Linux Audio

Check our new training course

Loading...
v4.10.11
   1/**
   2 * eCryptfs: Linux filesystem encryption layer
   3 *
   4 * Copyright (C) 1997-2004 Erez Zadok
   5 * Copyright (C) 2001-2004 Stony Brook University
   6 * Copyright (C) 2004-2007 International Business Machines Corp.
   7 *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
   8 *   		Michael C. Thompson <mcthomps@us.ibm.com>
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License as
  12 * published by the Free Software Foundation; either version 2 of the
  13 * License, or (at your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful, but
  16 * WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  18 * General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software
  22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
  23 * 02111-1307, USA.
  24 */
  25
  26#include <crypto/hash.h>
  27#include <crypto/skcipher.h>
  28#include <linux/fs.h>
  29#include <linux/mount.h>
  30#include <linux/pagemap.h>
  31#include <linux/random.h>
  32#include <linux/compiler.h>
  33#include <linux/key.h>
  34#include <linux/namei.h>
 
  35#include <linux/file.h>
  36#include <linux/scatterlist.h>
  37#include <linux/slab.h>
  38#include <asm/unaligned.h>
  39#include "ecryptfs_kernel.h"
  40
  41#define DECRYPT		0
  42#define ENCRYPT		1
 
 
 
 
 
 
 
 
  43
  44/**
  45 * ecryptfs_to_hex
  46 * @dst: Buffer to take hex character representation of contents of
  47 *       src; must be at least of size (src_size * 2)
  48 * @src: Buffer to be converted to a hex string representation
  49 * @src_size: number of bytes to convert
  50 */
  51void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
  52{
  53	int x;
  54
  55	for (x = 0; x < src_size; x++)
  56		sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
  57}
  58
  59/**
  60 * ecryptfs_from_hex
  61 * @dst: Buffer to take the bytes from src hex; must be at least of
  62 *       size (src_size / 2)
  63 * @src: Buffer to be converted from a hex string representation to raw value
  64 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
  65 */
  66void ecryptfs_from_hex(char *dst, char *src, int dst_size)
  67{
  68	int x;
  69	char tmp[3] = { 0, };
  70
  71	for (x = 0; x < dst_size; x++) {
  72		tmp[0] = src[x * 2];
  73		tmp[1] = src[x * 2 + 1];
  74		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
  75	}
  76}
  77
  78static int ecryptfs_hash_digest(struct crypto_shash *tfm,
  79				char *src, int len, char *dst)
  80{
  81	SHASH_DESC_ON_STACK(desc, tfm);
  82	int err;
  83
  84	desc->tfm = tfm;
  85	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
  86	err = crypto_shash_digest(desc, src, len, dst);
  87	shash_desc_zero(desc);
  88	return err;
  89}
  90
  91/**
  92 * ecryptfs_calculate_md5 - calculates the md5 of @src
  93 * @dst: Pointer to 16 bytes of allocated memory
  94 * @crypt_stat: Pointer to crypt_stat struct for the current inode
  95 * @src: Data to be md5'd
  96 * @len: Length of @src
  97 *
  98 * Uses the allocated crypto context that crypt_stat references to
  99 * generate the MD5 sum of the contents of src.
 100 */
 101static int ecryptfs_calculate_md5(char *dst,
 102				  struct ecryptfs_crypt_stat *crypt_stat,
 103				  char *src, int len)
 104{
 105	struct crypto_shash *tfm;
 
 
 
 
 106	int rc = 0;
 107
 108	tfm = crypt_stat->hash_tfm;
 109	rc = ecryptfs_hash_digest(tfm, src, len, dst);
 
 
 
 
 
 
 
 
 
 
 
 
 
 110	if (rc) {
 111		printk(KERN_ERR
 112		       "%s: Error computing crypto hash; rc = [%d]\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 113		       __func__, rc);
 114		goto out;
 115	}
 116out:
 
 117	return rc;
 118}
 119
 120static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
 121						  char *cipher_name,
 122						  char *chaining_modifier)
 123{
 124	int cipher_name_len = strlen(cipher_name);
 125	int chaining_modifier_len = strlen(chaining_modifier);
 126	int algified_name_len;
 127	int rc;
 128
 129	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
 130	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
 131	if (!(*algified_name)) {
 132		rc = -ENOMEM;
 133		goto out;
 134	}
 135	snprintf((*algified_name), algified_name_len, "%s(%s)",
 136		 chaining_modifier, cipher_name);
 137	rc = 0;
 138out:
 139	return rc;
 140}
 141
 142/**
 143 * ecryptfs_derive_iv
 144 * @iv: destination for the derived iv vale
 145 * @crypt_stat: Pointer to crypt_stat struct for the current inode
 146 * @offset: Offset of the extent whose IV we are to derive
 147 *
 148 * Generate the initialization vector from the given root IV and page
 149 * offset.
 150 *
 151 * Returns zero on success; non-zero on error.
 152 */
 153int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
 154		       loff_t offset)
 155{
 156	int rc = 0;
 157	char dst[MD5_DIGEST_SIZE];
 158	char src[ECRYPTFS_MAX_IV_BYTES + 16];
 159
 160	if (unlikely(ecryptfs_verbosity > 0)) {
 161		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
 162		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
 163	}
 164	/* TODO: It is probably secure to just cast the least
 165	 * significant bits of the root IV into an unsigned long and
 166	 * add the offset to that rather than go through all this
 167	 * hashing business. -Halcrow */
 168	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
 169	memset((src + crypt_stat->iv_bytes), 0, 16);
 170	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
 171	if (unlikely(ecryptfs_verbosity > 0)) {
 172		ecryptfs_printk(KERN_DEBUG, "source:\n");
 173		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
 174	}
 175	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
 176				    (crypt_stat->iv_bytes + 16));
 177	if (rc) {
 178		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
 179				"MD5 while generating IV for a page\n");
 180		goto out;
 181	}
 182	memcpy(iv, dst, crypt_stat->iv_bytes);
 183	if (unlikely(ecryptfs_verbosity > 0)) {
 184		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
 185		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
 186	}
 187out:
 188	return rc;
 189}
 190
 191/**
 192 * ecryptfs_init_crypt_stat
 193 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 194 *
 195 * Initialize the crypt_stat structure.
 196 */
 197int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
 
 198{
 199	struct crypto_shash *tfm;
 200	int rc;
 201
 202	tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0);
 203	if (IS_ERR(tfm)) {
 204		rc = PTR_ERR(tfm);
 205		ecryptfs_printk(KERN_ERR, "Error attempting to "
 206				"allocate crypto context; rc = [%d]\n",
 207				rc);
 208		return rc;
 209	}
 210
 211	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
 212	INIT_LIST_HEAD(&crypt_stat->keysig_list);
 213	mutex_init(&crypt_stat->keysig_list_mutex);
 214	mutex_init(&crypt_stat->cs_mutex);
 215	mutex_init(&crypt_stat->cs_tfm_mutex);
 216	crypt_stat->hash_tfm = tfm;
 217	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
 218
 219	return 0;
 220}
 221
 222/**
 223 * ecryptfs_destroy_crypt_stat
 224 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 225 *
 226 * Releases all memory associated with a crypt_stat struct.
 227 */
 228void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
 229{
 230	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
 231
 232	crypto_free_skcipher(crypt_stat->tfm);
 233	crypto_free_shash(crypt_stat->hash_tfm);
 
 
 234	list_for_each_entry_safe(key_sig, key_sig_tmp,
 235				 &crypt_stat->keysig_list, crypt_stat_list) {
 236		list_del(&key_sig->crypt_stat_list);
 237		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
 238	}
 239	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
 240}
 241
 242void ecryptfs_destroy_mount_crypt_stat(
 243	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 244{
 245	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
 246
 247	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
 248		return;
 249	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
 250	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
 251				 &mount_crypt_stat->global_auth_tok_list,
 252				 mount_crypt_stat_list) {
 253		list_del(&auth_tok->mount_crypt_stat_list);
 254		if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
 
 255			key_put(auth_tok->global_auth_tok_key);
 256		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
 257	}
 258	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
 259	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
 260}
 261
 262/**
 263 * virt_to_scatterlist
 264 * @addr: Virtual address
 265 * @size: Size of data; should be an even multiple of the block size
 266 * @sg: Pointer to scatterlist array; set to NULL to obtain only
 267 *      the number of scatterlist structs required in array
 268 * @sg_size: Max array size
 269 *
 270 * Fills in a scatterlist array with page references for a passed
 271 * virtual address.
 272 *
 273 * Returns the number of scatterlist structs in array used
 274 */
 275int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
 276			int sg_size)
 277{
 278	int i = 0;
 279	struct page *pg;
 280	int offset;
 281	int remainder_of_page;
 282
 283	sg_init_table(sg, sg_size);
 284
 285	while (size > 0 && i < sg_size) {
 286		pg = virt_to_page(addr);
 287		offset = offset_in_page(addr);
 288		sg_set_page(&sg[i], pg, 0, offset);
 289		remainder_of_page = PAGE_SIZE - offset;
 
 290		if (size >= remainder_of_page) {
 291			sg[i].length = remainder_of_page;
 
 292			addr += remainder_of_page;
 293			size -= remainder_of_page;
 294		} else {
 295			sg[i].length = size;
 
 296			addr += size;
 297			size = 0;
 298		}
 299		i++;
 300	}
 301	if (size > 0)
 302		return -ENOMEM;
 303	return i;
 304}
 305
 306struct extent_crypt_result {
 307	struct completion completion;
 308	int rc;
 309};
 310
 311static void extent_crypt_complete(struct crypto_async_request *req, int rc)
 312{
 313	struct extent_crypt_result *ecr = req->data;
 314
 315	if (rc == -EINPROGRESS)
 316		return;
 317
 318	ecr->rc = rc;
 319	complete(&ecr->completion);
 320}
 321
 322/**
 323 * crypt_scatterlist
 324 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 325 * @dst_sg: Destination of the data after performing the crypto operation
 326 * @src_sg: Data to be encrypted or decrypted
 327 * @size: Length of data
 328 * @iv: IV to use
 329 * @op: ENCRYPT or DECRYPT to indicate the desired operation
 330 *
 331 * Returns the number of bytes encrypted or decrypted; negative value on error
 332 */
 333static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
 334			     struct scatterlist *dst_sg,
 335			     struct scatterlist *src_sg, int size,
 336			     unsigned char *iv, int op)
 337{
 338	struct skcipher_request *req = NULL;
 339	struct extent_crypt_result ecr;
 
 
 340	int rc = 0;
 341
 342	BUG_ON(!crypt_stat || !crypt_stat->tfm
 343	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
 344	if (unlikely(ecryptfs_verbosity > 0)) {
 345		ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
 346				crypt_stat->key_size);
 347		ecryptfs_dump_hex(crypt_stat->key,
 348				  crypt_stat->key_size);
 349	}
 350
 351	init_completion(&ecr.completion);
 352
 353	mutex_lock(&crypt_stat->cs_tfm_mutex);
 354	req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
 355	if (!req) {
 356		mutex_unlock(&crypt_stat->cs_tfm_mutex);
 357		rc = -ENOMEM;
 358		goto out;
 359	}
 360
 361	skcipher_request_set_callback(req,
 362			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
 363			extent_crypt_complete, &ecr);
 364	/* Consider doing this once, when the file is opened */
 
 365	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
 366		rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key,
 367					    crypt_stat->key_size);
 368		if (rc) {
 369			ecryptfs_printk(KERN_ERR,
 370					"Error setting key; rc = [%d]\n",
 371					rc);
 372			mutex_unlock(&crypt_stat->cs_tfm_mutex);
 373			rc = -EINVAL;
 374			goto out;
 375		}
 376		crypt_stat->flags |= ECRYPTFS_KEY_SET;
 377	}
 378	mutex_unlock(&crypt_stat->cs_tfm_mutex);
 379	skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
 380	rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) :
 381			     crypto_skcipher_decrypt(req);
 382	if (rc == -EINPROGRESS || rc == -EBUSY) {
 383		struct extent_crypt_result *ecr = req->base.data;
 384
 385		wait_for_completion(&ecr->completion);
 386		rc = ecr->rc;
 387		reinit_completion(&ecr->completion);
 388	}
 
 
 
 389out:
 390	skcipher_request_free(req);
 391	return rc;
 392}
 393
 394/**
 395 * lower_offset_for_page
 396 *
 397 * Convert an eCryptfs page index into a lower byte offset
 398 */
 399static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
 400				    struct page *page)
 401{
 402	return ecryptfs_lower_header_size(crypt_stat) +
 403	       ((loff_t)page->index << PAGE_SHIFT);
 404}
 405
 406/**
 407 * crypt_extent
 
 
 408 * @crypt_stat: crypt_stat containing cryptographic context for the
 409 *              encryption operation
 410 * @dst_page: The page to write the result into
 411 * @src_page: The page to read from
 412 * @extent_offset: Page extent offset for use in generating IV
 413 * @op: ENCRYPT or DECRYPT to indicate the desired operation
 414 *
 415 * Encrypts or decrypts one extent of data.
 416 *
 417 * Return zero on success; non-zero otherwise
 418 */
 419static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
 420			struct page *dst_page,
 421			struct page *src_page,
 422			unsigned long extent_offset, int op)
 423{
 424	pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
 425	loff_t extent_base;
 426	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
 427	struct scatterlist src_sg, dst_sg;
 428	size_t extent_size = crypt_stat->extent_size;
 429	int rc;
 430
 431	extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size));
 
 432	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
 433				(extent_base + extent_offset));
 434	if (rc) {
 435		ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
 436			"extent [0x%.16llx]; rc = [%d]\n",
 437			(unsigned long long)(extent_base + extent_offset), rc);
 438		goto out;
 439	}
 440
 441	sg_init_table(&src_sg, 1);
 442	sg_init_table(&dst_sg, 1);
 443
 444	sg_set_page(&src_sg, src_page, extent_size,
 445		    extent_offset * extent_size);
 446	sg_set_page(&dst_sg, dst_page, extent_size,
 447		    extent_offset * extent_size);
 448
 449	rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
 450			       extent_iv, op);
 451	if (rc < 0) {
 452		printk(KERN_ERR "%s: Error attempting to crypt page with "
 453		       "page_index = [%ld], extent_offset = [%ld]; "
 454		       "rc = [%d]\n", __func__, page_index, extent_offset, rc);
 
 455		goto out;
 456	}
 457	rc = 0;
 458out:
 459	return rc;
 460}
 461
 462/**
 463 * ecryptfs_encrypt_page
 464 * @page: Page mapped from the eCryptfs inode for the file; contains
 465 *        decrypted content that needs to be encrypted (to a temporary
 466 *        page; not in place) and written out to the lower file
 467 *
 468 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
 469 * that eCryptfs pages may straddle the lower pages -- for instance,
 470 * if the file was created on a machine with an 8K page size
 471 * (resulting in an 8K header), and then the file is copied onto a
 472 * host with a 32K page size, then when reading page 0 of the eCryptfs
 473 * file, 24K of page 0 of the lower file will be read and decrypted,
 474 * and then 8K of page 1 of the lower file will be read and decrypted.
 475 *
 476 * Returns zero on success; negative on error
 477 */
 478int ecryptfs_encrypt_page(struct page *page)
 479{
 480	struct inode *ecryptfs_inode;
 481	struct ecryptfs_crypt_stat *crypt_stat;
 482	char *enc_extent_virt;
 483	struct page *enc_extent_page = NULL;
 484	loff_t extent_offset;
 485	loff_t lower_offset;
 486	int rc = 0;
 487
 488	ecryptfs_inode = page->mapping->host;
 489	crypt_stat =
 490		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
 491	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
 492	enc_extent_page = alloc_page(GFP_USER);
 493	if (!enc_extent_page) {
 494		rc = -ENOMEM;
 495		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
 496				"encrypted extent\n");
 497		goto out;
 498	}
 499
 500	for (extent_offset = 0;
 501	     extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
 502	     extent_offset++) {
 503		rc = crypt_extent(crypt_stat, enc_extent_page, page,
 504				  extent_offset, ENCRYPT);
 
 
 505		if (rc) {
 506			printk(KERN_ERR "%s: Error encrypting extent; "
 507			       "rc = [%d]\n", __func__, rc);
 508			goto out;
 509		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 510	}
 
 
 
 
 
 
 
 
 511
 512	lower_offset = lower_offset_for_page(crypt_stat, page);
 513	enc_extent_virt = kmap(enc_extent_page);
 514	rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
 515				  PAGE_SIZE);
 516	kunmap(enc_extent_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 517	if (rc < 0) {
 518		ecryptfs_printk(KERN_ERR,
 519			"Error attempting to write lower page; rc = [%d]\n",
 520			rc);
 
 521		goto out;
 522	}
 523	rc = 0;
 524out:
 525	if (enc_extent_page) {
 526		__free_page(enc_extent_page);
 527	}
 528	return rc;
 529}
 530
 531/**
 532 * ecryptfs_decrypt_page
 533 * @page: Page mapped from the eCryptfs inode for the file; data read
 534 *        and decrypted from the lower file will be written into this
 535 *        page
 536 *
 537 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
 538 * that eCryptfs pages may straddle the lower pages -- for instance,
 539 * if the file was created on a machine with an 8K page size
 540 * (resulting in an 8K header), and then the file is copied onto a
 541 * host with a 32K page size, then when reading page 0 of the eCryptfs
 542 * file, 24K of page 0 of the lower file will be read and decrypted,
 543 * and then 8K of page 1 of the lower file will be read and decrypted.
 544 *
 545 * Returns zero on success; negative on error
 546 */
 547int ecryptfs_decrypt_page(struct page *page)
 548{
 549	struct inode *ecryptfs_inode;
 550	struct ecryptfs_crypt_stat *crypt_stat;
 551	char *page_virt;
 
 552	unsigned long extent_offset;
 553	loff_t lower_offset;
 554	int rc = 0;
 555
 556	ecryptfs_inode = page->mapping->host;
 557	crypt_stat =
 558		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
 559	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
 560
 561	lower_offset = lower_offset_for_page(crypt_stat, page);
 562	page_virt = kmap(page);
 563	rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE,
 564				 ecryptfs_inode);
 565	kunmap(page);
 566	if (rc < 0) {
 567		ecryptfs_printk(KERN_ERR,
 568			"Error attempting to read lower page; rc = [%d]\n",
 569			rc);
 570		goto out;
 571	}
 572
 573	for (extent_offset = 0;
 574	     extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
 575	     extent_offset++) {
 576		rc = crypt_extent(crypt_stat, page, page,
 577				  extent_offset, DECRYPT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 578		if (rc) {
 579			printk(KERN_ERR "%s: Error encrypting extent; "
 580			       "rc = [%d]\n", __func__, rc);
 581			goto out;
 582		}
 583	}
 584out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 585	return rc;
 586}
 587
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 588#define ECRYPTFS_MAX_SCATTERLIST_LEN 4
 589
 590/**
 591 * ecryptfs_init_crypt_ctx
 592 * @crypt_stat: Uninitialized crypt stats structure
 593 *
 594 * Initialize the crypto context.
 595 *
 596 * TODO: Performance: Keep a cache of initialized cipher contexts;
 597 * only init if needed
 598 */
 599int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
 600{
 601	char *full_alg_name;
 602	int rc = -EINVAL;
 603
 
 
 
 
 604	ecryptfs_printk(KERN_DEBUG,
 605			"Initializing cipher [%s]; strlen = [%d]; "
 606			"key_size_bits = [%zd]\n",
 607			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
 608			crypt_stat->key_size << 3);
 609	mutex_lock(&crypt_stat->cs_tfm_mutex);
 610	if (crypt_stat->tfm) {
 611		rc = 0;
 612		goto out_unlock;
 613	}
 
 614	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
 615						    crypt_stat->cipher, "cbc");
 616	if (rc)
 617		goto out_unlock;
 618	crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0);
 
 
 619	if (IS_ERR(crypt_stat->tfm)) {
 620		rc = PTR_ERR(crypt_stat->tfm);
 621		crypt_stat->tfm = NULL;
 622		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
 623				"Error initializing cipher [%s]\n",
 624				full_alg_name);
 625		goto out_free;
 626	}
 627	crypto_skcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
 628	rc = 0;
 629out_free:
 630	kfree(full_alg_name);
 631out_unlock:
 632	mutex_unlock(&crypt_stat->cs_tfm_mutex);
 
 633	return rc;
 634}
 635
 636static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
 637{
 638	int extent_size_tmp;
 639
 640	crypt_stat->extent_mask = 0xFFFFFFFF;
 641	crypt_stat->extent_shift = 0;
 642	if (crypt_stat->extent_size == 0)
 643		return;
 644	extent_size_tmp = crypt_stat->extent_size;
 645	while ((extent_size_tmp & 0x01) == 0) {
 646		extent_size_tmp >>= 1;
 647		crypt_stat->extent_mask <<= 1;
 648		crypt_stat->extent_shift++;
 649	}
 650}
 651
 652void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
 653{
 654	/* Default values; may be overwritten as we are parsing the
 655	 * packets. */
 656	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
 657	set_extent_mask_and_shift(crypt_stat);
 658	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
 659	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
 660		crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
 661	else {
 662		if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
 663			crypt_stat->metadata_size =
 664				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
 665		else
 666			crypt_stat->metadata_size = PAGE_SIZE;
 667	}
 668}
 669
 670/**
 671 * ecryptfs_compute_root_iv
 672 * @crypt_stats
 673 *
 674 * On error, sets the root IV to all 0's.
 675 */
 676int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
 677{
 678	int rc = 0;
 679	char dst[MD5_DIGEST_SIZE];
 680
 681	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
 682	BUG_ON(crypt_stat->iv_bytes <= 0);
 683	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
 684		rc = -EINVAL;
 685		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
 686				"cannot generate root IV\n");
 687		goto out;
 688	}
 689	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
 690				    crypt_stat->key_size);
 691	if (rc) {
 692		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
 693				"MD5 while generating root IV\n");
 694		goto out;
 695	}
 696	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
 697out:
 698	if (rc) {
 699		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
 700		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
 701	}
 702	return rc;
 703}
 704
 705static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
 706{
 707	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
 708	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
 709	ecryptfs_compute_root_iv(crypt_stat);
 710	if (unlikely(ecryptfs_verbosity > 0)) {
 711		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
 712		ecryptfs_dump_hex(crypt_stat->key,
 713				  crypt_stat->key_size);
 714	}
 715}
 716
 717/**
 718 * ecryptfs_copy_mount_wide_flags_to_inode_flags
 719 * @crypt_stat: The inode's cryptographic context
 720 * @mount_crypt_stat: The mount point's cryptographic context
 721 *
 722 * This function propagates the mount-wide flags to individual inode
 723 * flags.
 724 */
 725static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
 726	struct ecryptfs_crypt_stat *crypt_stat,
 727	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 728{
 729	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
 730		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
 731	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
 732		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
 733	if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
 734		crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
 735		if (mount_crypt_stat->flags
 736		    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
 737			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
 738		else if (mount_crypt_stat->flags
 739			 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
 740			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
 741	}
 742}
 743
 744static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
 745	struct ecryptfs_crypt_stat *crypt_stat,
 746	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 747{
 748	struct ecryptfs_global_auth_tok *global_auth_tok;
 749	int rc = 0;
 750
 751	mutex_lock(&crypt_stat->keysig_list_mutex);
 752	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
 753
 754	list_for_each_entry(global_auth_tok,
 755			    &mount_crypt_stat->global_auth_tok_list,
 756			    mount_crypt_stat_list) {
 757		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
 758			continue;
 759		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
 760		if (rc) {
 761			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
 762			goto out;
 763		}
 764	}
 765
 766out:
 767	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
 768	mutex_unlock(&crypt_stat->keysig_list_mutex);
 769	return rc;
 770}
 771
 772/**
 773 * ecryptfs_set_default_crypt_stat_vals
 774 * @crypt_stat: The inode's cryptographic context
 775 * @mount_crypt_stat: The mount point's cryptographic context
 776 *
 777 * Default values in the event that policy does not override them.
 778 */
 779static void ecryptfs_set_default_crypt_stat_vals(
 780	struct ecryptfs_crypt_stat *crypt_stat,
 781	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 782{
 783	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
 784						      mount_crypt_stat);
 785	ecryptfs_set_default_sizes(crypt_stat);
 786	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
 787	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
 788	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
 789	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
 790	crypt_stat->mount_crypt_stat = mount_crypt_stat;
 791}
 792
 793/**
 794 * ecryptfs_new_file_context
 795 * @ecryptfs_inode: The eCryptfs inode
 796 *
 797 * If the crypto context for the file has not yet been established,
 798 * this is where we do that.  Establishing a new crypto context
 799 * involves the following decisions:
 800 *  - What cipher to use?
 801 *  - What set of authentication tokens to use?
 802 * Here we just worry about getting enough information into the
 803 * authentication tokens so that we know that they are available.
 804 * We associate the available authentication tokens with the new file
 805 * via the set of signatures in the crypt_stat struct.  Later, when
 806 * the headers are actually written out, we may again defer to
 807 * userspace to perform the encryption of the session key; for the
 808 * foreseeable future, this will be the case with public key packets.
 809 *
 810 * Returns zero on success; non-zero otherwise
 811 */
 812int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
 813{
 814	struct ecryptfs_crypt_stat *crypt_stat =
 815	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
 816	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
 817	    &ecryptfs_superblock_to_private(
 818		    ecryptfs_inode->i_sb)->mount_crypt_stat;
 819	int cipher_name_len;
 820	int rc = 0;
 821
 822	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
 823	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
 824	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
 825						      mount_crypt_stat);
 826	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
 827							 mount_crypt_stat);
 828	if (rc) {
 829		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
 830		       "to the inode key sigs; rc = [%d]\n", rc);
 831		goto out;
 832	}
 833	cipher_name_len =
 834		strlen(mount_crypt_stat->global_default_cipher_name);
 835	memcpy(crypt_stat->cipher,
 836	       mount_crypt_stat->global_default_cipher_name,
 837	       cipher_name_len);
 838	crypt_stat->cipher[cipher_name_len] = '\0';
 839	crypt_stat->key_size =
 840		mount_crypt_stat->global_default_cipher_key_size;
 841	ecryptfs_generate_new_key(crypt_stat);
 842	rc = ecryptfs_init_crypt_ctx(crypt_stat);
 843	if (rc)
 844		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
 845				"context for cipher [%s]: rc = [%d]\n",
 846				crypt_stat->cipher, rc);
 847out:
 848	return rc;
 849}
 850
 851/**
 852 * ecryptfs_validate_marker - check for the ecryptfs marker
 853 * @data: The data block in which to check
 854 *
 855 * Returns zero if marker found; -EINVAL if not found
 856 */
 857static int ecryptfs_validate_marker(char *data)
 858{
 859	u32 m_1, m_2;
 860
 861	m_1 = get_unaligned_be32(data);
 862	m_2 = get_unaligned_be32(data + 4);
 863	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
 864		return 0;
 865	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
 866			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
 867			MAGIC_ECRYPTFS_MARKER);
 868	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
 869			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
 870	return -EINVAL;
 871}
 872
 873struct ecryptfs_flag_map_elem {
 874	u32 file_flag;
 875	u32 local_flag;
 876};
 877
 878/* Add support for additional flags by adding elements here. */
 879static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
 880	{0x00000001, ECRYPTFS_ENABLE_HMAC},
 881	{0x00000002, ECRYPTFS_ENCRYPTED},
 882	{0x00000004, ECRYPTFS_METADATA_IN_XATTR},
 883	{0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
 884};
 885
 886/**
 887 * ecryptfs_process_flags
 888 * @crypt_stat: The cryptographic context
 889 * @page_virt: Source data to be parsed
 890 * @bytes_read: Updated with the number of bytes read
 891 *
 892 * Returns zero on success; non-zero if the flag set is invalid
 893 */
 894static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
 895				  char *page_virt, int *bytes_read)
 896{
 897	int rc = 0;
 898	int i;
 899	u32 flags;
 900
 901	flags = get_unaligned_be32(page_virt);
 902	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
 903			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
 904		if (flags & ecryptfs_flag_map[i].file_flag) {
 905			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
 906		} else
 907			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
 908	/* Version is in top 8 bits of the 32-bit flag vector */
 909	crypt_stat->file_version = ((flags >> 24) & 0xFF);
 910	(*bytes_read) = 4;
 911	return rc;
 912}
 913
 914/**
 915 * write_ecryptfs_marker
 916 * @page_virt: The pointer to in a page to begin writing the marker
 917 * @written: Number of bytes written
 918 *
 919 * Marker = 0x3c81b7f5
 920 */
 921static void write_ecryptfs_marker(char *page_virt, size_t *written)
 922{
 923	u32 m_1, m_2;
 924
 925	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
 926	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
 927	put_unaligned_be32(m_1, page_virt);
 928	page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
 929	put_unaligned_be32(m_2, page_virt);
 930	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
 931}
 932
 933void ecryptfs_write_crypt_stat_flags(char *page_virt,
 934				     struct ecryptfs_crypt_stat *crypt_stat,
 935				     size_t *written)
 936{
 937	u32 flags = 0;
 938	int i;
 939
 940	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
 941			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
 942		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
 943			flags |= ecryptfs_flag_map[i].file_flag;
 944	/* Version is in top 8 bits of the 32-bit flag vector */
 945	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
 946	put_unaligned_be32(flags, page_virt);
 947	(*written) = 4;
 948}
 949
 950struct ecryptfs_cipher_code_str_map_elem {
 951	char cipher_str[16];
 952	u8 cipher_code;
 953};
 954
 955/* Add support for additional ciphers by adding elements here. The
 956 * cipher_code is whatever OpenPGP applications use to identify the
 957 * ciphers. List in order of probability. */
 958static struct ecryptfs_cipher_code_str_map_elem
 959ecryptfs_cipher_code_str_map[] = {
 960	{"aes",RFC2440_CIPHER_AES_128 },
 961	{"blowfish", RFC2440_CIPHER_BLOWFISH},
 962	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
 963	{"cast5", RFC2440_CIPHER_CAST_5},
 964	{"twofish", RFC2440_CIPHER_TWOFISH},
 965	{"cast6", RFC2440_CIPHER_CAST_6},
 966	{"aes", RFC2440_CIPHER_AES_192},
 967	{"aes", RFC2440_CIPHER_AES_256}
 968};
 969
 970/**
 971 * ecryptfs_code_for_cipher_string
 972 * @cipher_name: The string alias for the cipher
 973 * @key_bytes: Length of key in bytes; used for AES code selection
 974 *
 975 * Returns zero on no match, or the cipher code on match
 976 */
 977u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
 978{
 979	int i;
 980	u8 code = 0;
 981	struct ecryptfs_cipher_code_str_map_elem *map =
 982		ecryptfs_cipher_code_str_map;
 983
 984	if (strcmp(cipher_name, "aes") == 0) {
 985		switch (key_bytes) {
 986		case 16:
 987			code = RFC2440_CIPHER_AES_128;
 988			break;
 989		case 24:
 990			code = RFC2440_CIPHER_AES_192;
 991			break;
 992		case 32:
 993			code = RFC2440_CIPHER_AES_256;
 994		}
 995	} else {
 996		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
 997			if (strcmp(cipher_name, map[i].cipher_str) == 0) {
 998				code = map[i].cipher_code;
 999				break;
1000			}
1001	}
1002	return code;
1003}
1004
1005/**
1006 * ecryptfs_cipher_code_to_string
1007 * @str: Destination to write out the cipher name
1008 * @cipher_code: The code to convert to cipher name string
1009 *
1010 * Returns zero on success
1011 */
1012int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1013{
1014	int rc = 0;
1015	int i;
1016
1017	str[0] = '\0';
1018	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1019		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1020			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1021	if (str[0] == '\0') {
1022		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1023				"[%d]\n", cipher_code);
1024		rc = -EINVAL;
1025	}
1026	return rc;
1027}
1028
1029int ecryptfs_read_and_validate_header_region(struct inode *inode)
1030{
1031	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1032	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1033	int rc;
1034
1035	rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1036				 inode);
1037	if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1038		return rc >= 0 ? -EINVAL : rc;
1039	rc = ecryptfs_validate_marker(marker);
1040	if (!rc)
1041		ecryptfs_i_size_init(file_size, inode);
1042	return rc;
1043}
1044
1045void
1046ecryptfs_write_header_metadata(char *virt,
1047			       struct ecryptfs_crypt_stat *crypt_stat,
1048			       size_t *written)
1049{
1050	u32 header_extent_size;
1051	u16 num_header_extents_at_front;
1052
1053	header_extent_size = (u32)crypt_stat->extent_size;
1054	num_header_extents_at_front =
1055		(u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1056	put_unaligned_be32(header_extent_size, virt);
1057	virt += 4;
1058	put_unaligned_be16(num_header_extents_at_front, virt);
1059	(*written) = 6;
1060}
1061
1062struct kmem_cache *ecryptfs_header_cache;
1063
1064/**
1065 * ecryptfs_write_headers_virt
1066 * @page_virt: The virtual address to write the headers to
1067 * @max: The size of memory allocated at page_virt
1068 * @size: Set to the number of bytes written by this function
1069 * @crypt_stat: The cryptographic context
1070 * @ecryptfs_dentry: The eCryptfs dentry
1071 *
1072 * Format version: 1
1073 *
1074 *   Header Extent:
1075 *     Octets 0-7:        Unencrypted file size (big-endian)
1076 *     Octets 8-15:       eCryptfs special marker
1077 *     Octets 16-19:      Flags
1078 *      Octet 16:         File format version number (between 0 and 255)
1079 *      Octets 17-18:     Reserved
1080 *      Octet 19:         Bit 1 (lsb): Reserved
1081 *                        Bit 2: Encrypted?
1082 *                        Bits 3-8: Reserved
1083 *     Octets 20-23:      Header extent size (big-endian)
1084 *     Octets 24-25:      Number of header extents at front of file
1085 *                        (big-endian)
1086 *     Octet  26:         Begin RFC 2440 authentication token packet set
1087 *   Data Extent 0:
1088 *     Lower data (CBC encrypted)
1089 *   Data Extent 1:
1090 *     Lower data (CBC encrypted)
1091 *   ...
1092 *
1093 * Returns zero on success
1094 */
1095static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1096				       size_t *size,
1097				       struct ecryptfs_crypt_stat *crypt_stat,
1098				       struct dentry *ecryptfs_dentry)
1099{
1100	int rc;
1101	size_t written;
1102	size_t offset;
1103
1104	offset = ECRYPTFS_FILE_SIZE_BYTES;
1105	write_ecryptfs_marker((page_virt + offset), &written);
1106	offset += written;
1107	ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1108					&written);
1109	offset += written;
1110	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1111				       &written);
1112	offset += written;
1113	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1114					      ecryptfs_dentry, &written,
1115					      max - offset);
1116	if (rc)
1117		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1118				"set; rc = [%d]\n", rc);
1119	if (size) {
1120		offset += written;
1121		*size = offset;
1122	}
1123	return rc;
1124}
1125
1126static int
1127ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1128				    char *virt, size_t virt_len)
1129{
1130	int rc;
1131
1132	rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1133				  0, virt_len);
1134	if (rc < 0)
1135		printk(KERN_ERR "%s: Error attempting to write header "
1136		       "information to lower file; rc = [%d]\n", __func__, rc);
1137	else
1138		rc = 0;
1139	return rc;
1140}
1141
1142static int
1143ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1144				 struct inode *ecryptfs_inode,
1145				 char *page_virt, size_t size)
1146{
1147	int rc;
1148
1149	rc = ecryptfs_setxattr(ecryptfs_dentry, ecryptfs_inode,
1150			       ECRYPTFS_XATTR_NAME, page_virt, size, 0);
1151	return rc;
1152}
1153
1154static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1155					       unsigned int order)
1156{
1157	struct page *page;
1158
1159	page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1160	if (page)
1161		return (unsigned long) page_address(page);
1162	return 0;
1163}
1164
1165/**
1166 * ecryptfs_write_metadata
1167 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1168 * @ecryptfs_inode: The newly created eCryptfs inode
1169 *
1170 * Write the file headers out.  This will likely involve a userspace
1171 * callout, in which the session key is encrypted with one or more
1172 * public keys and/or the passphrase necessary to do the encryption is
1173 * retrieved via a prompt.  Exactly what happens at this point should
1174 * be policy-dependent.
1175 *
1176 * Returns zero on success; non-zero on error
1177 */
1178int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1179			    struct inode *ecryptfs_inode)
1180{
1181	struct ecryptfs_crypt_stat *crypt_stat =
1182		&ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1183	unsigned int order;
1184	char *virt;
1185	size_t virt_len;
1186	size_t size = 0;
1187	int rc = 0;
1188
1189	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1190		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1191			printk(KERN_ERR "Key is invalid; bailing out\n");
1192			rc = -EINVAL;
1193			goto out;
1194		}
1195	} else {
1196		printk(KERN_WARNING "%s: Encrypted flag not set\n",
1197		       __func__);
1198		rc = -EINVAL;
1199		goto out;
1200	}
1201	virt_len = crypt_stat->metadata_size;
1202	order = get_order(virt_len);
1203	/* Released in this function */
1204	virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1205	if (!virt) {
1206		printk(KERN_ERR "%s: Out of memory\n", __func__);
1207		rc = -ENOMEM;
1208		goto out;
1209	}
1210	/* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1211	rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1212					 ecryptfs_dentry);
1213	if (unlikely(rc)) {
1214		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1215		       __func__, rc);
1216		goto out_free;
1217	}
1218	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1219		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode,
1220						      virt, size);
1221	else
1222		rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1223							 virt_len);
1224	if (rc) {
1225		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1226		       "rc = [%d]\n", __func__, rc);
1227		goto out_free;
1228	}
1229out_free:
1230	free_pages((unsigned long)virt, order);
1231out:
1232	return rc;
1233}
1234
1235#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1236#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1237static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1238				 char *virt, int *bytes_read,
1239				 int validate_header_size)
1240{
1241	int rc = 0;
1242	u32 header_extent_size;
1243	u16 num_header_extents_at_front;
1244
1245	header_extent_size = get_unaligned_be32(virt);
1246	virt += sizeof(__be32);
1247	num_header_extents_at_front = get_unaligned_be16(virt);
1248	crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1249				     * (size_t)header_extent_size));
1250	(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1251	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1252	    && (crypt_stat->metadata_size
1253		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1254		rc = -EINVAL;
1255		printk(KERN_WARNING "Invalid header size: [%zd]\n",
1256		       crypt_stat->metadata_size);
1257	}
1258	return rc;
1259}
1260
1261/**
1262 * set_default_header_data
1263 * @crypt_stat: The cryptographic context
1264 *
1265 * For version 0 file format; this function is only for backwards
1266 * compatibility for files created with the prior versions of
1267 * eCryptfs.
1268 */
1269static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1270{
1271	crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1272}
1273
1274void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1275{
1276	struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1277	struct ecryptfs_crypt_stat *crypt_stat;
1278	u64 file_size;
1279
1280	crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1281	mount_crypt_stat =
1282		&ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1283	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1284		file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1285		if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1286			file_size += crypt_stat->metadata_size;
1287	} else
1288		file_size = get_unaligned_be64(page_virt);
1289	i_size_write(inode, (loff_t)file_size);
1290	crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1291}
1292
1293/**
1294 * ecryptfs_read_headers_virt
1295 * @page_virt: The virtual address into which to read the headers
1296 * @crypt_stat: The cryptographic context
1297 * @ecryptfs_dentry: The eCryptfs dentry
1298 * @validate_header_size: Whether to validate the header size while reading
1299 *
1300 * Read/parse the header data. The header format is detailed in the
1301 * comment block for the ecryptfs_write_headers_virt() function.
1302 *
1303 * Returns zero on success
1304 */
1305static int ecryptfs_read_headers_virt(char *page_virt,
1306				      struct ecryptfs_crypt_stat *crypt_stat,
1307				      struct dentry *ecryptfs_dentry,
1308				      int validate_header_size)
1309{
1310	int rc = 0;
1311	int offset;
1312	int bytes_read;
1313
1314	ecryptfs_set_default_sizes(crypt_stat);
1315	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1316		ecryptfs_dentry->d_sb)->mount_crypt_stat;
1317	offset = ECRYPTFS_FILE_SIZE_BYTES;
1318	rc = ecryptfs_validate_marker(page_virt + offset);
1319	if (rc)
1320		goto out;
1321	if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1322		ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
1323	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1324	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1325				    &bytes_read);
1326	if (rc) {
1327		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1328		goto out;
1329	}
1330	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1331		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1332				"file version [%d] is supported by this "
1333				"version of eCryptfs\n",
1334				crypt_stat->file_version,
1335				ECRYPTFS_SUPPORTED_FILE_VERSION);
1336		rc = -EINVAL;
1337		goto out;
1338	}
1339	offset += bytes_read;
1340	if (crypt_stat->file_version >= 1) {
1341		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1342					   &bytes_read, validate_header_size);
1343		if (rc) {
1344			ecryptfs_printk(KERN_WARNING, "Error reading header "
1345					"metadata; rc = [%d]\n", rc);
1346		}
1347		offset += bytes_read;
1348	} else
1349		set_default_header_data(crypt_stat);
1350	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1351				       ecryptfs_dentry);
1352out:
1353	return rc;
1354}
1355
1356/**
1357 * ecryptfs_read_xattr_region
1358 * @page_virt: The vitual address into which to read the xattr data
1359 * @ecryptfs_inode: The eCryptfs inode
1360 *
1361 * Attempts to read the crypto metadata from the extended attribute
1362 * region of the lower file.
1363 *
1364 * Returns zero on success; non-zero on error
1365 */
1366int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1367{
1368	struct dentry *lower_dentry =
1369		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
1370	ssize_t size;
1371	int rc = 0;
1372
1373	size = ecryptfs_getxattr_lower(lower_dentry,
1374				       ecryptfs_inode_to_lower(ecryptfs_inode),
1375				       ECRYPTFS_XATTR_NAME,
1376				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1377	if (size < 0) {
1378		if (unlikely(ecryptfs_verbosity > 0))
1379			printk(KERN_INFO "Error attempting to read the [%s] "
1380			       "xattr from the lower file; return value = "
1381			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1382		rc = -EINVAL;
1383		goto out;
1384	}
1385out:
1386	return rc;
1387}
1388
1389int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1390					    struct inode *inode)
1391{
1392	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1393	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1394	int rc;
1395
1396	rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1397				     ecryptfs_inode_to_lower(inode),
1398				     ECRYPTFS_XATTR_NAME, file_size,
1399				     ECRYPTFS_SIZE_AND_MARKER_BYTES);
1400	if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1401		return rc >= 0 ? -EINVAL : rc;
1402	rc = ecryptfs_validate_marker(marker);
1403	if (!rc)
1404		ecryptfs_i_size_init(file_size, inode);
1405	return rc;
1406}
1407
1408/**
1409 * ecryptfs_read_metadata
1410 *
1411 * Common entry point for reading file metadata. From here, we could
1412 * retrieve the header information from the header region of the file,
1413 * the xattr region of the file, or some other repository that is
1414 * stored separately from the file itself. The current implementation
1415 * supports retrieving the metadata information from the file contents
1416 * and from the xattr region.
1417 *
1418 * Returns zero if valid headers found and parsed; non-zero otherwise
1419 */
1420int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1421{
1422	int rc;
1423	char *page_virt;
1424	struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
1425	struct ecryptfs_crypt_stat *crypt_stat =
1426	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1427	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1428		&ecryptfs_superblock_to_private(
1429			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1430
1431	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1432						      mount_crypt_stat);
1433	/* Read the first page from the underlying file */
1434	page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1435	if (!page_virt) {
1436		rc = -ENOMEM;
1437		printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1438		       __func__);
1439		goto out;
1440	}
1441	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1442				 ecryptfs_inode);
1443	if (rc >= 0)
1444		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1445						ecryptfs_dentry,
1446						ECRYPTFS_VALIDATE_HEADER_SIZE);
1447	if (rc) {
1448		/* metadata is not in the file header, so try xattrs */
1449		memset(page_virt, 0, PAGE_SIZE);
1450		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1451		if (rc) {
1452			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1453			       "file header region or xattr region, inode %lu\n",
1454				ecryptfs_inode->i_ino);
1455			rc = -EINVAL;
1456			goto out;
1457		}
1458		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1459						ecryptfs_dentry,
1460						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1461		if (rc) {
1462			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1463			       "file xattr region either, inode %lu\n",
1464				ecryptfs_inode->i_ino);
1465			rc = -EINVAL;
1466		}
1467		if (crypt_stat->mount_crypt_stat->flags
1468		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
1469			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1470		} else {
1471			printk(KERN_WARNING "Attempt to access file with "
1472			       "crypto metadata only in the extended attribute "
1473			       "region, but eCryptfs was mounted without "
1474			       "xattr support enabled. eCryptfs will not treat "
1475			       "this like an encrypted file, inode %lu\n",
1476				ecryptfs_inode->i_ino);
1477			rc = -EINVAL;
1478		}
1479	}
1480out:
1481	if (page_virt) {
1482		memset(page_virt, 0, PAGE_SIZE);
1483		kmem_cache_free(ecryptfs_header_cache, page_virt);
1484	}
1485	return rc;
1486}
1487
1488/**
1489 * ecryptfs_encrypt_filename - encrypt filename
1490 *
1491 * CBC-encrypts the filename. We do not want to encrypt the same
1492 * filename with the same key and IV, which may happen with hard
1493 * links, so we prepend random bits to each filename.
1494 *
1495 * Returns zero on success; non-zero otherwise
1496 */
1497static int
1498ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
 
1499			  struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1500{
1501	int rc = 0;
1502
1503	filename->encrypted_filename = NULL;
1504	filename->encrypted_filename_size = 0;
1505	if (mount_crypt_stat && (mount_crypt_stat->flags
1506				     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
 
1507		size_t packet_size;
1508		size_t remaining_bytes;
1509
1510		rc = ecryptfs_write_tag_70_packet(
1511			NULL, NULL,
1512			&filename->encrypted_filename_size,
1513			mount_crypt_stat, NULL,
1514			filename->filename_size);
1515		if (rc) {
1516			printk(KERN_ERR "%s: Error attempting to get packet "
1517			       "size for tag 72; rc = [%d]\n", __func__,
1518			       rc);
1519			filename->encrypted_filename_size = 0;
1520			goto out;
1521		}
1522		filename->encrypted_filename =
1523			kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1524		if (!filename->encrypted_filename) {
1525			printk(KERN_ERR "%s: Out of memory whilst attempting "
1526			       "to kmalloc [%zd] bytes\n", __func__,
1527			       filename->encrypted_filename_size);
1528			rc = -ENOMEM;
1529			goto out;
1530		}
1531		remaining_bytes = filename->encrypted_filename_size;
1532		rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1533						  &remaining_bytes,
1534						  &packet_size,
1535						  mount_crypt_stat,
1536						  filename->filename,
1537						  filename->filename_size);
1538		if (rc) {
1539			printk(KERN_ERR "%s: Error attempting to generate "
1540			       "tag 70 packet; rc = [%d]\n", __func__,
1541			       rc);
1542			kfree(filename->encrypted_filename);
1543			filename->encrypted_filename = NULL;
1544			filename->encrypted_filename_size = 0;
1545			goto out;
1546		}
1547		filename->encrypted_filename_size = packet_size;
1548	} else {
1549		printk(KERN_ERR "%s: No support for requested filename "
1550		       "encryption method in this release\n", __func__);
1551		rc = -EOPNOTSUPP;
1552		goto out;
1553	}
1554out:
1555	return rc;
1556}
1557
1558static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1559				  const char *name, size_t name_size)
1560{
1561	int rc = 0;
1562
1563	(*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1564	if (!(*copied_name)) {
1565		rc = -ENOMEM;
1566		goto out;
1567	}
1568	memcpy((void *)(*copied_name), (void *)name, name_size);
1569	(*copied_name)[(name_size)] = '\0';	/* Only for convenience
1570						 * in printing out the
1571						 * string in debug
1572						 * messages */
1573	(*copied_name_size) = name_size;
1574out:
1575	return rc;
1576}
1577
1578/**
1579 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1580 * @key_tfm: Crypto context for key material, set by this function
1581 * @cipher_name: Name of the cipher
1582 * @key_size: Size of the key in bytes
1583 *
1584 * Returns zero on success. Any crypto_tfm structs allocated here
1585 * should be released by other functions, such as on a superblock put
1586 * event, regardless of whether this function succeeds for fails.
1587 */
1588static int
1589ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm,
1590			    char *cipher_name, size_t *key_size)
1591{
1592	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1593	char *full_alg_name = NULL;
1594	int rc;
1595
1596	*key_tfm = NULL;
1597	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1598		rc = -EINVAL;
1599		printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1600		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1601		goto out;
1602	}
1603	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1604						    "ecb");
1605	if (rc)
1606		goto out;
1607	*key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1608	if (IS_ERR(*key_tfm)) {
1609		rc = PTR_ERR(*key_tfm);
1610		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1611		       "[%s]; rc = [%d]\n", full_alg_name, rc);
1612		goto out;
1613	}
1614	crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1615	if (*key_size == 0)
1616		*key_size = crypto_skcipher_default_keysize(*key_tfm);
 
 
 
1617	get_random_bytes(dummy_key, *key_size);
1618	rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size);
1619	if (rc) {
1620		printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1621		       "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1622		       rc);
1623		rc = -EINVAL;
1624		goto out;
1625	}
1626out:
1627	kfree(full_alg_name);
1628	return rc;
1629}
1630
1631struct kmem_cache *ecryptfs_key_tfm_cache;
1632static struct list_head key_tfm_list;
1633struct mutex key_tfm_list_mutex;
1634
1635int __init ecryptfs_init_crypto(void)
1636{
1637	mutex_init(&key_tfm_list_mutex);
1638	INIT_LIST_HEAD(&key_tfm_list);
1639	return 0;
1640}
1641
1642/**
1643 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1644 *
1645 * Called only at module unload time
1646 */
1647int ecryptfs_destroy_crypto(void)
1648{
1649	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1650
1651	mutex_lock(&key_tfm_list_mutex);
1652	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1653				 key_tfm_list) {
1654		list_del(&key_tfm->key_tfm_list);
1655		crypto_free_skcipher(key_tfm->key_tfm);
 
1656		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1657	}
1658	mutex_unlock(&key_tfm_list_mutex);
1659	return 0;
1660}
1661
1662int
1663ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1664			 size_t key_size)
1665{
1666	struct ecryptfs_key_tfm *tmp_tfm;
1667	int rc = 0;
1668
1669	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1670
1671	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1672	if (key_tfm != NULL)
1673		(*key_tfm) = tmp_tfm;
1674	if (!tmp_tfm) {
1675		rc = -ENOMEM;
1676		printk(KERN_ERR "Error attempting to allocate from "
1677		       "ecryptfs_key_tfm_cache\n");
1678		goto out;
1679	}
1680	mutex_init(&tmp_tfm->key_tfm_mutex);
1681	strncpy(tmp_tfm->cipher_name, cipher_name,
1682		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1683	tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1684	tmp_tfm->key_size = key_size;
1685	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1686					 tmp_tfm->cipher_name,
1687					 &tmp_tfm->key_size);
1688	if (rc) {
1689		printk(KERN_ERR "Error attempting to initialize key TFM "
1690		       "cipher with name = [%s]; rc = [%d]\n",
1691		       tmp_tfm->cipher_name, rc);
1692		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1693		if (key_tfm != NULL)
1694			(*key_tfm) = NULL;
1695		goto out;
1696	}
1697	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1698out:
1699	return rc;
1700}
1701
1702/**
1703 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1704 * @cipher_name: the name of the cipher to search for
1705 * @key_tfm: set to corresponding tfm if found
1706 *
1707 * Searches for cached key_tfm matching @cipher_name
1708 * Must be called with &key_tfm_list_mutex held
1709 * Returns 1 if found, with @key_tfm set
1710 * Returns 0 if not found, with @key_tfm set to NULL
1711 */
1712int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1713{
1714	struct ecryptfs_key_tfm *tmp_key_tfm;
1715
1716	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1717
1718	list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1719		if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1720			if (key_tfm)
1721				(*key_tfm) = tmp_key_tfm;
1722			return 1;
1723		}
1724	}
1725	if (key_tfm)
1726		(*key_tfm) = NULL;
1727	return 0;
1728}
1729
1730/**
1731 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1732 *
1733 * @tfm: set to cached tfm found, or new tfm created
1734 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1735 * @cipher_name: the name of the cipher to search for and/or add
1736 *
1737 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1738 * Searches for cached item first, and creates new if not found.
1739 * Returns 0 on success, non-zero if adding new cipher failed
1740 */
1741int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm,
1742					       struct mutex **tfm_mutex,
1743					       char *cipher_name)
1744{
1745	struct ecryptfs_key_tfm *key_tfm;
1746	int rc = 0;
1747
1748	(*tfm) = NULL;
1749	(*tfm_mutex) = NULL;
1750
1751	mutex_lock(&key_tfm_list_mutex);
1752	if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1753		rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1754		if (rc) {
1755			printk(KERN_ERR "Error adding new key_tfm to list; "
1756					"rc = [%d]\n", rc);
1757			goto out;
1758		}
1759	}
1760	(*tfm) = key_tfm->key_tfm;
1761	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
1762out:
1763	mutex_unlock(&key_tfm_list_mutex);
1764	return rc;
1765}
1766
1767/* 64 characters forming a 6-bit target field */
1768static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1769						 "EFGHIJKLMNOPQRST"
1770						 "UVWXYZabcdefghij"
1771						 "klmnopqrstuvwxyz");
1772
1773/* We could either offset on every reverse map or just pad some 0x00's
1774 * at the front here */
1775static const unsigned char filename_rev_map[256] = {
1776	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1777	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1778	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1779	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1780	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1781	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1782	0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1783	0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1784	0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1785	0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1786	0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1787	0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1788	0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1789	0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1790	0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1791	0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1792};
1793
1794/**
1795 * ecryptfs_encode_for_filename
1796 * @dst: Destination location for encoded filename
1797 * @dst_size: Size of the encoded filename in bytes
1798 * @src: Source location for the filename to encode
1799 * @src_size: Size of the source in bytes
1800 */
1801static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1802				  unsigned char *src, size_t src_size)
1803{
1804	size_t num_blocks;
1805	size_t block_num = 0;
1806	size_t dst_offset = 0;
1807	unsigned char last_block[3];
1808
1809	if (src_size == 0) {
1810		(*dst_size) = 0;
1811		goto out;
1812	}
1813	num_blocks = (src_size / 3);
1814	if ((src_size % 3) == 0) {
1815		memcpy(last_block, (&src[src_size - 3]), 3);
1816	} else {
1817		num_blocks++;
1818		last_block[2] = 0x00;
1819		switch (src_size % 3) {
1820		case 1:
1821			last_block[0] = src[src_size - 1];
1822			last_block[1] = 0x00;
1823			break;
1824		case 2:
1825			last_block[0] = src[src_size - 2];
1826			last_block[1] = src[src_size - 1];
1827		}
1828	}
1829	(*dst_size) = (num_blocks * 4);
1830	if (!dst)
1831		goto out;
1832	while (block_num < num_blocks) {
1833		unsigned char *src_block;
1834		unsigned char dst_block[4];
1835
1836		if (block_num == (num_blocks - 1))
1837			src_block = last_block;
1838		else
1839			src_block = &src[block_num * 3];
1840		dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1841		dst_block[1] = (((src_block[0] << 4) & 0x30)
1842				| ((src_block[1] >> 4) & 0x0F));
1843		dst_block[2] = (((src_block[1] << 2) & 0x3C)
1844				| ((src_block[2] >> 6) & 0x03));
1845		dst_block[3] = (src_block[2] & 0x3F);
1846		dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1847		dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1848		dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1849		dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1850		block_num++;
1851	}
1852out:
1853	return;
1854}
1855
1856static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1857{
1858	/* Not exact; conservatively long. Every block of 4
1859	 * encoded characters decodes into a block of 3
1860	 * decoded characters. This segment of code provides
1861	 * the caller with the maximum amount of allocated
1862	 * space that @dst will need to point to in a
1863	 * subsequent call. */
1864	return ((encoded_size + 1) * 3) / 4;
1865}
1866
1867/**
1868 * ecryptfs_decode_from_filename
1869 * @dst: If NULL, this function only sets @dst_size and returns. If
1870 *       non-NULL, this function decodes the encoded octets in @src
1871 *       into the memory that @dst points to.
1872 * @dst_size: Set to the size of the decoded string.
1873 * @src: The encoded set of octets to decode.
1874 * @src_size: The size of the encoded set of octets to decode.
1875 */
1876static void
1877ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1878			      const unsigned char *src, size_t src_size)
1879{
1880	u8 current_bit_offset = 0;
1881	size_t src_byte_offset = 0;
1882	size_t dst_byte_offset = 0;
1883
1884	if (dst == NULL) {
1885		(*dst_size) = ecryptfs_max_decoded_size(src_size);
1886		goto out;
1887	}
1888	while (src_byte_offset < src_size) {
1889		unsigned char src_byte =
1890				filename_rev_map[(int)src[src_byte_offset]];
1891
1892		switch (current_bit_offset) {
1893		case 0:
1894			dst[dst_byte_offset] = (src_byte << 2);
1895			current_bit_offset = 6;
1896			break;
1897		case 6:
1898			dst[dst_byte_offset++] |= (src_byte >> 4);
1899			dst[dst_byte_offset] = ((src_byte & 0xF)
1900						 << 4);
1901			current_bit_offset = 4;
1902			break;
1903		case 4:
1904			dst[dst_byte_offset++] |= (src_byte >> 2);
1905			dst[dst_byte_offset] = (src_byte << 6);
1906			current_bit_offset = 2;
1907			break;
1908		case 2:
1909			dst[dst_byte_offset++] |= (src_byte);
 
1910			current_bit_offset = 0;
1911			break;
1912		}
1913		src_byte_offset++;
1914	}
1915	(*dst_size) = dst_byte_offset;
1916out:
1917	return;
1918}
1919
1920/**
1921 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1922 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1923 * @name: The plaintext name
1924 * @length: The length of the plaintext
1925 * @encoded_name: The encypted name
1926 *
1927 * Encrypts and encodes a filename into something that constitutes a
1928 * valid filename for a filesystem, with printable characters.
1929 *
1930 * We assume that we have a properly initialized crypto context,
1931 * pointed to by crypt_stat->tfm.
1932 *
1933 * Returns zero on success; non-zero on otherwise
1934 */
1935int ecryptfs_encrypt_and_encode_filename(
1936	char **encoded_name,
1937	size_t *encoded_name_size,
 
1938	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1939	const char *name, size_t name_size)
1940{
1941	size_t encoded_name_no_prefix_size;
1942	int rc = 0;
1943
1944	(*encoded_name) = NULL;
1945	(*encoded_name_size) = 0;
1946	if (mount_crypt_stat && (mount_crypt_stat->flags
1947				     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
 
1948		struct ecryptfs_filename *filename;
1949
1950		filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1951		if (!filename) {
1952			printk(KERN_ERR "%s: Out of memory whilst attempting "
1953			       "to kzalloc [%zd] bytes\n", __func__,
1954			       sizeof(*filename));
1955			rc = -ENOMEM;
1956			goto out;
1957		}
1958		filename->filename = (char *)name;
1959		filename->filename_size = name_size;
1960		rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat);
 
1961		if (rc) {
1962			printk(KERN_ERR "%s: Error attempting to encrypt "
1963			       "filename; rc = [%d]\n", __func__, rc);
1964			kfree(filename);
1965			goto out;
1966		}
1967		ecryptfs_encode_for_filename(
1968			NULL, &encoded_name_no_prefix_size,
1969			filename->encrypted_filename,
1970			filename->encrypted_filename_size);
1971		if (mount_crypt_stat
 
 
1972			&& (mount_crypt_stat->flags
1973			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))
1974			(*encoded_name_size) =
1975				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1976				 + encoded_name_no_prefix_size);
1977		else
1978			(*encoded_name_size) =
1979				(ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1980				 + encoded_name_no_prefix_size);
1981		(*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1982		if (!(*encoded_name)) {
1983			printk(KERN_ERR "%s: Out of memory whilst attempting "
1984			       "to kzalloc [%zd] bytes\n", __func__,
1985			       (*encoded_name_size));
1986			rc = -ENOMEM;
1987			kfree(filename->encrypted_filename);
1988			kfree(filename);
1989			goto out;
1990		}
1991		if (mount_crypt_stat
 
 
1992			&& (mount_crypt_stat->flags
1993			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1994			memcpy((*encoded_name),
1995			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1996			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
1997			ecryptfs_encode_for_filename(
1998			    ((*encoded_name)
1999			     + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2000			    &encoded_name_no_prefix_size,
2001			    filename->encrypted_filename,
2002			    filename->encrypted_filename_size);
2003			(*encoded_name_size) =
2004				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2005				 + encoded_name_no_prefix_size);
2006			(*encoded_name)[(*encoded_name_size)] = '\0';
2007		} else {
2008			rc = -EOPNOTSUPP;
2009		}
2010		if (rc) {
2011			printk(KERN_ERR "%s: Error attempting to encode "
2012			       "encrypted filename; rc = [%d]\n", __func__,
2013			       rc);
2014			kfree((*encoded_name));
2015			(*encoded_name) = NULL;
2016			(*encoded_name_size) = 0;
2017		}
2018		kfree(filename->encrypted_filename);
2019		kfree(filename);
2020	} else {
2021		rc = ecryptfs_copy_filename(encoded_name,
2022					    encoded_name_size,
2023					    name, name_size);
2024	}
2025out:
2026	return rc;
2027}
2028
2029/**
2030 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2031 * @plaintext_name: The plaintext name
2032 * @plaintext_name_size: The plaintext name size
2033 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2034 * @name: The filename in cipher text
2035 * @name_size: The cipher text name size
2036 *
2037 * Decrypts and decodes the filename.
2038 *
2039 * Returns zero on error; non-zero otherwise
2040 */
2041int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2042					 size_t *plaintext_name_size,
2043					 struct super_block *sb,
2044					 const char *name, size_t name_size)
2045{
2046	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2047		&ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
 
2048	char *decoded_name;
2049	size_t decoded_name_size;
2050	size_t packet_size;
2051	int rc = 0;
2052
2053	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2054	    && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2055	    && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2056	    && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2057			ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2058		const char *orig_name = name;
2059		size_t orig_name_size = name_size;
2060
2061		name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2062		name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2063		ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2064					      name, name_size);
2065		decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2066		if (!decoded_name) {
2067			printk(KERN_ERR "%s: Out of memory whilst attempting "
2068			       "to kmalloc [%zd] bytes\n", __func__,
2069			       decoded_name_size);
2070			rc = -ENOMEM;
2071			goto out;
2072		}
2073		ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2074					      name, name_size);
2075		rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2076						  plaintext_name_size,
2077						  &packet_size,
2078						  mount_crypt_stat,
2079						  decoded_name,
2080						  decoded_name_size);
2081		if (rc) {
2082			printk(KERN_INFO "%s: Could not parse tag 70 packet "
2083			       "from filename; copying through filename "
2084			       "as-is\n", __func__);
2085			rc = ecryptfs_copy_filename(plaintext_name,
2086						    plaintext_name_size,
2087						    orig_name, orig_name_size);
2088			goto out_free;
2089		}
2090	} else {
2091		rc = ecryptfs_copy_filename(plaintext_name,
2092					    plaintext_name_size,
2093					    name, name_size);
2094		goto out;
2095	}
2096out_free:
2097	kfree(decoded_name);
2098out:
2099	return rc;
2100}
2101
2102#define ENC_NAME_MAX_BLOCKLEN_8_OR_16	143
2103
2104int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2105			   struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2106{
2107	struct crypto_skcipher *tfm;
2108	struct mutex *tfm_mutex;
2109	size_t cipher_blocksize;
2110	int rc;
2111
2112	if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2113		(*namelen) = lower_namelen;
2114		return 0;
2115	}
2116
2117	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2118			mount_crypt_stat->global_default_fn_cipher_name);
2119	if (unlikely(rc)) {
2120		(*namelen) = 0;
2121		return rc;
2122	}
2123
2124	mutex_lock(tfm_mutex);
2125	cipher_blocksize = crypto_skcipher_blocksize(tfm);
2126	mutex_unlock(tfm_mutex);
2127
2128	/* Return an exact amount for the common cases */
2129	if (lower_namelen == NAME_MAX
2130	    && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2131		(*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2132		return 0;
2133	}
2134
2135	/* Return a safe estimate for the uncommon cases */
2136	(*namelen) = lower_namelen;
2137	(*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2138	/* Since this is the max decoded size, subtract 1 "decoded block" len */
2139	(*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2140	(*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2141	(*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2142	/* Worst case is that the filename is padded nearly a full block size */
2143	(*namelen) -= cipher_blocksize - 1;
2144
2145	if ((*namelen) < 0)
2146		(*namelen) = 0;
2147
2148	return 0;
2149}
v3.5.6
   1/**
   2 * eCryptfs: Linux filesystem encryption layer
   3 *
   4 * Copyright (C) 1997-2004 Erez Zadok
   5 * Copyright (C) 2001-2004 Stony Brook University
   6 * Copyright (C) 2004-2007 International Business Machines Corp.
   7 *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
   8 *   		Michael C. Thompson <mcthomps@us.ibm.com>
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License as
  12 * published by the Free Software Foundation; either version 2 of the
  13 * License, or (at your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful, but
  16 * WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  18 * General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software
  22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
  23 * 02111-1307, USA.
  24 */
  25
 
 
  26#include <linux/fs.h>
  27#include <linux/mount.h>
  28#include <linux/pagemap.h>
  29#include <linux/random.h>
  30#include <linux/compiler.h>
  31#include <linux/key.h>
  32#include <linux/namei.h>
  33#include <linux/crypto.h>
  34#include <linux/file.h>
  35#include <linux/scatterlist.h>
  36#include <linux/slab.h>
  37#include <asm/unaligned.h>
  38#include "ecryptfs_kernel.h"
  39
  40static int
  41ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
  42			     struct page *dst_page, int dst_offset,
  43			     struct page *src_page, int src_offset, int size,
  44			     unsigned char *iv);
  45static int
  46ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
  47			     struct page *dst_page, int dst_offset,
  48			     struct page *src_page, int src_offset, int size,
  49			     unsigned char *iv);
  50
  51/**
  52 * ecryptfs_to_hex
  53 * @dst: Buffer to take hex character representation of contents of
  54 *       src; must be at least of size (src_size * 2)
  55 * @src: Buffer to be converted to a hex string respresentation
  56 * @src_size: number of bytes to convert
  57 */
  58void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
  59{
  60	int x;
  61
  62	for (x = 0; x < src_size; x++)
  63		sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
  64}
  65
  66/**
  67 * ecryptfs_from_hex
  68 * @dst: Buffer to take the bytes from src hex; must be at least of
  69 *       size (src_size / 2)
  70 * @src: Buffer to be converted from a hex string respresentation to raw value
  71 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
  72 */
  73void ecryptfs_from_hex(char *dst, char *src, int dst_size)
  74{
  75	int x;
  76	char tmp[3] = { 0, };
  77
  78	for (x = 0; x < dst_size; x++) {
  79		tmp[0] = src[x * 2];
  80		tmp[1] = src[x * 2 + 1];
  81		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
  82	}
  83}
  84
 
 
 
 
 
 
 
 
 
 
 
 
 
  85/**
  86 * ecryptfs_calculate_md5 - calculates the md5 of @src
  87 * @dst: Pointer to 16 bytes of allocated memory
  88 * @crypt_stat: Pointer to crypt_stat struct for the current inode
  89 * @src: Data to be md5'd
  90 * @len: Length of @src
  91 *
  92 * Uses the allocated crypto context that crypt_stat references to
  93 * generate the MD5 sum of the contents of src.
  94 */
  95static int ecryptfs_calculate_md5(char *dst,
  96				  struct ecryptfs_crypt_stat *crypt_stat,
  97				  char *src, int len)
  98{
  99	struct scatterlist sg;
 100	struct hash_desc desc = {
 101		.tfm = crypt_stat->hash_tfm,
 102		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
 103	};
 104	int rc = 0;
 105
 106	mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
 107	sg_init_one(&sg, (u8 *)src, len);
 108	if (!desc.tfm) {
 109		desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
 110					     CRYPTO_ALG_ASYNC);
 111		if (IS_ERR(desc.tfm)) {
 112			rc = PTR_ERR(desc.tfm);
 113			ecryptfs_printk(KERN_ERR, "Error attempting to "
 114					"allocate crypto context; rc = [%d]\n",
 115					rc);
 116			goto out;
 117		}
 118		crypt_stat->hash_tfm = desc.tfm;
 119	}
 120	rc = crypto_hash_init(&desc);
 121	if (rc) {
 122		printk(KERN_ERR
 123		       "%s: Error initializing crypto hash; rc = [%d]\n",
 124		       __func__, rc);
 125		goto out;
 126	}
 127	rc = crypto_hash_update(&desc, &sg, len);
 128	if (rc) {
 129		printk(KERN_ERR
 130		       "%s: Error updating crypto hash; rc = [%d]\n",
 131		       __func__, rc);
 132		goto out;
 133	}
 134	rc = crypto_hash_final(&desc, dst);
 135	if (rc) {
 136		printk(KERN_ERR
 137		       "%s: Error finalizing crypto hash; rc = [%d]\n",
 138		       __func__, rc);
 139		goto out;
 140	}
 141out:
 142	mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
 143	return rc;
 144}
 145
 146static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
 147						  char *cipher_name,
 148						  char *chaining_modifier)
 149{
 150	int cipher_name_len = strlen(cipher_name);
 151	int chaining_modifier_len = strlen(chaining_modifier);
 152	int algified_name_len;
 153	int rc;
 154
 155	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
 156	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
 157	if (!(*algified_name)) {
 158		rc = -ENOMEM;
 159		goto out;
 160	}
 161	snprintf((*algified_name), algified_name_len, "%s(%s)",
 162		 chaining_modifier, cipher_name);
 163	rc = 0;
 164out:
 165	return rc;
 166}
 167
 168/**
 169 * ecryptfs_derive_iv
 170 * @iv: destination for the derived iv vale
 171 * @crypt_stat: Pointer to crypt_stat struct for the current inode
 172 * @offset: Offset of the extent whose IV we are to derive
 173 *
 174 * Generate the initialization vector from the given root IV and page
 175 * offset.
 176 *
 177 * Returns zero on success; non-zero on error.
 178 */
 179int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
 180		       loff_t offset)
 181{
 182	int rc = 0;
 183	char dst[MD5_DIGEST_SIZE];
 184	char src[ECRYPTFS_MAX_IV_BYTES + 16];
 185
 186	if (unlikely(ecryptfs_verbosity > 0)) {
 187		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
 188		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
 189	}
 190	/* TODO: It is probably secure to just cast the least
 191	 * significant bits of the root IV into an unsigned long and
 192	 * add the offset to that rather than go through all this
 193	 * hashing business. -Halcrow */
 194	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
 195	memset((src + crypt_stat->iv_bytes), 0, 16);
 196	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
 197	if (unlikely(ecryptfs_verbosity > 0)) {
 198		ecryptfs_printk(KERN_DEBUG, "source:\n");
 199		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
 200	}
 201	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
 202				    (crypt_stat->iv_bytes + 16));
 203	if (rc) {
 204		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
 205				"MD5 while generating IV for a page\n");
 206		goto out;
 207	}
 208	memcpy(iv, dst, crypt_stat->iv_bytes);
 209	if (unlikely(ecryptfs_verbosity > 0)) {
 210		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
 211		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
 212	}
 213out:
 214	return rc;
 215}
 216
 217/**
 218 * ecryptfs_init_crypt_stat
 219 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 220 *
 221 * Initialize the crypt_stat structure.
 222 */
 223void
 224ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
 225{
 
 
 
 
 
 
 
 
 
 
 
 
 226	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
 227	INIT_LIST_HEAD(&crypt_stat->keysig_list);
 228	mutex_init(&crypt_stat->keysig_list_mutex);
 229	mutex_init(&crypt_stat->cs_mutex);
 230	mutex_init(&crypt_stat->cs_tfm_mutex);
 231	mutex_init(&crypt_stat->cs_hash_tfm_mutex);
 232	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
 
 
 233}
 234
 235/**
 236 * ecryptfs_destroy_crypt_stat
 237 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 238 *
 239 * Releases all memory associated with a crypt_stat struct.
 240 */
 241void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
 242{
 243	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
 244
 245	if (crypt_stat->tfm)
 246		crypto_free_blkcipher(crypt_stat->tfm);
 247	if (crypt_stat->hash_tfm)
 248		crypto_free_hash(crypt_stat->hash_tfm);
 249	list_for_each_entry_safe(key_sig, key_sig_tmp,
 250				 &crypt_stat->keysig_list, crypt_stat_list) {
 251		list_del(&key_sig->crypt_stat_list);
 252		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
 253	}
 254	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
 255}
 256
 257void ecryptfs_destroy_mount_crypt_stat(
 258	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 259{
 260	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
 261
 262	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
 263		return;
 264	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
 265	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
 266				 &mount_crypt_stat->global_auth_tok_list,
 267				 mount_crypt_stat_list) {
 268		list_del(&auth_tok->mount_crypt_stat_list);
 269		if (auth_tok->global_auth_tok_key
 270		    && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
 271			key_put(auth_tok->global_auth_tok_key);
 272		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
 273	}
 274	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
 275	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
 276}
 277
 278/**
 279 * virt_to_scatterlist
 280 * @addr: Virtual address
 281 * @size: Size of data; should be an even multiple of the block size
 282 * @sg: Pointer to scatterlist array; set to NULL to obtain only
 283 *      the number of scatterlist structs required in array
 284 * @sg_size: Max array size
 285 *
 286 * Fills in a scatterlist array with page references for a passed
 287 * virtual address.
 288 *
 289 * Returns the number of scatterlist structs in array used
 290 */
 291int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
 292			int sg_size)
 293{
 294	int i = 0;
 295	struct page *pg;
 296	int offset;
 297	int remainder_of_page;
 298
 299	sg_init_table(sg, sg_size);
 300
 301	while (size > 0 && i < sg_size) {
 302		pg = virt_to_page(addr);
 303		offset = offset_in_page(addr);
 304		if (sg)
 305			sg_set_page(&sg[i], pg, 0, offset);
 306		remainder_of_page = PAGE_CACHE_SIZE - offset;
 307		if (size >= remainder_of_page) {
 308			if (sg)
 309				sg[i].length = remainder_of_page;
 310			addr += remainder_of_page;
 311			size -= remainder_of_page;
 312		} else {
 313			if (sg)
 314				sg[i].length = size;
 315			addr += size;
 316			size = 0;
 317		}
 318		i++;
 319	}
 320	if (size > 0)
 321		return -ENOMEM;
 322	return i;
 323}
 324
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 325/**
 326 * encrypt_scatterlist
 327 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 328 * @dest_sg: Destination of encrypted data
 329 * @src_sg: Data to be encrypted
 330 * @size: Length of data to be encrypted
 331 * @iv: iv to use during encryption
 332 *
 333 * Returns the number of bytes encrypted; negative value on error
 334 */
 335static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
 336			       struct scatterlist *dest_sg,
 337			       struct scatterlist *src_sg, int size,
 338			       unsigned char *iv)
 339{
 340	struct blkcipher_desc desc = {
 341		.tfm = crypt_stat->tfm,
 342		.info = iv,
 343		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
 344	};
 345	int rc = 0;
 346
 347	BUG_ON(!crypt_stat || !crypt_stat->tfm
 348	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
 349	if (unlikely(ecryptfs_verbosity > 0)) {
 350		ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
 351				crypt_stat->key_size);
 352		ecryptfs_dump_hex(crypt_stat->key,
 353				  crypt_stat->key_size);
 354	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 355	/* Consider doing this once, when the file is opened */
 356	mutex_lock(&crypt_stat->cs_tfm_mutex);
 357	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
 358		rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
 359					     crypt_stat->key_size);
 
 
 
 
 
 
 
 
 360		crypt_stat->flags |= ECRYPTFS_KEY_SET;
 361	}
 362	if (rc) {
 363		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
 364				rc);
 365		mutex_unlock(&crypt_stat->cs_tfm_mutex);
 366		rc = -EINVAL;
 367		goto out;
 
 
 
 
 368	}
 369	ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
 370	crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
 371	mutex_unlock(&crypt_stat->cs_tfm_mutex);
 372out:
 
 373	return rc;
 374}
 375
 376/**
 377 * ecryptfs_lower_offset_for_extent
 378 *
 379 * Convert an eCryptfs page index into a lower byte offset
 380 */
 381static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
 382					     struct ecryptfs_crypt_stat *crypt_stat)
 383{
 384	(*offset) = ecryptfs_lower_header_size(crypt_stat)
 385		    + (crypt_stat->extent_size * extent_num);
 386}
 387
 388/**
 389 * ecryptfs_encrypt_extent
 390 * @enc_extent_page: Allocated page into which to encrypt the data in
 391 *                   @page
 392 * @crypt_stat: crypt_stat containing cryptographic context for the
 393 *              encryption operation
 394 * @page: Page containing plaintext data extent to encrypt
 
 395 * @extent_offset: Page extent offset for use in generating IV
 
 396 *
 397 * Encrypts one extent of data.
 398 *
 399 * Return zero on success; non-zero otherwise
 400 */
 401static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
 402				   struct ecryptfs_crypt_stat *crypt_stat,
 403				   struct page *page,
 404				   unsigned long extent_offset)
 405{
 
 406	loff_t extent_base;
 407	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
 
 
 408	int rc;
 409
 410	extent_base = (((loff_t)page->index)
 411		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
 412	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
 413				(extent_base + extent_offset));
 414	if (rc) {
 415		ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
 416			"extent [0x%.16llx]; rc = [%d]\n",
 417			(unsigned long long)(extent_base + extent_offset), rc);
 418		goto out;
 419	}
 420	rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
 421					  page, (extent_offset
 422						 * crypt_stat->extent_size),
 423					  crypt_stat->extent_size, extent_iv);
 
 
 
 
 
 
 
 424	if (rc < 0) {
 425		printk(KERN_ERR "%s: Error attempting to encrypt page with "
 426		       "page->index = [%ld], extent_offset = [%ld]; "
 427		       "rc = [%d]\n", __func__, page->index, extent_offset,
 428		       rc);
 429		goto out;
 430	}
 431	rc = 0;
 432out:
 433	return rc;
 434}
 435
 436/**
 437 * ecryptfs_encrypt_page
 438 * @page: Page mapped from the eCryptfs inode for the file; contains
 439 *        decrypted content that needs to be encrypted (to a temporary
 440 *        page; not in place) and written out to the lower file
 441 *
 442 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
 443 * that eCryptfs pages may straddle the lower pages -- for instance,
 444 * if the file was created on a machine with an 8K page size
 445 * (resulting in an 8K header), and then the file is copied onto a
 446 * host with a 32K page size, then when reading page 0 of the eCryptfs
 447 * file, 24K of page 0 of the lower file will be read and decrypted,
 448 * and then 8K of page 1 of the lower file will be read and decrypted.
 449 *
 450 * Returns zero on success; negative on error
 451 */
 452int ecryptfs_encrypt_page(struct page *page)
 453{
 454	struct inode *ecryptfs_inode;
 455	struct ecryptfs_crypt_stat *crypt_stat;
 456	char *enc_extent_virt;
 457	struct page *enc_extent_page = NULL;
 458	loff_t extent_offset;
 
 459	int rc = 0;
 460
 461	ecryptfs_inode = page->mapping->host;
 462	crypt_stat =
 463		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
 464	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
 465	enc_extent_page = alloc_page(GFP_USER);
 466	if (!enc_extent_page) {
 467		rc = -ENOMEM;
 468		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
 469				"encrypted extent\n");
 470		goto out;
 471	}
 472	enc_extent_virt = kmap(enc_extent_page);
 473	for (extent_offset = 0;
 474	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
 475	     extent_offset++) {
 476		loff_t offset;
 477
 478		rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
 479					     extent_offset);
 480		if (rc) {
 481			printk(KERN_ERR "%s: Error encrypting extent; "
 482			       "rc = [%d]\n", __func__, rc);
 483			goto out;
 484		}
 485		ecryptfs_lower_offset_for_extent(
 486			&offset, ((((loff_t)page->index)
 487				   * (PAGE_CACHE_SIZE
 488				      / crypt_stat->extent_size))
 489				  + extent_offset), crypt_stat);
 490		rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
 491					  offset, crypt_stat->extent_size);
 492		if (rc < 0) {
 493			ecryptfs_printk(KERN_ERR, "Error attempting "
 494					"to write lower page; rc = [%d]"
 495					"\n", rc);
 496			goto out;
 497		}
 498	}
 499	rc = 0;
 500out:
 501	if (enc_extent_page) {
 502		kunmap(enc_extent_page);
 503		__free_page(enc_extent_page);
 504	}
 505	return rc;
 506}
 507
 508static int ecryptfs_decrypt_extent(struct page *page,
 509				   struct ecryptfs_crypt_stat *crypt_stat,
 510				   struct page *enc_extent_page,
 511				   unsigned long extent_offset)
 512{
 513	loff_t extent_base;
 514	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
 515	int rc;
 516
 517	extent_base = (((loff_t)page->index)
 518		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
 519	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
 520				(extent_base + extent_offset));
 521	if (rc) {
 522		ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
 523			"extent [0x%.16llx]; rc = [%d]\n",
 524			(unsigned long long)(extent_base + extent_offset), rc);
 525		goto out;
 526	}
 527	rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
 528					  (extent_offset
 529					   * crypt_stat->extent_size),
 530					  enc_extent_page, 0,
 531					  crypt_stat->extent_size, extent_iv);
 532	if (rc < 0) {
 533		printk(KERN_ERR "%s: Error attempting to decrypt to page with "
 534		       "page->index = [%ld], extent_offset = [%ld]; "
 535		       "rc = [%d]\n", __func__, page->index, extent_offset,
 536		       rc);
 537		goto out;
 538	}
 539	rc = 0;
 540out:
 
 
 
 541	return rc;
 542}
 543
 544/**
 545 * ecryptfs_decrypt_page
 546 * @page: Page mapped from the eCryptfs inode for the file; data read
 547 *        and decrypted from the lower file will be written into this
 548 *        page
 549 *
 550 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
 551 * that eCryptfs pages may straddle the lower pages -- for instance,
 552 * if the file was created on a machine with an 8K page size
 553 * (resulting in an 8K header), and then the file is copied onto a
 554 * host with a 32K page size, then when reading page 0 of the eCryptfs
 555 * file, 24K of page 0 of the lower file will be read and decrypted,
 556 * and then 8K of page 1 of the lower file will be read and decrypted.
 557 *
 558 * Returns zero on success; negative on error
 559 */
 560int ecryptfs_decrypt_page(struct page *page)
 561{
 562	struct inode *ecryptfs_inode;
 563	struct ecryptfs_crypt_stat *crypt_stat;
 564	char *enc_extent_virt;
 565	struct page *enc_extent_page = NULL;
 566	unsigned long extent_offset;
 
 567	int rc = 0;
 568
 569	ecryptfs_inode = page->mapping->host;
 570	crypt_stat =
 571		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
 572	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
 573	enc_extent_page = alloc_page(GFP_USER);
 574	if (!enc_extent_page) {
 575		rc = -ENOMEM;
 576		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
 577				"encrypted extent\n");
 
 
 
 
 
 578		goto out;
 579	}
 580	enc_extent_virt = kmap(enc_extent_page);
 581	for (extent_offset = 0;
 582	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
 583	     extent_offset++) {
 584		loff_t offset;
 585
 586		ecryptfs_lower_offset_for_extent(
 587			&offset, ((page->index * (PAGE_CACHE_SIZE
 588						  / crypt_stat->extent_size))
 589				  + extent_offset), crypt_stat);
 590		rc = ecryptfs_read_lower(enc_extent_virt, offset,
 591					 crypt_stat->extent_size,
 592					 ecryptfs_inode);
 593		if (rc < 0) {
 594			ecryptfs_printk(KERN_ERR, "Error attempting "
 595					"to read lower page; rc = [%d]"
 596					"\n", rc);
 597			goto out;
 598		}
 599		rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
 600					     extent_offset);
 601		if (rc) {
 602			printk(KERN_ERR "%s: Error encrypting extent; "
 603			       "rc = [%d]\n", __func__, rc);
 604			goto out;
 605		}
 606	}
 607out:
 608	if (enc_extent_page) {
 609		kunmap(enc_extent_page);
 610		__free_page(enc_extent_page);
 611	}
 612	return rc;
 613}
 614
 615/**
 616 * decrypt_scatterlist
 617 * @crypt_stat: Cryptographic context
 618 * @dest_sg: The destination scatterlist to decrypt into
 619 * @src_sg: The source scatterlist to decrypt from
 620 * @size: The number of bytes to decrypt
 621 * @iv: The initialization vector to use for the decryption
 622 *
 623 * Returns the number of bytes decrypted; negative value on error
 624 */
 625static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
 626			       struct scatterlist *dest_sg,
 627			       struct scatterlist *src_sg, int size,
 628			       unsigned char *iv)
 629{
 630	struct blkcipher_desc desc = {
 631		.tfm = crypt_stat->tfm,
 632		.info = iv,
 633		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
 634	};
 635	int rc = 0;
 636
 637	/* Consider doing this once, when the file is opened */
 638	mutex_lock(&crypt_stat->cs_tfm_mutex);
 639	rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
 640				     crypt_stat->key_size);
 641	if (rc) {
 642		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
 643				rc);
 644		mutex_unlock(&crypt_stat->cs_tfm_mutex);
 645		rc = -EINVAL;
 646		goto out;
 647	}
 648	ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
 649	rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
 650	mutex_unlock(&crypt_stat->cs_tfm_mutex);
 651	if (rc) {
 652		ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
 653				rc);
 654		goto out;
 655	}
 656	rc = size;
 657out:
 658	return rc;
 659}
 660
 661/**
 662 * ecryptfs_encrypt_page_offset
 663 * @crypt_stat: The cryptographic context
 664 * @dst_page: The page to encrypt into
 665 * @dst_offset: The offset in the page to encrypt into
 666 * @src_page: The page to encrypt from
 667 * @src_offset: The offset in the page to encrypt from
 668 * @size: The number of bytes to encrypt
 669 * @iv: The initialization vector to use for the encryption
 670 *
 671 * Returns the number of bytes encrypted
 672 */
 673static int
 674ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
 675			     struct page *dst_page, int dst_offset,
 676			     struct page *src_page, int src_offset, int size,
 677			     unsigned char *iv)
 678{
 679	struct scatterlist src_sg, dst_sg;
 680
 681	sg_init_table(&src_sg, 1);
 682	sg_init_table(&dst_sg, 1);
 683
 684	sg_set_page(&src_sg, src_page, size, src_offset);
 685	sg_set_page(&dst_sg, dst_page, size, dst_offset);
 686	return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
 687}
 688
 689/**
 690 * ecryptfs_decrypt_page_offset
 691 * @crypt_stat: The cryptographic context
 692 * @dst_page: The page to decrypt into
 693 * @dst_offset: The offset in the page to decrypt into
 694 * @src_page: The page to decrypt from
 695 * @src_offset: The offset in the page to decrypt from
 696 * @size: The number of bytes to decrypt
 697 * @iv: The initialization vector to use for the decryption
 698 *
 699 * Returns the number of bytes decrypted
 700 */
 701static int
 702ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
 703			     struct page *dst_page, int dst_offset,
 704			     struct page *src_page, int src_offset, int size,
 705			     unsigned char *iv)
 706{
 707	struct scatterlist src_sg, dst_sg;
 708
 709	sg_init_table(&src_sg, 1);
 710	sg_set_page(&src_sg, src_page, size, src_offset);
 711
 712	sg_init_table(&dst_sg, 1);
 713	sg_set_page(&dst_sg, dst_page, size, dst_offset);
 714
 715	return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
 716}
 717
 718#define ECRYPTFS_MAX_SCATTERLIST_LEN 4
 719
 720/**
 721 * ecryptfs_init_crypt_ctx
 722 * @crypt_stat: Uninitialized crypt stats structure
 723 *
 724 * Initialize the crypto context.
 725 *
 726 * TODO: Performance: Keep a cache of initialized cipher contexts;
 727 * only init if needed
 728 */
 729int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
 730{
 731	char *full_alg_name;
 732	int rc = -EINVAL;
 733
 734	if (!crypt_stat->cipher) {
 735		ecryptfs_printk(KERN_ERR, "No cipher specified\n");
 736		goto out;
 737	}
 738	ecryptfs_printk(KERN_DEBUG,
 739			"Initializing cipher [%s]; strlen = [%d]; "
 740			"key_size_bits = [%zd]\n",
 741			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
 742			crypt_stat->key_size << 3);
 
 743	if (crypt_stat->tfm) {
 744		rc = 0;
 745		goto out;
 746	}
 747	mutex_lock(&crypt_stat->cs_tfm_mutex);
 748	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
 749						    crypt_stat->cipher, "cbc");
 750	if (rc)
 751		goto out_unlock;
 752	crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
 753						 CRYPTO_ALG_ASYNC);
 754	kfree(full_alg_name);
 755	if (IS_ERR(crypt_stat->tfm)) {
 756		rc = PTR_ERR(crypt_stat->tfm);
 757		crypt_stat->tfm = NULL;
 758		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
 759				"Error initializing cipher [%s]\n",
 760				crypt_stat->cipher);
 761		goto out_unlock;
 762	}
 763	crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
 764	rc = 0;
 
 
 765out_unlock:
 766	mutex_unlock(&crypt_stat->cs_tfm_mutex);
 767out:
 768	return rc;
 769}
 770
 771static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
 772{
 773	int extent_size_tmp;
 774
 775	crypt_stat->extent_mask = 0xFFFFFFFF;
 776	crypt_stat->extent_shift = 0;
 777	if (crypt_stat->extent_size == 0)
 778		return;
 779	extent_size_tmp = crypt_stat->extent_size;
 780	while ((extent_size_tmp & 0x01) == 0) {
 781		extent_size_tmp >>= 1;
 782		crypt_stat->extent_mask <<= 1;
 783		crypt_stat->extent_shift++;
 784	}
 785}
 786
 787void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
 788{
 789	/* Default values; may be overwritten as we are parsing the
 790	 * packets. */
 791	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
 792	set_extent_mask_and_shift(crypt_stat);
 793	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
 794	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
 795		crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
 796	else {
 797		if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
 798			crypt_stat->metadata_size =
 799				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
 800		else
 801			crypt_stat->metadata_size = PAGE_CACHE_SIZE;
 802	}
 803}
 804
 805/**
 806 * ecryptfs_compute_root_iv
 807 * @crypt_stats
 808 *
 809 * On error, sets the root IV to all 0's.
 810 */
 811int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
 812{
 813	int rc = 0;
 814	char dst[MD5_DIGEST_SIZE];
 815
 816	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
 817	BUG_ON(crypt_stat->iv_bytes <= 0);
 818	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
 819		rc = -EINVAL;
 820		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
 821				"cannot generate root IV\n");
 822		goto out;
 823	}
 824	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
 825				    crypt_stat->key_size);
 826	if (rc) {
 827		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
 828				"MD5 while generating root IV\n");
 829		goto out;
 830	}
 831	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
 832out:
 833	if (rc) {
 834		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
 835		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
 836	}
 837	return rc;
 838}
 839
 840static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
 841{
 842	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
 843	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
 844	ecryptfs_compute_root_iv(crypt_stat);
 845	if (unlikely(ecryptfs_verbosity > 0)) {
 846		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
 847		ecryptfs_dump_hex(crypt_stat->key,
 848				  crypt_stat->key_size);
 849	}
 850}
 851
 852/**
 853 * ecryptfs_copy_mount_wide_flags_to_inode_flags
 854 * @crypt_stat: The inode's cryptographic context
 855 * @mount_crypt_stat: The mount point's cryptographic context
 856 *
 857 * This function propagates the mount-wide flags to individual inode
 858 * flags.
 859 */
 860static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
 861	struct ecryptfs_crypt_stat *crypt_stat,
 862	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 863{
 864	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
 865		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
 866	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
 867		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
 868	if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
 869		crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
 870		if (mount_crypt_stat->flags
 871		    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
 872			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
 873		else if (mount_crypt_stat->flags
 874			 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
 875			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
 876	}
 877}
 878
 879static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
 880	struct ecryptfs_crypt_stat *crypt_stat,
 881	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 882{
 883	struct ecryptfs_global_auth_tok *global_auth_tok;
 884	int rc = 0;
 885
 886	mutex_lock(&crypt_stat->keysig_list_mutex);
 887	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
 888
 889	list_for_each_entry(global_auth_tok,
 890			    &mount_crypt_stat->global_auth_tok_list,
 891			    mount_crypt_stat_list) {
 892		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
 893			continue;
 894		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
 895		if (rc) {
 896			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
 897			goto out;
 898		}
 899	}
 900
 901out:
 902	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
 903	mutex_unlock(&crypt_stat->keysig_list_mutex);
 904	return rc;
 905}
 906
 907/**
 908 * ecryptfs_set_default_crypt_stat_vals
 909 * @crypt_stat: The inode's cryptographic context
 910 * @mount_crypt_stat: The mount point's cryptographic context
 911 *
 912 * Default values in the event that policy does not override them.
 913 */
 914static void ecryptfs_set_default_crypt_stat_vals(
 915	struct ecryptfs_crypt_stat *crypt_stat,
 916	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 917{
 918	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
 919						      mount_crypt_stat);
 920	ecryptfs_set_default_sizes(crypt_stat);
 921	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
 922	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
 923	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
 924	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
 925	crypt_stat->mount_crypt_stat = mount_crypt_stat;
 926}
 927
 928/**
 929 * ecryptfs_new_file_context
 930 * @ecryptfs_inode: The eCryptfs inode
 931 *
 932 * If the crypto context for the file has not yet been established,
 933 * this is where we do that.  Establishing a new crypto context
 934 * involves the following decisions:
 935 *  - What cipher to use?
 936 *  - What set of authentication tokens to use?
 937 * Here we just worry about getting enough information into the
 938 * authentication tokens so that we know that they are available.
 939 * We associate the available authentication tokens with the new file
 940 * via the set of signatures in the crypt_stat struct.  Later, when
 941 * the headers are actually written out, we may again defer to
 942 * userspace to perform the encryption of the session key; for the
 943 * foreseeable future, this will be the case with public key packets.
 944 *
 945 * Returns zero on success; non-zero otherwise
 946 */
 947int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
 948{
 949	struct ecryptfs_crypt_stat *crypt_stat =
 950	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
 951	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
 952	    &ecryptfs_superblock_to_private(
 953		    ecryptfs_inode->i_sb)->mount_crypt_stat;
 954	int cipher_name_len;
 955	int rc = 0;
 956
 957	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
 958	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
 959	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
 960						      mount_crypt_stat);
 961	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
 962							 mount_crypt_stat);
 963	if (rc) {
 964		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
 965		       "to the inode key sigs; rc = [%d]\n", rc);
 966		goto out;
 967	}
 968	cipher_name_len =
 969		strlen(mount_crypt_stat->global_default_cipher_name);
 970	memcpy(crypt_stat->cipher,
 971	       mount_crypt_stat->global_default_cipher_name,
 972	       cipher_name_len);
 973	crypt_stat->cipher[cipher_name_len] = '\0';
 974	crypt_stat->key_size =
 975		mount_crypt_stat->global_default_cipher_key_size;
 976	ecryptfs_generate_new_key(crypt_stat);
 977	rc = ecryptfs_init_crypt_ctx(crypt_stat);
 978	if (rc)
 979		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
 980				"context for cipher [%s]: rc = [%d]\n",
 981				crypt_stat->cipher, rc);
 982out:
 983	return rc;
 984}
 985
 986/**
 987 * ecryptfs_validate_marker - check for the ecryptfs marker
 988 * @data: The data block in which to check
 989 *
 990 * Returns zero if marker found; -EINVAL if not found
 991 */
 992static int ecryptfs_validate_marker(char *data)
 993{
 994	u32 m_1, m_2;
 995
 996	m_1 = get_unaligned_be32(data);
 997	m_2 = get_unaligned_be32(data + 4);
 998	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
 999		return 0;
1000	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1001			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1002			MAGIC_ECRYPTFS_MARKER);
1003	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1004			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1005	return -EINVAL;
1006}
1007
1008struct ecryptfs_flag_map_elem {
1009	u32 file_flag;
1010	u32 local_flag;
1011};
1012
1013/* Add support for additional flags by adding elements here. */
1014static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1015	{0x00000001, ECRYPTFS_ENABLE_HMAC},
1016	{0x00000002, ECRYPTFS_ENCRYPTED},
1017	{0x00000004, ECRYPTFS_METADATA_IN_XATTR},
1018	{0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
1019};
1020
1021/**
1022 * ecryptfs_process_flags
1023 * @crypt_stat: The cryptographic context
1024 * @page_virt: Source data to be parsed
1025 * @bytes_read: Updated with the number of bytes read
1026 *
1027 * Returns zero on success; non-zero if the flag set is invalid
1028 */
1029static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1030				  char *page_virt, int *bytes_read)
1031{
1032	int rc = 0;
1033	int i;
1034	u32 flags;
1035
1036	flags = get_unaligned_be32(page_virt);
1037	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1038			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1039		if (flags & ecryptfs_flag_map[i].file_flag) {
1040			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
1041		} else
1042			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1043	/* Version is in top 8 bits of the 32-bit flag vector */
1044	crypt_stat->file_version = ((flags >> 24) & 0xFF);
1045	(*bytes_read) = 4;
1046	return rc;
1047}
1048
1049/**
1050 * write_ecryptfs_marker
1051 * @page_virt: The pointer to in a page to begin writing the marker
1052 * @written: Number of bytes written
1053 *
1054 * Marker = 0x3c81b7f5
1055 */
1056static void write_ecryptfs_marker(char *page_virt, size_t *written)
1057{
1058	u32 m_1, m_2;
1059
1060	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1061	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1062	put_unaligned_be32(m_1, page_virt);
1063	page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
1064	put_unaligned_be32(m_2, page_virt);
1065	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1066}
1067
1068void ecryptfs_write_crypt_stat_flags(char *page_virt,
1069				     struct ecryptfs_crypt_stat *crypt_stat,
1070				     size_t *written)
1071{
1072	u32 flags = 0;
1073	int i;
1074
1075	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1076			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1077		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1078			flags |= ecryptfs_flag_map[i].file_flag;
1079	/* Version is in top 8 bits of the 32-bit flag vector */
1080	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1081	put_unaligned_be32(flags, page_virt);
1082	(*written) = 4;
1083}
1084
1085struct ecryptfs_cipher_code_str_map_elem {
1086	char cipher_str[16];
1087	u8 cipher_code;
1088};
1089
1090/* Add support for additional ciphers by adding elements here. The
1091 * cipher_code is whatever OpenPGP applicatoins use to identify the
1092 * ciphers. List in order of probability. */
1093static struct ecryptfs_cipher_code_str_map_elem
1094ecryptfs_cipher_code_str_map[] = {
1095	{"aes",RFC2440_CIPHER_AES_128 },
1096	{"blowfish", RFC2440_CIPHER_BLOWFISH},
1097	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
1098	{"cast5", RFC2440_CIPHER_CAST_5},
1099	{"twofish", RFC2440_CIPHER_TWOFISH},
1100	{"cast6", RFC2440_CIPHER_CAST_6},
1101	{"aes", RFC2440_CIPHER_AES_192},
1102	{"aes", RFC2440_CIPHER_AES_256}
1103};
1104
1105/**
1106 * ecryptfs_code_for_cipher_string
1107 * @cipher_name: The string alias for the cipher
1108 * @key_bytes: Length of key in bytes; used for AES code selection
1109 *
1110 * Returns zero on no match, or the cipher code on match
1111 */
1112u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
1113{
1114	int i;
1115	u8 code = 0;
1116	struct ecryptfs_cipher_code_str_map_elem *map =
1117		ecryptfs_cipher_code_str_map;
1118
1119	if (strcmp(cipher_name, "aes") == 0) {
1120		switch (key_bytes) {
1121		case 16:
1122			code = RFC2440_CIPHER_AES_128;
1123			break;
1124		case 24:
1125			code = RFC2440_CIPHER_AES_192;
1126			break;
1127		case 32:
1128			code = RFC2440_CIPHER_AES_256;
1129		}
1130	} else {
1131		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1132			if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1133				code = map[i].cipher_code;
1134				break;
1135			}
1136	}
1137	return code;
1138}
1139
1140/**
1141 * ecryptfs_cipher_code_to_string
1142 * @str: Destination to write out the cipher name
1143 * @cipher_code: The code to convert to cipher name string
1144 *
1145 * Returns zero on success
1146 */
1147int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1148{
1149	int rc = 0;
1150	int i;
1151
1152	str[0] = '\0';
1153	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1154		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1155			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1156	if (str[0] == '\0') {
1157		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1158				"[%d]\n", cipher_code);
1159		rc = -EINVAL;
1160	}
1161	return rc;
1162}
1163
1164int ecryptfs_read_and_validate_header_region(struct inode *inode)
1165{
1166	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1167	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1168	int rc;
1169
1170	rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1171				 inode);
1172	if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1173		return rc >= 0 ? -EINVAL : rc;
1174	rc = ecryptfs_validate_marker(marker);
1175	if (!rc)
1176		ecryptfs_i_size_init(file_size, inode);
1177	return rc;
1178}
1179
1180void
1181ecryptfs_write_header_metadata(char *virt,
1182			       struct ecryptfs_crypt_stat *crypt_stat,
1183			       size_t *written)
1184{
1185	u32 header_extent_size;
1186	u16 num_header_extents_at_front;
1187
1188	header_extent_size = (u32)crypt_stat->extent_size;
1189	num_header_extents_at_front =
1190		(u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1191	put_unaligned_be32(header_extent_size, virt);
1192	virt += 4;
1193	put_unaligned_be16(num_header_extents_at_front, virt);
1194	(*written) = 6;
1195}
1196
1197struct kmem_cache *ecryptfs_header_cache;
1198
1199/**
1200 * ecryptfs_write_headers_virt
1201 * @page_virt: The virtual address to write the headers to
1202 * @max: The size of memory allocated at page_virt
1203 * @size: Set to the number of bytes written by this function
1204 * @crypt_stat: The cryptographic context
1205 * @ecryptfs_dentry: The eCryptfs dentry
1206 *
1207 * Format version: 1
1208 *
1209 *   Header Extent:
1210 *     Octets 0-7:        Unencrypted file size (big-endian)
1211 *     Octets 8-15:       eCryptfs special marker
1212 *     Octets 16-19:      Flags
1213 *      Octet 16:         File format version number (between 0 and 255)
1214 *      Octets 17-18:     Reserved
1215 *      Octet 19:         Bit 1 (lsb): Reserved
1216 *                        Bit 2: Encrypted?
1217 *                        Bits 3-8: Reserved
1218 *     Octets 20-23:      Header extent size (big-endian)
1219 *     Octets 24-25:      Number of header extents at front of file
1220 *                        (big-endian)
1221 *     Octet  26:         Begin RFC 2440 authentication token packet set
1222 *   Data Extent 0:
1223 *     Lower data (CBC encrypted)
1224 *   Data Extent 1:
1225 *     Lower data (CBC encrypted)
1226 *   ...
1227 *
1228 * Returns zero on success
1229 */
1230static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1231				       size_t *size,
1232				       struct ecryptfs_crypt_stat *crypt_stat,
1233				       struct dentry *ecryptfs_dentry)
1234{
1235	int rc;
1236	size_t written;
1237	size_t offset;
1238
1239	offset = ECRYPTFS_FILE_SIZE_BYTES;
1240	write_ecryptfs_marker((page_virt + offset), &written);
1241	offset += written;
1242	ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1243					&written);
1244	offset += written;
1245	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1246				       &written);
1247	offset += written;
1248	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1249					      ecryptfs_dentry, &written,
1250					      max - offset);
1251	if (rc)
1252		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1253				"set; rc = [%d]\n", rc);
1254	if (size) {
1255		offset += written;
1256		*size = offset;
1257	}
1258	return rc;
1259}
1260
1261static int
1262ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1263				    char *virt, size_t virt_len)
1264{
1265	int rc;
1266
1267	rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1268				  0, virt_len);
1269	if (rc < 0)
1270		printk(KERN_ERR "%s: Error attempting to write header "
1271		       "information to lower file; rc = [%d]\n", __func__, rc);
1272	else
1273		rc = 0;
1274	return rc;
1275}
1276
1277static int
1278ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
 
1279				 char *page_virt, size_t size)
1280{
1281	int rc;
1282
1283	rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1284			       size, 0);
1285	return rc;
1286}
1287
1288static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1289					       unsigned int order)
1290{
1291	struct page *page;
1292
1293	page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1294	if (page)
1295		return (unsigned long) page_address(page);
1296	return 0;
1297}
1298
1299/**
1300 * ecryptfs_write_metadata
1301 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1302 * @ecryptfs_inode: The newly created eCryptfs inode
1303 *
1304 * Write the file headers out.  This will likely involve a userspace
1305 * callout, in which the session key is encrypted with one or more
1306 * public keys and/or the passphrase necessary to do the encryption is
1307 * retrieved via a prompt.  Exactly what happens at this point should
1308 * be policy-dependent.
1309 *
1310 * Returns zero on success; non-zero on error
1311 */
1312int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1313			    struct inode *ecryptfs_inode)
1314{
1315	struct ecryptfs_crypt_stat *crypt_stat =
1316		&ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1317	unsigned int order;
1318	char *virt;
1319	size_t virt_len;
1320	size_t size = 0;
1321	int rc = 0;
1322
1323	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1324		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1325			printk(KERN_ERR "Key is invalid; bailing out\n");
1326			rc = -EINVAL;
1327			goto out;
1328		}
1329	} else {
1330		printk(KERN_WARNING "%s: Encrypted flag not set\n",
1331		       __func__);
1332		rc = -EINVAL;
1333		goto out;
1334	}
1335	virt_len = crypt_stat->metadata_size;
1336	order = get_order(virt_len);
1337	/* Released in this function */
1338	virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1339	if (!virt) {
1340		printk(KERN_ERR "%s: Out of memory\n", __func__);
1341		rc = -ENOMEM;
1342		goto out;
1343	}
1344	/* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1345	rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1346					 ecryptfs_dentry);
1347	if (unlikely(rc)) {
1348		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1349		       __func__, rc);
1350		goto out_free;
1351	}
1352	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1353		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1354						      size);
1355	else
1356		rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1357							 virt_len);
1358	if (rc) {
1359		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1360		       "rc = [%d]\n", __func__, rc);
1361		goto out_free;
1362	}
1363out_free:
1364	free_pages((unsigned long)virt, order);
1365out:
1366	return rc;
1367}
1368
1369#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1370#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1371static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1372				 char *virt, int *bytes_read,
1373				 int validate_header_size)
1374{
1375	int rc = 0;
1376	u32 header_extent_size;
1377	u16 num_header_extents_at_front;
1378
1379	header_extent_size = get_unaligned_be32(virt);
1380	virt += sizeof(__be32);
1381	num_header_extents_at_front = get_unaligned_be16(virt);
1382	crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1383				     * (size_t)header_extent_size));
1384	(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1385	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1386	    && (crypt_stat->metadata_size
1387		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1388		rc = -EINVAL;
1389		printk(KERN_WARNING "Invalid header size: [%zd]\n",
1390		       crypt_stat->metadata_size);
1391	}
1392	return rc;
1393}
1394
1395/**
1396 * set_default_header_data
1397 * @crypt_stat: The cryptographic context
1398 *
1399 * For version 0 file format; this function is only for backwards
1400 * compatibility for files created with the prior versions of
1401 * eCryptfs.
1402 */
1403static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1404{
1405	crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1406}
1407
1408void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1409{
1410	struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1411	struct ecryptfs_crypt_stat *crypt_stat;
1412	u64 file_size;
1413
1414	crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1415	mount_crypt_stat =
1416		&ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1417	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1418		file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1419		if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1420			file_size += crypt_stat->metadata_size;
1421	} else
1422		file_size = get_unaligned_be64(page_virt);
1423	i_size_write(inode, (loff_t)file_size);
1424	crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1425}
1426
1427/**
1428 * ecryptfs_read_headers_virt
1429 * @page_virt: The virtual address into which to read the headers
1430 * @crypt_stat: The cryptographic context
1431 * @ecryptfs_dentry: The eCryptfs dentry
1432 * @validate_header_size: Whether to validate the header size while reading
1433 *
1434 * Read/parse the header data. The header format is detailed in the
1435 * comment block for the ecryptfs_write_headers_virt() function.
1436 *
1437 * Returns zero on success
1438 */
1439static int ecryptfs_read_headers_virt(char *page_virt,
1440				      struct ecryptfs_crypt_stat *crypt_stat,
1441				      struct dentry *ecryptfs_dentry,
1442				      int validate_header_size)
1443{
1444	int rc = 0;
1445	int offset;
1446	int bytes_read;
1447
1448	ecryptfs_set_default_sizes(crypt_stat);
1449	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1450		ecryptfs_dentry->d_sb)->mount_crypt_stat;
1451	offset = ECRYPTFS_FILE_SIZE_BYTES;
1452	rc = ecryptfs_validate_marker(page_virt + offset);
1453	if (rc)
1454		goto out;
1455	if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1456		ecryptfs_i_size_init(page_virt, ecryptfs_dentry->d_inode);
1457	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1458	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1459				    &bytes_read);
1460	if (rc) {
1461		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1462		goto out;
1463	}
1464	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1465		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1466				"file version [%d] is supported by this "
1467				"version of eCryptfs\n",
1468				crypt_stat->file_version,
1469				ECRYPTFS_SUPPORTED_FILE_VERSION);
1470		rc = -EINVAL;
1471		goto out;
1472	}
1473	offset += bytes_read;
1474	if (crypt_stat->file_version >= 1) {
1475		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1476					   &bytes_read, validate_header_size);
1477		if (rc) {
1478			ecryptfs_printk(KERN_WARNING, "Error reading header "
1479					"metadata; rc = [%d]\n", rc);
1480		}
1481		offset += bytes_read;
1482	} else
1483		set_default_header_data(crypt_stat);
1484	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1485				       ecryptfs_dentry);
1486out:
1487	return rc;
1488}
1489
1490/**
1491 * ecryptfs_read_xattr_region
1492 * @page_virt: The vitual address into which to read the xattr data
1493 * @ecryptfs_inode: The eCryptfs inode
1494 *
1495 * Attempts to read the crypto metadata from the extended attribute
1496 * region of the lower file.
1497 *
1498 * Returns zero on success; non-zero on error
1499 */
1500int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1501{
1502	struct dentry *lower_dentry =
1503		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1504	ssize_t size;
1505	int rc = 0;
1506
1507	size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
 
 
1508				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1509	if (size < 0) {
1510		if (unlikely(ecryptfs_verbosity > 0))
1511			printk(KERN_INFO "Error attempting to read the [%s] "
1512			       "xattr from the lower file; return value = "
1513			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1514		rc = -EINVAL;
1515		goto out;
1516	}
1517out:
1518	return rc;
1519}
1520
1521int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1522					    struct inode *inode)
1523{
1524	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1525	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1526	int rc;
1527
1528	rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
 
1529				     ECRYPTFS_XATTR_NAME, file_size,
1530				     ECRYPTFS_SIZE_AND_MARKER_BYTES);
1531	if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1532		return rc >= 0 ? -EINVAL : rc;
1533	rc = ecryptfs_validate_marker(marker);
1534	if (!rc)
1535		ecryptfs_i_size_init(file_size, inode);
1536	return rc;
1537}
1538
1539/**
1540 * ecryptfs_read_metadata
1541 *
1542 * Common entry point for reading file metadata. From here, we could
1543 * retrieve the header information from the header region of the file,
1544 * the xattr region of the file, or some other repostory that is
1545 * stored separately from the file itself. The current implementation
1546 * supports retrieving the metadata information from the file contents
1547 * and from the xattr region.
1548 *
1549 * Returns zero if valid headers found and parsed; non-zero otherwise
1550 */
1551int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1552{
1553	int rc;
1554	char *page_virt;
1555	struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1556	struct ecryptfs_crypt_stat *crypt_stat =
1557	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1558	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1559		&ecryptfs_superblock_to_private(
1560			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1561
1562	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1563						      mount_crypt_stat);
1564	/* Read the first page from the underlying file */
1565	page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1566	if (!page_virt) {
1567		rc = -ENOMEM;
1568		printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1569		       __func__);
1570		goto out;
1571	}
1572	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1573				 ecryptfs_inode);
1574	if (rc >= 0)
1575		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1576						ecryptfs_dentry,
1577						ECRYPTFS_VALIDATE_HEADER_SIZE);
1578	if (rc) {
1579		/* metadata is not in the file header, so try xattrs */
1580		memset(page_virt, 0, PAGE_CACHE_SIZE);
1581		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1582		if (rc) {
1583			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1584			       "file header region or xattr region, inode %lu\n",
1585				ecryptfs_inode->i_ino);
1586			rc = -EINVAL;
1587			goto out;
1588		}
1589		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1590						ecryptfs_dentry,
1591						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1592		if (rc) {
1593			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1594			       "file xattr region either, inode %lu\n",
1595				ecryptfs_inode->i_ino);
1596			rc = -EINVAL;
1597		}
1598		if (crypt_stat->mount_crypt_stat->flags
1599		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
1600			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1601		} else {
1602			printk(KERN_WARNING "Attempt to access file with "
1603			       "crypto metadata only in the extended attribute "
1604			       "region, but eCryptfs was mounted without "
1605			       "xattr support enabled. eCryptfs will not treat "
1606			       "this like an encrypted file, inode %lu\n",
1607				ecryptfs_inode->i_ino);
1608			rc = -EINVAL;
1609		}
1610	}
1611out:
1612	if (page_virt) {
1613		memset(page_virt, 0, PAGE_CACHE_SIZE);
1614		kmem_cache_free(ecryptfs_header_cache, page_virt);
1615	}
1616	return rc;
1617}
1618
1619/**
1620 * ecryptfs_encrypt_filename - encrypt filename
1621 *
1622 * CBC-encrypts the filename. We do not want to encrypt the same
1623 * filename with the same key and IV, which may happen with hard
1624 * links, so we prepend random bits to each filename.
1625 *
1626 * Returns zero on success; non-zero otherwise
1627 */
1628static int
1629ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1630			  struct ecryptfs_crypt_stat *crypt_stat,
1631			  struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1632{
1633	int rc = 0;
1634
1635	filename->encrypted_filename = NULL;
1636	filename->encrypted_filename_size = 0;
1637	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1638	    || (mount_crypt_stat && (mount_crypt_stat->flags
1639				     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1640		size_t packet_size;
1641		size_t remaining_bytes;
1642
1643		rc = ecryptfs_write_tag_70_packet(
1644			NULL, NULL,
1645			&filename->encrypted_filename_size,
1646			mount_crypt_stat, NULL,
1647			filename->filename_size);
1648		if (rc) {
1649			printk(KERN_ERR "%s: Error attempting to get packet "
1650			       "size for tag 72; rc = [%d]\n", __func__,
1651			       rc);
1652			filename->encrypted_filename_size = 0;
1653			goto out;
1654		}
1655		filename->encrypted_filename =
1656			kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1657		if (!filename->encrypted_filename) {
1658			printk(KERN_ERR "%s: Out of memory whilst attempting "
1659			       "to kmalloc [%zd] bytes\n", __func__,
1660			       filename->encrypted_filename_size);
1661			rc = -ENOMEM;
1662			goto out;
1663		}
1664		remaining_bytes = filename->encrypted_filename_size;
1665		rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1666						  &remaining_bytes,
1667						  &packet_size,
1668						  mount_crypt_stat,
1669						  filename->filename,
1670						  filename->filename_size);
1671		if (rc) {
1672			printk(KERN_ERR "%s: Error attempting to generate "
1673			       "tag 70 packet; rc = [%d]\n", __func__,
1674			       rc);
1675			kfree(filename->encrypted_filename);
1676			filename->encrypted_filename = NULL;
1677			filename->encrypted_filename_size = 0;
1678			goto out;
1679		}
1680		filename->encrypted_filename_size = packet_size;
1681	} else {
1682		printk(KERN_ERR "%s: No support for requested filename "
1683		       "encryption method in this release\n", __func__);
1684		rc = -EOPNOTSUPP;
1685		goto out;
1686	}
1687out:
1688	return rc;
1689}
1690
1691static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1692				  const char *name, size_t name_size)
1693{
1694	int rc = 0;
1695
1696	(*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1697	if (!(*copied_name)) {
1698		rc = -ENOMEM;
1699		goto out;
1700	}
1701	memcpy((void *)(*copied_name), (void *)name, name_size);
1702	(*copied_name)[(name_size)] = '\0';	/* Only for convenience
1703						 * in printing out the
1704						 * string in debug
1705						 * messages */
1706	(*copied_name_size) = name_size;
1707out:
1708	return rc;
1709}
1710
1711/**
1712 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1713 * @key_tfm: Crypto context for key material, set by this function
1714 * @cipher_name: Name of the cipher
1715 * @key_size: Size of the key in bytes
1716 *
1717 * Returns zero on success. Any crypto_tfm structs allocated here
1718 * should be released by other functions, such as on a superblock put
1719 * event, regardless of whether this function succeeds for fails.
1720 */
1721static int
1722ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1723			    char *cipher_name, size_t *key_size)
1724{
1725	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1726	char *full_alg_name = NULL;
1727	int rc;
1728
1729	*key_tfm = NULL;
1730	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1731		rc = -EINVAL;
1732		printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1733		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1734		goto out;
1735	}
1736	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1737						    "ecb");
1738	if (rc)
1739		goto out;
1740	*key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1741	if (IS_ERR(*key_tfm)) {
1742		rc = PTR_ERR(*key_tfm);
1743		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1744		       "[%s]; rc = [%d]\n", full_alg_name, rc);
1745		goto out;
1746	}
1747	crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1748	if (*key_size == 0) {
1749		struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1750
1751		*key_size = alg->max_keysize;
1752	}
1753	get_random_bytes(dummy_key, *key_size);
1754	rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1755	if (rc) {
1756		printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1757		       "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1758		       rc);
1759		rc = -EINVAL;
1760		goto out;
1761	}
1762out:
1763	kfree(full_alg_name);
1764	return rc;
1765}
1766
1767struct kmem_cache *ecryptfs_key_tfm_cache;
1768static struct list_head key_tfm_list;
1769struct mutex key_tfm_list_mutex;
1770
1771int __init ecryptfs_init_crypto(void)
1772{
1773	mutex_init(&key_tfm_list_mutex);
1774	INIT_LIST_HEAD(&key_tfm_list);
1775	return 0;
1776}
1777
1778/**
1779 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1780 *
1781 * Called only at module unload time
1782 */
1783int ecryptfs_destroy_crypto(void)
1784{
1785	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1786
1787	mutex_lock(&key_tfm_list_mutex);
1788	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1789				 key_tfm_list) {
1790		list_del(&key_tfm->key_tfm_list);
1791		if (key_tfm->key_tfm)
1792			crypto_free_blkcipher(key_tfm->key_tfm);
1793		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1794	}
1795	mutex_unlock(&key_tfm_list_mutex);
1796	return 0;
1797}
1798
1799int
1800ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1801			 size_t key_size)
1802{
1803	struct ecryptfs_key_tfm *tmp_tfm;
1804	int rc = 0;
1805
1806	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1807
1808	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1809	if (key_tfm != NULL)
1810		(*key_tfm) = tmp_tfm;
1811	if (!tmp_tfm) {
1812		rc = -ENOMEM;
1813		printk(KERN_ERR "Error attempting to allocate from "
1814		       "ecryptfs_key_tfm_cache\n");
1815		goto out;
1816	}
1817	mutex_init(&tmp_tfm->key_tfm_mutex);
1818	strncpy(tmp_tfm->cipher_name, cipher_name,
1819		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1820	tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1821	tmp_tfm->key_size = key_size;
1822	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1823					 tmp_tfm->cipher_name,
1824					 &tmp_tfm->key_size);
1825	if (rc) {
1826		printk(KERN_ERR "Error attempting to initialize key TFM "
1827		       "cipher with name = [%s]; rc = [%d]\n",
1828		       tmp_tfm->cipher_name, rc);
1829		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1830		if (key_tfm != NULL)
1831			(*key_tfm) = NULL;
1832		goto out;
1833	}
1834	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1835out:
1836	return rc;
1837}
1838
1839/**
1840 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1841 * @cipher_name: the name of the cipher to search for
1842 * @key_tfm: set to corresponding tfm if found
1843 *
1844 * Searches for cached key_tfm matching @cipher_name
1845 * Must be called with &key_tfm_list_mutex held
1846 * Returns 1 if found, with @key_tfm set
1847 * Returns 0 if not found, with @key_tfm set to NULL
1848 */
1849int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1850{
1851	struct ecryptfs_key_tfm *tmp_key_tfm;
1852
1853	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1854
1855	list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1856		if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1857			if (key_tfm)
1858				(*key_tfm) = tmp_key_tfm;
1859			return 1;
1860		}
1861	}
1862	if (key_tfm)
1863		(*key_tfm) = NULL;
1864	return 0;
1865}
1866
1867/**
1868 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1869 *
1870 * @tfm: set to cached tfm found, or new tfm created
1871 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1872 * @cipher_name: the name of the cipher to search for and/or add
1873 *
1874 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1875 * Searches for cached item first, and creates new if not found.
1876 * Returns 0 on success, non-zero if adding new cipher failed
1877 */
1878int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1879					       struct mutex **tfm_mutex,
1880					       char *cipher_name)
1881{
1882	struct ecryptfs_key_tfm *key_tfm;
1883	int rc = 0;
1884
1885	(*tfm) = NULL;
1886	(*tfm_mutex) = NULL;
1887
1888	mutex_lock(&key_tfm_list_mutex);
1889	if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1890		rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1891		if (rc) {
1892			printk(KERN_ERR "Error adding new key_tfm to list; "
1893					"rc = [%d]\n", rc);
1894			goto out;
1895		}
1896	}
1897	(*tfm) = key_tfm->key_tfm;
1898	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
1899out:
1900	mutex_unlock(&key_tfm_list_mutex);
1901	return rc;
1902}
1903
1904/* 64 characters forming a 6-bit target field */
1905static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1906						 "EFGHIJKLMNOPQRST"
1907						 "UVWXYZabcdefghij"
1908						 "klmnopqrstuvwxyz");
1909
1910/* We could either offset on every reverse map or just pad some 0x00's
1911 * at the front here */
1912static const unsigned char filename_rev_map[256] = {
1913	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1914	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1915	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1916	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1917	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1918	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1919	0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1920	0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1921	0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1922	0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1923	0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1924	0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1925	0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1926	0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1927	0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1928	0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1929};
1930
1931/**
1932 * ecryptfs_encode_for_filename
1933 * @dst: Destination location for encoded filename
1934 * @dst_size: Size of the encoded filename in bytes
1935 * @src: Source location for the filename to encode
1936 * @src_size: Size of the source in bytes
1937 */
1938void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1939				  unsigned char *src, size_t src_size)
1940{
1941	size_t num_blocks;
1942	size_t block_num = 0;
1943	size_t dst_offset = 0;
1944	unsigned char last_block[3];
1945
1946	if (src_size == 0) {
1947		(*dst_size) = 0;
1948		goto out;
1949	}
1950	num_blocks = (src_size / 3);
1951	if ((src_size % 3) == 0) {
1952		memcpy(last_block, (&src[src_size - 3]), 3);
1953	} else {
1954		num_blocks++;
1955		last_block[2] = 0x00;
1956		switch (src_size % 3) {
1957		case 1:
1958			last_block[0] = src[src_size - 1];
1959			last_block[1] = 0x00;
1960			break;
1961		case 2:
1962			last_block[0] = src[src_size - 2];
1963			last_block[1] = src[src_size - 1];
1964		}
1965	}
1966	(*dst_size) = (num_blocks * 4);
1967	if (!dst)
1968		goto out;
1969	while (block_num < num_blocks) {
1970		unsigned char *src_block;
1971		unsigned char dst_block[4];
1972
1973		if (block_num == (num_blocks - 1))
1974			src_block = last_block;
1975		else
1976			src_block = &src[block_num * 3];
1977		dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1978		dst_block[1] = (((src_block[0] << 4) & 0x30)
1979				| ((src_block[1] >> 4) & 0x0F));
1980		dst_block[2] = (((src_block[1] << 2) & 0x3C)
1981				| ((src_block[2] >> 6) & 0x03));
1982		dst_block[3] = (src_block[2] & 0x3F);
1983		dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1984		dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1985		dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1986		dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1987		block_num++;
1988	}
1989out:
1990	return;
1991}
1992
1993static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1994{
1995	/* Not exact; conservatively long. Every block of 4
1996	 * encoded characters decodes into a block of 3
1997	 * decoded characters. This segment of code provides
1998	 * the caller with the maximum amount of allocated
1999	 * space that @dst will need to point to in a
2000	 * subsequent call. */
2001	return ((encoded_size + 1) * 3) / 4;
2002}
2003
2004/**
2005 * ecryptfs_decode_from_filename
2006 * @dst: If NULL, this function only sets @dst_size and returns. If
2007 *       non-NULL, this function decodes the encoded octets in @src
2008 *       into the memory that @dst points to.
2009 * @dst_size: Set to the size of the decoded string.
2010 * @src: The encoded set of octets to decode.
2011 * @src_size: The size of the encoded set of octets to decode.
2012 */
2013static void
2014ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
2015			      const unsigned char *src, size_t src_size)
2016{
2017	u8 current_bit_offset = 0;
2018	size_t src_byte_offset = 0;
2019	size_t dst_byte_offset = 0;
2020
2021	if (dst == NULL) {
2022		(*dst_size) = ecryptfs_max_decoded_size(src_size);
2023		goto out;
2024	}
2025	while (src_byte_offset < src_size) {
2026		unsigned char src_byte =
2027				filename_rev_map[(int)src[src_byte_offset]];
2028
2029		switch (current_bit_offset) {
2030		case 0:
2031			dst[dst_byte_offset] = (src_byte << 2);
2032			current_bit_offset = 6;
2033			break;
2034		case 6:
2035			dst[dst_byte_offset++] |= (src_byte >> 4);
2036			dst[dst_byte_offset] = ((src_byte & 0xF)
2037						 << 4);
2038			current_bit_offset = 4;
2039			break;
2040		case 4:
2041			dst[dst_byte_offset++] |= (src_byte >> 2);
2042			dst[dst_byte_offset] = (src_byte << 6);
2043			current_bit_offset = 2;
2044			break;
2045		case 2:
2046			dst[dst_byte_offset++] |= (src_byte);
2047			dst[dst_byte_offset] = 0;
2048			current_bit_offset = 0;
2049			break;
2050		}
2051		src_byte_offset++;
2052	}
2053	(*dst_size) = dst_byte_offset;
2054out:
2055	return;
2056}
2057
2058/**
2059 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2060 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2061 * @name: The plaintext name
2062 * @length: The length of the plaintext
2063 * @encoded_name: The encypted name
2064 *
2065 * Encrypts and encodes a filename into something that constitutes a
2066 * valid filename for a filesystem, with printable characters.
2067 *
2068 * We assume that we have a properly initialized crypto context,
2069 * pointed to by crypt_stat->tfm.
2070 *
2071 * Returns zero on success; non-zero on otherwise
2072 */
2073int ecryptfs_encrypt_and_encode_filename(
2074	char **encoded_name,
2075	size_t *encoded_name_size,
2076	struct ecryptfs_crypt_stat *crypt_stat,
2077	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2078	const char *name, size_t name_size)
2079{
2080	size_t encoded_name_no_prefix_size;
2081	int rc = 0;
2082
2083	(*encoded_name) = NULL;
2084	(*encoded_name_size) = 0;
2085	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
2086	    || (mount_crypt_stat && (mount_crypt_stat->flags
2087				     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
2088		struct ecryptfs_filename *filename;
2089
2090		filename = kzalloc(sizeof(*filename), GFP_KERNEL);
2091		if (!filename) {
2092			printk(KERN_ERR "%s: Out of memory whilst attempting "
2093			       "to kzalloc [%zd] bytes\n", __func__,
2094			       sizeof(*filename));
2095			rc = -ENOMEM;
2096			goto out;
2097		}
2098		filename->filename = (char *)name;
2099		filename->filename_size = name_size;
2100		rc = ecryptfs_encrypt_filename(filename, crypt_stat,
2101					       mount_crypt_stat);
2102		if (rc) {
2103			printk(KERN_ERR "%s: Error attempting to encrypt "
2104			       "filename; rc = [%d]\n", __func__, rc);
2105			kfree(filename);
2106			goto out;
2107		}
2108		ecryptfs_encode_for_filename(
2109			NULL, &encoded_name_no_prefix_size,
2110			filename->encrypted_filename,
2111			filename->encrypted_filename_size);
2112		if ((crypt_stat && (crypt_stat->flags
2113				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2114		    || (mount_crypt_stat
2115			&& (mount_crypt_stat->flags
2116			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
2117			(*encoded_name_size) =
2118				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2119				 + encoded_name_no_prefix_size);
2120		else
2121			(*encoded_name_size) =
2122				(ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2123				 + encoded_name_no_prefix_size);
2124		(*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
2125		if (!(*encoded_name)) {
2126			printk(KERN_ERR "%s: Out of memory whilst attempting "
2127			       "to kzalloc [%zd] bytes\n", __func__,
2128			       (*encoded_name_size));
2129			rc = -ENOMEM;
2130			kfree(filename->encrypted_filename);
2131			kfree(filename);
2132			goto out;
2133		}
2134		if ((crypt_stat && (crypt_stat->flags
2135				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2136		    || (mount_crypt_stat
2137			&& (mount_crypt_stat->flags
2138			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2139			memcpy((*encoded_name),
2140			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2141			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2142			ecryptfs_encode_for_filename(
2143			    ((*encoded_name)
2144			     + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2145			    &encoded_name_no_prefix_size,
2146			    filename->encrypted_filename,
2147			    filename->encrypted_filename_size);
2148			(*encoded_name_size) =
2149				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2150				 + encoded_name_no_prefix_size);
2151			(*encoded_name)[(*encoded_name_size)] = '\0';
2152		} else {
2153			rc = -EOPNOTSUPP;
2154		}
2155		if (rc) {
2156			printk(KERN_ERR "%s: Error attempting to encode "
2157			       "encrypted filename; rc = [%d]\n", __func__,
2158			       rc);
2159			kfree((*encoded_name));
2160			(*encoded_name) = NULL;
2161			(*encoded_name_size) = 0;
2162		}
2163		kfree(filename->encrypted_filename);
2164		kfree(filename);
2165	} else {
2166		rc = ecryptfs_copy_filename(encoded_name,
2167					    encoded_name_size,
2168					    name, name_size);
2169	}
2170out:
2171	return rc;
2172}
2173
2174/**
2175 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2176 * @plaintext_name: The plaintext name
2177 * @plaintext_name_size: The plaintext name size
2178 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2179 * @name: The filename in cipher text
2180 * @name_size: The cipher text name size
2181 *
2182 * Decrypts and decodes the filename.
2183 *
2184 * Returns zero on error; non-zero otherwise
2185 */
2186int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2187					 size_t *plaintext_name_size,
2188					 struct dentry *ecryptfs_dir_dentry,
2189					 const char *name, size_t name_size)
2190{
2191	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2192		&ecryptfs_superblock_to_private(
2193			ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
2194	char *decoded_name;
2195	size_t decoded_name_size;
2196	size_t packet_size;
2197	int rc = 0;
2198
2199	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2200	    && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2201	    && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2202	    && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2203			ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2204		const char *orig_name = name;
2205		size_t orig_name_size = name_size;
2206
2207		name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2208		name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2209		ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2210					      name, name_size);
2211		decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2212		if (!decoded_name) {
2213			printk(KERN_ERR "%s: Out of memory whilst attempting "
2214			       "to kmalloc [%zd] bytes\n", __func__,
2215			       decoded_name_size);
2216			rc = -ENOMEM;
2217			goto out;
2218		}
2219		ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2220					      name, name_size);
2221		rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2222						  plaintext_name_size,
2223						  &packet_size,
2224						  mount_crypt_stat,
2225						  decoded_name,
2226						  decoded_name_size);
2227		if (rc) {
2228			printk(KERN_INFO "%s: Could not parse tag 70 packet "
2229			       "from filename; copying through filename "
2230			       "as-is\n", __func__);
2231			rc = ecryptfs_copy_filename(plaintext_name,
2232						    plaintext_name_size,
2233						    orig_name, orig_name_size);
2234			goto out_free;
2235		}
2236	} else {
2237		rc = ecryptfs_copy_filename(plaintext_name,
2238					    plaintext_name_size,
2239					    name, name_size);
2240		goto out;
2241	}
2242out_free:
2243	kfree(decoded_name);
2244out:
2245	return rc;
2246}
2247
2248#define ENC_NAME_MAX_BLOCKLEN_8_OR_16	143
2249
2250int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2251			   struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2252{
2253	struct blkcipher_desc desc;
2254	struct mutex *tfm_mutex;
2255	size_t cipher_blocksize;
2256	int rc;
2257
2258	if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2259		(*namelen) = lower_namelen;
2260		return 0;
2261	}
2262
2263	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2264			mount_crypt_stat->global_default_fn_cipher_name);
2265	if (unlikely(rc)) {
2266		(*namelen) = 0;
2267		return rc;
2268	}
2269
2270	mutex_lock(tfm_mutex);
2271	cipher_blocksize = crypto_blkcipher_blocksize(desc.tfm);
2272	mutex_unlock(tfm_mutex);
2273
2274	/* Return an exact amount for the common cases */
2275	if (lower_namelen == NAME_MAX
2276	    && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2277		(*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2278		return 0;
2279	}
2280
2281	/* Return a safe estimate for the uncommon cases */
2282	(*namelen) = lower_namelen;
2283	(*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2284	/* Since this is the max decoded size, subtract 1 "decoded block" len */
2285	(*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2286	(*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2287	(*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2288	/* Worst case is that the filename is padded nearly a full block size */
2289	(*namelen) -= cipher_blocksize - 1;
2290
2291	if ((*namelen) < 0)
2292		(*namelen) = 0;
2293
2294	return 0;
2295}