Loading...
1#ifndef _ASM_GENERIC_PGTABLE_H
2#define _ASM_GENERIC_PGTABLE_H
3
4#include <linux/pfn.h>
5
6#ifndef __ASSEMBLY__
7#ifdef CONFIG_MMU
8
9#include <linux/mm_types.h>
10#include <linux/bug.h>
11#include <linux/errno.h>
12
13#if 4 - defined(__PAGETABLE_PUD_FOLDED) - defined(__PAGETABLE_PMD_FOLDED) != \
14 CONFIG_PGTABLE_LEVELS
15#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{PUD,PMD}_FOLDED
16#endif
17
18/*
19 * On almost all architectures and configurations, 0 can be used as the
20 * upper ceiling to free_pgtables(): on many architectures it has the same
21 * effect as using TASK_SIZE. However, there is one configuration which
22 * must impose a more careful limit, to avoid freeing kernel pgtables.
23 */
24#ifndef USER_PGTABLES_CEILING
25#define USER_PGTABLES_CEILING 0UL
26#endif
27
28#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
29extern int ptep_set_access_flags(struct vm_area_struct *vma,
30 unsigned long address, pte_t *ptep,
31 pte_t entry, int dirty);
32#endif
33
34#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
35#ifdef CONFIG_TRANSPARENT_HUGEPAGE
36extern int pmdp_set_access_flags(struct vm_area_struct *vma,
37 unsigned long address, pmd_t *pmdp,
38 pmd_t entry, int dirty);
39#else
40static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
41 unsigned long address, pmd_t *pmdp,
42 pmd_t entry, int dirty)
43{
44 BUILD_BUG();
45 return 0;
46}
47#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
48#endif
49
50#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
51static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
52 unsigned long address,
53 pte_t *ptep)
54{
55 pte_t pte = *ptep;
56 int r = 1;
57 if (!pte_young(pte))
58 r = 0;
59 else
60 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
61 return r;
62}
63#endif
64
65#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
66#ifdef CONFIG_TRANSPARENT_HUGEPAGE
67static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
68 unsigned long address,
69 pmd_t *pmdp)
70{
71 pmd_t pmd = *pmdp;
72 int r = 1;
73 if (!pmd_young(pmd))
74 r = 0;
75 else
76 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
77 return r;
78}
79#else
80static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
81 unsigned long address,
82 pmd_t *pmdp)
83{
84 BUILD_BUG();
85 return 0;
86}
87#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
88#endif
89
90#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
91int ptep_clear_flush_young(struct vm_area_struct *vma,
92 unsigned long address, pte_t *ptep);
93#endif
94
95#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
96#ifdef CONFIG_TRANSPARENT_HUGEPAGE
97extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
98 unsigned long address, pmd_t *pmdp);
99#else
100/*
101 * Despite relevant to THP only, this API is called from generic rmap code
102 * under PageTransHuge(), hence needs a dummy implementation for !THP
103 */
104static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
105 unsigned long address, pmd_t *pmdp)
106{
107 BUILD_BUG();
108 return 0;
109}
110#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
111#endif
112
113#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
114static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
115 unsigned long address,
116 pte_t *ptep)
117{
118 pte_t pte = *ptep;
119 pte_clear(mm, address, ptep);
120 return pte;
121}
122#endif
123
124#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
125#ifdef CONFIG_TRANSPARENT_HUGEPAGE
126static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
127 unsigned long address,
128 pmd_t *pmdp)
129{
130 pmd_t pmd = *pmdp;
131 pmd_clear(pmdp);
132 return pmd;
133}
134#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
135#endif
136
137#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
138#ifdef CONFIG_TRANSPARENT_HUGEPAGE
139static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
140 unsigned long address, pmd_t *pmdp,
141 int full)
142{
143 return pmdp_huge_get_and_clear(mm, address, pmdp);
144}
145#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
146#endif
147
148#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
149static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
150 unsigned long address, pte_t *ptep,
151 int full)
152{
153 pte_t pte;
154 pte = ptep_get_and_clear(mm, address, ptep);
155 return pte;
156}
157#endif
158
159/*
160 * Some architectures may be able to avoid expensive synchronization
161 * primitives when modifications are made to PTE's which are already
162 * not present, or in the process of an address space destruction.
163 */
164#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
165static inline void pte_clear_not_present_full(struct mm_struct *mm,
166 unsigned long address,
167 pte_t *ptep,
168 int full)
169{
170 pte_clear(mm, address, ptep);
171}
172#endif
173
174#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
175extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
176 unsigned long address,
177 pte_t *ptep);
178#endif
179
180#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
181extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
182 unsigned long address,
183 pmd_t *pmdp);
184#endif
185
186#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
187struct mm_struct;
188static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
189{
190 pte_t old_pte = *ptep;
191 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
192}
193#endif
194
195#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
196#ifdef CONFIG_TRANSPARENT_HUGEPAGE
197static inline void pmdp_set_wrprotect(struct mm_struct *mm,
198 unsigned long address, pmd_t *pmdp)
199{
200 pmd_t old_pmd = *pmdp;
201 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
202}
203#else
204static inline void pmdp_set_wrprotect(struct mm_struct *mm,
205 unsigned long address, pmd_t *pmdp)
206{
207 BUILD_BUG();
208}
209#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
210#endif
211
212#ifndef pmdp_collapse_flush
213#ifdef CONFIG_TRANSPARENT_HUGEPAGE
214extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
215 unsigned long address, pmd_t *pmdp);
216#else
217static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
218 unsigned long address,
219 pmd_t *pmdp)
220{
221 BUILD_BUG();
222 return *pmdp;
223}
224#define pmdp_collapse_flush pmdp_collapse_flush
225#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
226#endif
227
228#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
229extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
230 pgtable_t pgtable);
231#endif
232
233#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
234extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
235#endif
236
237#ifndef __HAVE_ARCH_PMDP_INVALIDATE
238extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
239 pmd_t *pmdp);
240#endif
241
242#ifndef __HAVE_ARCH_PMDP_HUGE_SPLIT_PREPARE
243static inline void pmdp_huge_split_prepare(struct vm_area_struct *vma,
244 unsigned long address, pmd_t *pmdp)
245{
246
247}
248#endif
249
250#ifndef __HAVE_ARCH_PTE_SAME
251static inline int pte_same(pte_t pte_a, pte_t pte_b)
252{
253 return pte_val(pte_a) == pte_val(pte_b);
254}
255#endif
256
257#ifndef __HAVE_ARCH_PTE_UNUSED
258/*
259 * Some architectures provide facilities to virtualization guests
260 * so that they can flag allocated pages as unused. This allows the
261 * host to transparently reclaim unused pages. This function returns
262 * whether the pte's page is unused.
263 */
264static inline int pte_unused(pte_t pte)
265{
266 return 0;
267}
268#endif
269
270#ifndef __HAVE_ARCH_PMD_SAME
271#ifdef CONFIG_TRANSPARENT_HUGEPAGE
272static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
273{
274 return pmd_val(pmd_a) == pmd_val(pmd_b);
275}
276#else /* CONFIG_TRANSPARENT_HUGEPAGE */
277static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
278{
279 BUILD_BUG();
280 return 0;
281}
282#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
283#endif
284
285#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
286#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
287#endif
288
289#ifndef __HAVE_ARCH_MOVE_PTE
290#define move_pte(pte, prot, old_addr, new_addr) (pte)
291#endif
292
293#ifndef pte_accessible
294# define pte_accessible(mm, pte) ((void)(pte), 1)
295#endif
296
297#ifndef flush_tlb_fix_spurious_fault
298#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
299#endif
300
301#ifndef pgprot_noncached
302#define pgprot_noncached(prot) (prot)
303#endif
304
305#ifndef pgprot_writecombine
306#define pgprot_writecombine pgprot_noncached
307#endif
308
309#ifndef pgprot_writethrough
310#define pgprot_writethrough pgprot_noncached
311#endif
312
313#ifndef pgprot_device
314#define pgprot_device pgprot_noncached
315#endif
316
317#ifndef pgprot_modify
318#define pgprot_modify pgprot_modify
319static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
320{
321 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
322 newprot = pgprot_noncached(newprot);
323 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
324 newprot = pgprot_writecombine(newprot);
325 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
326 newprot = pgprot_device(newprot);
327 return newprot;
328}
329#endif
330
331/*
332 * When walking page tables, get the address of the next boundary,
333 * or the end address of the range if that comes earlier. Although no
334 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
335 */
336
337#define pgd_addr_end(addr, end) \
338({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
339 (__boundary - 1 < (end) - 1)? __boundary: (end); \
340})
341
342#ifndef pud_addr_end
343#define pud_addr_end(addr, end) \
344({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
345 (__boundary - 1 < (end) - 1)? __boundary: (end); \
346})
347#endif
348
349#ifndef pmd_addr_end
350#define pmd_addr_end(addr, end) \
351({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
352 (__boundary - 1 < (end) - 1)? __boundary: (end); \
353})
354#endif
355
356/*
357 * When walking page tables, we usually want to skip any p?d_none entries;
358 * and any p?d_bad entries - reporting the error before resetting to none.
359 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
360 */
361void pgd_clear_bad(pgd_t *);
362void pud_clear_bad(pud_t *);
363void pmd_clear_bad(pmd_t *);
364
365static inline int pgd_none_or_clear_bad(pgd_t *pgd)
366{
367 if (pgd_none(*pgd))
368 return 1;
369 if (unlikely(pgd_bad(*pgd))) {
370 pgd_clear_bad(pgd);
371 return 1;
372 }
373 return 0;
374}
375
376static inline int pud_none_or_clear_bad(pud_t *pud)
377{
378 if (pud_none(*pud))
379 return 1;
380 if (unlikely(pud_bad(*pud))) {
381 pud_clear_bad(pud);
382 return 1;
383 }
384 return 0;
385}
386
387static inline int pmd_none_or_clear_bad(pmd_t *pmd)
388{
389 if (pmd_none(*pmd))
390 return 1;
391 if (unlikely(pmd_bad(*pmd))) {
392 pmd_clear_bad(pmd);
393 return 1;
394 }
395 return 0;
396}
397
398static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
399 unsigned long addr,
400 pte_t *ptep)
401{
402 /*
403 * Get the current pte state, but zero it out to make it
404 * non-present, preventing the hardware from asynchronously
405 * updating it.
406 */
407 return ptep_get_and_clear(mm, addr, ptep);
408}
409
410static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
411 unsigned long addr,
412 pte_t *ptep, pte_t pte)
413{
414 /*
415 * The pte is non-present, so there's no hardware state to
416 * preserve.
417 */
418 set_pte_at(mm, addr, ptep, pte);
419}
420
421#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
422/*
423 * Start a pte protection read-modify-write transaction, which
424 * protects against asynchronous hardware modifications to the pte.
425 * The intention is not to prevent the hardware from making pte
426 * updates, but to prevent any updates it may make from being lost.
427 *
428 * This does not protect against other software modifications of the
429 * pte; the appropriate pte lock must be held over the transation.
430 *
431 * Note that this interface is intended to be batchable, meaning that
432 * ptep_modify_prot_commit may not actually update the pte, but merely
433 * queue the update to be done at some later time. The update must be
434 * actually committed before the pte lock is released, however.
435 */
436static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
437 unsigned long addr,
438 pte_t *ptep)
439{
440 return __ptep_modify_prot_start(mm, addr, ptep);
441}
442
443/*
444 * Commit an update to a pte, leaving any hardware-controlled bits in
445 * the PTE unmodified.
446 */
447static inline void ptep_modify_prot_commit(struct mm_struct *mm,
448 unsigned long addr,
449 pte_t *ptep, pte_t pte)
450{
451 __ptep_modify_prot_commit(mm, addr, ptep, pte);
452}
453#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
454#endif /* CONFIG_MMU */
455
456/*
457 * A facility to provide lazy MMU batching. This allows PTE updates and
458 * page invalidations to be delayed until a call to leave lazy MMU mode
459 * is issued. Some architectures may benefit from doing this, and it is
460 * beneficial for both shadow and direct mode hypervisors, which may batch
461 * the PTE updates which happen during this window. Note that using this
462 * interface requires that read hazards be removed from the code. A read
463 * hazard could result in the direct mode hypervisor case, since the actual
464 * write to the page tables may not yet have taken place, so reads though
465 * a raw PTE pointer after it has been modified are not guaranteed to be
466 * up to date. This mode can only be entered and left under the protection of
467 * the page table locks for all page tables which may be modified. In the UP
468 * case, this is required so that preemption is disabled, and in the SMP case,
469 * it must synchronize the delayed page table writes properly on other CPUs.
470 */
471#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
472#define arch_enter_lazy_mmu_mode() do {} while (0)
473#define arch_leave_lazy_mmu_mode() do {} while (0)
474#define arch_flush_lazy_mmu_mode() do {} while (0)
475#endif
476
477/*
478 * A facility to provide batching of the reload of page tables and
479 * other process state with the actual context switch code for
480 * paravirtualized guests. By convention, only one of the batched
481 * update (lazy) modes (CPU, MMU) should be active at any given time,
482 * entry should never be nested, and entry and exits should always be
483 * paired. This is for sanity of maintaining and reasoning about the
484 * kernel code. In this case, the exit (end of the context switch) is
485 * in architecture-specific code, and so doesn't need a generic
486 * definition.
487 */
488#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
489#define arch_start_context_switch(prev) do {} while (0)
490#endif
491
492#ifndef CONFIG_HAVE_ARCH_SOFT_DIRTY
493static inline int pte_soft_dirty(pte_t pte)
494{
495 return 0;
496}
497
498static inline int pmd_soft_dirty(pmd_t pmd)
499{
500 return 0;
501}
502
503static inline pte_t pte_mksoft_dirty(pte_t pte)
504{
505 return pte;
506}
507
508static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
509{
510 return pmd;
511}
512
513static inline pte_t pte_clear_soft_dirty(pte_t pte)
514{
515 return pte;
516}
517
518static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
519{
520 return pmd;
521}
522
523static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
524{
525 return pte;
526}
527
528static inline int pte_swp_soft_dirty(pte_t pte)
529{
530 return 0;
531}
532
533static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
534{
535 return pte;
536}
537#endif
538
539#ifndef __HAVE_PFNMAP_TRACKING
540/*
541 * Interfaces that can be used by architecture code to keep track of
542 * memory type of pfn mappings specified by the remap_pfn_range,
543 * vm_insert_pfn.
544 */
545
546/*
547 * track_pfn_remap is called when a _new_ pfn mapping is being established
548 * by remap_pfn_range() for physical range indicated by pfn and size.
549 */
550static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
551 unsigned long pfn, unsigned long addr,
552 unsigned long size)
553{
554 return 0;
555}
556
557/*
558 * track_pfn_insert is called when a _new_ single pfn is established
559 * by vm_insert_pfn().
560 */
561static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
562 pfn_t pfn)
563{
564}
565
566/*
567 * track_pfn_copy is called when vma that is covering the pfnmap gets
568 * copied through copy_page_range().
569 */
570static inline int track_pfn_copy(struct vm_area_struct *vma)
571{
572 return 0;
573}
574
575/*
576 * untrack_pfn is called while unmapping a pfnmap for a region.
577 * untrack can be called for a specific region indicated by pfn and size or
578 * can be for the entire vma (in which case pfn, size are zero).
579 */
580static inline void untrack_pfn(struct vm_area_struct *vma,
581 unsigned long pfn, unsigned long size)
582{
583}
584
585/*
586 * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
587 */
588static inline void untrack_pfn_moved(struct vm_area_struct *vma)
589{
590}
591#else
592extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
593 unsigned long pfn, unsigned long addr,
594 unsigned long size);
595extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
596 pfn_t pfn);
597extern int track_pfn_copy(struct vm_area_struct *vma);
598extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
599 unsigned long size);
600extern void untrack_pfn_moved(struct vm_area_struct *vma);
601#endif
602
603#ifdef __HAVE_COLOR_ZERO_PAGE
604static inline int is_zero_pfn(unsigned long pfn)
605{
606 extern unsigned long zero_pfn;
607 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
608 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
609}
610
611#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
612
613#else
614static inline int is_zero_pfn(unsigned long pfn)
615{
616 extern unsigned long zero_pfn;
617 return pfn == zero_pfn;
618}
619
620static inline unsigned long my_zero_pfn(unsigned long addr)
621{
622 extern unsigned long zero_pfn;
623 return zero_pfn;
624}
625#endif
626
627#ifdef CONFIG_MMU
628
629#ifndef CONFIG_TRANSPARENT_HUGEPAGE
630static inline int pmd_trans_huge(pmd_t pmd)
631{
632 return 0;
633}
634#ifndef __HAVE_ARCH_PMD_WRITE
635static inline int pmd_write(pmd_t pmd)
636{
637 BUG();
638 return 0;
639}
640#endif /* __HAVE_ARCH_PMD_WRITE */
641#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
642
643#ifndef pmd_read_atomic
644static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
645{
646 /*
647 * Depend on compiler for an atomic pmd read. NOTE: this is
648 * only going to work, if the pmdval_t isn't larger than
649 * an unsigned long.
650 */
651 return *pmdp;
652}
653#endif
654
655#ifndef arch_needs_pgtable_deposit
656#define arch_needs_pgtable_deposit() (false)
657#endif
658/*
659 * This function is meant to be used by sites walking pagetables with
660 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
661 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
662 * into a null pmd and the transhuge page fault can convert a null pmd
663 * into an hugepmd or into a regular pmd (if the hugepage allocation
664 * fails). While holding the mmap_sem in read mode the pmd becomes
665 * stable and stops changing under us only if it's not null and not a
666 * transhuge pmd. When those races occurs and this function makes a
667 * difference vs the standard pmd_none_or_clear_bad, the result is
668 * undefined so behaving like if the pmd was none is safe (because it
669 * can return none anyway). The compiler level barrier() is critically
670 * important to compute the two checks atomically on the same pmdval.
671 *
672 * For 32bit kernels with a 64bit large pmd_t this automatically takes
673 * care of reading the pmd atomically to avoid SMP race conditions
674 * against pmd_populate() when the mmap_sem is hold for reading by the
675 * caller (a special atomic read not done by "gcc" as in the generic
676 * version above, is also needed when THP is disabled because the page
677 * fault can populate the pmd from under us).
678 */
679static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
680{
681 pmd_t pmdval = pmd_read_atomic(pmd);
682 /*
683 * The barrier will stabilize the pmdval in a register or on
684 * the stack so that it will stop changing under the code.
685 *
686 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
687 * pmd_read_atomic is allowed to return a not atomic pmdval
688 * (for example pointing to an hugepage that has never been
689 * mapped in the pmd). The below checks will only care about
690 * the low part of the pmd with 32bit PAE x86 anyway, with the
691 * exception of pmd_none(). So the important thing is that if
692 * the low part of the pmd is found null, the high part will
693 * be also null or the pmd_none() check below would be
694 * confused.
695 */
696#ifdef CONFIG_TRANSPARENT_HUGEPAGE
697 barrier();
698#endif
699 if (pmd_none(pmdval) || pmd_trans_huge(pmdval))
700 return 1;
701 if (unlikely(pmd_bad(pmdval))) {
702 pmd_clear_bad(pmd);
703 return 1;
704 }
705 return 0;
706}
707
708/*
709 * This is a noop if Transparent Hugepage Support is not built into
710 * the kernel. Otherwise it is equivalent to
711 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
712 * places that already verified the pmd is not none and they want to
713 * walk ptes while holding the mmap sem in read mode (write mode don't
714 * need this). If THP is not enabled, the pmd can't go away under the
715 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
716 * run a pmd_trans_unstable before walking the ptes after
717 * split_huge_page_pmd returns (because it may have run when the pmd
718 * become null, but then a page fault can map in a THP and not a
719 * regular page).
720 */
721static inline int pmd_trans_unstable(pmd_t *pmd)
722{
723#ifdef CONFIG_TRANSPARENT_HUGEPAGE
724 return pmd_none_or_trans_huge_or_clear_bad(pmd);
725#else
726 return 0;
727#endif
728}
729
730#ifndef CONFIG_NUMA_BALANCING
731/*
732 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
733 * the only case the kernel cares is for NUMA balancing and is only ever set
734 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
735 * _PAGE_PROTNONE so by by default, implement the helper as "always no". It
736 * is the responsibility of the caller to distinguish between PROT_NONE
737 * protections and NUMA hinting fault protections.
738 */
739static inline int pte_protnone(pte_t pte)
740{
741 return 0;
742}
743
744static inline int pmd_protnone(pmd_t pmd)
745{
746 return 0;
747}
748#endif /* CONFIG_NUMA_BALANCING */
749
750#endif /* CONFIG_MMU */
751
752#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
753int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
754int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
755int pud_clear_huge(pud_t *pud);
756int pmd_clear_huge(pmd_t *pmd);
757#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
758static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
759{
760 return 0;
761}
762static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
763{
764 return 0;
765}
766static inline int pud_clear_huge(pud_t *pud)
767{
768 return 0;
769}
770static inline int pmd_clear_huge(pmd_t *pmd)
771{
772 return 0;
773}
774#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
775
776#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
777#ifdef CONFIG_TRANSPARENT_HUGEPAGE
778/*
779 * ARCHes with special requirements for evicting THP backing TLB entries can
780 * implement this. Otherwise also, it can help optimize normal TLB flush in
781 * THP regime. stock flush_tlb_range() typically has optimization to nuke the
782 * entire TLB TLB if flush span is greater than a threshold, which will
783 * likely be true for a single huge page. Thus a single thp flush will
784 * invalidate the entire TLB which is not desitable.
785 * e.g. see arch/arc: flush_pmd_tlb_range
786 */
787#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
788#else
789#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
790#endif
791#endif
792
793struct file;
794int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
795 unsigned long size, pgprot_t *vma_prot);
796#endif /* !__ASSEMBLY__ */
797
798#ifndef io_remap_pfn_range
799#define io_remap_pfn_range remap_pfn_range
800#endif
801
802#ifndef has_transparent_hugepage
803#ifdef CONFIG_TRANSPARENT_HUGEPAGE
804#define has_transparent_hugepage() 1
805#else
806#define has_transparent_hugepage() 0
807#endif
808#endif
809
810#endif /* _ASM_GENERIC_PGTABLE_H */
1#ifndef _ASM_GENERIC_PGTABLE_H
2#define _ASM_GENERIC_PGTABLE_H
3
4#ifndef __ASSEMBLY__
5#ifdef CONFIG_MMU
6
7#include <linux/mm_types.h>
8#include <linux/bug.h>
9
10#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
11extern int ptep_set_access_flags(struct vm_area_struct *vma,
12 unsigned long address, pte_t *ptep,
13 pte_t entry, int dirty);
14#endif
15
16#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
17extern int pmdp_set_access_flags(struct vm_area_struct *vma,
18 unsigned long address, pmd_t *pmdp,
19 pmd_t entry, int dirty);
20#endif
21
22#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
23static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
24 unsigned long address,
25 pte_t *ptep)
26{
27 pte_t pte = *ptep;
28 int r = 1;
29 if (!pte_young(pte))
30 r = 0;
31 else
32 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
33 return r;
34}
35#endif
36
37#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
38#ifdef CONFIG_TRANSPARENT_HUGEPAGE
39static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
40 unsigned long address,
41 pmd_t *pmdp)
42{
43 pmd_t pmd = *pmdp;
44 int r = 1;
45 if (!pmd_young(pmd))
46 r = 0;
47 else
48 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
49 return r;
50}
51#else /* CONFIG_TRANSPARENT_HUGEPAGE */
52static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
53 unsigned long address,
54 pmd_t *pmdp)
55{
56 BUG();
57 return 0;
58}
59#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
60#endif
61
62#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
63int ptep_clear_flush_young(struct vm_area_struct *vma,
64 unsigned long address, pte_t *ptep);
65#endif
66
67#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
68int pmdp_clear_flush_young(struct vm_area_struct *vma,
69 unsigned long address, pmd_t *pmdp);
70#endif
71
72#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
73static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
74 unsigned long address,
75 pte_t *ptep)
76{
77 pte_t pte = *ptep;
78 pte_clear(mm, address, ptep);
79 return pte;
80}
81#endif
82
83#ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR
84#ifdef CONFIG_TRANSPARENT_HUGEPAGE
85static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
86 unsigned long address,
87 pmd_t *pmdp)
88{
89 pmd_t pmd = *pmdp;
90 pmd_clear(mm, address, pmdp);
91 return pmd;
92}
93#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
94#endif
95
96#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
97static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
98 unsigned long address, pte_t *ptep,
99 int full)
100{
101 pte_t pte;
102 pte = ptep_get_and_clear(mm, address, ptep);
103 return pte;
104}
105#endif
106
107/*
108 * Some architectures may be able to avoid expensive synchronization
109 * primitives when modifications are made to PTE's which are already
110 * not present, or in the process of an address space destruction.
111 */
112#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
113static inline void pte_clear_not_present_full(struct mm_struct *mm,
114 unsigned long address,
115 pte_t *ptep,
116 int full)
117{
118 pte_clear(mm, address, ptep);
119}
120#endif
121
122#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
123extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
124 unsigned long address,
125 pte_t *ptep);
126#endif
127
128#ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH
129extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
130 unsigned long address,
131 pmd_t *pmdp);
132#endif
133
134#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
135struct mm_struct;
136static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
137{
138 pte_t old_pte = *ptep;
139 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
140}
141#endif
142
143#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
144#ifdef CONFIG_TRANSPARENT_HUGEPAGE
145static inline void pmdp_set_wrprotect(struct mm_struct *mm,
146 unsigned long address, pmd_t *pmdp)
147{
148 pmd_t old_pmd = *pmdp;
149 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
150}
151#else /* CONFIG_TRANSPARENT_HUGEPAGE */
152static inline void pmdp_set_wrprotect(struct mm_struct *mm,
153 unsigned long address, pmd_t *pmdp)
154{
155 BUG();
156}
157#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
158#endif
159
160#ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
161extern void pmdp_splitting_flush(struct vm_area_struct *vma,
162 unsigned long address, pmd_t *pmdp);
163#endif
164
165#ifndef __HAVE_ARCH_PTE_SAME
166static inline int pte_same(pte_t pte_a, pte_t pte_b)
167{
168 return pte_val(pte_a) == pte_val(pte_b);
169}
170#endif
171
172#ifndef __HAVE_ARCH_PMD_SAME
173#ifdef CONFIG_TRANSPARENT_HUGEPAGE
174static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
175{
176 return pmd_val(pmd_a) == pmd_val(pmd_b);
177}
178#else /* CONFIG_TRANSPARENT_HUGEPAGE */
179static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
180{
181 BUG();
182 return 0;
183}
184#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
185#endif
186
187#ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
188#define page_test_and_clear_dirty(pfn, mapped) (0)
189#endif
190
191#ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
192#define pte_maybe_dirty(pte) pte_dirty(pte)
193#else
194#define pte_maybe_dirty(pte) (1)
195#endif
196
197#ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
198#define page_test_and_clear_young(pfn) (0)
199#endif
200
201#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
202#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
203#endif
204
205#ifndef __HAVE_ARCH_MOVE_PTE
206#define move_pte(pte, prot, old_addr, new_addr) (pte)
207#endif
208
209#ifndef flush_tlb_fix_spurious_fault
210#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
211#endif
212
213#ifndef pgprot_noncached
214#define pgprot_noncached(prot) (prot)
215#endif
216
217#ifndef pgprot_writecombine
218#define pgprot_writecombine pgprot_noncached
219#endif
220
221/*
222 * When walking page tables, get the address of the next boundary,
223 * or the end address of the range if that comes earlier. Although no
224 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
225 */
226
227#define pgd_addr_end(addr, end) \
228({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
229 (__boundary - 1 < (end) - 1)? __boundary: (end); \
230})
231
232#ifndef pud_addr_end
233#define pud_addr_end(addr, end) \
234({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
235 (__boundary - 1 < (end) - 1)? __boundary: (end); \
236})
237#endif
238
239#ifndef pmd_addr_end
240#define pmd_addr_end(addr, end) \
241({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
242 (__boundary - 1 < (end) - 1)? __boundary: (end); \
243})
244#endif
245
246/*
247 * When walking page tables, we usually want to skip any p?d_none entries;
248 * and any p?d_bad entries - reporting the error before resetting to none.
249 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
250 */
251void pgd_clear_bad(pgd_t *);
252void pud_clear_bad(pud_t *);
253void pmd_clear_bad(pmd_t *);
254
255static inline int pgd_none_or_clear_bad(pgd_t *pgd)
256{
257 if (pgd_none(*pgd))
258 return 1;
259 if (unlikely(pgd_bad(*pgd))) {
260 pgd_clear_bad(pgd);
261 return 1;
262 }
263 return 0;
264}
265
266static inline int pud_none_or_clear_bad(pud_t *pud)
267{
268 if (pud_none(*pud))
269 return 1;
270 if (unlikely(pud_bad(*pud))) {
271 pud_clear_bad(pud);
272 return 1;
273 }
274 return 0;
275}
276
277static inline int pmd_none_or_clear_bad(pmd_t *pmd)
278{
279 if (pmd_none(*pmd))
280 return 1;
281 if (unlikely(pmd_bad(*pmd))) {
282 pmd_clear_bad(pmd);
283 return 1;
284 }
285 return 0;
286}
287
288static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
289 unsigned long addr,
290 pte_t *ptep)
291{
292 /*
293 * Get the current pte state, but zero it out to make it
294 * non-present, preventing the hardware from asynchronously
295 * updating it.
296 */
297 return ptep_get_and_clear(mm, addr, ptep);
298}
299
300static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
301 unsigned long addr,
302 pte_t *ptep, pte_t pte)
303{
304 /*
305 * The pte is non-present, so there's no hardware state to
306 * preserve.
307 */
308 set_pte_at(mm, addr, ptep, pte);
309}
310
311#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
312/*
313 * Start a pte protection read-modify-write transaction, which
314 * protects against asynchronous hardware modifications to the pte.
315 * The intention is not to prevent the hardware from making pte
316 * updates, but to prevent any updates it may make from being lost.
317 *
318 * This does not protect against other software modifications of the
319 * pte; the appropriate pte lock must be held over the transation.
320 *
321 * Note that this interface is intended to be batchable, meaning that
322 * ptep_modify_prot_commit may not actually update the pte, but merely
323 * queue the update to be done at some later time. The update must be
324 * actually committed before the pte lock is released, however.
325 */
326static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
327 unsigned long addr,
328 pte_t *ptep)
329{
330 return __ptep_modify_prot_start(mm, addr, ptep);
331}
332
333/*
334 * Commit an update to a pte, leaving any hardware-controlled bits in
335 * the PTE unmodified.
336 */
337static inline void ptep_modify_prot_commit(struct mm_struct *mm,
338 unsigned long addr,
339 pte_t *ptep, pte_t pte)
340{
341 __ptep_modify_prot_commit(mm, addr, ptep, pte);
342}
343#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
344#endif /* CONFIG_MMU */
345
346/*
347 * A facility to provide lazy MMU batching. This allows PTE updates and
348 * page invalidations to be delayed until a call to leave lazy MMU mode
349 * is issued. Some architectures may benefit from doing this, and it is
350 * beneficial for both shadow and direct mode hypervisors, which may batch
351 * the PTE updates which happen during this window. Note that using this
352 * interface requires that read hazards be removed from the code. A read
353 * hazard could result in the direct mode hypervisor case, since the actual
354 * write to the page tables may not yet have taken place, so reads though
355 * a raw PTE pointer after it has been modified are not guaranteed to be
356 * up to date. This mode can only be entered and left under the protection of
357 * the page table locks for all page tables which may be modified. In the UP
358 * case, this is required so that preemption is disabled, and in the SMP case,
359 * it must synchronize the delayed page table writes properly on other CPUs.
360 */
361#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
362#define arch_enter_lazy_mmu_mode() do {} while (0)
363#define arch_leave_lazy_mmu_mode() do {} while (0)
364#define arch_flush_lazy_mmu_mode() do {} while (0)
365#endif
366
367/*
368 * A facility to provide batching of the reload of page tables and
369 * other process state with the actual context switch code for
370 * paravirtualized guests. By convention, only one of the batched
371 * update (lazy) modes (CPU, MMU) should be active at any given time,
372 * entry should never be nested, and entry and exits should always be
373 * paired. This is for sanity of maintaining and reasoning about the
374 * kernel code. In this case, the exit (end of the context switch) is
375 * in architecture-specific code, and so doesn't need a generic
376 * definition.
377 */
378#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
379#define arch_start_context_switch(prev) do {} while (0)
380#endif
381
382#ifndef __HAVE_PFNMAP_TRACKING
383/*
384 * Interface that can be used by architecture code to keep track of
385 * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
386 *
387 * track_pfn_vma_new is called when a _new_ pfn mapping is being established
388 * for physical range indicated by pfn and size.
389 */
390static inline int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
391 unsigned long pfn, unsigned long size)
392{
393 return 0;
394}
395
396/*
397 * Interface that can be used by architecture code to keep track of
398 * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
399 *
400 * track_pfn_vma_copy is called when vma that is covering the pfnmap gets
401 * copied through copy_page_range().
402 */
403static inline int track_pfn_vma_copy(struct vm_area_struct *vma)
404{
405 return 0;
406}
407
408/*
409 * Interface that can be used by architecture code to keep track of
410 * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
411 *
412 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
413 * untrack can be called for a specific region indicated by pfn and size or
414 * can be for the entire vma (in which case size can be zero).
415 */
416static inline void untrack_pfn_vma(struct vm_area_struct *vma,
417 unsigned long pfn, unsigned long size)
418{
419}
420#else
421extern int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
422 unsigned long pfn, unsigned long size);
423extern int track_pfn_vma_copy(struct vm_area_struct *vma);
424extern void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn,
425 unsigned long size);
426#endif
427
428#ifdef CONFIG_MMU
429
430#ifndef CONFIG_TRANSPARENT_HUGEPAGE
431static inline int pmd_trans_huge(pmd_t pmd)
432{
433 return 0;
434}
435static inline int pmd_trans_splitting(pmd_t pmd)
436{
437 return 0;
438}
439#ifndef __HAVE_ARCH_PMD_WRITE
440static inline int pmd_write(pmd_t pmd)
441{
442 BUG();
443 return 0;
444}
445#endif /* __HAVE_ARCH_PMD_WRITE */
446#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
447
448#ifndef pmd_read_atomic
449static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
450{
451 /*
452 * Depend on compiler for an atomic pmd read. NOTE: this is
453 * only going to work, if the pmdval_t isn't larger than
454 * an unsigned long.
455 */
456 return *pmdp;
457}
458#endif
459
460/*
461 * This function is meant to be used by sites walking pagetables with
462 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
463 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
464 * into a null pmd and the transhuge page fault can convert a null pmd
465 * into an hugepmd or into a regular pmd (if the hugepage allocation
466 * fails). While holding the mmap_sem in read mode the pmd becomes
467 * stable and stops changing under us only if it's not null and not a
468 * transhuge pmd. When those races occurs and this function makes a
469 * difference vs the standard pmd_none_or_clear_bad, the result is
470 * undefined so behaving like if the pmd was none is safe (because it
471 * can return none anyway). The compiler level barrier() is critically
472 * important to compute the two checks atomically on the same pmdval.
473 *
474 * For 32bit kernels with a 64bit large pmd_t this automatically takes
475 * care of reading the pmd atomically to avoid SMP race conditions
476 * against pmd_populate() when the mmap_sem is hold for reading by the
477 * caller (a special atomic read not done by "gcc" as in the generic
478 * version above, is also needed when THP is disabled because the page
479 * fault can populate the pmd from under us).
480 */
481static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
482{
483 pmd_t pmdval = pmd_read_atomic(pmd);
484 /*
485 * The barrier will stabilize the pmdval in a register or on
486 * the stack so that it will stop changing under the code.
487 *
488 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
489 * pmd_read_atomic is allowed to return a not atomic pmdval
490 * (for example pointing to an hugepage that has never been
491 * mapped in the pmd). The below checks will only care about
492 * the low part of the pmd with 32bit PAE x86 anyway, with the
493 * exception of pmd_none(). So the important thing is that if
494 * the low part of the pmd is found null, the high part will
495 * be also null or the pmd_none() check below would be
496 * confused.
497 */
498#ifdef CONFIG_TRANSPARENT_HUGEPAGE
499 barrier();
500#endif
501 if (pmd_none(pmdval))
502 return 1;
503 if (unlikely(pmd_bad(pmdval))) {
504 if (!pmd_trans_huge(pmdval))
505 pmd_clear_bad(pmd);
506 return 1;
507 }
508 return 0;
509}
510
511/*
512 * This is a noop if Transparent Hugepage Support is not built into
513 * the kernel. Otherwise it is equivalent to
514 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
515 * places that already verified the pmd is not none and they want to
516 * walk ptes while holding the mmap sem in read mode (write mode don't
517 * need this). If THP is not enabled, the pmd can't go away under the
518 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
519 * run a pmd_trans_unstable before walking the ptes after
520 * split_huge_page_pmd returns (because it may have run when the pmd
521 * become null, but then a page fault can map in a THP and not a
522 * regular page).
523 */
524static inline int pmd_trans_unstable(pmd_t *pmd)
525{
526#ifdef CONFIG_TRANSPARENT_HUGEPAGE
527 return pmd_none_or_trans_huge_or_clear_bad(pmd);
528#else
529 return 0;
530#endif
531}
532
533#endif /* CONFIG_MMU */
534
535#endif /* !__ASSEMBLY__ */
536
537#endif /* _ASM_GENERIC_PGTABLE_H */