ AU1550_DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 },
  88	{ AU1550_DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN,  0, 0, 0x11a0001c, 0, 0 },
  89	{ AU1550_DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 },
  90	{ AU1550_DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN,  0, 0, 0x11b0001c, 0, 0 },
  91	{ AU1550_DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 0, 0x10a0001c, 0, 0 },
  92	{ AU1550_DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN,  0, 0, 0x10a0001c, 0, 0 },
  93	{ AU1550_DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 0, 0x10b0001c, 0, 0 },
  94	{ AU1550_DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN,  0, 0, 0x10b0001c, 0, 0 },
  95
  96	{ AU1550_DSCR_CMD0_PCI_WRITE,  0, 0, 0, 0x00000000, 0, 0 },  /* PCI */
  97	{ AU1550_DSCR_CMD0_NAND_FLASH, 0, 0, 0, 0x00000000, 0, 0 }, /* NAND */
  98
  99	/* MAC 0 */
 100	{ AU1550_DSCR_CMD0_MAC0_RX, DEV_FLAGS_IN,  0, 0, 0x00000000, 0, 0 },
 101	{ AU1550_DSCR_CMD0_MAC0_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
 102
 103	/* MAC 1 */
 104	{ AU1550_DSCR_CMD0_MAC1_RX, DEV_FLAGS_IN,  0, 0, 0x00000000, 0, 0 },
 105	{ AU1550_DSCR_CMD0_MAC1_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
 106
 107	{ DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
 108	{ DSCR_CMD0_ALWAYS,   DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
 109};
 110
 111static dbdev_tab_t au1200_dbdev_tab[] __initdata = {
 112	{ AU1200_DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
 113	{ AU1200_DSCR_CMD0_UART0_RX, DEV_FLAGS_IN,  0, 8, 0x11100000, 0, 0 },
 114	{ AU1200_DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x11200004, 0, 0 },
 115	{ AU1200_DSCR_CMD0_UART1_RX, DEV_FLAGS_IN,  0, 8, 0x11200000, 0, 0 },
 116
 117	{ AU1200_DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
 118	{ AU1200_DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
 119
 120	{ AU1200_DSCR_CMD0_MAE_BE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
 121	{ AU1200_DSCR_CMD0_MAE_FE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
 122	{ AU1200_DSCR_CMD0_MAE_BOTH, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
 123	{ AU1200_DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
 124
 125	{ AU1200_DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8, 0x10600000, 0, 0 },
 126	{ AU1200_DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN,  4, 8, 0x10600004, 0, 0 },
 127	{ AU1200_DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 4, 8, 0x10680000, 0, 0 },
 128	{ AU1200_DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN,  4, 8, 0x10680004, 0, 0 },
 129
 130	{ AU1200_DSCR_CMD0_AES_RX, DEV_FLAGS_IN , 4, 32, 0x10300008, 0, 0 },
 131	{ AU1200_DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 4, 32, 0x10300004, 0, 0 },
 132
 133	{ AU1200_DSCR_CMD0_PSC0_TX,   DEV_FLAGS_OUT, 0, 16, 0x11a0001c, 0, 0 },
 134	{ AU1200_DSCR_CMD0_PSC0_RX,   DEV_FLAGS_IN,  0, 16, 0x11a0001c, 0, 0 },
 135	{ AU1200_DSCR_CMD0_PSC0_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
 136	{ AU1200_DSCR_CMD0_PSC1_TX,   DEV_FLAGS_OUT, 0, 16, 0x11b0001c, 0, 0 },
 137	{ AU1200_DSCR_CMD0_PSC1_RX,   DEV_FLAGS_IN,  0, 16, 0x11b0001c, 0, 0 },
 138	{ AU1200_DSCR_CMD0_PSC1_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
 139
 140	{ AU1200_DSCR_CMD0_CIM_RXA,  DEV_FLAGS_IN, 0, 32, 0x14004020, 0, 0 },
 141	{ AU1200_DSCR_CMD0_CIM_RXB,  DEV_FLAGS_IN, 0, 32, 0x14004040, 0, 0 },
 142	{ AU1200_DSCR_CMD0_CIM_RXC,  DEV_FLAGS_IN, 0, 32, 0x14004060, 0, 0 },
 143	{ AU1200_DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
 144
 145	{ AU1200_DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
 146
 147	{ DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
 148	{ DSCR_CMD0_ALWAYS,   DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
 149};
 150
 151static dbdev_tab_t au1300_dbdev_tab[] __initdata = {
 152	{ AU1300_DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8,  0x10100004, 0, 0 },
 153	{ AU1300_DSCR_CMD0_UART0_RX, DEV_FLAGS_IN,  0, 8,  0x10100000, 0, 0 },
 154	{ AU1300_DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8,  0x10101004, 0, 0 },
 155	{ AU1300_DSCR_CMD0_UART1_RX, DEV_FLAGS_IN,  0, 8,  0x10101000, 0, 0 },
 156	{ AU1300_DSCR_CMD0_UART2_TX, DEV_FLAGS_OUT, 0, 8,  0x10102004, 0, 0 },
 157	{ AU1300_DSCR_CMD0_UART2_RX, DEV_FLAGS_IN,  0, 8,  0x10102000, 0, 0 },
 158	{ AU1300_DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8,  0x10103004, 0, 0 },
 159	{ AU1300_DSCR_CMD0_UART3_RX, DEV_FLAGS_IN,  0, 8,  0x10103000, 0, 0 },
 160
 161	{ AU1300_DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8,  0x10600000, 0, 0 },
 162	{ AU1300_DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN,  4, 8,  0x10600004, 0, 0 },
 163	{ AU1300_DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 8, 8,  0x10601000, 0, 0 },
 164	{ AU1300_DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN,  8, 8,  0x10601004, 0, 0 },
 165
 166	{ AU1300_DSCR_CMD0_AES_RX, DEV_FLAGS_IN ,   4, 32, 0x10300008, 0, 0 },
 167	{ AU1300_DSCR_CMD0_AES_TX, DEV_FLAGS_OUT,   4, 32, 0x10300004, 0, 0 },
 168
 169	{ AU1300_DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT,  0, 16, 0x10a0001c, 0, 0 },
 170	{ AU1300_DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN,   0, 16, 0x10a0001c, 0, 0 },
 171	{ AU1300_DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT,  0, 16, 0x10a0101c, 0, 0 },
 172	{ AU1300_DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN,   0, 16, 0x10a0101c, 0, 0 },
 173	{ AU1300_DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT,  0, 16, 0x10a0201c, 0, 0 },
 174	{ AU1300_DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN,   0, 16, 0x10a0201c, 0, 0 },
 175	{ AU1300_DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT,  0, 16, 0x10a0301c, 0, 0 },
 176	{ AU1300_DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN,   0, 16, 0x10a0301c, 0, 0 },
 177
 178	{ AU1300_DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE,   0, 0,  0x00000000, 0, 0 },
 179	{ AU1300_DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
 180
 181	{ AU1300_DSCR_CMD0_SDMS_TX2, DEV_FLAGS_OUT, 4, 8,  0x10602000, 0, 0 },
 182	{ AU1300_DSCR_CMD0_SDMS_RX2, DEV_FLAGS_IN,  4, 8,  0x10602004, 0, 0 },
 183
 184	{ AU1300_DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
 185
 186	{ AU1300_DSCR_CMD0_UDMA, DEV_FLAGS_ANYUSE,  0, 32, 0x14001810, 0, 0 },
 187
 188	{ AU1300_DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
 189	{ AU1300_DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
 190
 191	{ DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
 192	{ DSCR_CMD0_ALWAYS,   DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
 193};
 194
 195/* 32 predefined plus 32 custom */
 196#define DBDEV_TAB_SIZE		64
 197
 198static chan_tab_t *chan_tab_ptr[NUM_DBDMA_CHANS];
 199
 200static dbdev_tab_t *find_dbdev_id(u32 id)
 201{
 202	int i;
 203	dbdev_tab_t *p;
 204	for (i = 0; i < DBDEV_TAB_SIZE; ++i) {
 205		p = &dbdev_tab[i];
 206		if (p->dev_id == id)
 207			return p;
 208	}
 209	return NULL;
 210}
 211
 212void *au1xxx_ddma_get_nextptr_virt(au1x_ddma_desc_t *dp)
 213{
 214	return phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
 215}
 216EXPORT_SYMBOL(au1xxx_ddma_get_nextptr_virt);
 217
 218u32 au1xxx_ddma_add_device(dbdev_tab_t *dev)
 219{
 220	u32 ret = 0;
 221	dbdev_tab_t *p;
 222	static u16 new_id = 0x1000;
 223
 224	p = find_dbdev_id(~0);
 225	if (NULL != p) {
 226		memcpy(p, dev, sizeof(dbdev_tab_t));
 227		p->dev_id = DSCR_DEV2CUSTOM_ID(new_id, dev->dev_id);
 228		ret = p->dev_id;
 229		new_id++;
 230#if 0
 231		printk(KERN_DEBUG "add_device: id:%x flags:%x padd:%x\n",
 232				  p->dev_id, p->dev_flags, p->dev_physaddr);
 233#endif
 234	}
 235
 236	return ret;
 237}
 238EXPORT_SYMBOL(au1xxx_ddma_add_device);
 239
 240void au1xxx_ddma_del_device(u32 devid)
 241{
 242	dbdev_tab_t *p = find_dbdev_id(devid);
 243
 244	if (p != NULL) {
 245		memset(p, 0, sizeof(dbdev_tab_t));
 246		p->dev_id = ~0;
 247	}
 248}
 249EXPORT_SYMBOL(au1xxx_ddma_del_device);
 250
 251/* Allocate a channel and return a non-zero descriptor if successful. */
 252u32 au1xxx_dbdma_chan_alloc(u32 srcid, u32 destid,
 253       void (*callback)(int, void *), void *callparam)
 254{
 255	unsigned long   flags;
 256	u32		used, chan;
 257	u32		dcp;
 258	int		i;
 259	dbdev_tab_t	*stp, *dtp;
 260	chan_tab_t	*ctp;
 261	au1x_dma_chan_t *cp;
 262
 263	/*
 264	 * We do the intialization on the first channel allocation.
 265	 * We have to wait because of the interrupt handler initialization
 266	 * which can't be done successfully during board set up.
 267	 */
 268	if (!dbdma_initialized)
 269		return 0;
 270
 271	stp = find_dbdev_id(srcid);
 272	if (stp == NULL)
 273		return 0;
 274	dtp = find_dbdev_id(destid);
 275	if (dtp == NULL)
 276		return 0;
 277
 278	used = 0;
 279
 280	/* Check to see if we can get both channels. */
 281	spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
 282	if (!(stp->dev_flags & DEV_FLAGS_INUSE) ||
 283	     (stp->dev_flags & DEV_FLAGS_ANYUSE)) {
 284		/* Got source */
 285		stp->dev_flags |= DEV_FLAGS_INUSE;
 286		if (!(dtp->dev_flags & DEV_FLAGS_INUSE) ||
 287		     (dtp->dev_flags & DEV_FLAGS_ANYUSE)) {
 288			/* Got destination */
 289			dtp->dev_flags |= DEV_FLAGS_INUSE;
 290		} else {
 291			/* Can't get dest.  Release src. */
 292			stp->dev_flags &= ~DEV_FLAGS_INUSE;
 293			used++;
 294		}
 295	} else
 296		used++;
 297	spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
 298
 299	if (used)
 300		return 0;
 301
 302	/* Let's see if we can allocate a channel for it. */
 303	ctp = NULL;
 304	chan = 0;
 305	spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
 306	for (i = 0; i < NUM_DBDMA_CHANS; i++)
 307		if (chan_tab_ptr[i] == NULL) {
 308			/*
 309			 * If kmalloc fails, it is caught below same
 310			 * as a channel not available.
 311			 */
 312			ctp = kmalloc(sizeof(chan_tab_t), GFP_ATOMIC);
 313			chan_tab_ptr[i] = ctp;
 314			break;
 315		}
 316	spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
 317
 318	if (ctp != NULL) {
 319		memset(ctp, 0, sizeof(chan_tab_t));
 320		ctp->chan_index = chan = i;
 321		dcp = KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR);
 322		dcp += (0x0100 * chan);
 323		ctp->chan_ptr = (au1x_dma_chan_t *)dcp;
 324		cp = (au1x_dma_chan_t *)dcp;
 325		ctp->chan_src = stp;
 326		ctp->chan_dest = dtp;
 327		ctp->chan_callback = callback;
 328		ctp->chan_callparam = callparam;
 329
 330		/* Initialize channel configuration. */
 331		i = 0;
 332		if (stp->dev_intlevel)
 333			i |= DDMA_CFG_SED;
 334		if (stp->dev_intpolarity)
 335			i |= DDMA_CFG_SP;
 336		if (dtp->dev_intlevel)
 337			i |= DDMA_CFG_DED;
 338		if (dtp->dev_intpolarity)
 339			i |= DDMA_CFG_DP;
 340		if ((stp->dev_flags & DEV_FLAGS_SYNC) ||
 341			(dtp->dev_flags & DEV_FLAGS_SYNC))
 342				i |= DDMA_CFG_SYNC;
 343		cp->ddma_cfg = i;
 344		au_sync();
 345
 346		/*
 347		 * Return a non-zero value that can be used to find the channel
 348		 * information in subsequent operations.
 349		 */
 350		return (u32)(&chan_tab_ptr[chan]);
 351	}
 352
 353	/* Release devices */
 354	stp->dev_flags &= ~DEV_FLAGS_INUSE;
 355	dtp->dev_flags &= ~DEV_FLAGS_INUSE;
 356
 357	return 0;
 358}
 359EXPORT_SYMBOL(au1xxx_dbdma_chan_alloc);
 360
 361/*
 362 * Set the device width if source or destination is a FIFO.
 363 * Should be 8, 16, or 32 bits.
 364 */
 365u32 au1xxx_dbdma_set_devwidth(u32 chanid, int bits)
 366{
 367	u32		rv;
 368	chan_tab_t	*ctp;
 369	dbdev_tab_t	*stp, *dtp;
 370
 371	ctp = *((chan_tab_t **)chanid);
 372	stp = ctp->chan_src;
 373	dtp = ctp->chan_dest;
 374	rv = 0;
 375
 376	if (stp->dev_flags & DEV_FLAGS_IN) {	/* Source in fifo */
 377		rv = stp->dev_devwidth;
 378		stp->dev_devwidth = bits;
 379	}
 380	if (dtp->dev_flags & DEV_FLAGS_OUT) {	/* Destination out fifo */
 381		rv = dtp->dev_devwidth;
 382		dtp->dev_devwidth = bits;
 383	}
 384
 385	return rv;
 386}
 387EXPORT_SYMBOL(au1xxx_dbdma_set_devwidth);
 388
 389/* Allocate a descriptor ring, initializing as much as possible. */
 390u32 au1xxx_dbdma_ring_alloc(u32 chanid, int entries)
 391{
 392	int			i;
 393	u32			desc_base, srcid, destid;
 394	u32			cmd0, cmd1, src1, dest1;
 395	u32			src0, dest0;
 396	chan_tab_t		*ctp;
 397	dbdev_tab_t		*stp, *dtp;
 398	au1x_ddma_desc_t	*dp;
 399
 400	/*
 401	 * I guess we could check this to be within the
 402	 * range of the table......
 403	 */
 404	ctp = *((chan_tab_t **)chanid);
 405	stp = ctp->chan_src;
 406	dtp = ctp->chan_dest;
 407
 408	/*
 409	 * The descriptors must be 32-byte aligned.  There is a
 410	 * possibility the allocation will give us such an address,
 411	 * and if we try that first we are likely to not waste larger
 412	 * slabs of memory.
 413	 */
 414	desc_base = (u32)kmalloc(entries * sizeof(au1x_ddma_desc_t),
 415				 GFP_KERNEL|GFP_DMA);
 416	if (desc_base == 0)
 417		return 0;
 418
 419	if (desc_base & 0x1f) {
 420		/*
 421		 * Lost....do it again, allocate extra, and round
 422		 * the address base.
 423		 */
 424		kfree((const void *)desc_base);
 425		i = entries * sizeof(au1x_ddma_desc_t);
 426		i += (sizeof(au1x_ddma_desc_t) - 1);
 427		desc_base = (u32)kmalloc(i, GFP_KERNEL|GFP_DMA);
 428		if (desc_base == 0)
 429			return 0;
 430
 431		ctp->cdb_membase = desc_base;
 432		desc_base = ALIGN_ADDR(desc_base, sizeof(au1x_ddma_desc_t));
 433	} else
 434		ctp->cdb_membase = desc_base;
 435
 436	dp = (au1x_ddma_desc_t *)desc_base;
 437
 438	/* Keep track of the base descriptor. */
 439	ctp->chan_desc_base = dp;
 440
 441	/* Initialize the rings with as much information as we know. */
 442	srcid = stp->dev_id;
 443	destid = dtp->dev_id;
 444
 445	cmd0 = cmd1 = src1 = dest1 = 0;
 446	src0 = dest0 = 0;
 447
 448	cmd0 |= DSCR_CMD0_SID(srcid);
 449	cmd0 |= DSCR_CMD0_DID(destid);
 450	cmd0 |= DSCR_CMD0_IE | DSCR_CMD0_CV;
 451	cmd0 |= DSCR_CMD0_ST(DSCR_CMD0_ST_NOCHANGE);
 452
 453	/* Is it mem to mem transfer? */
 454	if (((DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_THROTTLE) ||
 455	     (DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_ALWAYS)) &&
 456	    ((DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_THROTTLE) ||
 457	     (DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_ALWAYS)))
 458		cmd0 |= DSCR_CMD0_MEM;
 459
 460	switch (stp->dev_devwidth) {
 461	case 8:
 462		cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_BYTE);
 463		break;
 464	case 16:
 465		cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD);
 466		break;
 467	case 32:
 468	default:
 469		cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_WORD);
 470		break;
 471	}
 472
 473	switch (dtp->dev_devwidth) {
 474	case 8:
 475		cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_BYTE);
 476		break;
 477	case 16:
 478		cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD);
 479		break;
 480	case 32:
 481	default:
 482		cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_WORD);
 483		break;
 484	}
 485
 486	/*
 487	 * If the device is marked as an in/out FIFO, ensure it is
 488	 * set non-coherent.
 489	 */
 490	if (stp->dev_flags & DEV_FLAGS_IN)
 491		cmd0 |= DSCR_CMD0_SN;		/* Source in FIFO */
 492	if (dtp->dev_flags & DEV_FLAGS_OUT)
 493		cmd0 |= DSCR_CMD0_DN;		/* Destination out FIFO */
 494
 495	/*
 496	 * Set up source1.  For now, assume no stride and increment.
 497	 * A channel attribute update can change this later.
 498	 */
 499	switch (stp->dev_tsize) {
 500	case 1:
 501		src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE1);
 502		break;
 503	case 2:
 504		src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE2);
 505		break;
 506	case 4:
 507		src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE4);
 508		break;
 509	case 8:
 510	default:
 511		src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE8);
 512		break;
 513	}
 514
 515	/* If source input is FIFO, set static address.	*/
 516	if (stp->dev_flags & DEV_FLAGS_IN) {
 517		if (stp->dev_flags & DEV_FLAGS_BURSTABLE)
 518			src1 |= DSCR_SRC1_SAM(DSCR_xAM_BURST);
 519		else
 520			src1 |= DSCR_SRC1_SAM(DSCR_xAM_STATIC);
 521	}
 522
 523	if (stp->dev_physaddr)
 524		src0 = stp->dev_physaddr;
 525
 526	/*
 527	 * Set up dest1.  For now, assume no stride and increment.
 528	 * A channel attribute update can change this later.
 529	 */
 530	switch (dtp->dev_tsize) {
 531	case 1:
 532		dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE1);
 533		break;
 534	case 2:
 535		dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE2);
 536		break;
 537	case 4:
 538		dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE4);
 539		break;
 540	case 8:
 541	default:
 542		dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE8);
 543		break;
 544	}
 545
 546	/* If destination output is FIFO, set static address. */
 547	if (dtp->dev_flags & DEV_FLAGS_OUT) {
 548		if (dtp->dev_flags & DEV_FLAGS_BURSTABLE)
 549			dest1 |= DSCR_DEST1_DAM(DSCR_xAM_BURST);
 550		else
 551			dest1 |= DSCR_DEST1_DAM(DSCR_xAM_STATIC);
 552	}
 553
 554	if (dtp->dev_physaddr)
 555		dest0 = dtp->dev_physaddr;
 556
 557#if 0
 558		printk(KERN_DEBUG "did:%x sid:%x cmd0:%x cmd1:%x source0:%x "
 559				  "source1:%x dest0:%x dest1:%x\n",
 560				  dtp->dev_id, stp->dev_id, cmd0, cmd1, src0,
 561				  src1, dest0, dest1);
 562#endif
 563	for (i = 0; i < entries; i++) {
 564		dp->dscr_cmd0 = cmd0;
 565		dp->dscr_cmd1 = cmd1;
 566		dp->dscr_source0 = src0;
 567		dp->dscr_source1 = src1;
 568		dp->dscr_dest0 = dest0;
 569		dp->dscr_dest1 = dest1;
 570		dp->dscr_stat = 0;
 571		dp->sw_context = 0;
 572		dp->sw_status = 0;
 573		dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(dp + 1));
 574		dp++;
 575	}
 576
 577	/* Make last descrptor point to the first. */
 578	dp--;
 579	dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(ctp->chan_desc_base));
 580	ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
 581
 582	return (u32)ctp->chan_desc_base;
 583}
 584EXPORT_SYMBOL(au1xxx_dbdma_ring_alloc);
 585
 586/*
 587 * Put a source buffer into the DMA ring.
 588 * This updates the source pointer and byte count.  Normally used
 589 * for memory to fifo transfers.
 590 */
 591u32 au1xxx_dbdma_put_source(u32 chanid, dma_addr_t buf, int nbytes, u32 flags)
 592{
 593	chan_tab_t		*ctp;
 594	au1x_ddma_desc_t	*dp;
 595
 596	/*
 597	 * I guess we could check this to be within the
 598	 * range of the table......
 599	 */
 600	ctp = *(chan_tab_t **)chanid;
 601
 602	/*
 603	 * We should have multiple callers for a particular channel,
 604	 * an interrupt doesn't affect this pointer nor the descriptor,
 605	 * so no locking should be needed.
 606	 */
 607	dp = ctp->put_ptr;
 608
 609	/*
 610	 * If the descriptor is valid, we are way ahead of the DMA
 611	 * engine, so just return an error condition.
 612	 */
 613	if (dp->dscr_cmd0 & DSCR_CMD0_V)
 614		return 0;
 615
 616	/* Load up buffer address and byte count. */
 617	dp->dscr_source0 = buf & ~0UL;
 618	dp->dscr_cmd1 = nbytes;
 619	/* Check flags */
 620	if (flags & DDMA_FLAGS_IE)
 621		dp->dscr_cmd0 |= DSCR_CMD0_IE;
 622	if (flags & DDMA_FLAGS_NOIE)
 623		dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
 624
 625	/*
 626	 * There is an errata on the Au1200/Au1550 parts that could result
 627	 * in "stale" data being DMA'ed. It has to do with the snoop logic on
 628	 * the cache eviction buffer.  DMA_NONCOHERENT is on by default for
 629	 * these parts. If it is fixed in the future, these dma_cache_inv will
 630	 * just be nothing more than empty macros. See io.h.
 631	 */
 632	dma_cache_wback_inv((unsigned long)buf, nbytes);
 633	dp->dscr_cmd0 |= DSCR_CMD0_V;	/* Let it rip */
 634	au_sync();
 635	dma_cache_wback_inv((unsigned long)dp, sizeof(*dp));
 636	ctp->chan_ptr->ddma_dbell = 0;
 637
 638	/* Get next descriptor pointer.	*/
 639	ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
 640
 641	/* Return something non-zero. */
 642	return nbytes;
 643}
 644EXPORT_SYMBOL(au1xxx_dbdma_put_source);
 645
 646/* Put a destination buffer into the DMA ring.
 647 * This updates the destination pointer and byte count.  Normally used
 648 * to place an empty buffer into the ring for fifo to memory transfers.
 649 */
 650u32 au1xxx_dbdma_put_dest(u32 chanid, dma_addr_t buf, int nbytes, u32 flags)
 651{
 652	chan_tab_t		*ctp;
 653	au1x_ddma_desc_t	*dp;
 654
 655	/* I guess we could check this to be within the
 656	 * range of the table......
 657	 */
 658	ctp = *((chan_tab_t **)chanid);
 659
 660	/* We should have multiple callers for a particular channel,
 661	 * an interrupt doesn't affect this pointer nor the descriptor,
 662	 * so no locking should be needed.
 663	 */
 664	dp = ctp->put_ptr;
 665
 666	/* If the descriptor is valid, we are way ahead of the DMA
 667	 * engine, so just return an error condition.
 668	 */
 669	if (dp->dscr_cmd0 & DSCR_CMD0_V)
 670		return 0;
 671
 672	/* Load up buffer address and byte count */
 673
 674	/* Check flags  */
 675	if (flags & DDMA_FLAGS_IE)
 676		dp->dscr_cmd0 |= DSCR_CMD0_IE;
 677	if (flags & DDMA_FLAGS_NOIE)
 678		dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
 679
 680	dp->dscr_dest0 = buf & ~0UL;
 681	dp->dscr_cmd1 = nbytes;
 682#if 0
 683	printk(KERN_DEBUG "cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n",
 684			  dp->dscr_cmd0, dp->dscr_cmd1, dp->dscr_source0,
 685			  dp->dscr_source1, dp->dscr_dest0, dp->dscr_dest1);
 686#endif
 687	/*
 688	 * There is an errata on the Au1200/Au1550 parts that could result in
 689	 * "stale" data being DMA'ed. It has to do with the snoop logic on the
 690	 * cache eviction buffer.  DMA_NONCOHERENT is on by default for these
 691	 * parts. If it is fixed in the future, these dma_cache_inv will just
 692	 * be nothing more than empty macros. See io.h.
 693	 */
 694	dma_cache_inv((unsigned long)buf, nbytes);
 695	dp->dscr_cmd0 |= DSCR_CMD0_V;	/* Let it rip */
 696	au_sync();
 697	dma_cache_wback_inv((unsigned long)dp, sizeof(*dp));
 698	ctp->chan_ptr->ddma_dbell = 0;
 699
 700	/* Get next descriptor pointer.	*/
 701	ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
 702
 703	/* Return something non-zero. */
 704	return nbytes;
 705}
 706EXPORT_SYMBOL(au1xxx_dbdma_put_dest);
 707
 708/*
 709 * Get a destination buffer into the DMA ring.
 710 * Normally used to get a full buffer from the ring during fifo
 711 * to memory transfers.  This does not set the valid bit, you will
 712 * have to put another destination buffer to keep the DMA going.
 713 */
 714u32 au1xxx_dbdma_get_dest(u32 chanid, void **buf, int *nbytes)
 715{
 716	chan_tab_t		*ctp;
 717	au1x_ddma_desc_t	*dp;
 718	u32			rv;
 719
 720	/*
 721	 * I guess we could check this to be within the
 722	 * range of the table......
 723	 */
 724	ctp = *((chan_tab_t **)chanid);
 725
 726	/*
 727	 * We should have multiple callers for a particular channel,
 728	 * an interrupt doesn't affect this pointer nor the descriptor,
 729	 * so no locking should be needed.
 730	 */
 731	dp = ctp->get_ptr;
 732
 733	/*
 734	 * If the descriptor is valid, we are way ahead of the DMA
 735	 * engine, so just return an error condition.
 736	 */
 737	if (dp->dscr_cmd0 & DSCR_CMD0_V)
 738		return 0;
 739
 740	/* Return buffer address and byte count. */
 741	*buf = (void *)(phys_to_virt(dp->dscr_dest0));
 742	*nbytes = dp->dscr_cmd1;
 743	rv = dp->dscr_stat;
 744
 745	/* Get next descriptor pointer.	*/
 746	ctp->get_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
 747
 748	/* Return something non-zero. */
 749	return rv;
 750}
 751EXPORT_SYMBOL_GPL(au1xxx_dbdma_get_dest);
 752
 753void au1xxx_dbdma_stop(u32 chanid)
 754{
 755	chan_tab_t	*ctp;
 756	au1x_dma_chan_t *cp;
 757	int halt_timeout = 0;
 758
 759	ctp = *((chan_tab_t **)chanid);
 760
 761	cp = ctp->chan_ptr;
 762	cp->ddma_cfg &= ~DDMA_CFG_EN;	/* Disable channel */
 763	au_sync();
 764	while (!(cp->ddma_stat & DDMA_STAT_H)) {
 765		udelay(1);
 766		halt_timeout++;
 767		if (halt_timeout > 100) {
 768			printk(KERN_WARNING "warning: DMA channel won't halt\n");
 769			break;
 770		}
 771	}
 772	/* clear current desc valid and doorbell */
 773	cp->ddma_stat |= (DDMA_STAT_DB | DDMA_STAT_V);
 774	au_sync();
 775}
 776EXPORT_SYMBOL(au1xxx_dbdma_stop);
 777
 778/*
 779 * Start using the current descriptor pointer.  If the DBDMA encounters
 780 * a non-valid descriptor, it will stop.  In this case, we can just
 781 * continue by adding a buffer to the list and starting again.
 782 */
 783void au1xxx_dbdma_start(u32 chanid)
 784{
 785	chan_tab_t	*ctp;
 786	au1x_dma_chan_t *cp;
 787
 788	ctp = *((chan_tab_t **)chanid);
 789	cp = ctp->chan_ptr;
 790	cp->ddma_desptr = virt_to_phys(ctp->cur_ptr);
 791	cp->ddma_cfg |= DDMA_CFG_EN;	/* Enable channel */
 792	au_sync();
 793	cp->ddma_dbell = 0;
 794	au_sync();
 795}
 796EXPORT_SYMBOL(au1xxx_dbdma_start);
 797
 798void au1xxx_dbdma_reset(u32 chanid)
 799{
 800	chan_tab_t		*ctp;
 801	au1x_ddma_desc_t	*dp;
 802
 803	au1xxx_dbdma_stop(chanid);
 804
 805	ctp = *((chan_tab_t **)chanid);
 806	ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
 807
 808	/* Run through the descriptors and reset the valid indicator. */
 809	dp = ctp->chan_desc_base;
 810
 811	do {
 812		dp->dscr_cmd0 &= ~DSCR_CMD0_V;
 813		/*
 814		 * Reset our software status -- this is used to determine
 815		 * if a descriptor is in use by upper level software. Since
 816		 * posting can reset 'V' bit.
 817		 */
 818		dp->sw_status = 0;
 819		dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
 820	} while (dp != ctp->chan_desc_base);
 821}
 822EXPORT_SYMBOL(au1xxx_dbdma_reset);
 823
 824u32 au1xxx_get_dma_residue(u32 chanid)
 825{
 826	chan_tab_t	*ctp;
 827	au1x_dma_chan_t *cp;
 828	u32		rv;
 829
 830	ctp = *((chan_tab_t **)chanid);
 831	cp = ctp->chan_ptr;
 832
 833	/* This is only valid if the channel is stopped. */
 834	rv = cp->ddma_bytecnt;
 835	au_sync();
 836
 837	return rv;
 838}
 839EXPORT_SYMBOL_GPL(au1xxx_get_dma_residue);
 840
 841void au1xxx_dbdma_chan_free(u32 chanid)
 842{
 843	chan_tab_t	*ctp;
 844	dbdev_tab_t	*stp, *dtp;
 845
 846	ctp = *((chan_tab_t **)chanid);
 847	stp = ctp->chan_src;
 848	dtp = ctp->chan_dest;
 849
 850	au1xxx_dbdma_stop(chanid);
 851
 852	kfree((void *)ctp->cdb_membase);
 853
 854	stp->dev_flags &= ~DEV_FLAGS_INUSE;
 855	dtp->dev_flags &= ~DEV_FLAGS_INUSE;
 856	chan_tab_ptr[ctp->chan_index] = NULL;
 857
 858	kfree(ctp);
 859}
 860EXPORT_SYMBOL(au1xxx_dbdma_chan_free);
 861
 862static irqreturn_t dbdma_interrupt(int irq, void *dev_id)
 863{
 864	u32 intstat;
 865	u32 chan_index;
 866	chan_tab_t		*ctp;
 867	au1x_ddma_desc_t	*dp;
 868	au1x_dma_chan_t *cp;
 869
 870	intstat = dbdma_gptr->ddma_intstat;
 871	au_sync();
 872	chan_index = __ffs(intstat);
 873
 874	ctp = chan_tab_ptr[chan_index];
 875	cp = ctp->chan_ptr;
 876	dp = ctp->cur_ptr;
 877
 878	/* Reset interrupt. */
 879	cp->ddma_irq = 0;
 880	au_sync();
 881
 882	if (ctp->chan_callback)
 883		ctp->chan_callback(irq, ctp->chan_callparam);
 884
 885	ctp->cur_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
 886	return IRQ_RETVAL(1);
 887}
 888
 889void au1xxx_dbdma_dump(u32 chanid)
 890{
 891	chan_tab_t	 *ctp;
 892	au1x_ddma_desc_t *dp;
 893	dbdev_tab_t	 *stp, *dtp;
 894	au1x_dma_chan_t  *cp;
 895	u32 i		 = 0;
 896
 897	ctp = *((chan_tab_t **)chanid);
 898	stp = ctp->chan_src;
 899	dtp = ctp->chan_dest;
 900	cp = ctp->chan_ptr;
 901
 902	printk(KERN_DEBUG "Chan %x, stp %x (dev %d)  dtp %x (dev %d)\n",
 903			  (u32)ctp, (u32)stp, stp - dbdev_tab, (u32)dtp,
 904			  dtp - dbdev_tab);
 905	printk(KERN_DEBUG "desc base %x, get %x, put %x, cur %x\n",
 906			  (u32)(ctp->chan_desc_base), (u32)(ctp->get_ptr),
 907			  (u32)(ctp->put_ptr), (u32)(ctp->cur_ptr));
 908
 909	printk(KERN_DEBUG "dbdma chan %x\n", (u32)cp);
 910	printk(KERN_DEBUG "cfg %08x, desptr %08x, statptr %08x\n",
 911			  cp->ddma_cfg, cp->ddma_desptr, cp->ddma_statptr);
 912	printk(KERN_DEBUG "dbell %08x, irq %08x, stat %08x, bytecnt %08x\n",
 913			  cp->ddma_dbell, cp->ddma_irq, cp->ddma_stat,
 914			  cp->ddma_bytecnt);
 915
 916	/* Run through the descriptors */
 917	dp = ctp->chan_desc_base;
 918
 919	do {
 920		printk(KERN_DEBUG "Dp[%d]= %08x, cmd0 %08x, cmd1 %08x\n",
 921				  i++, (u32)dp, dp->dscr_cmd0, dp->dscr_cmd1);
 922		printk(KERN_DEBUG "src0 %08x, src1 %08x, dest0 %08x, dest1 %08x\n",
 923				  dp->dscr_source0, dp->dscr_source1,
 924				  dp->dscr_dest0, dp->dscr_dest1);
 925		printk(KERN_DEBUG "stat %08x, nxtptr %08x\n",
 926				  dp->dscr_stat, dp->dscr_nxtptr);
 927		dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
 928	} while (dp != ctp->chan_desc_base);
 929}
 930
 931/* Put a descriptor into the DMA ring.
 932 * This updates the source/destination pointers and byte count.
 933 */
 934u32 au1xxx_dbdma_put_dscr(u32 chanid, au1x_ddma_desc_t *dscr)
 935{
 936	chan_tab_t *ctp;
 937	au1x_ddma_desc_t *dp;
 938	u32 nbytes = 0;
 939
 940	/*
 941	 * I guess we could check this to be within the
 942	 * range of the table......
 943	 */
 944	ctp = *((chan_tab_t **)chanid);
 945
 946	/*
 947	 * We should have multiple callers for a particular channel,
 948	 * an interrupt doesn't affect this pointer nor the descriptor,
 949	 * so no locking should be needed.
 950	 */
 951	dp = ctp->put_ptr;
 952
 953	/*
 954	 * If the descriptor is valid, we are way ahead of the DMA
 955	 * engine, so just return an error condition.
 956	 */
 957	if (dp->dscr_cmd0 & DSCR_CMD0_V)
 958		return 0;
 959
 960	/* Load up buffer addresses and byte count. */
 961	dp->dscr_dest0 = dscr->dscr_dest0;
 962	dp->dscr_source0 = dscr->dscr_source0;
 963	dp->dscr_dest1 = dscr->dscr_dest1;
 964	dp->dscr_source1 = dscr->dscr_source1;
 965	dp->dscr_cmd1 = dscr->dscr_cmd1;
 966	nbytes = dscr->dscr_cmd1;
 967	/* Allow the caller to specifiy if an interrupt is generated */
 968	dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
 969	dp->dscr_cmd0 |= dscr->dscr_cmd0 | DSCR_CMD0_V;
 970	ctp->chan_ptr->ddma_dbell = 0;
 971
 972	/* Get next descriptor pointer.	*/
 973	ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
 974
 975	/* Return something non-zero. */
 976	return nbytes;
 977}
 978
 979
 980static unsigned long alchemy_dbdma_pm_data[NUM_DBDMA_CHANS + 1][6];
 981
 982static int alchemy_dbdma_suspend(void)
 983{
 984	int i;
 985	void __iomem *addr;
 986
 987	addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
 988	alchemy_dbdma_pm_data[0][0] = __raw_readl(addr + 0x00);
 989	alchemy_dbdma_pm_data[0][1] = __raw_readl(addr + 0x04);
 990	alchemy_dbdma_pm_data[0][2] = __raw_readl(addr + 0x08);
 991	alchemy_dbdma_pm_data[0][3] = __raw_readl(addr + 0x0c);
 992
 993	/* save channel configurations */
 994	addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR);
 995	for (i = 1; i <= NUM_DBDMA_CHANS; i++) {
 996		alchemy_dbdma_pm_data[i][0] = __raw_readl(addr + 0x00);
 997		alchemy_dbdma_pm_data[i][1] = __raw_readl(addr + 0x04);
 998		alchemy_dbdma_pm_data[i][2] = __raw_readl(addr + 0x08);
 999		alchemy_dbdma_pm_data[i][3] = __raw_readl(addr + 0x0c);
1000		alchemy_dbdma_pm_data[i][4] = __raw_readl(addr + 0x10);
1001		alchemy_dbdma_pm_data[i][5] = __raw_readl(addr + 0x14);
1002
1003		/* halt channel */
1004		__raw_writel(alchemy_dbdma_pm_data[i][0] & ~1, addr + 0x00);
1005		wmb();
1006		while (!(__raw_readl(addr + 0x14) & 1))
1007			wmb();
1008
1009		addr += 0x100;	/* next channel base */
1010	}
1011	/* disable channel interrupts */
1012	addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
1013	__raw_writel(0, addr + 0x0c);
1014	wmb();
1015
1016	return 0;
1017}
1018
1019static void alchemy_dbdma_resume(void)
1020{
1021	int i;
1022	void __iomem *addr;
1023
1024	addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
1025	__raw_writel(alchemy_dbdma_pm_data[0][0], addr + 0x00);
1026	__raw_writel(alchemy_dbdma_pm_data[0][1], addr + 0x04);
1027	__raw_writel(alchemy_dbdma_pm_data[0][2], addr + 0x08);
1028	__raw_writel(alchemy_dbdma_pm_data[0][3], addr + 0x0c);
1029
1030	/* restore channel configurations */
1031	addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR);
1032	for (i = 1; i <= NUM_DBDMA_CHANS; i++) {
1033		__raw_writel(alchemy_dbdma_pm_data[i][0], addr + 0x00);
1034		__raw_writel(alchemy_dbdma_pm_data[i][1], addr + 0x04);
1035		__raw_writel(alchemy_dbdma_pm_data[i][2], addr + 0x08);
1036		__raw_writel(alchemy_dbdma_pm_data[i][3], addr + 0x0c);
1037		__raw_writel(alchemy_dbdma_pm_data[i][4], addr + 0x10);
1038		__raw_writel(alchemy_dbdma_pm_data[i][5], addr + 0x14);
1039		wmb();
1040		addr += 0x100;	/* next channel base */
1041	}
1042}
1043
1044static struct syscore_ops alchemy_dbdma_syscore_ops = {
1045	.suspend	= alchemy_dbdma_suspend,
1046	.resume		= alchemy_dbdma_resume,
1047};
1048
1049static int __init dbdma_setup(unsigned int irq, dbdev_tab_t *idtable)
1050{
1051	int ret;
1052
1053	dbdev_tab = kzalloc(sizeof(dbdev_tab_t) * DBDEV_TAB_SIZE, GFP_KERNEL);
1054	if (!dbdev_tab)
1055		return -ENOMEM;
1056
1057	memcpy(dbdev_tab, idtable, 32 * sizeof(dbdev_tab_t));
1058	for (ret = 32; ret < DBDEV_TAB_SIZE; ret++)
1059		dbdev_tab[ret].dev_id = ~0;
1060
1061	dbdma_gptr->ddma_config = 0;
1062	dbdma_gptr->ddma_throttle = 0;
1063	dbdma_gptr->ddma_inten = 0xffff;
1064	au_sync();
1065
1066	ret = request_irq(irq, dbdma_interrupt, 0, "dbdma", (void *)dbdma_gptr);
1067	if (ret)
1068		printk(KERN_ERR "Cannot grab DBDMA interrupt!\n");
1069	else {
1070		dbdma_initialized = 1;
1071		register_syscore_ops(&alchemy_dbdma_syscore_ops);
1072	}
1073
1074	return ret;
1075}
1076
1077static int __init alchemy_dbdma_init(void)
1078{
1079	switch (alchemy_get_cputype()) {
1080	case ALCHEMY_CPU_AU1550:
1081		return dbdma_setup(AU1550_DDMA_INT, au1550_dbdev_tab);
1082	case ALCHEMY_CPU_AU1200:
1083		return dbdma_setup(AU1200_DDMA_INT, au1200_dbdev_tab);
1084	case ALCHEMY_CPU_AU1300:
1085		return dbdma_setup(AU1300_DDMA_INT, au1300_dbdev_tab);
1086	}
1087	return 0;
1088}
1089subsys_initcall(alchemy_dbdma_init);