Linux Audio

Check our new training course

Loading...
v4.10.11
  1/*
  2 *  linux/fs/pnode.c
  3 *
  4 * (C) Copyright IBM Corporation 2005.
  5 *	Released under GPL v2.
  6 *	Author : Ram Pai (linuxram@us.ibm.com)
  7 *
  8 */
  9#include <linux/mnt_namespace.h>
 10#include <linux/mount.h>
 11#include <linux/fs.h>
 12#include <linux/nsproxy.h>
 13#include "internal.h"
 14#include "pnode.h"
 15
 16/* return the next shared peer mount of @p */
 17static inline struct mount *next_peer(struct mount *p)
 18{
 19	return list_entry(p->mnt_share.next, struct mount, mnt_share);
 20}
 21
 22static inline struct mount *first_slave(struct mount *p)
 23{
 24	return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave);
 25}
 26
 27static inline struct mount *next_slave(struct mount *p)
 28{
 29	return list_entry(p->mnt_slave.next, struct mount, mnt_slave);
 30}
 31
 32static struct mount *get_peer_under_root(struct mount *mnt,
 33					 struct mnt_namespace *ns,
 34					 const struct path *root)
 35{
 36	struct mount *m = mnt;
 37
 38	do {
 39		/* Check the namespace first for optimization */
 40		if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root))
 41			return m;
 42
 43		m = next_peer(m);
 44	} while (m != mnt);
 45
 46	return NULL;
 47}
 48
 49/*
 50 * Get ID of closest dominating peer group having a representative
 51 * under the given root.
 52 *
 53 * Caller must hold namespace_sem
 54 */
 55int get_dominating_id(struct mount *mnt, const struct path *root)
 56{
 57	struct mount *m;
 58
 59	for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) {
 60		struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root);
 61		if (d)
 62			return d->mnt_group_id;
 63	}
 64
 65	return 0;
 66}
 67
 68static int do_make_slave(struct mount *mnt)
 69{
 70	struct mount *master, *slave_mnt;
 
 71
 72	if (list_empty(&mnt->mnt_share)) {
 73		if (IS_MNT_SHARED(mnt)) {
 74			mnt_release_group_id(mnt);
 75			CLEAR_MNT_SHARED(mnt);
 76		}
 77		master = mnt->mnt_master;
 78		if (!master) {
 79			struct list_head *p = &mnt->mnt_slave_list;
 80			while (!list_empty(p)) {
 81				slave_mnt = list_first_entry(p,
 82						struct mount, mnt_slave);
 83				list_del_init(&slave_mnt->mnt_slave);
 84				slave_mnt->mnt_master = NULL;
 85			}
 86			return 0;
 87		}
 
 
 
 
 
 
 
 
 
 
 
 
 88	} else {
 89		struct mount *m;
 90		/*
 91		 * slave 'mnt' to a peer mount that has the
 92		 * same root dentry. If none is available then
 93		 * slave it to anything that is available.
 94		 */
 95		for (m = master = next_peer(mnt); m != mnt; m = next_peer(m)) {
 96			if (m->mnt.mnt_root == mnt->mnt.mnt_root) {
 97				master = m;
 98				break;
 99			}
100		}
101		list_del_init(&mnt->mnt_share);
102		mnt->mnt_group_id = 0;
103		CLEAR_MNT_SHARED(mnt);
104	}
105	list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave)
106		slave_mnt->mnt_master = master;
107	list_move(&mnt->mnt_slave, &master->mnt_slave_list);
108	list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev);
109	INIT_LIST_HEAD(&mnt->mnt_slave_list);
110	mnt->mnt_master = master;
 
111	return 0;
112}
113
114/*
115 * vfsmount lock must be held for write
116 */
117void change_mnt_propagation(struct mount *mnt, int type)
118{
119	if (type == MS_SHARED) {
120		set_mnt_shared(mnt);
121		return;
122	}
123	do_make_slave(mnt);
124	if (type != MS_SLAVE) {
125		list_del_init(&mnt->mnt_slave);
126		mnt->mnt_master = NULL;
127		if (type == MS_UNBINDABLE)
128			mnt->mnt.mnt_flags |= MNT_UNBINDABLE;
129		else
130			mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE;
131	}
132}
133
134/*
135 * get the next mount in the propagation tree.
136 * @m: the mount seen last
137 * @origin: the original mount from where the tree walk initiated
138 *
139 * Note that peer groups form contiguous segments of slave lists.
140 * We rely on that in get_source() to be able to find out if
141 * vfsmount found while iterating with propagation_next() is
142 * a peer of one we'd found earlier.
143 */
144static struct mount *propagation_next(struct mount *m,
145					 struct mount *origin)
146{
147	/* are there any slaves of this mount? */
148	if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
149		return first_slave(m);
150
151	while (1) {
152		struct mount *master = m->mnt_master;
153
154		if (master == origin->mnt_master) {
155			struct mount *next = next_peer(m);
156			return (next == origin) ? NULL : next;
157		} else if (m->mnt_slave.next != &master->mnt_slave_list)
158			return next_slave(m);
159
160		/* back at master */
161		m = master;
162	}
163}
164
165static struct mount *next_group(struct mount *m, struct mount *origin)
166{
167	while (1) {
168		while (1) {
169			struct mount *next;
170			if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
171				return first_slave(m);
172			next = next_peer(m);
173			if (m->mnt_group_id == origin->mnt_group_id) {
174				if (next == origin)
175					return NULL;
176			} else if (m->mnt_slave.next != &next->mnt_slave)
177				break;
178			m = next;
179		}
180		/* m is the last peer */
181		while (1) {
182			struct mount *master = m->mnt_master;
183			if (m->mnt_slave.next != &master->mnt_slave_list)
184				return next_slave(m);
185			m = next_peer(master);
186			if (master->mnt_group_id == origin->mnt_group_id)
187				break;
188			if (master->mnt_slave.next == &m->mnt_slave)
189				break;
190			m = master;
191		}
192		if (m == origin)
193			return NULL;
194	}
195}
196
197/* all accesses are serialized by namespace_sem */
198static struct user_namespace *user_ns;
199static struct mount *last_dest, *first_source, *last_source, *dest_master;
200static struct mountpoint *mp;
201static struct hlist_head *list;
202
203static inline bool peers(struct mount *m1, struct mount *m2)
204{
205	return m1->mnt_group_id == m2->mnt_group_id && m1->mnt_group_id;
206}
207
208static int propagate_one(struct mount *m)
209{
210	struct mount *child;
211	int type;
212	/* skip ones added by this propagate_mnt() */
213	if (IS_MNT_NEW(m))
214		return 0;
215	/* skip if mountpoint isn't covered by it */
216	if (!is_subdir(mp->m_dentry, m->mnt.mnt_root))
217		return 0;
218	if (peers(m, last_dest)) {
219		type = CL_MAKE_SHARED;
220	} else {
221		struct mount *n, *p;
222		bool done;
223		for (n = m; ; n = p) {
224			p = n->mnt_master;
225			if (p == dest_master || IS_MNT_MARKED(p))
226				break;
227		}
228		do {
229			struct mount *parent = last_source->mnt_parent;
230			if (last_source == first_source)
231				break;
232			done = parent->mnt_master == p;
233			if (done && peers(n, parent))
234				break;
235			last_source = last_source->mnt_master;
236		} while (!done);
237
238		type = CL_SLAVE;
239		/* beginning of peer group among the slaves? */
240		if (IS_MNT_SHARED(m))
241			type |= CL_MAKE_SHARED;
242	}
243		
244	/* Notice when we are propagating across user namespaces */
245	if (m->mnt_ns->user_ns != user_ns)
246		type |= CL_UNPRIVILEGED;
247	child = copy_tree(last_source, last_source->mnt.mnt_root, type);
248	if (IS_ERR(child))
249		return PTR_ERR(child);
250	child->mnt.mnt_flags &= ~MNT_LOCKED;
251	mnt_set_mountpoint(m, mp, child);
252	last_dest = m;
253	last_source = child;
254	if (m->mnt_master != dest_master) {
255		read_seqlock_excl(&mount_lock);
256		SET_MNT_MARK(m->mnt_master);
257		read_sequnlock_excl(&mount_lock);
258	}
259	hlist_add_head(&child->mnt_hash, list);
260	return count_mounts(m->mnt_ns, child);
 
 
 
 
261}
262
263/*
264 * mount 'source_mnt' under the destination 'dest_mnt' at
265 * dentry 'dest_dentry'. And propagate that mount to
266 * all the peer and slave mounts of 'dest_mnt'.
267 * Link all the new mounts into a propagation tree headed at
268 * source_mnt. Also link all the new mounts using ->mnt_list
269 * headed at source_mnt's ->mnt_list
270 *
271 * @dest_mnt: destination mount.
272 * @dest_dentry: destination dentry.
273 * @source_mnt: source mount.
274 * @tree_list : list of heads of trees to be attached.
275 */
276int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp,
277		    struct mount *source_mnt, struct hlist_head *tree_list)
278{
279	struct mount *m, *n;
280	int ret = 0;
 
 
 
 
 
 
 
 
 
281
282	/*
283	 * we don't want to bother passing tons of arguments to
284	 * propagate_one(); everything is serialized by namespace_sem,
285	 * so globals will do just fine.
286	 */
287	user_ns = current->nsproxy->mnt_ns->user_ns;
288	last_dest = dest_mnt;
289	first_source = source_mnt;
290	last_source = source_mnt;
291	mp = dest_mp;
292	list = tree_list;
293	dest_master = dest_mnt->mnt_master;
294
295	/* all peers of dest_mnt, except dest_mnt itself */
296	for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) {
297		ret = propagate_one(n);
298		if (ret)
299			goto out;
300	}
301
302	/* all slave groups */
303	for (m = next_group(dest_mnt, dest_mnt); m;
304			m = next_group(m, dest_mnt)) {
305		/* everything in that slave group */
306		n = m;
307		do {
308			ret = propagate_one(n);
309			if (ret)
310				goto out;
311			n = next_peer(n);
312		} while (n != m);
 
313	}
314out:
315	read_seqlock_excl(&mount_lock);
316	hlist_for_each_entry(n, tree_list, mnt_hash) {
317		m = n->mnt_parent;
318		if (m->mnt_master != dest_mnt->mnt_master)
319			CLEAR_MNT_MARK(m->mnt_master);
320	}
321	read_sequnlock_excl(&mount_lock);
 
322	return ret;
323}
324
325static struct mount *find_topper(struct mount *mnt)
326{
327	/* If there is exactly one mount covering mnt completely return it. */
328	struct mount *child;
329
330	if (!list_is_singular(&mnt->mnt_mounts))
331		return NULL;
332
333	child = list_first_entry(&mnt->mnt_mounts, struct mount, mnt_child);
334	if (child->mnt_mountpoint != mnt->mnt.mnt_root)
335		return NULL;
336
337	return child;
338}
339
340/*
341 * return true if the refcount is greater than count
342 */
343static inline int do_refcount_check(struct mount *mnt, int count)
344{
345	return mnt_get_count(mnt) > count;
 
346}
347
348/*
349 * check if the mount 'mnt' can be unmounted successfully.
350 * @mnt: the mount to be checked for unmount
351 * NOTE: unmounting 'mnt' would naturally propagate to all
352 * other mounts its parent propagates to.
353 * Check if any of these mounts that **do not have submounts**
354 * have more references than 'refcnt'. If so return busy.
355 *
356 * vfsmount lock must be held for write
357 */
358int propagate_mount_busy(struct mount *mnt, int refcnt)
359{
360	struct mount *m, *child, *topper;
361	struct mount *parent = mnt->mnt_parent;
 
362
363	if (mnt == parent)
364		return do_refcount_check(mnt, refcnt);
365
366	/*
367	 * quickly check if the current mount can be unmounted.
368	 * If not, we don't have to go checking for all other
369	 * mounts
370	 */
371	if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
372		return 1;
373
374	for (m = propagation_next(parent, parent); m;
375	     		m = propagation_next(m, parent)) {
376		int count = 1;
377		child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint);
378		if (!child)
379			continue;
380
381		/* Is there exactly one mount on the child that covers
382		 * it completely whose reference should be ignored?
383		 */
384		topper = find_topper(child);
385		if (topper)
386			count += 1;
387		else if (!list_empty(&child->mnt_mounts))
388			continue;
389
390		if (do_refcount_check(child, count))
391			return 1;
392	}
393	return 0;
394}
395
396/*
397 * Clear MNT_LOCKED when it can be shown to be safe.
398 *
399 * mount_lock lock must be held for write
400 */
401void propagate_mount_unlock(struct mount *mnt)
402{
403	struct mount *parent = mnt->mnt_parent;
404	struct mount *m, *child;
405
406	BUG_ON(parent == mnt);
407
408	for (m = propagation_next(parent, parent); m;
409			m = propagation_next(m, parent)) {
410		child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint);
411		if (child)
412			child->mnt.mnt_flags &= ~MNT_LOCKED;
413	}
414}
415
416/*
417 * Mark all mounts that the MNT_LOCKED logic will allow to be unmounted.
418 */
419static void mark_umount_candidates(struct mount *mnt)
420{
421	struct mount *parent = mnt->mnt_parent;
422	struct mount *m;
423
424	BUG_ON(parent == mnt);
425
426	for (m = propagation_next(parent, parent); m;
427			m = propagation_next(m, parent)) {
428		struct mount *child = __lookup_mnt(&m->mnt,
429						mnt->mnt_mountpoint);
430		if (!child || (child->mnt.mnt_flags & MNT_UMOUNT))
431			continue;
432		if (!IS_MNT_LOCKED(child) || IS_MNT_MARKED(m)) {
433			SET_MNT_MARK(child);
434		}
435	}
 
436}
437
438/*
439 * NOTE: unmounting 'mnt' naturally propagates to all other mounts its
440 * parent propagates to.
441 */
442static void __propagate_umount(struct mount *mnt)
443{
444	struct mount *parent = mnt->mnt_parent;
445	struct mount *m;
446
447	BUG_ON(parent == mnt);
448
449	for (m = propagation_next(parent, parent); m;
450			m = propagation_next(m, parent)) {
451		struct mount *topper;
452		struct mount *child = __lookup_mnt(&m->mnt,
453						mnt->mnt_mountpoint);
454		/*
455		 * umount the child only if the child has no children
456		 * and the child is marked safe to unmount.
457		 */
458		if (!child || !IS_MNT_MARKED(child))
459			continue;
460		CLEAR_MNT_MARK(child);
461
462		/* If there is exactly one mount covering all of child
463		 * replace child with that mount.
464		 */
465		topper = find_topper(child);
466		if (topper)
467			mnt_change_mountpoint(child->mnt_parent, child->mnt_mp,
468					      topper);
469
470		if (list_empty(&child->mnt_mounts)) {
471			list_del_init(&child->mnt_child);
472			child->mnt.mnt_flags |= MNT_UMOUNT;
473			list_move_tail(&child->mnt_list, &mnt->mnt_list);
474		}
475	}
476}
477
478/*
479 * collect all mounts that receive propagation from the mount in @list,
480 * and return these additional mounts in the same list.
481 * @list: the list of mounts to be unmounted.
482 *
483 * vfsmount lock must be held for write
484 */
485int propagate_umount(struct list_head *list)
486{
487	struct mount *mnt;
488
489	list_for_each_entry_reverse(mnt, list, mnt_list)
490		mark_umount_candidates(mnt);
491
492	list_for_each_entry(mnt, list, mnt_list)
493		__propagate_umount(mnt);
494	return 0;
495}
v3.5.6
  1/*
  2 *  linux/fs/pnode.c
  3 *
  4 * (C) Copyright IBM Corporation 2005.
  5 *	Released under GPL v2.
  6 *	Author : Ram Pai (linuxram@us.ibm.com)
  7 *
  8 */
  9#include <linux/mnt_namespace.h>
 10#include <linux/mount.h>
 11#include <linux/fs.h>
 
 12#include "internal.h"
 13#include "pnode.h"
 14
 15/* return the next shared peer mount of @p */
 16static inline struct mount *next_peer(struct mount *p)
 17{
 18	return list_entry(p->mnt_share.next, struct mount, mnt_share);
 19}
 20
 21static inline struct mount *first_slave(struct mount *p)
 22{
 23	return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave);
 24}
 25
 26static inline struct mount *next_slave(struct mount *p)
 27{
 28	return list_entry(p->mnt_slave.next, struct mount, mnt_slave);
 29}
 30
 31static struct mount *get_peer_under_root(struct mount *mnt,
 32					 struct mnt_namespace *ns,
 33					 const struct path *root)
 34{
 35	struct mount *m = mnt;
 36
 37	do {
 38		/* Check the namespace first for optimization */
 39		if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root))
 40			return m;
 41
 42		m = next_peer(m);
 43	} while (m != mnt);
 44
 45	return NULL;
 46}
 47
 48/*
 49 * Get ID of closest dominating peer group having a representative
 50 * under the given root.
 51 *
 52 * Caller must hold namespace_sem
 53 */
 54int get_dominating_id(struct mount *mnt, const struct path *root)
 55{
 56	struct mount *m;
 57
 58	for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) {
 59		struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root);
 60		if (d)
 61			return d->mnt_group_id;
 62	}
 63
 64	return 0;
 65}
 66
 67static int do_make_slave(struct mount *mnt)
 68{
 69	struct mount *peer_mnt = mnt, *master = mnt->mnt_master;
 70	struct mount *slave_mnt;
 71
 72	/*
 73	 * slave 'mnt' to a peer mount that has the
 74	 * same root dentry. If none is available then
 75	 * slave it to anything that is available.
 76	 */
 77	while ((peer_mnt = next_peer(peer_mnt)) != mnt &&
 78	       peer_mnt->mnt.mnt_root != mnt->mnt.mnt_root) ;
 79
 80	if (peer_mnt == mnt) {
 81		peer_mnt = next_peer(mnt);
 82		if (peer_mnt == mnt)
 83			peer_mnt = NULL;
 84	}
 85	if (IS_MNT_SHARED(mnt) && list_empty(&mnt->mnt_share))
 86		mnt_release_group_id(mnt);
 87
 88	list_del_init(&mnt->mnt_share);
 89	mnt->mnt_group_id = 0;
 90
 91	if (peer_mnt)
 92		master = peer_mnt;
 93
 94	if (master) {
 95		list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave)
 96			slave_mnt->mnt_master = master;
 97		list_move(&mnt->mnt_slave, &master->mnt_slave_list);
 98		list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev);
 99		INIT_LIST_HEAD(&mnt->mnt_slave_list);
100	} else {
101		struct list_head *p = &mnt->mnt_slave_list;
102		while (!list_empty(p)) {
103                        slave_mnt = list_first_entry(p,
104					struct mount, mnt_slave);
105			list_del_init(&slave_mnt->mnt_slave);
106			slave_mnt->mnt_master = NULL;
 
 
 
 
 
107		}
108	}
 
 
 
 
 
 
 
 
109	mnt->mnt_master = master;
110	CLEAR_MNT_SHARED(mnt);
111	return 0;
112}
113
114/*
115 * vfsmount lock must be held for write
116 */
117void change_mnt_propagation(struct mount *mnt, int type)
118{
119	if (type == MS_SHARED) {
120		set_mnt_shared(mnt);
121		return;
122	}
123	do_make_slave(mnt);
124	if (type != MS_SLAVE) {
125		list_del_init(&mnt->mnt_slave);
126		mnt->mnt_master = NULL;
127		if (type == MS_UNBINDABLE)
128			mnt->mnt.mnt_flags |= MNT_UNBINDABLE;
129		else
130			mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE;
131	}
132}
133
134/*
135 * get the next mount in the propagation tree.
136 * @m: the mount seen last
137 * @origin: the original mount from where the tree walk initiated
138 *
139 * Note that peer groups form contiguous segments of slave lists.
140 * We rely on that in get_source() to be able to find out if
141 * vfsmount found while iterating with propagation_next() is
142 * a peer of one we'd found earlier.
143 */
144static struct mount *propagation_next(struct mount *m,
145					 struct mount *origin)
146{
147	/* are there any slaves of this mount? */
148	if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
149		return first_slave(m);
150
151	while (1) {
152		struct mount *master = m->mnt_master;
153
154		if (master == origin->mnt_master) {
155			struct mount *next = next_peer(m);
156			return (next == origin) ? NULL : next;
157		} else if (m->mnt_slave.next != &master->mnt_slave_list)
158			return next_slave(m);
159
160		/* back at master */
161		m = master;
162	}
163}
164
165/*
166 * return the source mount to be used for cloning
167 *
168 * @dest 	the current destination mount
169 * @last_dest  	the last seen destination mount
170 * @last_src  	the last seen source mount
171 * @type	return CL_SLAVE if the new mount has to be
172 * 		cloned as a slave.
173 */
174static struct mount *get_source(struct mount *dest,
175				struct mount *last_dest,
176				struct mount *last_src,
177				int *type)
178{
179	struct mount *p_last_src = NULL;
180	struct mount *p_last_dest = NULL;
181
182	while (last_dest != dest->mnt_master) {
183		p_last_dest = last_dest;
184		p_last_src = last_src;
185		last_dest = last_dest->mnt_master;
186		last_src = last_src->mnt_master;
 
 
 
 
 
 
 
187	}
 
 
 
 
 
 
 
188
189	if (p_last_dest) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
190		do {
191			p_last_dest = next_peer(p_last_dest);
192		} while (IS_MNT_NEW(p_last_dest));
193		/* is that a peer of the earlier? */
194		if (dest == p_last_dest) {
195			*type = CL_MAKE_SHARED;
196			return p_last_src;
197		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
198	}
199	/* slave of the earlier, then */
200	*type = CL_SLAVE;
201	/* beginning of peer group among the slaves? */
202	if (IS_MNT_SHARED(dest))
203		*type |= CL_MAKE_SHARED;
204	return last_src;
205}
206
207/*
208 * mount 'source_mnt' under the destination 'dest_mnt' at
209 * dentry 'dest_dentry'. And propagate that mount to
210 * all the peer and slave mounts of 'dest_mnt'.
211 * Link all the new mounts into a propagation tree headed at
212 * source_mnt. Also link all the new mounts using ->mnt_list
213 * headed at source_mnt's ->mnt_list
214 *
215 * @dest_mnt: destination mount.
216 * @dest_dentry: destination dentry.
217 * @source_mnt: source mount.
218 * @tree_list : list of heads of trees to be attached.
219 */
220int propagate_mnt(struct mount *dest_mnt, struct dentry *dest_dentry,
221		    struct mount *source_mnt, struct list_head *tree_list)
222{
223	struct mount *m, *child;
224	int ret = 0;
225	struct mount *prev_dest_mnt = dest_mnt;
226	struct mount *prev_src_mnt  = source_mnt;
227	LIST_HEAD(tmp_list);
228	LIST_HEAD(umount_list);
229
230	for (m = propagation_next(dest_mnt, dest_mnt); m;
231			m = propagation_next(m, dest_mnt)) {
232		int type;
233		struct mount *source;
234
235		if (IS_MNT_NEW(m))
236			continue;
237
238		source =  get_source(m, prev_dest_mnt, prev_src_mnt, &type);
239
240		if (!(child = copy_tree(source, source->mnt.mnt_root, type))) {
241			ret = -ENOMEM;
242			list_splice(tree_list, tmp_list.prev);
 
 
 
 
 
 
 
 
 
243			goto out;
244		}
245
246		if (is_subdir(dest_dentry, m->mnt.mnt_root)) {
247			mnt_set_mountpoint(m, dest_dentry, child);
248			list_add_tail(&child->mnt_hash, tree_list);
249		} else {
250			/*
251			 * This can happen if the parent mount was bind mounted
252			 * on some subdirectory of a shared/slave mount.
253			 */
254			list_add_tail(&child->mnt_hash, &tmp_list);
255		}
256		prev_dest_mnt = m;
257		prev_src_mnt  = child;
258	}
259out:
260	br_write_lock(&vfsmount_lock);
261	while (!list_empty(&tmp_list)) {
262		child = list_first_entry(&tmp_list, struct mount, mnt_hash);
263		umount_tree(child, 0, &umount_list);
 
264	}
265	br_write_unlock(&vfsmount_lock);
266	release_mounts(&umount_list);
267	return ret;
268}
269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
270/*
271 * return true if the refcount is greater than count
272 */
273static inline int do_refcount_check(struct mount *mnt, int count)
274{
275	int mycount = mnt_get_count(mnt) - mnt->mnt_ghosts;
276	return (mycount > count);
277}
278
279/*
280 * check if the mount 'mnt' can be unmounted successfully.
281 * @mnt: the mount to be checked for unmount
282 * NOTE: unmounting 'mnt' would naturally propagate to all
283 * other mounts its parent propagates to.
284 * Check if any of these mounts that **do not have submounts**
285 * have more references than 'refcnt'. If so return busy.
286 *
287 * vfsmount lock must be held for write
288 */
289int propagate_mount_busy(struct mount *mnt, int refcnt)
290{
291	struct mount *m, *child;
292	struct mount *parent = mnt->mnt_parent;
293	int ret = 0;
294
295	if (mnt == parent)
296		return do_refcount_check(mnt, refcnt);
297
298	/*
299	 * quickly check if the current mount can be unmounted.
300	 * If not, we don't have to go checking for all other
301	 * mounts
302	 */
303	if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
304		return 1;
305
306	for (m = propagation_next(parent, parent); m;
307	     		m = propagation_next(m, parent)) {
308		child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint, 0);
309		if (child && list_empty(&child->mnt_mounts) &&
310		    (ret = do_refcount_check(child, 1)))
311			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
312	}
313	return ret;
314}
315
316/*
317 * NOTE: unmounting 'mnt' naturally propagates to all other mounts its
318 * parent propagates to.
319 */
320static void __propagate_umount(struct mount *mnt)
321{
322	struct mount *parent = mnt->mnt_parent;
323	struct mount *m;
324
325	BUG_ON(parent == mnt);
326
327	for (m = propagation_next(parent, parent); m;
328			m = propagation_next(m, parent)) {
329
330		struct mount *child = __lookup_mnt(&m->mnt,
331					mnt->mnt_mountpoint, 0);
332		/*
333		 * umount the child only if the child has no
334		 * other children
335		 */
336		if (child && list_empty(&child->mnt_mounts))
337			list_move_tail(&child->mnt_hash, &mnt->mnt_hash);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
338	}
339}
340
341/*
342 * collect all mounts that receive propagation from the mount in @list,
343 * and return these additional mounts in the same list.
344 * @list: the list of mounts to be unmounted.
345 *
346 * vfsmount lock must be held for write
347 */
348int propagate_umount(struct list_head *list)
349{
350	struct mount *mnt;
351
352	list_for_each_entry(mnt, list, mnt_hash)
 
 
 
353		__propagate_umount(mnt);
354	return 0;
355}