Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * Copyright (C) 2011 Fujitsu.  All rights reserved.
   3 * Written by Miao Xie <miaox@cn.fujitsu.com>
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public
   7 * License v2 as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  12 * General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public
  15 * License along with this program; if not, write to the
  16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17 * Boston, MA 021110-1307, USA.
  18 */
  19
  20#include <linux/slab.h>
  21#include "delayed-inode.h"
  22#include "disk-io.h"
  23#include "transaction.h"
  24#include "ctree.h"
  25
  26#define BTRFS_DELAYED_WRITEBACK		512
  27#define BTRFS_DELAYED_BACKGROUND	128
  28#define BTRFS_DELAYED_BATCH		16
  29
  30static struct kmem_cache *delayed_node_cache;
  31
  32int __init btrfs_delayed_inode_init(void)
  33{
  34	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
  35					sizeof(struct btrfs_delayed_node),
  36					0,
  37					SLAB_MEM_SPREAD,
  38					NULL);
  39	if (!delayed_node_cache)
  40		return -ENOMEM;
  41	return 0;
  42}
  43
  44void btrfs_delayed_inode_exit(void)
  45{
  46	kmem_cache_destroy(delayed_node_cache);
 
  47}
  48
  49static inline void btrfs_init_delayed_node(
  50				struct btrfs_delayed_node *delayed_node,
  51				struct btrfs_root *root, u64 inode_id)
  52{
  53	delayed_node->root = root;
  54	delayed_node->inode_id = inode_id;
  55	atomic_set(&delayed_node->refs, 0);
 
 
 
  56	delayed_node->ins_root = RB_ROOT;
  57	delayed_node->del_root = RB_ROOT;
  58	mutex_init(&delayed_node->mutex);
 
  59	INIT_LIST_HEAD(&delayed_node->n_list);
  60	INIT_LIST_HEAD(&delayed_node->p_list);
 
  61}
  62
  63static inline int btrfs_is_continuous_delayed_item(
  64					struct btrfs_delayed_item *item1,
  65					struct btrfs_delayed_item *item2)
  66{
  67	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  68	    item1->key.objectid == item2->key.objectid &&
  69	    item1->key.type == item2->key.type &&
  70	    item1->key.offset + 1 == item2->key.offset)
  71		return 1;
  72	return 0;
  73}
  74
 
 
 
 
 
 
  75static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
  76{
  77	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  78	struct btrfs_root *root = btrfs_inode->root;
  79	u64 ino = btrfs_ino(inode);
  80	struct btrfs_delayed_node *node;
  81
  82	node = ACCESS_ONCE(btrfs_inode->delayed_node);
  83	if (node) {
  84		atomic_inc(&node->refs);
  85		return node;
  86	}
  87
  88	spin_lock(&root->inode_lock);
  89	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  90	if (node) {
  91		if (btrfs_inode->delayed_node) {
  92			atomic_inc(&node->refs);	/* can be accessed */
  93			BUG_ON(btrfs_inode->delayed_node != node);
  94			spin_unlock(&root->inode_lock);
  95			return node;
  96		}
  97		btrfs_inode->delayed_node = node;
  98		/* can be accessed and cached in the inode */
  99		atomic_add(2, &node->refs);
 100		spin_unlock(&root->inode_lock);
 101		return node;
 102	}
 103	spin_unlock(&root->inode_lock);
 104
 105	return NULL;
 106}
 107
 108/* Will return either the node or PTR_ERR(-ENOMEM) */
 109static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
 110							struct inode *inode)
 111{
 112	struct btrfs_delayed_node *node;
 113	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
 114	struct btrfs_root *root = btrfs_inode->root;
 115	u64 ino = btrfs_ino(inode);
 116	int ret;
 117
 118again:
 119	node = btrfs_get_delayed_node(inode);
 120	if (node)
 121		return node;
 122
 123	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
 124	if (!node)
 125		return ERR_PTR(-ENOMEM);
 126	btrfs_init_delayed_node(node, root, ino);
 127
 128	/* cached in the btrfs inode and can be accessed */
 129	atomic_add(2, &node->refs);
 130
 131	ret = radix_tree_preload(GFP_NOFS);
 132	if (ret) {
 133		kmem_cache_free(delayed_node_cache, node);
 134		return ERR_PTR(ret);
 135	}
 136
 137	spin_lock(&root->inode_lock);
 138	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
 139	if (ret == -EEXIST) {
 140		spin_unlock(&root->inode_lock);
 141		kmem_cache_free(delayed_node_cache, node);
 
 142		radix_tree_preload_end();
 143		goto again;
 144	}
 145	btrfs_inode->delayed_node = node;
 146	spin_unlock(&root->inode_lock);
 147	radix_tree_preload_end();
 148
 149	return node;
 150}
 151
 152/*
 153 * Call it when holding delayed_node->mutex
 154 *
 155 * If mod = 1, add this node into the prepared list.
 156 */
 157static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
 158				     struct btrfs_delayed_node *node,
 159				     int mod)
 160{
 161	spin_lock(&root->lock);
 162	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 163		if (!list_empty(&node->p_list))
 164			list_move_tail(&node->p_list, &root->prepare_list);
 165		else if (mod)
 166			list_add_tail(&node->p_list, &root->prepare_list);
 167	} else {
 168		list_add_tail(&node->n_list, &root->node_list);
 169		list_add_tail(&node->p_list, &root->prepare_list);
 170		atomic_inc(&node->refs);	/* inserted into list */
 171		root->nodes++;
 172		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
 173	}
 174	spin_unlock(&root->lock);
 175}
 176
 177/* Call it when holding delayed_node->mutex */
 178static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
 179				       struct btrfs_delayed_node *node)
 180{
 181	spin_lock(&root->lock);
 182	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 183		root->nodes--;
 184		atomic_dec(&node->refs);	/* not in the list */
 185		list_del_init(&node->n_list);
 186		if (!list_empty(&node->p_list))
 187			list_del_init(&node->p_list);
 188		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
 189	}
 190	spin_unlock(&root->lock);
 191}
 192
 193static struct btrfs_delayed_node *btrfs_first_delayed_node(
 194			struct btrfs_delayed_root *delayed_root)
 195{
 196	struct list_head *p;
 197	struct btrfs_delayed_node *node = NULL;
 198
 199	spin_lock(&delayed_root->lock);
 200	if (list_empty(&delayed_root->node_list))
 201		goto out;
 202
 203	p = delayed_root->node_list.next;
 204	node = list_entry(p, struct btrfs_delayed_node, n_list);
 205	atomic_inc(&node->refs);
 206out:
 207	spin_unlock(&delayed_root->lock);
 208
 209	return node;
 210}
 211
 212static struct btrfs_delayed_node *btrfs_next_delayed_node(
 213						struct btrfs_delayed_node *node)
 214{
 215	struct btrfs_delayed_root *delayed_root;
 216	struct list_head *p;
 217	struct btrfs_delayed_node *next = NULL;
 218
 219	delayed_root = node->root->fs_info->delayed_root;
 220	spin_lock(&delayed_root->lock);
 221	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 222		/* not in the list */
 223		if (list_empty(&delayed_root->node_list))
 224			goto out;
 225		p = delayed_root->node_list.next;
 226	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
 227		goto out;
 228	else
 229		p = node->n_list.next;
 230
 231	next = list_entry(p, struct btrfs_delayed_node, n_list);
 232	atomic_inc(&next->refs);
 233out:
 234	spin_unlock(&delayed_root->lock);
 235
 236	return next;
 237}
 238
 239static void __btrfs_release_delayed_node(
 240				struct btrfs_delayed_node *delayed_node,
 241				int mod)
 242{
 243	struct btrfs_delayed_root *delayed_root;
 244
 245	if (!delayed_node)
 246		return;
 247
 248	delayed_root = delayed_node->root->fs_info->delayed_root;
 249
 250	mutex_lock(&delayed_node->mutex);
 251	if (delayed_node->count)
 252		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
 253	else
 254		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
 255	mutex_unlock(&delayed_node->mutex);
 256
 257	if (atomic_dec_and_test(&delayed_node->refs)) {
 258		bool free = false;
 259		struct btrfs_root *root = delayed_node->root;
 260		spin_lock(&root->inode_lock);
 261		if (atomic_read(&delayed_node->refs) == 0) {
 262			radix_tree_delete(&root->delayed_nodes_tree,
 263					  delayed_node->inode_id);
 264			free = true;
 265		}
 266		spin_unlock(&root->inode_lock);
 267		if (free)
 268			kmem_cache_free(delayed_node_cache, delayed_node);
 269	}
 270}
 271
 272static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
 273{
 274	__btrfs_release_delayed_node(node, 0);
 275}
 276
 277static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
 278					struct btrfs_delayed_root *delayed_root)
 279{
 280	struct list_head *p;
 281	struct btrfs_delayed_node *node = NULL;
 282
 283	spin_lock(&delayed_root->lock);
 284	if (list_empty(&delayed_root->prepare_list))
 285		goto out;
 286
 287	p = delayed_root->prepare_list.next;
 288	list_del_init(p);
 289	node = list_entry(p, struct btrfs_delayed_node, p_list);
 290	atomic_inc(&node->refs);
 291out:
 292	spin_unlock(&delayed_root->lock);
 293
 294	return node;
 295}
 296
 297static inline void btrfs_release_prepared_delayed_node(
 298					struct btrfs_delayed_node *node)
 299{
 300	__btrfs_release_delayed_node(node, 1);
 301}
 302
 303static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
 304{
 305	struct btrfs_delayed_item *item;
 306	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
 307	if (item) {
 308		item->data_len = data_len;
 309		item->ins_or_del = 0;
 310		item->bytes_reserved = 0;
 311		item->delayed_node = NULL;
 312		atomic_set(&item->refs, 1);
 313	}
 314	return item;
 315}
 316
 317/*
 318 * __btrfs_lookup_delayed_item - look up the delayed item by key
 319 * @delayed_node: pointer to the delayed node
 320 * @key:	  the key to look up
 321 * @prev:	  used to store the prev item if the right item isn't found
 322 * @next:	  used to store the next item if the right item isn't found
 323 *
 324 * Note: if we don't find the right item, we will return the prev item and
 325 * the next item.
 326 */
 327static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
 328				struct rb_root *root,
 329				struct btrfs_key *key,
 330				struct btrfs_delayed_item **prev,
 331				struct btrfs_delayed_item **next)
 332{
 333	struct rb_node *node, *prev_node = NULL;
 334	struct btrfs_delayed_item *delayed_item = NULL;
 335	int ret = 0;
 336
 337	node = root->rb_node;
 338
 339	while (node) {
 340		delayed_item = rb_entry(node, struct btrfs_delayed_item,
 341					rb_node);
 342		prev_node = node;
 343		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
 344		if (ret < 0)
 345			node = node->rb_right;
 346		else if (ret > 0)
 347			node = node->rb_left;
 348		else
 349			return delayed_item;
 350	}
 351
 352	if (prev) {
 353		if (!prev_node)
 354			*prev = NULL;
 355		else if (ret < 0)
 356			*prev = delayed_item;
 357		else if ((node = rb_prev(prev_node)) != NULL) {
 358			*prev = rb_entry(node, struct btrfs_delayed_item,
 359					 rb_node);
 360		} else
 361			*prev = NULL;
 362	}
 363
 364	if (next) {
 365		if (!prev_node)
 366			*next = NULL;
 367		else if (ret > 0)
 368			*next = delayed_item;
 369		else if ((node = rb_next(prev_node)) != NULL) {
 370			*next = rb_entry(node, struct btrfs_delayed_item,
 371					 rb_node);
 372		} else
 373			*next = NULL;
 374	}
 375	return NULL;
 376}
 377
 378static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
 379					struct btrfs_delayed_node *delayed_node,
 380					struct btrfs_key *key)
 381{
 382	return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
 
 
 383					   NULL, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 384}
 385
 386static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
 387				    struct btrfs_delayed_item *ins,
 388				    int action)
 389{
 390	struct rb_node **p, *node;
 391	struct rb_node *parent_node = NULL;
 392	struct rb_root *root;
 393	struct btrfs_delayed_item *item;
 394	int cmp;
 395
 396	if (action == BTRFS_DELAYED_INSERTION_ITEM)
 397		root = &delayed_node->ins_root;
 398	else if (action == BTRFS_DELAYED_DELETION_ITEM)
 399		root = &delayed_node->del_root;
 400	else
 401		BUG();
 402	p = &root->rb_node;
 403	node = &ins->rb_node;
 404
 405	while (*p) {
 406		parent_node = *p;
 407		item = rb_entry(parent_node, struct btrfs_delayed_item,
 408				 rb_node);
 409
 410		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
 411		if (cmp < 0)
 412			p = &(*p)->rb_right;
 413		else if (cmp > 0)
 414			p = &(*p)->rb_left;
 415		else
 416			return -EEXIST;
 417	}
 418
 419	rb_link_node(node, parent_node, p);
 420	rb_insert_color(node, root);
 421	ins->delayed_node = delayed_node;
 422	ins->ins_or_del = action;
 423
 424	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
 425	    action == BTRFS_DELAYED_INSERTION_ITEM &&
 426	    ins->key.offset >= delayed_node->index_cnt)
 427			delayed_node->index_cnt = ins->key.offset + 1;
 428
 429	delayed_node->count++;
 430	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
 431	return 0;
 432}
 433
 434static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
 435					      struct btrfs_delayed_item *item)
 436{
 437	return __btrfs_add_delayed_item(node, item,
 438					BTRFS_DELAYED_INSERTION_ITEM);
 439}
 440
 441static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
 442					     struct btrfs_delayed_item *item)
 443{
 444	return __btrfs_add_delayed_item(node, item,
 445					BTRFS_DELAYED_DELETION_ITEM);
 446}
 447
 448static void finish_one_item(struct btrfs_delayed_root *delayed_root)
 449{
 450	int seq = atomic_inc_return(&delayed_root->items_seq);
 451
 452	/*
 453	 * atomic_dec_return implies a barrier for waitqueue_active
 454	 */
 455	if ((atomic_dec_return(&delayed_root->items) <
 456	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
 457	    waitqueue_active(&delayed_root->wait))
 458		wake_up(&delayed_root->wait);
 459}
 460
 461static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
 462{
 463	struct rb_root *root;
 464	struct btrfs_delayed_root *delayed_root;
 465
 466	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
 467
 468	BUG_ON(!delayed_root);
 469	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
 470	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
 471
 472	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
 473		root = &delayed_item->delayed_node->ins_root;
 474	else
 475		root = &delayed_item->delayed_node->del_root;
 476
 477	rb_erase(&delayed_item->rb_node, root);
 478	delayed_item->delayed_node->count--;
 479
 480	finish_one_item(delayed_root);
 
 
 481}
 482
 483static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
 484{
 485	if (item) {
 486		__btrfs_remove_delayed_item(item);
 487		if (atomic_dec_and_test(&item->refs))
 488			kfree(item);
 489	}
 490}
 491
 492static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
 493					struct btrfs_delayed_node *delayed_node)
 494{
 495	struct rb_node *p;
 496	struct btrfs_delayed_item *item = NULL;
 497
 498	p = rb_first(&delayed_node->ins_root);
 499	if (p)
 500		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 501
 502	return item;
 503}
 504
 505static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
 506					struct btrfs_delayed_node *delayed_node)
 507{
 508	struct rb_node *p;
 509	struct btrfs_delayed_item *item = NULL;
 510
 511	p = rb_first(&delayed_node->del_root);
 512	if (p)
 513		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 514
 515	return item;
 516}
 517
 518static struct btrfs_delayed_item *__btrfs_next_delayed_item(
 519						struct btrfs_delayed_item *item)
 520{
 521	struct rb_node *p;
 522	struct btrfs_delayed_item *next = NULL;
 523
 524	p = rb_next(&item->rb_node);
 525	if (p)
 526		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
 527
 528	return next;
 529}
 530
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 531static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
 532					       struct btrfs_fs_info *fs_info,
 533					       struct btrfs_delayed_item *item)
 534{
 535	struct btrfs_block_rsv *src_rsv;
 536	struct btrfs_block_rsv *dst_rsv;
 537	u64 num_bytes;
 538	int ret;
 539
 540	if (!trans->bytes_reserved)
 541		return 0;
 542
 543	src_rsv = trans->block_rsv;
 544	dst_rsv = &fs_info->delayed_block_rsv;
 545
 546	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
 547	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
 548	if (!ret) {
 549		trace_btrfs_space_reservation(fs_info, "delayed_item",
 550					      item->key.objectid,
 551					      num_bytes, 1);
 552		item->bytes_reserved = num_bytes;
 553	}
 554
 555	return ret;
 556}
 557
 558static void btrfs_delayed_item_release_metadata(struct btrfs_fs_info *fs_info,
 559						struct btrfs_delayed_item *item)
 560{
 561	struct btrfs_block_rsv *rsv;
 562
 563	if (!item->bytes_reserved)
 564		return;
 565
 566	rsv = &fs_info->delayed_block_rsv;
 567	trace_btrfs_space_reservation(fs_info, "delayed_item",
 568				      item->key.objectid, item->bytes_reserved,
 569				      0);
 570	btrfs_block_rsv_release(fs_info, rsv,
 571				item->bytes_reserved);
 572}
 573
 574static int btrfs_delayed_inode_reserve_metadata(
 575					struct btrfs_trans_handle *trans,
 576					struct btrfs_root *root,
 577					struct inode *inode,
 578					struct btrfs_delayed_node *node)
 579{
 580	struct btrfs_fs_info *fs_info = root->fs_info;
 581	struct btrfs_block_rsv *src_rsv;
 582	struct btrfs_block_rsv *dst_rsv;
 583	u64 num_bytes;
 584	int ret;
 585	bool release = false;
 586
 587	src_rsv = trans->block_rsv;
 588	dst_rsv = &fs_info->delayed_block_rsv;
 589
 590	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
 591
 592	/*
 593	 * If our block_rsv is the delalloc block reserve then check and see if
 594	 * we have our extra reservation for updating the inode.  If not fall
 595	 * through and try to reserve space quickly.
 596	 *
 597	 * We used to try and steal from the delalloc block rsv or the global
 598	 * reserve, but we'd steal a full reservation, which isn't kind.  We are
 599	 * here through delalloc which means we've likely just cowed down close
 600	 * to the leaf that contains the inode, so we would steal less just
 601	 * doing the fallback inode update, so if we do end up having to steal
 602	 * from the global block rsv we hopefully only steal one or two blocks
 603	 * worth which is less likely to hurt us.
 604	 */
 605	if (src_rsv && src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
 606		spin_lock(&BTRFS_I(inode)->lock);
 607		if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
 608				       &BTRFS_I(inode)->runtime_flags))
 609			release = true;
 610		else
 611			src_rsv = NULL;
 612		spin_unlock(&BTRFS_I(inode)->lock);
 613	}
 614
 615	/*
 616	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
 617	 * which doesn't reserve space for speed.  This is a problem since we
 618	 * still need to reserve space for this update, so try to reserve the
 619	 * space.
 620	 *
 621	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
 622	 * we're accounted for.
 623	 */
 624	if (!src_rsv || (!trans->bytes_reserved &&
 625			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
 626		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
 627					  BTRFS_RESERVE_NO_FLUSH);
 628		/*
 629		 * Since we're under a transaction reserve_metadata_bytes could
 630		 * try to commit the transaction which will make it return
 631		 * EAGAIN to make us stop the transaction we have, so return
 632		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
 633		 */
 634		if (ret == -EAGAIN)
 635			ret = -ENOSPC;
 636		if (!ret) {
 637			node->bytes_reserved = num_bytes;
 638			trace_btrfs_space_reservation(fs_info,
 639						      "delayed_inode",
 640						      btrfs_ino(inode),
 641						      num_bytes, 1);
 642		}
 643		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 644	}
 645
 646	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
 
 647
 
 648	/*
 649	 * Migrate only takes a reservation, it doesn't touch the size of the
 650	 * block_rsv.  This is to simplify people who don't normally have things
 651	 * migrated from their block rsv.  If they go to release their
 652	 * reservation, that will decrease the size as well, so if migrate
 653	 * reduced size we'd end up with a negative size.  But for the
 654	 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
 655	 * but we could in fact do this reserve/migrate dance several times
 656	 * between the time we did the original reservation and we'd clean it
 657	 * up.  So to take care of this, release the space for the meta
 658	 * reservation here.  I think it may be time for a documentation page on
 659	 * how block rsvs. work.
 660	 */
 661	if (!ret) {
 662		trace_btrfs_space_reservation(fs_info, "delayed_inode",
 663					      btrfs_ino(inode), num_bytes, 1);
 664		node->bytes_reserved = num_bytes;
 665	}
 666
 667	if (release) {
 668		trace_btrfs_space_reservation(fs_info, "delalloc",
 669					      btrfs_ino(inode), num_bytes, 0);
 670		btrfs_block_rsv_release(fs_info, src_rsv, num_bytes);
 671	}
 672
 673	return ret;
 674}
 675
 676static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
 677						struct btrfs_delayed_node *node)
 678{
 679	struct btrfs_block_rsv *rsv;
 680
 681	if (!node->bytes_reserved)
 682		return;
 683
 684	rsv = &fs_info->delayed_block_rsv;
 685	trace_btrfs_space_reservation(fs_info, "delayed_inode",
 686				      node->inode_id, node->bytes_reserved, 0);
 687	btrfs_block_rsv_release(fs_info, rsv,
 688				node->bytes_reserved);
 689	node->bytes_reserved = 0;
 690}
 691
 692/*
 693 * This helper will insert some continuous items into the same leaf according
 694 * to the free space of the leaf.
 695 */
 696static int btrfs_batch_insert_items(struct btrfs_root *root,
 697				    struct btrfs_path *path,
 698				    struct btrfs_delayed_item *item)
 
 699{
 700	struct btrfs_fs_info *fs_info = root->fs_info;
 701	struct btrfs_delayed_item *curr, *next;
 702	int free_space;
 703	int total_data_size = 0, total_size = 0;
 704	struct extent_buffer *leaf;
 705	char *data_ptr;
 706	struct btrfs_key *keys;
 707	u32 *data_size;
 708	struct list_head head;
 709	int slot;
 710	int nitems;
 711	int i;
 712	int ret = 0;
 713
 714	BUG_ON(!path->nodes[0]);
 715
 716	leaf = path->nodes[0];
 717	free_space = btrfs_leaf_free_space(fs_info, leaf);
 718	INIT_LIST_HEAD(&head);
 719
 720	next = item;
 721	nitems = 0;
 722
 723	/*
 724	 * count the number of the continuous items that we can insert in batch
 725	 */
 726	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
 727	       free_space) {
 728		total_data_size += next->data_len;
 729		total_size += next->data_len + sizeof(struct btrfs_item);
 730		list_add_tail(&next->tree_list, &head);
 731		nitems++;
 732
 733		curr = next;
 734		next = __btrfs_next_delayed_item(curr);
 735		if (!next)
 736			break;
 737
 738		if (!btrfs_is_continuous_delayed_item(curr, next))
 739			break;
 740	}
 741
 742	if (!nitems) {
 743		ret = 0;
 744		goto out;
 745	}
 746
 747	/*
 748	 * we need allocate some memory space, but it might cause the task
 749	 * to sleep, so we set all locked nodes in the path to blocking locks
 750	 * first.
 751	 */
 752	btrfs_set_path_blocking(path);
 753
 754	keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
 755	if (!keys) {
 756		ret = -ENOMEM;
 757		goto out;
 758	}
 759
 760	data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
 761	if (!data_size) {
 762		ret = -ENOMEM;
 763		goto error;
 764	}
 765
 766	/* get keys of all the delayed items */
 767	i = 0;
 768	list_for_each_entry(next, &head, tree_list) {
 769		keys[i] = next->key;
 770		data_size[i] = next->data_len;
 771		i++;
 772	}
 773
 774	/* reset all the locked nodes in the patch to spinning locks. */
 775	btrfs_clear_path_blocking(path, NULL, 0);
 776
 777	/* insert the keys of the items */
 778	setup_items_for_insert(root, path, keys, data_size,
 779			       total_data_size, total_size, nitems);
 780
 781	/* insert the dir index items */
 782	slot = path->slots[0];
 783	list_for_each_entry_safe(curr, next, &head, tree_list) {
 784		data_ptr = btrfs_item_ptr(leaf, slot, char);
 785		write_extent_buffer(leaf, &curr->data,
 786				    (unsigned long)data_ptr,
 787				    curr->data_len);
 788		slot++;
 789
 790		btrfs_delayed_item_release_metadata(fs_info, curr);
 791
 792		list_del(&curr->tree_list);
 793		btrfs_release_delayed_item(curr);
 794	}
 795
 796error:
 797	kfree(data_size);
 798	kfree(keys);
 799out:
 800	return ret;
 801}
 802
 803/*
 804 * This helper can just do simple insertion that needn't extend item for new
 805 * data, such as directory name index insertion, inode insertion.
 806 */
 807static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
 808				     struct btrfs_root *root,
 809				     struct btrfs_path *path,
 810				     struct btrfs_delayed_item *delayed_item)
 811{
 812	struct btrfs_fs_info *fs_info = root->fs_info;
 813	struct extent_buffer *leaf;
 
 814	char *ptr;
 815	int ret;
 816
 817	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
 818				      delayed_item->data_len);
 819	if (ret < 0 && ret != -EEXIST)
 820		return ret;
 821
 822	leaf = path->nodes[0];
 823
 
 824	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
 825
 826	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
 827			    delayed_item->data_len);
 828	btrfs_mark_buffer_dirty(leaf);
 829
 830	btrfs_delayed_item_release_metadata(fs_info, delayed_item);
 831	return 0;
 832}
 833
 834/*
 835 * we insert an item first, then if there are some continuous items, we try
 836 * to insert those items into the same leaf.
 837 */
 838static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
 839				      struct btrfs_path *path,
 840				      struct btrfs_root *root,
 841				      struct btrfs_delayed_node *node)
 842{
 843	struct btrfs_delayed_item *curr, *prev;
 844	int ret = 0;
 845
 846do_again:
 847	mutex_lock(&node->mutex);
 848	curr = __btrfs_first_delayed_insertion_item(node);
 849	if (!curr)
 850		goto insert_end;
 851
 852	ret = btrfs_insert_delayed_item(trans, root, path, curr);
 853	if (ret < 0) {
 854		btrfs_release_path(path);
 855		goto insert_end;
 856	}
 857
 858	prev = curr;
 859	curr = __btrfs_next_delayed_item(prev);
 860	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
 861		/* insert the continuous items into the same leaf */
 862		path->slots[0]++;
 863		btrfs_batch_insert_items(root, path, curr);
 864	}
 865	btrfs_release_delayed_item(prev);
 866	btrfs_mark_buffer_dirty(path->nodes[0]);
 867
 868	btrfs_release_path(path);
 869	mutex_unlock(&node->mutex);
 870	goto do_again;
 871
 872insert_end:
 873	mutex_unlock(&node->mutex);
 874	return ret;
 875}
 876
 877static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
 878				    struct btrfs_root *root,
 879				    struct btrfs_path *path,
 880				    struct btrfs_delayed_item *item)
 881{
 882	struct btrfs_fs_info *fs_info = root->fs_info;
 883	struct btrfs_delayed_item *curr, *next;
 884	struct extent_buffer *leaf;
 885	struct btrfs_key key;
 886	struct list_head head;
 887	int nitems, i, last_item;
 888	int ret = 0;
 889
 890	BUG_ON(!path->nodes[0]);
 891
 892	leaf = path->nodes[0];
 893
 894	i = path->slots[0];
 895	last_item = btrfs_header_nritems(leaf) - 1;
 896	if (i > last_item)
 897		return -ENOENT;	/* FIXME: Is errno suitable? */
 898
 899	next = item;
 900	INIT_LIST_HEAD(&head);
 901	btrfs_item_key_to_cpu(leaf, &key, i);
 902	nitems = 0;
 903	/*
 904	 * count the number of the dir index items that we can delete in batch
 905	 */
 906	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
 907		list_add_tail(&next->tree_list, &head);
 908		nitems++;
 909
 910		curr = next;
 911		next = __btrfs_next_delayed_item(curr);
 912		if (!next)
 913			break;
 914
 915		if (!btrfs_is_continuous_delayed_item(curr, next))
 916			break;
 917
 918		i++;
 919		if (i > last_item)
 920			break;
 921		btrfs_item_key_to_cpu(leaf, &key, i);
 922	}
 923
 924	if (!nitems)
 925		return 0;
 926
 927	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
 928	if (ret)
 929		goto out;
 930
 931	list_for_each_entry_safe(curr, next, &head, tree_list) {
 932		btrfs_delayed_item_release_metadata(fs_info, curr);
 933		list_del(&curr->tree_list);
 934		btrfs_release_delayed_item(curr);
 935	}
 936
 937out:
 938	return ret;
 939}
 940
 941static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
 942				      struct btrfs_path *path,
 943				      struct btrfs_root *root,
 944				      struct btrfs_delayed_node *node)
 945{
 946	struct btrfs_delayed_item *curr, *prev;
 947	int ret = 0;
 948
 949do_again:
 950	mutex_lock(&node->mutex);
 951	curr = __btrfs_first_delayed_deletion_item(node);
 952	if (!curr)
 953		goto delete_fail;
 954
 955	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
 956	if (ret < 0)
 957		goto delete_fail;
 958	else if (ret > 0) {
 959		/*
 960		 * can't find the item which the node points to, so this node
 961		 * is invalid, just drop it.
 962		 */
 963		prev = curr;
 964		curr = __btrfs_next_delayed_item(prev);
 965		btrfs_release_delayed_item(prev);
 966		ret = 0;
 967		btrfs_release_path(path);
 968		if (curr) {
 969			mutex_unlock(&node->mutex);
 970			goto do_again;
 971		} else
 972			goto delete_fail;
 973	}
 974
 975	btrfs_batch_delete_items(trans, root, path, curr);
 976	btrfs_release_path(path);
 977	mutex_unlock(&node->mutex);
 978	goto do_again;
 979
 980delete_fail:
 981	btrfs_release_path(path);
 982	mutex_unlock(&node->mutex);
 983	return ret;
 984}
 985
 986static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
 987{
 988	struct btrfs_delayed_root *delayed_root;
 989
 990	if (delayed_node &&
 991	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
 992		BUG_ON(!delayed_node->root);
 993		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
 994		delayed_node->count--;
 995
 996		delayed_root = delayed_node->root->fs_info->delayed_root;
 997		finish_one_item(delayed_root);
 
 
 
 
 998	}
 999}
1000
1001static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
1002{
1003	struct btrfs_delayed_root *delayed_root;
1004
1005	ASSERT(delayed_node->root);
1006	clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1007	delayed_node->count--;
1008
1009	delayed_root = delayed_node->root->fs_info->delayed_root;
1010	finish_one_item(delayed_root);
1011}
1012
1013static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1014					struct btrfs_root *root,
1015					struct btrfs_path *path,
1016					struct btrfs_delayed_node *node)
1017{
1018	struct btrfs_fs_info *fs_info = root->fs_info;
1019	struct btrfs_key key;
1020	struct btrfs_inode_item *inode_item;
1021	struct extent_buffer *leaf;
1022	int mod;
1023	int ret;
1024
 
 
 
 
 
 
1025	key.objectid = node->inode_id;
1026	key.type = BTRFS_INODE_ITEM_KEY;
1027	key.offset = 0;
1028
1029	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1030		mod = -1;
1031	else
1032		mod = 1;
1033
1034	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1035	if (ret > 0) {
1036		btrfs_release_path(path);
 
1037		return -ENOENT;
1038	} else if (ret < 0) {
 
1039		return ret;
1040	}
1041
 
1042	leaf = path->nodes[0];
1043	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1044				    struct btrfs_inode_item);
1045	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1046			    sizeof(struct btrfs_inode_item));
1047	btrfs_mark_buffer_dirty(leaf);
1048
1049	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1050		goto no_iref;
1051
1052	path->slots[0]++;
1053	if (path->slots[0] >= btrfs_header_nritems(leaf))
1054		goto search;
1055again:
1056	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1057	if (key.objectid != node->inode_id)
1058		goto out;
1059
1060	if (key.type != BTRFS_INODE_REF_KEY &&
1061	    key.type != BTRFS_INODE_EXTREF_KEY)
1062		goto out;
1063
1064	/*
1065	 * Delayed iref deletion is for the inode who has only one link,
1066	 * so there is only one iref. The case that several irefs are
1067	 * in the same item doesn't exist.
1068	 */
1069	btrfs_del_item(trans, root, path);
1070out:
1071	btrfs_release_delayed_iref(node);
1072no_iref:
1073	btrfs_release_path(path);
1074err_out:
1075	btrfs_delayed_inode_release_metadata(fs_info, node);
1076	btrfs_release_delayed_inode(node);
1077
1078	return ret;
1079
1080search:
1081	btrfs_release_path(path);
1082
1083	key.type = BTRFS_INODE_EXTREF_KEY;
1084	key.offset = -1;
1085	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1086	if (ret < 0)
1087		goto err_out;
1088	ASSERT(ret);
1089
1090	ret = 0;
1091	leaf = path->nodes[0];
1092	path->slots[0]--;
1093	goto again;
1094}
1095
1096static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1097					     struct btrfs_root *root,
1098					     struct btrfs_path *path,
1099					     struct btrfs_delayed_node *node)
1100{
1101	int ret;
1102
1103	mutex_lock(&node->mutex);
1104	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1105		mutex_unlock(&node->mutex);
1106		return 0;
1107	}
1108
1109	ret = __btrfs_update_delayed_inode(trans, root, path, node);
 
1110	mutex_unlock(&node->mutex);
1111	return ret;
1112}
1113
1114static inline int
1115__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1116				   struct btrfs_path *path,
1117				   struct btrfs_delayed_node *node)
1118{
1119	int ret;
1120
1121	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1122	if (ret)
1123		return ret;
1124
1125	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1126	if (ret)
1127		return ret;
1128
1129	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1130	return ret;
1131}
1132
1133/*
1134 * Called when committing the transaction.
1135 * Returns 0 on success.
1136 * Returns < 0 on error and returns with an aborted transaction with any
1137 * outstanding delayed items cleaned up.
1138 */
1139static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1140				     struct btrfs_fs_info *fs_info, int nr)
1141{
 
1142	struct btrfs_delayed_root *delayed_root;
1143	struct btrfs_delayed_node *curr_node, *prev_node;
1144	struct btrfs_path *path;
1145	struct btrfs_block_rsv *block_rsv;
1146	int ret = 0;
1147	bool count = (nr > 0);
1148
1149	if (trans->aborted)
1150		return -EIO;
1151
1152	path = btrfs_alloc_path();
1153	if (!path)
1154		return -ENOMEM;
1155	path->leave_spinning = 1;
1156
1157	block_rsv = trans->block_rsv;
1158	trans->block_rsv = &fs_info->delayed_block_rsv;
1159
1160	delayed_root = fs_info->delayed_root;
1161
1162	curr_node = btrfs_first_delayed_node(delayed_root);
1163	while (curr_node && (!count || (count && nr--))) {
1164		ret = __btrfs_commit_inode_delayed_items(trans, path,
1165							 curr_node);
 
 
 
 
 
 
 
1166		if (ret) {
1167			btrfs_release_delayed_node(curr_node);
1168			curr_node = NULL;
1169			btrfs_abort_transaction(trans, ret);
1170			break;
1171		}
1172
1173		prev_node = curr_node;
1174		curr_node = btrfs_next_delayed_node(curr_node);
1175		btrfs_release_delayed_node(prev_node);
1176	}
1177
1178	if (curr_node)
1179		btrfs_release_delayed_node(curr_node);
1180	btrfs_free_path(path);
1181	trans->block_rsv = block_rsv;
1182
1183	return ret;
1184}
1185
1186int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1187			    struct btrfs_fs_info *fs_info)
1188{
1189	return __btrfs_run_delayed_items(trans, fs_info, -1);
1190}
1191
1192int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1193			       struct btrfs_fs_info *fs_info, int nr)
1194{
1195	return __btrfs_run_delayed_items(trans, fs_info, nr);
1196}
1197
1198int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1199				     struct inode *inode)
1200{
1201	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1202	struct btrfs_path *path;
1203	struct btrfs_block_rsv *block_rsv;
1204	int ret;
1205
1206	if (!delayed_node)
1207		return 0;
1208
1209	mutex_lock(&delayed_node->mutex);
1210	if (!delayed_node->count) {
1211		mutex_unlock(&delayed_node->mutex);
1212		btrfs_release_delayed_node(delayed_node);
1213		return 0;
1214	}
1215	mutex_unlock(&delayed_node->mutex);
1216
1217	path = btrfs_alloc_path();
1218	if (!path) {
1219		btrfs_release_delayed_node(delayed_node);
1220		return -ENOMEM;
1221	}
1222	path->leave_spinning = 1;
1223
1224	block_rsv = trans->block_rsv;
1225	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1226
1227	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1228
1229	btrfs_release_delayed_node(delayed_node);
 
 
1230	btrfs_free_path(path);
1231	trans->block_rsv = block_rsv;
1232
 
1233	return ret;
1234}
1235
1236int btrfs_commit_inode_delayed_inode(struct inode *inode)
 
1237{
1238	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1239	struct btrfs_trans_handle *trans;
1240	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1241	struct btrfs_path *path;
1242	struct btrfs_block_rsv *block_rsv;
1243	int ret;
1244
1245	if (!delayed_node)
1246		return 0;
1247
1248	mutex_lock(&delayed_node->mutex);
1249	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1250		mutex_unlock(&delayed_node->mutex);
1251		btrfs_release_delayed_node(delayed_node);
1252		return 0;
1253	}
1254	mutex_unlock(&delayed_node->mutex);
1255
1256	trans = btrfs_join_transaction(delayed_node->root);
1257	if (IS_ERR(trans)) {
1258		ret = PTR_ERR(trans);
1259		goto out;
1260	}
1261
1262	path = btrfs_alloc_path();
1263	if (!path) {
1264		ret = -ENOMEM;
1265		goto trans_out;
1266	}
1267	path->leave_spinning = 1;
1268
1269	block_rsv = trans->block_rsv;
1270	trans->block_rsv = &fs_info->delayed_block_rsv;
1271
1272	mutex_lock(&delayed_node->mutex);
1273	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1274		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1275						   path, delayed_node);
1276	else
1277		ret = 0;
1278	mutex_unlock(&delayed_node->mutex);
1279
1280	btrfs_free_path(path);
1281	trans->block_rsv = block_rsv;
1282trans_out:
1283	btrfs_end_transaction(trans);
1284	btrfs_btree_balance_dirty(fs_info);
1285out:
1286	btrfs_release_delayed_node(delayed_node);
1287
1288	return ret;
1289}
1290
1291void btrfs_remove_delayed_node(struct inode *inode)
1292{
1293	struct btrfs_delayed_node *delayed_node;
1294
1295	delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1296	if (!delayed_node)
1297		return;
1298
1299	BTRFS_I(inode)->delayed_node = NULL;
1300	btrfs_release_delayed_node(delayed_node);
1301}
1302
1303struct btrfs_async_delayed_work {
1304	struct btrfs_delayed_root *delayed_root;
1305	int nr;
1306	struct btrfs_work work;
1307};
1308
1309static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1310{
1311	struct btrfs_async_delayed_work *async_work;
1312	struct btrfs_delayed_root *delayed_root;
1313	struct btrfs_trans_handle *trans;
1314	struct btrfs_path *path;
1315	struct btrfs_delayed_node *delayed_node = NULL;
1316	struct btrfs_root *root;
1317	struct btrfs_block_rsv *block_rsv;
1318	int total_done = 0;
 
 
1319
1320	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1321	delayed_root = async_work->delayed_root;
1322
1323	path = btrfs_alloc_path();
1324	if (!path)
1325		goto out;
1326
1327again:
1328	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
1329		goto free_path;
1330
1331	delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1332	if (!delayed_node)
1333		goto free_path;
1334
1335	path->leave_spinning = 1;
 
 
1336	root = delayed_node->root;
1337
1338	trans = btrfs_join_transaction(root);
1339	if (IS_ERR(trans))
1340		goto release_path;
1341
1342	block_rsv = trans->block_rsv;
1343	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1344
1345	__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
 
 
 
1346
1347	trans->block_rsv = block_rsv;
1348	btrfs_end_transaction(trans);
1349	btrfs_btree_balance_dirty_nodelay(root->fs_info);
1350
1351release_path:
1352	btrfs_release_path(path);
1353	total_done++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1354
1355	btrfs_release_prepared_delayed_node(delayed_node);
1356	if ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) ||
1357	    total_done < async_work->nr)
1358		goto again;
1359
 
 
 
1360free_path:
1361	btrfs_free_path(path);
1362out:
1363	wake_up(&delayed_root->wait);
1364	kfree(async_work);
 
 
 
 
1365}
1366
1367
1368static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1369				     struct btrfs_fs_info *fs_info, int nr)
1370{
1371	struct btrfs_async_delayed_work *async_work;
 
 
1372
1373	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND ||
1374	    btrfs_workqueue_normal_congested(fs_info->delayed_workers))
 
1375		return 0;
1376
1377	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1378	if (!async_work)
 
1379		return -ENOMEM;
 
 
 
 
1380
1381	async_work->delayed_root = delayed_root;
1382	btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1383			btrfs_async_run_delayed_root, NULL, NULL);
1384	async_work->nr = nr;
 
 
 
 
1385
1386	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1387	return 0;
1388}
1389
1390void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1391{
1392	WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
 
 
1393}
1394
1395static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1396{
1397	int val = atomic_read(&delayed_root->items_seq);
1398
1399	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1400		return 1;
1401
1402	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1403		return 1;
1404
1405	return 0;
1406}
1407
1408void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1409{
1410	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1411
1412	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1413		return;
1414
1415	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1416		int seq;
1417		int ret;
1418
1419		seq = atomic_read(&delayed_root->items_seq);
1420
1421		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1422		if (ret)
1423			return;
1424
1425		wait_event_interruptible(delayed_root->wait,
1426					 could_end_wait(delayed_root, seq));
 
 
 
1427		return;
1428	}
1429
1430	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1431}
1432
1433/* Will return 0 or -ENOMEM */
1434int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1435				   struct btrfs_fs_info *fs_info,
1436				   const char *name, int name_len,
1437				   struct inode *dir,
1438				   struct btrfs_disk_key *disk_key, u8 type,
1439				   u64 index)
1440{
1441	struct btrfs_delayed_node *delayed_node;
1442	struct btrfs_delayed_item *delayed_item;
1443	struct btrfs_dir_item *dir_item;
1444	int ret;
1445
1446	delayed_node = btrfs_get_or_create_delayed_node(dir);
1447	if (IS_ERR(delayed_node))
1448		return PTR_ERR(delayed_node);
1449
1450	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1451	if (!delayed_item) {
1452		ret = -ENOMEM;
1453		goto release_node;
1454	}
1455
1456	delayed_item->key.objectid = btrfs_ino(dir);
1457	delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1458	delayed_item->key.offset = index;
1459
1460	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1461	dir_item->location = *disk_key;
1462	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1463	btrfs_set_stack_dir_data_len(dir_item, 0);
1464	btrfs_set_stack_dir_name_len(dir_item, name_len);
1465	btrfs_set_stack_dir_type(dir_item, type);
1466	memcpy((char *)(dir_item + 1), name, name_len);
1467
1468	ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, delayed_item);
1469	/*
1470	 * we have reserved enough space when we start a new transaction,
1471	 * so reserving metadata failure is impossible
1472	 */
1473	BUG_ON(ret);
1474
1475
1476	mutex_lock(&delayed_node->mutex);
1477	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1478	if (unlikely(ret)) {
1479		btrfs_err(fs_info,
1480			  "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1481			  name_len, name, delayed_node->root->objectid,
1482			  delayed_node->inode_id, ret);
 
 
 
1483		BUG();
1484	}
1485	mutex_unlock(&delayed_node->mutex);
1486
1487release_node:
1488	btrfs_release_delayed_node(delayed_node);
1489	return ret;
1490}
1491
1492static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1493					       struct btrfs_delayed_node *node,
1494					       struct btrfs_key *key)
1495{
1496	struct btrfs_delayed_item *item;
1497
1498	mutex_lock(&node->mutex);
1499	item = __btrfs_lookup_delayed_insertion_item(node, key);
1500	if (!item) {
1501		mutex_unlock(&node->mutex);
1502		return 1;
1503	}
1504
1505	btrfs_delayed_item_release_metadata(fs_info, item);
1506	btrfs_release_delayed_item(item);
1507	mutex_unlock(&node->mutex);
1508	return 0;
1509}
1510
1511int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1512				   struct btrfs_fs_info *fs_info,
1513				   struct inode *dir, u64 index)
1514{
1515	struct btrfs_delayed_node *node;
1516	struct btrfs_delayed_item *item;
1517	struct btrfs_key item_key;
1518	int ret;
1519
1520	node = btrfs_get_or_create_delayed_node(dir);
1521	if (IS_ERR(node))
1522		return PTR_ERR(node);
1523
1524	item_key.objectid = btrfs_ino(dir);
1525	item_key.type = BTRFS_DIR_INDEX_KEY;
1526	item_key.offset = index;
1527
1528	ret = btrfs_delete_delayed_insertion_item(fs_info, node, &item_key);
1529	if (!ret)
1530		goto end;
1531
1532	item = btrfs_alloc_delayed_item(0);
1533	if (!item) {
1534		ret = -ENOMEM;
1535		goto end;
1536	}
1537
1538	item->key = item_key;
1539
1540	ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, item);
1541	/*
1542	 * we have reserved enough space when we start a new transaction,
1543	 * so reserving metadata failure is impossible.
1544	 */
1545	BUG_ON(ret);
1546
1547	mutex_lock(&node->mutex);
1548	ret = __btrfs_add_delayed_deletion_item(node, item);
1549	if (unlikely(ret)) {
1550		btrfs_err(fs_info,
1551			  "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1552			  index, node->root->objectid, node->inode_id, ret);
 
 
 
 
1553		BUG();
1554	}
1555	mutex_unlock(&node->mutex);
1556end:
1557	btrfs_release_delayed_node(node);
1558	return ret;
1559}
1560
1561int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1562{
1563	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1564
1565	if (!delayed_node)
1566		return -ENOENT;
1567
1568	/*
1569	 * Since we have held i_mutex of this directory, it is impossible that
1570	 * a new directory index is added into the delayed node and index_cnt
1571	 * is updated now. So we needn't lock the delayed node.
1572	 */
1573	if (!delayed_node->index_cnt) {
1574		btrfs_release_delayed_node(delayed_node);
1575		return -EINVAL;
1576	}
1577
1578	BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1579	btrfs_release_delayed_node(delayed_node);
1580	return 0;
1581}
1582
1583bool btrfs_readdir_get_delayed_items(struct inode *inode,
1584				     struct list_head *ins_list,
1585				     struct list_head *del_list)
1586{
1587	struct btrfs_delayed_node *delayed_node;
1588	struct btrfs_delayed_item *item;
1589
1590	delayed_node = btrfs_get_delayed_node(inode);
1591	if (!delayed_node)
1592		return false;
1593
1594	/*
1595	 * We can only do one readdir with delayed items at a time because of
1596	 * item->readdir_list.
1597	 */
1598	inode_unlock_shared(inode);
1599	inode_lock(inode);
1600
1601	mutex_lock(&delayed_node->mutex);
1602	item = __btrfs_first_delayed_insertion_item(delayed_node);
1603	while (item) {
1604		atomic_inc(&item->refs);
1605		list_add_tail(&item->readdir_list, ins_list);
1606		item = __btrfs_next_delayed_item(item);
1607	}
1608
1609	item = __btrfs_first_delayed_deletion_item(delayed_node);
1610	while (item) {
1611		atomic_inc(&item->refs);
1612		list_add_tail(&item->readdir_list, del_list);
1613		item = __btrfs_next_delayed_item(item);
1614	}
1615	mutex_unlock(&delayed_node->mutex);
1616	/*
1617	 * This delayed node is still cached in the btrfs inode, so refs
1618	 * must be > 1 now, and we needn't check it is going to be freed
1619	 * or not.
1620	 *
1621	 * Besides that, this function is used to read dir, we do not
1622	 * insert/delete delayed items in this period. So we also needn't
1623	 * requeue or dequeue this delayed node.
1624	 */
1625	atomic_dec(&delayed_node->refs);
1626
1627	return true;
1628}
1629
1630void btrfs_readdir_put_delayed_items(struct inode *inode,
1631				     struct list_head *ins_list,
1632				     struct list_head *del_list)
1633{
1634	struct btrfs_delayed_item *curr, *next;
1635
1636	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1637		list_del(&curr->readdir_list);
1638		if (atomic_dec_and_test(&curr->refs))
1639			kfree(curr);
1640	}
1641
1642	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1643		list_del(&curr->readdir_list);
1644		if (atomic_dec_and_test(&curr->refs))
1645			kfree(curr);
1646	}
1647
1648	/*
1649	 * The VFS is going to do up_read(), so we need to downgrade back to a
1650	 * read lock.
1651	 */
1652	downgrade_write(&inode->i_rwsem);
1653}
1654
1655int btrfs_should_delete_dir_index(struct list_head *del_list,
1656				  u64 index)
1657{
1658	struct btrfs_delayed_item *curr, *next;
1659	int ret;
1660
1661	if (list_empty(del_list))
1662		return 0;
1663
1664	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1665		if (curr->key.offset > index)
1666			break;
1667
1668		list_del(&curr->readdir_list);
1669		ret = (curr->key.offset == index);
1670
1671		if (atomic_dec_and_test(&curr->refs))
1672			kfree(curr);
1673
1674		if (ret)
1675			return 1;
1676		else
1677			continue;
1678	}
1679	return 0;
1680}
1681
1682/*
1683 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1684 *
1685 */
1686int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
 
1687				    struct list_head *ins_list)
1688{
1689	struct btrfs_dir_item *di;
1690	struct btrfs_delayed_item *curr, *next;
1691	struct btrfs_key location;
1692	char *name;
1693	int name_len;
1694	int over = 0;
1695	unsigned char d_type;
1696
1697	if (list_empty(ins_list))
1698		return 0;
1699
1700	/*
1701	 * Changing the data of the delayed item is impossible. So
1702	 * we needn't lock them. And we have held i_mutex of the
1703	 * directory, nobody can delete any directory indexes now.
1704	 */
1705	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1706		list_del(&curr->readdir_list);
1707
1708		if (curr->key.offset < ctx->pos) {
1709			if (atomic_dec_and_test(&curr->refs))
1710				kfree(curr);
1711			continue;
1712		}
1713
1714		ctx->pos = curr->key.offset;
1715
1716		di = (struct btrfs_dir_item *)curr->data;
1717		name = (char *)(di + 1);
1718		name_len = btrfs_stack_dir_name_len(di);
1719
1720		d_type = btrfs_filetype_table[di->type];
1721		btrfs_disk_key_to_cpu(&location, &di->location);
1722
1723		over = !dir_emit(ctx, name, name_len,
1724			       location.objectid, d_type);
1725
1726		if (atomic_dec_and_test(&curr->refs))
1727			kfree(curr);
1728
1729		if (over)
1730			return 1;
1731	}
1732	return 0;
1733}
1734
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1735static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1736				  struct btrfs_inode_item *inode_item,
1737				  struct inode *inode)
1738{
1739	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1740	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1741	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1742	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1743	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1744	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1745	btrfs_set_stack_inode_generation(inode_item,
1746					 BTRFS_I(inode)->generation);
1747	btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1748	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1749	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1750	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1751	btrfs_set_stack_inode_block_group(inode_item, 0);
1752
1753	btrfs_set_stack_timespec_sec(&inode_item->atime,
1754				     inode->i_atime.tv_sec);
1755	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1756				      inode->i_atime.tv_nsec);
1757
1758	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1759				     inode->i_mtime.tv_sec);
1760	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1761				      inode->i_mtime.tv_nsec);
1762
1763	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1764				     inode->i_ctime.tv_sec);
1765	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1766				      inode->i_ctime.tv_nsec);
1767
1768	btrfs_set_stack_timespec_sec(&inode_item->otime,
1769				     BTRFS_I(inode)->i_otime.tv_sec);
1770	btrfs_set_stack_timespec_nsec(&inode_item->otime,
1771				     BTRFS_I(inode)->i_otime.tv_nsec);
1772}
1773
1774int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1775{
1776	struct btrfs_delayed_node *delayed_node;
1777	struct btrfs_inode_item *inode_item;
 
1778
1779	delayed_node = btrfs_get_delayed_node(inode);
1780	if (!delayed_node)
1781		return -ENOENT;
1782
1783	mutex_lock(&delayed_node->mutex);
1784	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1785		mutex_unlock(&delayed_node->mutex);
1786		btrfs_release_delayed_node(delayed_node);
1787		return -ENOENT;
1788	}
1789
1790	inode_item = &delayed_node->inode_item;
1791
1792	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1793	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1794	btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1795	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1796	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1797	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1798	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1799        BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1800
1801	inode->i_version = btrfs_stack_inode_sequence(inode_item);
1802	inode->i_rdev = 0;
1803	*rdev = btrfs_stack_inode_rdev(inode_item);
1804	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1805
1806	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1807	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1808
1809	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1810	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1811
1812	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1813	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1814
1815	BTRFS_I(inode)->i_otime.tv_sec =
1816		btrfs_stack_timespec_sec(&inode_item->otime);
1817	BTRFS_I(inode)->i_otime.tv_nsec =
1818		btrfs_stack_timespec_nsec(&inode_item->otime);
1819
1820	inode->i_generation = BTRFS_I(inode)->generation;
1821	BTRFS_I(inode)->index_cnt = (u64)-1;
1822
1823	mutex_unlock(&delayed_node->mutex);
1824	btrfs_release_delayed_node(delayed_node);
1825	return 0;
1826}
1827
1828int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1829			       struct btrfs_root *root, struct inode *inode)
1830{
1831	struct btrfs_delayed_node *delayed_node;
1832	int ret = 0;
1833
1834	delayed_node = btrfs_get_or_create_delayed_node(inode);
1835	if (IS_ERR(delayed_node))
1836		return PTR_ERR(delayed_node);
1837
1838	mutex_lock(&delayed_node->mutex);
1839	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1840		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1841		goto release_node;
1842	}
1843
1844	ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1845						   delayed_node);
1846	if (ret)
1847		goto release_node;
1848
1849	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1850	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1851	delayed_node->count++;
1852	atomic_inc(&root->fs_info->delayed_root->items);
1853release_node:
1854	mutex_unlock(&delayed_node->mutex);
1855	btrfs_release_delayed_node(delayed_node);
1856	return ret;
1857}
1858
1859int btrfs_delayed_delete_inode_ref(struct inode *inode)
1860{
1861	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1862	struct btrfs_delayed_node *delayed_node;
1863
1864	/*
1865	 * we don't do delayed inode updates during log recovery because it
1866	 * leads to enospc problems.  This means we also can't do
1867	 * delayed inode refs
1868	 */
1869	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1870		return -EAGAIN;
1871
1872	delayed_node = btrfs_get_or_create_delayed_node(inode);
1873	if (IS_ERR(delayed_node))
1874		return PTR_ERR(delayed_node);
1875
1876	/*
1877	 * We don't reserve space for inode ref deletion is because:
1878	 * - We ONLY do async inode ref deletion for the inode who has only
1879	 *   one link(i_nlink == 1), it means there is only one inode ref.
1880	 *   And in most case, the inode ref and the inode item are in the
1881	 *   same leaf, and we will deal with them at the same time.
1882	 *   Since we are sure we will reserve the space for the inode item,
1883	 *   it is unnecessary to reserve space for inode ref deletion.
1884	 * - If the inode ref and the inode item are not in the same leaf,
1885	 *   We also needn't worry about enospc problem, because we reserve
1886	 *   much more space for the inode update than it needs.
1887	 * - At the worst, we can steal some space from the global reservation.
1888	 *   It is very rare.
1889	 */
1890	mutex_lock(&delayed_node->mutex);
1891	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1892		goto release_node;
1893
1894	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1895	delayed_node->count++;
1896	atomic_inc(&fs_info->delayed_root->items);
1897release_node:
1898	mutex_unlock(&delayed_node->mutex);
1899	btrfs_release_delayed_node(delayed_node);
1900	return 0;
1901}
1902
1903static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1904{
1905	struct btrfs_root *root = delayed_node->root;
1906	struct btrfs_fs_info *fs_info = root->fs_info;
1907	struct btrfs_delayed_item *curr_item, *prev_item;
1908
1909	mutex_lock(&delayed_node->mutex);
1910	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1911	while (curr_item) {
1912		btrfs_delayed_item_release_metadata(fs_info, curr_item);
1913		prev_item = curr_item;
1914		curr_item = __btrfs_next_delayed_item(prev_item);
1915		btrfs_release_delayed_item(prev_item);
1916	}
1917
1918	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1919	while (curr_item) {
1920		btrfs_delayed_item_release_metadata(fs_info, curr_item);
1921		prev_item = curr_item;
1922		curr_item = __btrfs_next_delayed_item(prev_item);
1923		btrfs_release_delayed_item(prev_item);
1924	}
1925
1926	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1927		btrfs_release_delayed_iref(delayed_node);
1928
1929	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1930		btrfs_delayed_inode_release_metadata(fs_info, delayed_node);
1931		btrfs_release_delayed_inode(delayed_node);
1932	}
1933	mutex_unlock(&delayed_node->mutex);
1934}
1935
1936void btrfs_kill_delayed_inode_items(struct inode *inode)
1937{
1938	struct btrfs_delayed_node *delayed_node;
1939
1940	delayed_node = btrfs_get_delayed_node(inode);
1941	if (!delayed_node)
1942		return;
1943
1944	__btrfs_kill_delayed_node(delayed_node);
1945	btrfs_release_delayed_node(delayed_node);
1946}
1947
1948void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1949{
1950	u64 inode_id = 0;
1951	struct btrfs_delayed_node *delayed_nodes[8];
1952	int i, n;
1953
1954	while (1) {
1955		spin_lock(&root->inode_lock);
1956		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1957					   (void **)delayed_nodes, inode_id,
1958					   ARRAY_SIZE(delayed_nodes));
1959		if (!n) {
1960			spin_unlock(&root->inode_lock);
1961			break;
1962		}
1963
1964		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1965
1966		for (i = 0; i < n; i++)
1967			atomic_inc(&delayed_nodes[i]->refs);
1968		spin_unlock(&root->inode_lock);
1969
1970		for (i = 0; i < n; i++) {
1971			__btrfs_kill_delayed_node(delayed_nodes[i]);
1972			btrfs_release_delayed_node(delayed_nodes[i]);
1973		}
1974	}
1975}
1976
1977void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1978{
 
1979	struct btrfs_delayed_node *curr_node, *prev_node;
1980
1981	curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
 
 
1982	while (curr_node) {
1983		__btrfs_kill_delayed_node(curr_node);
1984
1985		prev_node = curr_node;
1986		curr_node = btrfs_next_delayed_node(curr_node);
1987		btrfs_release_delayed_node(prev_node);
1988	}
1989}
1990
v3.5.6
   1/*
   2 * Copyright (C) 2011 Fujitsu.  All rights reserved.
   3 * Written by Miao Xie <miaox@cn.fujitsu.com>
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public
   7 * License v2 as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  12 * General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public
  15 * License along with this program; if not, write to the
  16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17 * Boston, MA 021110-1307, USA.
  18 */
  19
  20#include <linux/slab.h>
  21#include "delayed-inode.h"
  22#include "disk-io.h"
  23#include "transaction.h"
 
  24
  25#define BTRFS_DELAYED_WRITEBACK		400
  26#define BTRFS_DELAYED_BACKGROUND	100
 
  27
  28static struct kmem_cache *delayed_node_cache;
  29
  30int __init btrfs_delayed_inode_init(void)
  31{
  32	delayed_node_cache = kmem_cache_create("delayed_node",
  33					sizeof(struct btrfs_delayed_node),
  34					0,
  35					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  36					NULL);
  37	if (!delayed_node_cache)
  38		return -ENOMEM;
  39	return 0;
  40}
  41
  42void btrfs_delayed_inode_exit(void)
  43{
  44	if (delayed_node_cache)
  45		kmem_cache_destroy(delayed_node_cache);
  46}
  47
  48static inline void btrfs_init_delayed_node(
  49				struct btrfs_delayed_node *delayed_node,
  50				struct btrfs_root *root, u64 inode_id)
  51{
  52	delayed_node->root = root;
  53	delayed_node->inode_id = inode_id;
  54	atomic_set(&delayed_node->refs, 0);
  55	delayed_node->count = 0;
  56	delayed_node->in_list = 0;
  57	delayed_node->inode_dirty = 0;
  58	delayed_node->ins_root = RB_ROOT;
  59	delayed_node->del_root = RB_ROOT;
  60	mutex_init(&delayed_node->mutex);
  61	delayed_node->index_cnt = 0;
  62	INIT_LIST_HEAD(&delayed_node->n_list);
  63	INIT_LIST_HEAD(&delayed_node->p_list);
  64	delayed_node->bytes_reserved = 0;
  65}
  66
  67static inline int btrfs_is_continuous_delayed_item(
  68					struct btrfs_delayed_item *item1,
  69					struct btrfs_delayed_item *item2)
  70{
  71	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  72	    item1->key.objectid == item2->key.objectid &&
  73	    item1->key.type == item2->key.type &&
  74	    item1->key.offset + 1 == item2->key.offset)
  75		return 1;
  76	return 0;
  77}
  78
  79static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
  80							struct btrfs_root *root)
  81{
  82	return root->fs_info->delayed_root;
  83}
  84
  85static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
  86{
  87	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  88	struct btrfs_root *root = btrfs_inode->root;
  89	u64 ino = btrfs_ino(inode);
  90	struct btrfs_delayed_node *node;
  91
  92	node = ACCESS_ONCE(btrfs_inode->delayed_node);
  93	if (node) {
  94		atomic_inc(&node->refs);
  95		return node;
  96	}
  97
  98	spin_lock(&root->inode_lock);
  99	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
 100	if (node) {
 101		if (btrfs_inode->delayed_node) {
 102			atomic_inc(&node->refs);	/* can be accessed */
 103			BUG_ON(btrfs_inode->delayed_node != node);
 104			spin_unlock(&root->inode_lock);
 105			return node;
 106		}
 107		btrfs_inode->delayed_node = node;
 108		atomic_inc(&node->refs);	/* can be accessed */
 109		atomic_inc(&node->refs);	/* cached in the inode */
 110		spin_unlock(&root->inode_lock);
 111		return node;
 112	}
 113	spin_unlock(&root->inode_lock);
 114
 115	return NULL;
 116}
 117
 118/* Will return either the node or PTR_ERR(-ENOMEM) */
 119static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
 120							struct inode *inode)
 121{
 122	struct btrfs_delayed_node *node;
 123	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
 124	struct btrfs_root *root = btrfs_inode->root;
 125	u64 ino = btrfs_ino(inode);
 126	int ret;
 127
 128again:
 129	node = btrfs_get_delayed_node(inode);
 130	if (node)
 131		return node;
 132
 133	node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
 134	if (!node)
 135		return ERR_PTR(-ENOMEM);
 136	btrfs_init_delayed_node(node, root, ino);
 137
 138	atomic_inc(&node->refs);	/* cached in the btrfs inode */
 139	atomic_inc(&node->refs);	/* can be accessed */
 140
 141	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
 142	if (ret) {
 143		kmem_cache_free(delayed_node_cache, node);
 144		return ERR_PTR(ret);
 145	}
 146
 147	spin_lock(&root->inode_lock);
 148	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
 149	if (ret == -EEXIST) {
 
 150		kmem_cache_free(delayed_node_cache, node);
 151		spin_unlock(&root->inode_lock);
 152		radix_tree_preload_end();
 153		goto again;
 154	}
 155	btrfs_inode->delayed_node = node;
 156	spin_unlock(&root->inode_lock);
 157	radix_tree_preload_end();
 158
 159	return node;
 160}
 161
 162/*
 163 * Call it when holding delayed_node->mutex
 164 *
 165 * If mod = 1, add this node into the prepared list.
 166 */
 167static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
 168				     struct btrfs_delayed_node *node,
 169				     int mod)
 170{
 171	spin_lock(&root->lock);
 172	if (node->in_list) {
 173		if (!list_empty(&node->p_list))
 174			list_move_tail(&node->p_list, &root->prepare_list);
 175		else if (mod)
 176			list_add_tail(&node->p_list, &root->prepare_list);
 177	} else {
 178		list_add_tail(&node->n_list, &root->node_list);
 179		list_add_tail(&node->p_list, &root->prepare_list);
 180		atomic_inc(&node->refs);	/* inserted into list */
 181		root->nodes++;
 182		node->in_list = 1;
 183	}
 184	spin_unlock(&root->lock);
 185}
 186
 187/* Call it when holding delayed_node->mutex */
 188static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
 189				       struct btrfs_delayed_node *node)
 190{
 191	spin_lock(&root->lock);
 192	if (node->in_list) {
 193		root->nodes--;
 194		atomic_dec(&node->refs);	/* not in the list */
 195		list_del_init(&node->n_list);
 196		if (!list_empty(&node->p_list))
 197			list_del_init(&node->p_list);
 198		node->in_list = 0;
 199	}
 200	spin_unlock(&root->lock);
 201}
 202
 203struct btrfs_delayed_node *btrfs_first_delayed_node(
 204			struct btrfs_delayed_root *delayed_root)
 205{
 206	struct list_head *p;
 207	struct btrfs_delayed_node *node = NULL;
 208
 209	spin_lock(&delayed_root->lock);
 210	if (list_empty(&delayed_root->node_list))
 211		goto out;
 212
 213	p = delayed_root->node_list.next;
 214	node = list_entry(p, struct btrfs_delayed_node, n_list);
 215	atomic_inc(&node->refs);
 216out:
 217	spin_unlock(&delayed_root->lock);
 218
 219	return node;
 220}
 221
 222struct btrfs_delayed_node *btrfs_next_delayed_node(
 223						struct btrfs_delayed_node *node)
 224{
 225	struct btrfs_delayed_root *delayed_root;
 226	struct list_head *p;
 227	struct btrfs_delayed_node *next = NULL;
 228
 229	delayed_root = node->root->fs_info->delayed_root;
 230	spin_lock(&delayed_root->lock);
 231	if (!node->in_list) {	/* not in the list */
 
 232		if (list_empty(&delayed_root->node_list))
 233			goto out;
 234		p = delayed_root->node_list.next;
 235	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
 236		goto out;
 237	else
 238		p = node->n_list.next;
 239
 240	next = list_entry(p, struct btrfs_delayed_node, n_list);
 241	atomic_inc(&next->refs);
 242out:
 243	spin_unlock(&delayed_root->lock);
 244
 245	return next;
 246}
 247
 248static void __btrfs_release_delayed_node(
 249				struct btrfs_delayed_node *delayed_node,
 250				int mod)
 251{
 252	struct btrfs_delayed_root *delayed_root;
 253
 254	if (!delayed_node)
 255		return;
 256
 257	delayed_root = delayed_node->root->fs_info->delayed_root;
 258
 259	mutex_lock(&delayed_node->mutex);
 260	if (delayed_node->count)
 261		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
 262	else
 263		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
 264	mutex_unlock(&delayed_node->mutex);
 265
 266	if (atomic_dec_and_test(&delayed_node->refs)) {
 
 267		struct btrfs_root *root = delayed_node->root;
 268		spin_lock(&root->inode_lock);
 269		if (atomic_read(&delayed_node->refs) == 0) {
 270			radix_tree_delete(&root->delayed_nodes_tree,
 271					  delayed_node->inode_id);
 272			kmem_cache_free(delayed_node_cache, delayed_node);
 273		}
 274		spin_unlock(&root->inode_lock);
 
 
 275	}
 276}
 277
 278static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
 279{
 280	__btrfs_release_delayed_node(node, 0);
 281}
 282
 283struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
 284					struct btrfs_delayed_root *delayed_root)
 285{
 286	struct list_head *p;
 287	struct btrfs_delayed_node *node = NULL;
 288
 289	spin_lock(&delayed_root->lock);
 290	if (list_empty(&delayed_root->prepare_list))
 291		goto out;
 292
 293	p = delayed_root->prepare_list.next;
 294	list_del_init(p);
 295	node = list_entry(p, struct btrfs_delayed_node, p_list);
 296	atomic_inc(&node->refs);
 297out:
 298	spin_unlock(&delayed_root->lock);
 299
 300	return node;
 301}
 302
 303static inline void btrfs_release_prepared_delayed_node(
 304					struct btrfs_delayed_node *node)
 305{
 306	__btrfs_release_delayed_node(node, 1);
 307}
 308
 309struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
 310{
 311	struct btrfs_delayed_item *item;
 312	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
 313	if (item) {
 314		item->data_len = data_len;
 315		item->ins_or_del = 0;
 316		item->bytes_reserved = 0;
 317		item->delayed_node = NULL;
 318		atomic_set(&item->refs, 1);
 319	}
 320	return item;
 321}
 322
 323/*
 324 * __btrfs_lookup_delayed_item - look up the delayed item by key
 325 * @delayed_node: pointer to the delayed node
 326 * @key:	  the key to look up
 327 * @prev:	  used to store the prev item if the right item isn't found
 328 * @next:	  used to store the next item if the right item isn't found
 329 *
 330 * Note: if we don't find the right item, we will return the prev item and
 331 * the next item.
 332 */
 333static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
 334				struct rb_root *root,
 335				struct btrfs_key *key,
 336				struct btrfs_delayed_item **prev,
 337				struct btrfs_delayed_item **next)
 338{
 339	struct rb_node *node, *prev_node = NULL;
 340	struct btrfs_delayed_item *delayed_item = NULL;
 341	int ret = 0;
 342
 343	node = root->rb_node;
 344
 345	while (node) {
 346		delayed_item = rb_entry(node, struct btrfs_delayed_item,
 347					rb_node);
 348		prev_node = node;
 349		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
 350		if (ret < 0)
 351			node = node->rb_right;
 352		else if (ret > 0)
 353			node = node->rb_left;
 354		else
 355			return delayed_item;
 356	}
 357
 358	if (prev) {
 359		if (!prev_node)
 360			*prev = NULL;
 361		else if (ret < 0)
 362			*prev = delayed_item;
 363		else if ((node = rb_prev(prev_node)) != NULL) {
 364			*prev = rb_entry(node, struct btrfs_delayed_item,
 365					 rb_node);
 366		} else
 367			*prev = NULL;
 368	}
 369
 370	if (next) {
 371		if (!prev_node)
 372			*next = NULL;
 373		else if (ret > 0)
 374			*next = delayed_item;
 375		else if ((node = rb_next(prev_node)) != NULL) {
 376			*next = rb_entry(node, struct btrfs_delayed_item,
 377					 rb_node);
 378		} else
 379			*next = NULL;
 380	}
 381	return NULL;
 382}
 383
 384struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
 385					struct btrfs_delayed_node *delayed_node,
 386					struct btrfs_key *key)
 387{
 388	struct btrfs_delayed_item *item;
 389
 390	item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
 391					   NULL, NULL);
 392	return item;
 393}
 394
 395struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
 396					struct btrfs_delayed_node *delayed_node,
 397					struct btrfs_key *key)
 398{
 399	struct btrfs_delayed_item *item;
 400
 401	item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
 402					   NULL, NULL);
 403	return item;
 404}
 405
 406struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
 407					struct btrfs_delayed_node *delayed_node,
 408					struct btrfs_key *key)
 409{
 410	struct btrfs_delayed_item *item, *next;
 411
 412	item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
 413					   NULL, &next);
 414	if (!item)
 415		item = next;
 416
 417	return item;
 418}
 419
 420struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
 421					struct btrfs_delayed_node *delayed_node,
 422					struct btrfs_key *key)
 423{
 424	struct btrfs_delayed_item *item, *next;
 425
 426	item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
 427					   NULL, &next);
 428	if (!item)
 429		item = next;
 430
 431	return item;
 432}
 433
 434static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
 435				    struct btrfs_delayed_item *ins,
 436				    int action)
 437{
 438	struct rb_node **p, *node;
 439	struct rb_node *parent_node = NULL;
 440	struct rb_root *root;
 441	struct btrfs_delayed_item *item;
 442	int cmp;
 443
 444	if (action == BTRFS_DELAYED_INSERTION_ITEM)
 445		root = &delayed_node->ins_root;
 446	else if (action == BTRFS_DELAYED_DELETION_ITEM)
 447		root = &delayed_node->del_root;
 448	else
 449		BUG();
 450	p = &root->rb_node;
 451	node = &ins->rb_node;
 452
 453	while (*p) {
 454		parent_node = *p;
 455		item = rb_entry(parent_node, struct btrfs_delayed_item,
 456				 rb_node);
 457
 458		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
 459		if (cmp < 0)
 460			p = &(*p)->rb_right;
 461		else if (cmp > 0)
 462			p = &(*p)->rb_left;
 463		else
 464			return -EEXIST;
 465	}
 466
 467	rb_link_node(node, parent_node, p);
 468	rb_insert_color(node, root);
 469	ins->delayed_node = delayed_node;
 470	ins->ins_or_del = action;
 471
 472	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
 473	    action == BTRFS_DELAYED_INSERTION_ITEM &&
 474	    ins->key.offset >= delayed_node->index_cnt)
 475			delayed_node->index_cnt = ins->key.offset + 1;
 476
 477	delayed_node->count++;
 478	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
 479	return 0;
 480}
 481
 482static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
 483					      struct btrfs_delayed_item *item)
 484{
 485	return __btrfs_add_delayed_item(node, item,
 486					BTRFS_DELAYED_INSERTION_ITEM);
 487}
 488
 489static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
 490					     struct btrfs_delayed_item *item)
 491{
 492	return __btrfs_add_delayed_item(node, item,
 493					BTRFS_DELAYED_DELETION_ITEM);
 494}
 495
 
 
 
 
 
 
 
 
 
 
 
 
 
 496static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
 497{
 498	struct rb_root *root;
 499	struct btrfs_delayed_root *delayed_root;
 500
 501	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
 502
 503	BUG_ON(!delayed_root);
 504	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
 505	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
 506
 507	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
 508		root = &delayed_item->delayed_node->ins_root;
 509	else
 510		root = &delayed_item->delayed_node->del_root;
 511
 512	rb_erase(&delayed_item->rb_node, root);
 513	delayed_item->delayed_node->count--;
 514	atomic_dec(&delayed_root->items);
 515	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND &&
 516	    waitqueue_active(&delayed_root->wait))
 517		wake_up(&delayed_root->wait);
 518}
 519
 520static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
 521{
 522	if (item) {
 523		__btrfs_remove_delayed_item(item);
 524		if (atomic_dec_and_test(&item->refs))
 525			kfree(item);
 526	}
 527}
 528
 529struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
 530					struct btrfs_delayed_node *delayed_node)
 531{
 532	struct rb_node *p;
 533	struct btrfs_delayed_item *item = NULL;
 534
 535	p = rb_first(&delayed_node->ins_root);
 536	if (p)
 537		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 538
 539	return item;
 540}
 541
 542struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
 543					struct btrfs_delayed_node *delayed_node)
 544{
 545	struct rb_node *p;
 546	struct btrfs_delayed_item *item = NULL;
 547
 548	p = rb_first(&delayed_node->del_root);
 549	if (p)
 550		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 551
 552	return item;
 553}
 554
 555struct btrfs_delayed_item *__btrfs_next_delayed_item(
 556						struct btrfs_delayed_item *item)
 557{
 558	struct rb_node *p;
 559	struct btrfs_delayed_item *next = NULL;
 560
 561	p = rb_next(&item->rb_node);
 562	if (p)
 563		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
 564
 565	return next;
 566}
 567
 568static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
 569						   u64 root_id)
 570{
 571	struct btrfs_key root_key;
 572
 573	if (root->objectid == root_id)
 574		return root;
 575
 576	root_key.objectid = root_id;
 577	root_key.type = BTRFS_ROOT_ITEM_KEY;
 578	root_key.offset = (u64)-1;
 579	return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
 580}
 581
 582static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
 583					       struct btrfs_root *root,
 584					       struct btrfs_delayed_item *item)
 585{
 586	struct btrfs_block_rsv *src_rsv;
 587	struct btrfs_block_rsv *dst_rsv;
 588	u64 num_bytes;
 589	int ret;
 590
 591	if (!trans->bytes_reserved)
 592		return 0;
 593
 594	src_rsv = trans->block_rsv;
 595	dst_rsv = &root->fs_info->delayed_block_rsv;
 596
 597	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
 598	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
 599	if (!ret) {
 600		trace_btrfs_space_reservation(root->fs_info, "delayed_item",
 601					      item->key.objectid,
 602					      num_bytes, 1);
 603		item->bytes_reserved = num_bytes;
 604	}
 605
 606	return ret;
 607}
 608
 609static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
 610						struct btrfs_delayed_item *item)
 611{
 612	struct btrfs_block_rsv *rsv;
 613
 614	if (!item->bytes_reserved)
 615		return;
 616
 617	rsv = &root->fs_info->delayed_block_rsv;
 618	trace_btrfs_space_reservation(root->fs_info, "delayed_item",
 619				      item->key.objectid, item->bytes_reserved,
 620				      0);
 621	btrfs_block_rsv_release(root, rsv,
 622				item->bytes_reserved);
 623}
 624
 625static int btrfs_delayed_inode_reserve_metadata(
 626					struct btrfs_trans_handle *trans,
 627					struct btrfs_root *root,
 628					struct inode *inode,
 629					struct btrfs_delayed_node *node)
 630{
 
 631	struct btrfs_block_rsv *src_rsv;
 632	struct btrfs_block_rsv *dst_rsv;
 633	u64 num_bytes;
 634	int ret;
 635	bool release = false;
 636
 637	src_rsv = trans->block_rsv;
 638	dst_rsv = &root->fs_info->delayed_block_rsv;
 639
 640	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 641
 642	/*
 643	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
 644	 * which doesn't reserve space for speed.  This is a problem since we
 645	 * still need to reserve space for this update, so try to reserve the
 646	 * space.
 647	 *
 648	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
 649	 * we're accounted for.
 650	 */
 651	if (!src_rsv || (!trans->bytes_reserved &&
 652	    src_rsv != &root->fs_info->delalloc_block_rsv)) {
 653		ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes);
 
 654		/*
 655		 * Since we're under a transaction reserve_metadata_bytes could
 656		 * try to commit the transaction which will make it return
 657		 * EAGAIN to make us stop the transaction we have, so return
 658		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
 659		 */
 660		if (ret == -EAGAIN)
 661			ret = -ENOSPC;
 662		if (!ret) {
 663			node->bytes_reserved = num_bytes;
 664			trace_btrfs_space_reservation(root->fs_info,
 665						      "delayed_inode",
 666						      btrfs_ino(inode),
 667						      num_bytes, 1);
 668		}
 669		return ret;
 670	} else if (src_rsv == &root->fs_info->delalloc_block_rsv) {
 671		spin_lock(&BTRFS_I(inode)->lock);
 672		if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
 673				       &BTRFS_I(inode)->runtime_flags)) {
 674			spin_unlock(&BTRFS_I(inode)->lock);
 675			release = true;
 676			goto migrate;
 677		}
 678		spin_unlock(&BTRFS_I(inode)->lock);
 679
 680		/* Ok we didn't have space pre-reserved.  This shouldn't happen
 681		 * too often but it can happen if we do delalloc to an existing
 682		 * inode which gets dirtied because of the time update, and then
 683		 * isn't touched again until after the transaction commits and
 684		 * then we try to write out the data.  First try to be nice and
 685		 * reserve something strictly for us.  If not be a pain and try
 686		 * to steal from the delalloc block rsv.
 687		 */
 688		ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes);
 689		if (!ret)
 690			goto out;
 691
 692		ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
 693		if (!ret)
 694			goto out;
 695
 696		/*
 697		 * Ok this is a problem, let's just steal from the global rsv
 698		 * since this really shouldn't happen that often.
 699		 */
 700		WARN_ON(1);
 701		ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
 702					      dst_rsv, num_bytes);
 703		goto out;
 704	}
 705
 706migrate:
 707	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
 708
 709out:
 710	/*
 711	 * Migrate only takes a reservation, it doesn't touch the size of the
 712	 * block_rsv.  This is to simplify people who don't normally have things
 713	 * migrated from their block rsv.  If they go to release their
 714	 * reservation, that will decrease the size as well, so if migrate
 715	 * reduced size we'd end up with a negative size.  But for the
 716	 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
 717	 * but we could in fact do this reserve/migrate dance several times
 718	 * between the time we did the original reservation and we'd clean it
 719	 * up.  So to take care of this, release the space for the meta
 720	 * reservation here.  I think it may be time for a documentation page on
 721	 * how block rsvs. work.
 722	 */
 723	if (!ret) {
 724		trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
 725					      btrfs_ino(inode), num_bytes, 1);
 726		node->bytes_reserved = num_bytes;
 727	}
 728
 729	if (release) {
 730		trace_btrfs_space_reservation(root->fs_info, "delalloc",
 731					      btrfs_ino(inode), num_bytes, 0);
 732		btrfs_block_rsv_release(root, src_rsv, num_bytes);
 733	}
 734
 735	return ret;
 736}
 737
 738static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
 739						struct btrfs_delayed_node *node)
 740{
 741	struct btrfs_block_rsv *rsv;
 742
 743	if (!node->bytes_reserved)
 744		return;
 745
 746	rsv = &root->fs_info->delayed_block_rsv;
 747	trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
 748				      node->inode_id, node->bytes_reserved, 0);
 749	btrfs_block_rsv_release(root, rsv,
 750				node->bytes_reserved);
 751	node->bytes_reserved = 0;
 752}
 753
 754/*
 755 * This helper will insert some continuous items into the same leaf according
 756 * to the free space of the leaf.
 757 */
 758static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
 759				struct btrfs_root *root,
 760				struct btrfs_path *path,
 761				struct btrfs_delayed_item *item)
 762{
 
 763	struct btrfs_delayed_item *curr, *next;
 764	int free_space;
 765	int total_data_size = 0, total_size = 0;
 766	struct extent_buffer *leaf;
 767	char *data_ptr;
 768	struct btrfs_key *keys;
 769	u32 *data_size;
 770	struct list_head head;
 771	int slot;
 772	int nitems;
 773	int i;
 774	int ret = 0;
 775
 776	BUG_ON(!path->nodes[0]);
 777
 778	leaf = path->nodes[0];
 779	free_space = btrfs_leaf_free_space(root, leaf);
 780	INIT_LIST_HEAD(&head);
 781
 782	next = item;
 783	nitems = 0;
 784
 785	/*
 786	 * count the number of the continuous items that we can insert in batch
 787	 */
 788	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
 789	       free_space) {
 790		total_data_size += next->data_len;
 791		total_size += next->data_len + sizeof(struct btrfs_item);
 792		list_add_tail(&next->tree_list, &head);
 793		nitems++;
 794
 795		curr = next;
 796		next = __btrfs_next_delayed_item(curr);
 797		if (!next)
 798			break;
 799
 800		if (!btrfs_is_continuous_delayed_item(curr, next))
 801			break;
 802	}
 803
 804	if (!nitems) {
 805		ret = 0;
 806		goto out;
 807	}
 808
 809	/*
 810	 * we need allocate some memory space, but it might cause the task
 811	 * to sleep, so we set all locked nodes in the path to blocking locks
 812	 * first.
 813	 */
 814	btrfs_set_path_blocking(path);
 815
 816	keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
 817	if (!keys) {
 818		ret = -ENOMEM;
 819		goto out;
 820	}
 821
 822	data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
 823	if (!data_size) {
 824		ret = -ENOMEM;
 825		goto error;
 826	}
 827
 828	/* get keys of all the delayed items */
 829	i = 0;
 830	list_for_each_entry(next, &head, tree_list) {
 831		keys[i] = next->key;
 832		data_size[i] = next->data_len;
 833		i++;
 834	}
 835
 836	/* reset all the locked nodes in the patch to spinning locks. */
 837	btrfs_clear_path_blocking(path, NULL, 0);
 838
 839	/* insert the keys of the items */
 840	setup_items_for_insert(trans, root, path, keys, data_size,
 841			       total_data_size, total_size, nitems);
 842
 843	/* insert the dir index items */
 844	slot = path->slots[0];
 845	list_for_each_entry_safe(curr, next, &head, tree_list) {
 846		data_ptr = btrfs_item_ptr(leaf, slot, char);
 847		write_extent_buffer(leaf, &curr->data,
 848				    (unsigned long)data_ptr,
 849				    curr->data_len);
 850		slot++;
 851
 852		btrfs_delayed_item_release_metadata(root, curr);
 853
 854		list_del(&curr->tree_list);
 855		btrfs_release_delayed_item(curr);
 856	}
 857
 858error:
 859	kfree(data_size);
 860	kfree(keys);
 861out:
 862	return ret;
 863}
 864
 865/*
 866 * This helper can just do simple insertion that needn't extend item for new
 867 * data, such as directory name index insertion, inode insertion.
 868 */
 869static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
 870				     struct btrfs_root *root,
 871				     struct btrfs_path *path,
 872				     struct btrfs_delayed_item *delayed_item)
 873{
 
 874	struct extent_buffer *leaf;
 875	struct btrfs_item *item;
 876	char *ptr;
 877	int ret;
 878
 879	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
 880				      delayed_item->data_len);
 881	if (ret < 0 && ret != -EEXIST)
 882		return ret;
 883
 884	leaf = path->nodes[0];
 885
 886	item = btrfs_item_nr(leaf, path->slots[0]);
 887	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
 888
 889	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
 890			    delayed_item->data_len);
 891	btrfs_mark_buffer_dirty(leaf);
 892
 893	btrfs_delayed_item_release_metadata(root, delayed_item);
 894	return 0;
 895}
 896
 897/*
 898 * we insert an item first, then if there are some continuous items, we try
 899 * to insert those items into the same leaf.
 900 */
 901static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
 902				      struct btrfs_path *path,
 903				      struct btrfs_root *root,
 904				      struct btrfs_delayed_node *node)
 905{
 906	struct btrfs_delayed_item *curr, *prev;
 907	int ret = 0;
 908
 909do_again:
 910	mutex_lock(&node->mutex);
 911	curr = __btrfs_first_delayed_insertion_item(node);
 912	if (!curr)
 913		goto insert_end;
 914
 915	ret = btrfs_insert_delayed_item(trans, root, path, curr);
 916	if (ret < 0) {
 917		btrfs_release_path(path);
 918		goto insert_end;
 919	}
 920
 921	prev = curr;
 922	curr = __btrfs_next_delayed_item(prev);
 923	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
 924		/* insert the continuous items into the same leaf */
 925		path->slots[0]++;
 926		btrfs_batch_insert_items(trans, root, path, curr);
 927	}
 928	btrfs_release_delayed_item(prev);
 929	btrfs_mark_buffer_dirty(path->nodes[0]);
 930
 931	btrfs_release_path(path);
 932	mutex_unlock(&node->mutex);
 933	goto do_again;
 934
 935insert_end:
 936	mutex_unlock(&node->mutex);
 937	return ret;
 938}
 939
 940static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
 941				    struct btrfs_root *root,
 942				    struct btrfs_path *path,
 943				    struct btrfs_delayed_item *item)
 944{
 
 945	struct btrfs_delayed_item *curr, *next;
 946	struct extent_buffer *leaf;
 947	struct btrfs_key key;
 948	struct list_head head;
 949	int nitems, i, last_item;
 950	int ret = 0;
 951
 952	BUG_ON(!path->nodes[0]);
 953
 954	leaf = path->nodes[0];
 955
 956	i = path->slots[0];
 957	last_item = btrfs_header_nritems(leaf) - 1;
 958	if (i > last_item)
 959		return -ENOENT;	/* FIXME: Is errno suitable? */
 960
 961	next = item;
 962	INIT_LIST_HEAD(&head);
 963	btrfs_item_key_to_cpu(leaf, &key, i);
 964	nitems = 0;
 965	/*
 966	 * count the number of the dir index items that we can delete in batch
 967	 */
 968	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
 969		list_add_tail(&next->tree_list, &head);
 970		nitems++;
 971
 972		curr = next;
 973		next = __btrfs_next_delayed_item(curr);
 974		if (!next)
 975			break;
 976
 977		if (!btrfs_is_continuous_delayed_item(curr, next))
 978			break;
 979
 980		i++;
 981		if (i > last_item)
 982			break;
 983		btrfs_item_key_to_cpu(leaf, &key, i);
 984	}
 985
 986	if (!nitems)
 987		return 0;
 988
 989	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
 990	if (ret)
 991		goto out;
 992
 993	list_for_each_entry_safe(curr, next, &head, tree_list) {
 994		btrfs_delayed_item_release_metadata(root, curr);
 995		list_del(&curr->tree_list);
 996		btrfs_release_delayed_item(curr);
 997	}
 998
 999out:
1000	return ret;
1001}
1002
1003static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
1004				      struct btrfs_path *path,
1005				      struct btrfs_root *root,
1006				      struct btrfs_delayed_node *node)
1007{
1008	struct btrfs_delayed_item *curr, *prev;
1009	int ret = 0;
1010
1011do_again:
1012	mutex_lock(&node->mutex);
1013	curr = __btrfs_first_delayed_deletion_item(node);
1014	if (!curr)
1015		goto delete_fail;
1016
1017	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
1018	if (ret < 0)
1019		goto delete_fail;
1020	else if (ret > 0) {
1021		/*
1022		 * can't find the item which the node points to, so this node
1023		 * is invalid, just drop it.
1024		 */
1025		prev = curr;
1026		curr = __btrfs_next_delayed_item(prev);
1027		btrfs_release_delayed_item(prev);
1028		ret = 0;
1029		btrfs_release_path(path);
1030		if (curr)
 
1031			goto do_again;
1032		else
1033			goto delete_fail;
1034	}
1035
1036	btrfs_batch_delete_items(trans, root, path, curr);
1037	btrfs_release_path(path);
1038	mutex_unlock(&node->mutex);
1039	goto do_again;
1040
1041delete_fail:
1042	btrfs_release_path(path);
1043	mutex_unlock(&node->mutex);
1044	return ret;
1045}
1046
1047static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
1048{
1049	struct btrfs_delayed_root *delayed_root;
1050
1051	if (delayed_node && delayed_node->inode_dirty) {
 
1052		BUG_ON(!delayed_node->root);
1053		delayed_node->inode_dirty = 0;
1054		delayed_node->count--;
1055
1056		delayed_root = delayed_node->root->fs_info->delayed_root;
1057		atomic_dec(&delayed_root->items);
1058		if (atomic_read(&delayed_root->items) <
1059		    BTRFS_DELAYED_BACKGROUND &&
1060		    waitqueue_active(&delayed_root->wait))
1061			wake_up(&delayed_root->wait);
1062	}
1063}
1064
1065static int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1066				      struct btrfs_root *root,
1067				      struct btrfs_path *path,
1068				      struct btrfs_delayed_node *node)
 
 
 
 
 
 
 
 
 
 
 
 
1069{
 
1070	struct btrfs_key key;
1071	struct btrfs_inode_item *inode_item;
1072	struct extent_buffer *leaf;
 
1073	int ret;
1074
1075	mutex_lock(&node->mutex);
1076	if (!node->inode_dirty) {
1077		mutex_unlock(&node->mutex);
1078		return 0;
1079	}
1080
1081	key.objectid = node->inode_id;
1082	btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
1083	key.offset = 0;
1084	ret = btrfs_lookup_inode(trans, root, path, &key, 1);
 
 
 
 
 
 
1085	if (ret > 0) {
1086		btrfs_release_path(path);
1087		mutex_unlock(&node->mutex);
1088		return -ENOENT;
1089	} else if (ret < 0) {
1090		mutex_unlock(&node->mutex);
1091		return ret;
1092	}
1093
1094	btrfs_unlock_up_safe(path, 1);
1095	leaf = path->nodes[0];
1096	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1097				    struct btrfs_inode_item);
1098	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1099			    sizeof(struct btrfs_inode_item));
1100	btrfs_mark_buffer_dirty(leaf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1101	btrfs_release_path(path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1102
1103	btrfs_delayed_inode_release_metadata(root, node);
1104	btrfs_release_delayed_inode(node);
1105	mutex_unlock(&node->mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1106
1107	return 0;
 
1108}
1109
1110/*
1111 * Called when committing the transaction.
1112 * Returns 0 on success.
1113 * Returns < 0 on error and returns with an aborted transaction with any
1114 * outstanding delayed items cleaned up.
1115 */
1116int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1117			    struct btrfs_root *root)
1118{
1119	struct btrfs_root *curr_root = root;
1120	struct btrfs_delayed_root *delayed_root;
1121	struct btrfs_delayed_node *curr_node, *prev_node;
1122	struct btrfs_path *path;
1123	struct btrfs_block_rsv *block_rsv;
1124	int ret = 0;
 
1125
1126	if (trans->aborted)
1127		return -EIO;
1128
1129	path = btrfs_alloc_path();
1130	if (!path)
1131		return -ENOMEM;
1132	path->leave_spinning = 1;
1133
1134	block_rsv = trans->block_rsv;
1135	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1136
1137	delayed_root = btrfs_get_delayed_root(root);
1138
1139	curr_node = btrfs_first_delayed_node(delayed_root);
1140	while (curr_node) {
1141		curr_root = curr_node->root;
1142		ret = btrfs_insert_delayed_items(trans, path, curr_root,
1143						 curr_node);
1144		if (!ret)
1145			ret = btrfs_delete_delayed_items(trans, path,
1146						curr_root, curr_node);
1147		if (!ret)
1148			ret = btrfs_update_delayed_inode(trans, curr_root,
1149						path, curr_node);
1150		if (ret) {
1151			btrfs_release_delayed_node(curr_node);
1152			btrfs_abort_transaction(trans, root, ret);
 
1153			break;
1154		}
1155
1156		prev_node = curr_node;
1157		curr_node = btrfs_next_delayed_node(curr_node);
1158		btrfs_release_delayed_node(prev_node);
1159	}
1160
 
 
1161	btrfs_free_path(path);
1162	trans->block_rsv = block_rsv;
1163
1164	return ret;
1165}
1166
1167static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1168					      struct btrfs_delayed_node *node)
 
 
 
 
 
 
 
 
 
 
 
 
1169{
 
1170	struct btrfs_path *path;
1171	struct btrfs_block_rsv *block_rsv;
1172	int ret;
1173
 
 
 
 
 
 
 
 
 
 
 
1174	path = btrfs_alloc_path();
1175	if (!path)
 
1176		return -ENOMEM;
 
1177	path->leave_spinning = 1;
1178
1179	block_rsv = trans->block_rsv;
1180	trans->block_rsv = &node->root->fs_info->delayed_block_rsv;
1181
1182	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1183	if (!ret)
1184		ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1185	if (!ret)
1186		ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1187	btrfs_free_path(path);
 
1188
1189	trans->block_rsv = block_rsv;
1190	return ret;
1191}
1192
1193int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1194				     struct inode *inode)
1195{
 
 
1196	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
 
 
1197	int ret;
1198
1199	if (!delayed_node)
1200		return 0;
1201
1202	mutex_lock(&delayed_node->mutex);
1203	if (!delayed_node->count) {
1204		mutex_unlock(&delayed_node->mutex);
1205		btrfs_release_delayed_node(delayed_node);
1206		return 0;
1207	}
1208	mutex_unlock(&delayed_node->mutex);
1209
1210	ret = __btrfs_commit_inode_delayed_items(trans, delayed_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1211	btrfs_release_delayed_node(delayed_node);
 
1212	return ret;
1213}
1214
1215void btrfs_remove_delayed_node(struct inode *inode)
1216{
1217	struct btrfs_delayed_node *delayed_node;
1218
1219	delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1220	if (!delayed_node)
1221		return;
1222
1223	BTRFS_I(inode)->delayed_node = NULL;
1224	btrfs_release_delayed_node(delayed_node);
1225}
1226
1227struct btrfs_async_delayed_node {
1228	struct btrfs_root *root;
1229	struct btrfs_delayed_node *delayed_node;
1230	struct btrfs_work work;
1231};
1232
1233static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
1234{
1235	struct btrfs_async_delayed_node *async_node;
 
1236	struct btrfs_trans_handle *trans;
1237	struct btrfs_path *path;
1238	struct btrfs_delayed_node *delayed_node = NULL;
1239	struct btrfs_root *root;
1240	struct btrfs_block_rsv *block_rsv;
1241	unsigned long nr = 0;
1242	int need_requeue = 0;
1243	int ret;
1244
1245	async_node = container_of(work, struct btrfs_async_delayed_node, work);
 
1246
1247	path = btrfs_alloc_path();
1248	if (!path)
1249		goto out;
 
 
 
 
 
 
 
 
 
1250	path->leave_spinning = 1;
1251
1252	delayed_node = async_node->delayed_node;
1253	root = delayed_node->root;
1254
1255	trans = btrfs_join_transaction(root);
1256	if (IS_ERR(trans))
1257		goto free_path;
1258
1259	block_rsv = trans->block_rsv;
1260	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1261
1262	ret = btrfs_insert_delayed_items(trans, path, root, delayed_node);
1263	if (!ret)
1264		ret = btrfs_delete_delayed_items(trans, path, root,
1265						 delayed_node);
1266
1267	if (!ret)
1268		btrfs_update_delayed_inode(trans, root, path, delayed_node);
 
1269
1270	/*
1271	 * Maybe new delayed items have been inserted, so we need requeue
1272	 * the work. Besides that, we must dequeue the empty delayed nodes
1273	 * to avoid the race between delayed items balance and the worker.
1274	 * The race like this:
1275	 * 	Task1				Worker thread
1276	 * 					count == 0, needn't requeue
1277	 * 					  also needn't insert the
1278	 * 					  delayed node into prepare
1279	 * 					  list again.
1280	 * 	add lots of delayed items
1281	 * 	queue the delayed node
1282	 * 	  already in the list,
1283	 * 	  and not in the prepare
1284	 * 	  list, it means the delayed
1285	 * 	  node is being dealt with
1286	 * 	  by the worker.
1287	 * 	do delayed items balance
1288	 * 	  the delayed node is being
1289	 * 	  dealt with by the worker
1290	 * 	  now, just wait.
1291	 * 	  				the worker goto idle.
1292	 * Task1 will sleep until the transaction is commited.
1293	 */
1294	mutex_lock(&delayed_node->mutex);
1295	if (delayed_node->count)
1296		need_requeue = 1;
1297	else
1298		btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
1299					   delayed_node);
1300	mutex_unlock(&delayed_node->mutex);
1301
1302	nr = trans->blocks_used;
 
 
 
1303
1304	trans->block_rsv = block_rsv;
1305	btrfs_end_transaction_dmeta(trans, root);
1306	__btrfs_btree_balance_dirty(root, nr);
1307free_path:
1308	btrfs_free_path(path);
1309out:
1310	if (need_requeue)
1311		btrfs_requeue_work(&async_node->work);
1312	else {
1313		btrfs_release_prepared_delayed_node(delayed_node);
1314		kfree(async_node);
1315	}
1316}
1317
 
1318static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1319				     struct btrfs_root *root, int all)
1320{
1321	struct btrfs_async_delayed_node *async_node;
1322	struct btrfs_delayed_node *curr;
1323	int count = 0;
1324
1325again:
1326	curr = btrfs_first_prepared_delayed_node(delayed_root);
1327	if (!curr)
1328		return 0;
1329
1330	async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
1331	if (!async_node) {
1332		btrfs_release_prepared_delayed_node(curr);
1333		return -ENOMEM;
1334	}
1335
1336	async_node->root = root;
1337	async_node->delayed_node = curr;
1338
1339	async_node->work.func = btrfs_async_run_delayed_node_done;
1340	async_node->work.flags = 0;
1341
1342	btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
1343	count++;
1344
1345	if (all || count < 4)
1346		goto again;
1347
 
1348	return 0;
1349}
1350
1351void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1352{
1353	struct btrfs_delayed_root *delayed_root;
1354	delayed_root = btrfs_get_delayed_root(root);
1355	WARN_ON(btrfs_first_delayed_node(delayed_root));
1356}
1357
1358void btrfs_balance_delayed_items(struct btrfs_root *root)
1359{
1360	struct btrfs_delayed_root *delayed_root;
 
 
 
 
 
 
 
 
 
1361
1362	delayed_root = btrfs_get_delayed_root(root);
 
 
1363
1364	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1365		return;
1366
1367	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
 
1368		int ret;
1369		ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
 
 
 
1370		if (ret)
1371			return;
1372
1373		wait_event_interruptible_timeout(
1374				delayed_root->wait,
1375				(atomic_read(&delayed_root->items) <
1376				 BTRFS_DELAYED_BACKGROUND),
1377				HZ);
1378		return;
1379	}
1380
1381	btrfs_wq_run_delayed_node(delayed_root, root, 0);
1382}
1383
1384/* Will return 0 or -ENOMEM */
1385int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1386				   struct btrfs_root *root, const char *name,
1387				   int name_len, struct inode *dir,
 
1388				   struct btrfs_disk_key *disk_key, u8 type,
1389				   u64 index)
1390{
1391	struct btrfs_delayed_node *delayed_node;
1392	struct btrfs_delayed_item *delayed_item;
1393	struct btrfs_dir_item *dir_item;
1394	int ret;
1395
1396	delayed_node = btrfs_get_or_create_delayed_node(dir);
1397	if (IS_ERR(delayed_node))
1398		return PTR_ERR(delayed_node);
1399
1400	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1401	if (!delayed_item) {
1402		ret = -ENOMEM;
1403		goto release_node;
1404	}
1405
1406	delayed_item->key.objectid = btrfs_ino(dir);
1407	btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
1408	delayed_item->key.offset = index;
1409
1410	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1411	dir_item->location = *disk_key;
1412	dir_item->transid = cpu_to_le64(trans->transid);
1413	dir_item->data_len = 0;
1414	dir_item->name_len = cpu_to_le16(name_len);
1415	dir_item->type = type;
1416	memcpy((char *)(dir_item + 1), name, name_len);
1417
1418	ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1419	/*
1420	 * we have reserved enough space when we start a new transaction,
1421	 * so reserving metadata failure is impossible
1422	 */
1423	BUG_ON(ret);
1424
1425
1426	mutex_lock(&delayed_node->mutex);
1427	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1428	if (unlikely(ret)) {
1429		printk(KERN_ERR "err add delayed dir index item(name: %s) into "
1430				"the insertion tree of the delayed node"
1431				"(root id: %llu, inode id: %llu, errno: %d)\n",
1432				name,
1433				(unsigned long long)delayed_node->root->objectid,
1434				(unsigned long long)delayed_node->inode_id,
1435				ret);
1436		BUG();
1437	}
1438	mutex_unlock(&delayed_node->mutex);
1439
1440release_node:
1441	btrfs_release_delayed_node(delayed_node);
1442	return ret;
1443}
1444
1445static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1446					       struct btrfs_delayed_node *node,
1447					       struct btrfs_key *key)
1448{
1449	struct btrfs_delayed_item *item;
1450
1451	mutex_lock(&node->mutex);
1452	item = __btrfs_lookup_delayed_insertion_item(node, key);
1453	if (!item) {
1454		mutex_unlock(&node->mutex);
1455		return 1;
1456	}
1457
1458	btrfs_delayed_item_release_metadata(root, item);
1459	btrfs_release_delayed_item(item);
1460	mutex_unlock(&node->mutex);
1461	return 0;
1462}
1463
1464int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1465				   struct btrfs_root *root, struct inode *dir,
1466				   u64 index)
1467{
1468	struct btrfs_delayed_node *node;
1469	struct btrfs_delayed_item *item;
1470	struct btrfs_key item_key;
1471	int ret;
1472
1473	node = btrfs_get_or_create_delayed_node(dir);
1474	if (IS_ERR(node))
1475		return PTR_ERR(node);
1476
1477	item_key.objectid = btrfs_ino(dir);
1478	btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
1479	item_key.offset = index;
1480
1481	ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1482	if (!ret)
1483		goto end;
1484
1485	item = btrfs_alloc_delayed_item(0);
1486	if (!item) {
1487		ret = -ENOMEM;
1488		goto end;
1489	}
1490
1491	item->key = item_key;
1492
1493	ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1494	/*
1495	 * we have reserved enough space when we start a new transaction,
1496	 * so reserving metadata failure is impossible.
1497	 */
1498	BUG_ON(ret);
1499
1500	mutex_lock(&node->mutex);
1501	ret = __btrfs_add_delayed_deletion_item(node, item);
1502	if (unlikely(ret)) {
1503		printk(KERN_ERR "err add delayed dir index item(index: %llu) "
1504				"into the deletion tree of the delayed node"
1505				"(root id: %llu, inode id: %llu, errno: %d)\n",
1506				(unsigned long long)index,
1507				(unsigned long long)node->root->objectid,
1508				(unsigned long long)node->inode_id,
1509				ret);
1510		BUG();
1511	}
1512	mutex_unlock(&node->mutex);
1513end:
1514	btrfs_release_delayed_node(node);
1515	return ret;
1516}
1517
1518int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1519{
1520	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1521
1522	if (!delayed_node)
1523		return -ENOENT;
1524
1525	/*
1526	 * Since we have held i_mutex of this directory, it is impossible that
1527	 * a new directory index is added into the delayed node and index_cnt
1528	 * is updated now. So we needn't lock the delayed node.
1529	 */
1530	if (!delayed_node->index_cnt) {
1531		btrfs_release_delayed_node(delayed_node);
1532		return -EINVAL;
1533	}
1534
1535	BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1536	btrfs_release_delayed_node(delayed_node);
1537	return 0;
1538}
1539
1540void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1541			     struct list_head *del_list)
 
1542{
1543	struct btrfs_delayed_node *delayed_node;
1544	struct btrfs_delayed_item *item;
1545
1546	delayed_node = btrfs_get_delayed_node(inode);
1547	if (!delayed_node)
1548		return;
 
 
 
 
 
 
 
1549
1550	mutex_lock(&delayed_node->mutex);
1551	item = __btrfs_first_delayed_insertion_item(delayed_node);
1552	while (item) {
1553		atomic_inc(&item->refs);
1554		list_add_tail(&item->readdir_list, ins_list);
1555		item = __btrfs_next_delayed_item(item);
1556	}
1557
1558	item = __btrfs_first_delayed_deletion_item(delayed_node);
1559	while (item) {
1560		atomic_inc(&item->refs);
1561		list_add_tail(&item->readdir_list, del_list);
1562		item = __btrfs_next_delayed_item(item);
1563	}
1564	mutex_unlock(&delayed_node->mutex);
1565	/*
1566	 * This delayed node is still cached in the btrfs inode, so refs
1567	 * must be > 1 now, and we needn't check it is going to be freed
1568	 * or not.
1569	 *
1570	 * Besides that, this function is used to read dir, we do not
1571	 * insert/delete delayed items in this period. So we also needn't
1572	 * requeue or dequeue this delayed node.
1573	 */
1574	atomic_dec(&delayed_node->refs);
 
 
1575}
1576
1577void btrfs_put_delayed_items(struct list_head *ins_list,
1578			     struct list_head *del_list)
 
1579{
1580	struct btrfs_delayed_item *curr, *next;
1581
1582	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1583		list_del(&curr->readdir_list);
1584		if (atomic_dec_and_test(&curr->refs))
1585			kfree(curr);
1586	}
1587
1588	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1589		list_del(&curr->readdir_list);
1590		if (atomic_dec_and_test(&curr->refs))
1591			kfree(curr);
1592	}
 
 
 
 
 
 
1593}
1594
1595int btrfs_should_delete_dir_index(struct list_head *del_list,
1596				  u64 index)
1597{
1598	struct btrfs_delayed_item *curr, *next;
1599	int ret;
1600
1601	if (list_empty(del_list))
1602		return 0;
1603
1604	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1605		if (curr->key.offset > index)
1606			break;
1607
1608		list_del(&curr->readdir_list);
1609		ret = (curr->key.offset == index);
1610
1611		if (atomic_dec_and_test(&curr->refs))
1612			kfree(curr);
1613
1614		if (ret)
1615			return 1;
1616		else
1617			continue;
1618	}
1619	return 0;
1620}
1621
1622/*
1623 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1624 *
1625 */
1626int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
1627				    filldir_t filldir,
1628				    struct list_head *ins_list)
1629{
1630	struct btrfs_dir_item *di;
1631	struct btrfs_delayed_item *curr, *next;
1632	struct btrfs_key location;
1633	char *name;
1634	int name_len;
1635	int over = 0;
1636	unsigned char d_type;
1637
1638	if (list_empty(ins_list))
1639		return 0;
1640
1641	/*
1642	 * Changing the data of the delayed item is impossible. So
1643	 * we needn't lock them. And we have held i_mutex of the
1644	 * directory, nobody can delete any directory indexes now.
1645	 */
1646	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1647		list_del(&curr->readdir_list);
1648
1649		if (curr->key.offset < filp->f_pos) {
1650			if (atomic_dec_and_test(&curr->refs))
1651				kfree(curr);
1652			continue;
1653		}
1654
1655		filp->f_pos = curr->key.offset;
1656
1657		di = (struct btrfs_dir_item *)curr->data;
1658		name = (char *)(di + 1);
1659		name_len = le16_to_cpu(di->name_len);
1660
1661		d_type = btrfs_filetype_table[di->type];
1662		btrfs_disk_key_to_cpu(&location, &di->location);
1663
1664		over = filldir(dirent, name, name_len, curr->key.offset,
1665			       location.objectid, d_type);
1666
1667		if (atomic_dec_and_test(&curr->refs))
1668			kfree(curr);
1669
1670		if (over)
1671			return 1;
1672	}
1673	return 0;
1674}
1675
1676BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1677			 generation, 64);
1678BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1679			 sequence, 64);
1680BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1681			 transid, 64);
1682BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1683BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1684			 nbytes, 64);
1685BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1686			 block_group, 64);
1687BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1688BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1689BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1690BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1691BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1692BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1693
1694BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1695BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1696
1697static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1698				  struct btrfs_inode_item *inode_item,
1699				  struct inode *inode)
1700{
1701	btrfs_set_stack_inode_uid(inode_item, inode->i_uid);
1702	btrfs_set_stack_inode_gid(inode_item, inode->i_gid);
1703	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1704	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1705	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1706	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1707	btrfs_set_stack_inode_generation(inode_item,
1708					 BTRFS_I(inode)->generation);
1709	btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1710	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1711	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1712	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1713	btrfs_set_stack_inode_block_group(inode_item, 0);
1714
1715	btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
1716				     inode->i_atime.tv_sec);
1717	btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
1718				      inode->i_atime.tv_nsec);
1719
1720	btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
1721				     inode->i_mtime.tv_sec);
1722	btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
1723				      inode->i_mtime.tv_nsec);
1724
1725	btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
1726				     inode->i_ctime.tv_sec);
1727	btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
1728				      inode->i_ctime.tv_nsec);
 
 
 
 
 
1729}
1730
1731int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1732{
1733	struct btrfs_delayed_node *delayed_node;
1734	struct btrfs_inode_item *inode_item;
1735	struct btrfs_timespec *tspec;
1736
1737	delayed_node = btrfs_get_delayed_node(inode);
1738	if (!delayed_node)
1739		return -ENOENT;
1740
1741	mutex_lock(&delayed_node->mutex);
1742	if (!delayed_node->inode_dirty) {
1743		mutex_unlock(&delayed_node->mutex);
1744		btrfs_release_delayed_node(delayed_node);
1745		return -ENOENT;
1746	}
1747
1748	inode_item = &delayed_node->inode_item;
1749
1750	inode->i_uid = btrfs_stack_inode_uid(inode_item);
1751	inode->i_gid = btrfs_stack_inode_gid(inode_item);
1752	btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1753	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1754	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1755	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1756	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
 
 
1757	inode->i_version = btrfs_stack_inode_sequence(inode_item);
1758	inode->i_rdev = 0;
1759	*rdev = btrfs_stack_inode_rdev(inode_item);
1760	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1761
1762	tspec = btrfs_inode_atime(inode_item);
1763	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
1764	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1765
1766	tspec = btrfs_inode_mtime(inode_item);
1767	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
1768	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1769
1770	tspec = btrfs_inode_ctime(inode_item);
1771	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
1772	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
 
 
1773
1774	inode->i_generation = BTRFS_I(inode)->generation;
1775	BTRFS_I(inode)->index_cnt = (u64)-1;
1776
1777	mutex_unlock(&delayed_node->mutex);
1778	btrfs_release_delayed_node(delayed_node);
1779	return 0;
1780}
1781
1782int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1783			       struct btrfs_root *root, struct inode *inode)
1784{
1785	struct btrfs_delayed_node *delayed_node;
1786	int ret = 0;
1787
1788	delayed_node = btrfs_get_or_create_delayed_node(inode);
1789	if (IS_ERR(delayed_node))
1790		return PTR_ERR(delayed_node);
1791
1792	mutex_lock(&delayed_node->mutex);
1793	if (delayed_node->inode_dirty) {
1794		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1795		goto release_node;
1796	}
1797
1798	ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1799						   delayed_node);
1800	if (ret)
1801		goto release_node;
1802
1803	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1804	delayed_node->inode_dirty = 1;
1805	delayed_node->count++;
1806	atomic_inc(&root->fs_info->delayed_root->items);
1807release_node:
1808	mutex_unlock(&delayed_node->mutex);
1809	btrfs_release_delayed_node(delayed_node);
1810	return ret;
1811}
1812
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1813static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1814{
1815	struct btrfs_root *root = delayed_node->root;
 
1816	struct btrfs_delayed_item *curr_item, *prev_item;
1817
1818	mutex_lock(&delayed_node->mutex);
1819	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1820	while (curr_item) {
1821		btrfs_delayed_item_release_metadata(root, curr_item);
1822		prev_item = curr_item;
1823		curr_item = __btrfs_next_delayed_item(prev_item);
1824		btrfs_release_delayed_item(prev_item);
1825	}
1826
1827	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1828	while (curr_item) {
1829		btrfs_delayed_item_release_metadata(root, curr_item);
1830		prev_item = curr_item;
1831		curr_item = __btrfs_next_delayed_item(prev_item);
1832		btrfs_release_delayed_item(prev_item);
1833	}
1834
1835	if (delayed_node->inode_dirty) {
1836		btrfs_delayed_inode_release_metadata(root, delayed_node);
 
 
 
1837		btrfs_release_delayed_inode(delayed_node);
1838	}
1839	mutex_unlock(&delayed_node->mutex);
1840}
1841
1842void btrfs_kill_delayed_inode_items(struct inode *inode)
1843{
1844	struct btrfs_delayed_node *delayed_node;
1845
1846	delayed_node = btrfs_get_delayed_node(inode);
1847	if (!delayed_node)
1848		return;
1849
1850	__btrfs_kill_delayed_node(delayed_node);
1851	btrfs_release_delayed_node(delayed_node);
1852}
1853
1854void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1855{
1856	u64 inode_id = 0;
1857	struct btrfs_delayed_node *delayed_nodes[8];
1858	int i, n;
1859
1860	while (1) {
1861		spin_lock(&root->inode_lock);
1862		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1863					   (void **)delayed_nodes, inode_id,
1864					   ARRAY_SIZE(delayed_nodes));
1865		if (!n) {
1866			spin_unlock(&root->inode_lock);
1867			break;
1868		}
1869
1870		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1871
1872		for (i = 0; i < n; i++)
1873			atomic_inc(&delayed_nodes[i]->refs);
1874		spin_unlock(&root->inode_lock);
1875
1876		for (i = 0; i < n; i++) {
1877			__btrfs_kill_delayed_node(delayed_nodes[i]);
1878			btrfs_release_delayed_node(delayed_nodes[i]);
1879		}
1880	}
1881}
1882
1883void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
1884{
1885	struct btrfs_delayed_root *delayed_root;
1886	struct btrfs_delayed_node *curr_node, *prev_node;
1887
1888	delayed_root = btrfs_get_delayed_root(root);
1889
1890	curr_node = btrfs_first_delayed_node(delayed_root);
1891	while (curr_node) {
1892		__btrfs_kill_delayed_node(curr_node);
1893
1894		prev_node = curr_node;
1895		curr_node = btrfs_next_delayed_node(curr_node);
1896		btrfs_release_delayed_node(prev_node);
1897	}
1898}
1899