Loading...
1/*
2 * Copyright (C) 2011 Fujitsu. All rights reserved.
3 * Written by Miao Xie <miaox@cn.fujitsu.com>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
18 */
19
20#include <linux/slab.h>
21#include "delayed-inode.h"
22#include "disk-io.h"
23#include "transaction.h"
24#include "ctree.h"
25
26#define BTRFS_DELAYED_WRITEBACK 512
27#define BTRFS_DELAYED_BACKGROUND 128
28#define BTRFS_DELAYED_BATCH 16
29
30static struct kmem_cache *delayed_node_cache;
31
32int __init btrfs_delayed_inode_init(void)
33{
34 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
35 sizeof(struct btrfs_delayed_node),
36 0,
37 SLAB_MEM_SPREAD,
38 NULL);
39 if (!delayed_node_cache)
40 return -ENOMEM;
41 return 0;
42}
43
44void btrfs_delayed_inode_exit(void)
45{
46 kmem_cache_destroy(delayed_node_cache);
47}
48
49static inline void btrfs_init_delayed_node(
50 struct btrfs_delayed_node *delayed_node,
51 struct btrfs_root *root, u64 inode_id)
52{
53 delayed_node->root = root;
54 delayed_node->inode_id = inode_id;
55 atomic_set(&delayed_node->refs, 0);
56 delayed_node->ins_root = RB_ROOT;
57 delayed_node->del_root = RB_ROOT;
58 mutex_init(&delayed_node->mutex);
59 INIT_LIST_HEAD(&delayed_node->n_list);
60 INIT_LIST_HEAD(&delayed_node->p_list);
61}
62
63static inline int btrfs_is_continuous_delayed_item(
64 struct btrfs_delayed_item *item1,
65 struct btrfs_delayed_item *item2)
66{
67 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
68 item1->key.objectid == item2->key.objectid &&
69 item1->key.type == item2->key.type &&
70 item1->key.offset + 1 == item2->key.offset)
71 return 1;
72 return 0;
73}
74
75static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
76{
77 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
78 struct btrfs_root *root = btrfs_inode->root;
79 u64 ino = btrfs_ino(inode);
80 struct btrfs_delayed_node *node;
81
82 node = ACCESS_ONCE(btrfs_inode->delayed_node);
83 if (node) {
84 atomic_inc(&node->refs);
85 return node;
86 }
87
88 spin_lock(&root->inode_lock);
89 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
90 if (node) {
91 if (btrfs_inode->delayed_node) {
92 atomic_inc(&node->refs); /* can be accessed */
93 BUG_ON(btrfs_inode->delayed_node != node);
94 spin_unlock(&root->inode_lock);
95 return node;
96 }
97 btrfs_inode->delayed_node = node;
98 /* can be accessed and cached in the inode */
99 atomic_add(2, &node->refs);
100 spin_unlock(&root->inode_lock);
101 return node;
102 }
103 spin_unlock(&root->inode_lock);
104
105 return NULL;
106}
107
108/* Will return either the node or PTR_ERR(-ENOMEM) */
109static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
110 struct inode *inode)
111{
112 struct btrfs_delayed_node *node;
113 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
114 struct btrfs_root *root = btrfs_inode->root;
115 u64 ino = btrfs_ino(inode);
116 int ret;
117
118again:
119 node = btrfs_get_delayed_node(inode);
120 if (node)
121 return node;
122
123 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
124 if (!node)
125 return ERR_PTR(-ENOMEM);
126 btrfs_init_delayed_node(node, root, ino);
127
128 /* cached in the btrfs inode and can be accessed */
129 atomic_add(2, &node->refs);
130
131 ret = radix_tree_preload(GFP_NOFS);
132 if (ret) {
133 kmem_cache_free(delayed_node_cache, node);
134 return ERR_PTR(ret);
135 }
136
137 spin_lock(&root->inode_lock);
138 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
139 if (ret == -EEXIST) {
140 spin_unlock(&root->inode_lock);
141 kmem_cache_free(delayed_node_cache, node);
142 radix_tree_preload_end();
143 goto again;
144 }
145 btrfs_inode->delayed_node = node;
146 spin_unlock(&root->inode_lock);
147 radix_tree_preload_end();
148
149 return node;
150}
151
152/*
153 * Call it when holding delayed_node->mutex
154 *
155 * If mod = 1, add this node into the prepared list.
156 */
157static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
158 struct btrfs_delayed_node *node,
159 int mod)
160{
161 spin_lock(&root->lock);
162 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
163 if (!list_empty(&node->p_list))
164 list_move_tail(&node->p_list, &root->prepare_list);
165 else if (mod)
166 list_add_tail(&node->p_list, &root->prepare_list);
167 } else {
168 list_add_tail(&node->n_list, &root->node_list);
169 list_add_tail(&node->p_list, &root->prepare_list);
170 atomic_inc(&node->refs); /* inserted into list */
171 root->nodes++;
172 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
173 }
174 spin_unlock(&root->lock);
175}
176
177/* Call it when holding delayed_node->mutex */
178static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
179 struct btrfs_delayed_node *node)
180{
181 spin_lock(&root->lock);
182 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
183 root->nodes--;
184 atomic_dec(&node->refs); /* not in the list */
185 list_del_init(&node->n_list);
186 if (!list_empty(&node->p_list))
187 list_del_init(&node->p_list);
188 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
189 }
190 spin_unlock(&root->lock);
191}
192
193static struct btrfs_delayed_node *btrfs_first_delayed_node(
194 struct btrfs_delayed_root *delayed_root)
195{
196 struct list_head *p;
197 struct btrfs_delayed_node *node = NULL;
198
199 spin_lock(&delayed_root->lock);
200 if (list_empty(&delayed_root->node_list))
201 goto out;
202
203 p = delayed_root->node_list.next;
204 node = list_entry(p, struct btrfs_delayed_node, n_list);
205 atomic_inc(&node->refs);
206out:
207 spin_unlock(&delayed_root->lock);
208
209 return node;
210}
211
212static struct btrfs_delayed_node *btrfs_next_delayed_node(
213 struct btrfs_delayed_node *node)
214{
215 struct btrfs_delayed_root *delayed_root;
216 struct list_head *p;
217 struct btrfs_delayed_node *next = NULL;
218
219 delayed_root = node->root->fs_info->delayed_root;
220 spin_lock(&delayed_root->lock);
221 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
222 /* not in the list */
223 if (list_empty(&delayed_root->node_list))
224 goto out;
225 p = delayed_root->node_list.next;
226 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
227 goto out;
228 else
229 p = node->n_list.next;
230
231 next = list_entry(p, struct btrfs_delayed_node, n_list);
232 atomic_inc(&next->refs);
233out:
234 spin_unlock(&delayed_root->lock);
235
236 return next;
237}
238
239static void __btrfs_release_delayed_node(
240 struct btrfs_delayed_node *delayed_node,
241 int mod)
242{
243 struct btrfs_delayed_root *delayed_root;
244
245 if (!delayed_node)
246 return;
247
248 delayed_root = delayed_node->root->fs_info->delayed_root;
249
250 mutex_lock(&delayed_node->mutex);
251 if (delayed_node->count)
252 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
253 else
254 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
255 mutex_unlock(&delayed_node->mutex);
256
257 if (atomic_dec_and_test(&delayed_node->refs)) {
258 bool free = false;
259 struct btrfs_root *root = delayed_node->root;
260 spin_lock(&root->inode_lock);
261 if (atomic_read(&delayed_node->refs) == 0) {
262 radix_tree_delete(&root->delayed_nodes_tree,
263 delayed_node->inode_id);
264 free = true;
265 }
266 spin_unlock(&root->inode_lock);
267 if (free)
268 kmem_cache_free(delayed_node_cache, delayed_node);
269 }
270}
271
272static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
273{
274 __btrfs_release_delayed_node(node, 0);
275}
276
277static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
278 struct btrfs_delayed_root *delayed_root)
279{
280 struct list_head *p;
281 struct btrfs_delayed_node *node = NULL;
282
283 spin_lock(&delayed_root->lock);
284 if (list_empty(&delayed_root->prepare_list))
285 goto out;
286
287 p = delayed_root->prepare_list.next;
288 list_del_init(p);
289 node = list_entry(p, struct btrfs_delayed_node, p_list);
290 atomic_inc(&node->refs);
291out:
292 spin_unlock(&delayed_root->lock);
293
294 return node;
295}
296
297static inline void btrfs_release_prepared_delayed_node(
298 struct btrfs_delayed_node *node)
299{
300 __btrfs_release_delayed_node(node, 1);
301}
302
303static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
304{
305 struct btrfs_delayed_item *item;
306 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
307 if (item) {
308 item->data_len = data_len;
309 item->ins_or_del = 0;
310 item->bytes_reserved = 0;
311 item->delayed_node = NULL;
312 atomic_set(&item->refs, 1);
313 }
314 return item;
315}
316
317/*
318 * __btrfs_lookup_delayed_item - look up the delayed item by key
319 * @delayed_node: pointer to the delayed node
320 * @key: the key to look up
321 * @prev: used to store the prev item if the right item isn't found
322 * @next: used to store the next item if the right item isn't found
323 *
324 * Note: if we don't find the right item, we will return the prev item and
325 * the next item.
326 */
327static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
328 struct rb_root *root,
329 struct btrfs_key *key,
330 struct btrfs_delayed_item **prev,
331 struct btrfs_delayed_item **next)
332{
333 struct rb_node *node, *prev_node = NULL;
334 struct btrfs_delayed_item *delayed_item = NULL;
335 int ret = 0;
336
337 node = root->rb_node;
338
339 while (node) {
340 delayed_item = rb_entry(node, struct btrfs_delayed_item,
341 rb_node);
342 prev_node = node;
343 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
344 if (ret < 0)
345 node = node->rb_right;
346 else if (ret > 0)
347 node = node->rb_left;
348 else
349 return delayed_item;
350 }
351
352 if (prev) {
353 if (!prev_node)
354 *prev = NULL;
355 else if (ret < 0)
356 *prev = delayed_item;
357 else if ((node = rb_prev(prev_node)) != NULL) {
358 *prev = rb_entry(node, struct btrfs_delayed_item,
359 rb_node);
360 } else
361 *prev = NULL;
362 }
363
364 if (next) {
365 if (!prev_node)
366 *next = NULL;
367 else if (ret > 0)
368 *next = delayed_item;
369 else if ((node = rb_next(prev_node)) != NULL) {
370 *next = rb_entry(node, struct btrfs_delayed_item,
371 rb_node);
372 } else
373 *next = NULL;
374 }
375 return NULL;
376}
377
378static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
379 struct btrfs_delayed_node *delayed_node,
380 struct btrfs_key *key)
381{
382 return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
383 NULL, NULL);
384}
385
386static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
387 struct btrfs_delayed_item *ins,
388 int action)
389{
390 struct rb_node **p, *node;
391 struct rb_node *parent_node = NULL;
392 struct rb_root *root;
393 struct btrfs_delayed_item *item;
394 int cmp;
395
396 if (action == BTRFS_DELAYED_INSERTION_ITEM)
397 root = &delayed_node->ins_root;
398 else if (action == BTRFS_DELAYED_DELETION_ITEM)
399 root = &delayed_node->del_root;
400 else
401 BUG();
402 p = &root->rb_node;
403 node = &ins->rb_node;
404
405 while (*p) {
406 parent_node = *p;
407 item = rb_entry(parent_node, struct btrfs_delayed_item,
408 rb_node);
409
410 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
411 if (cmp < 0)
412 p = &(*p)->rb_right;
413 else if (cmp > 0)
414 p = &(*p)->rb_left;
415 else
416 return -EEXIST;
417 }
418
419 rb_link_node(node, parent_node, p);
420 rb_insert_color(node, root);
421 ins->delayed_node = delayed_node;
422 ins->ins_or_del = action;
423
424 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
425 action == BTRFS_DELAYED_INSERTION_ITEM &&
426 ins->key.offset >= delayed_node->index_cnt)
427 delayed_node->index_cnt = ins->key.offset + 1;
428
429 delayed_node->count++;
430 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
431 return 0;
432}
433
434static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
435 struct btrfs_delayed_item *item)
436{
437 return __btrfs_add_delayed_item(node, item,
438 BTRFS_DELAYED_INSERTION_ITEM);
439}
440
441static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
442 struct btrfs_delayed_item *item)
443{
444 return __btrfs_add_delayed_item(node, item,
445 BTRFS_DELAYED_DELETION_ITEM);
446}
447
448static void finish_one_item(struct btrfs_delayed_root *delayed_root)
449{
450 int seq = atomic_inc_return(&delayed_root->items_seq);
451
452 /*
453 * atomic_dec_return implies a barrier for waitqueue_active
454 */
455 if ((atomic_dec_return(&delayed_root->items) <
456 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
457 waitqueue_active(&delayed_root->wait))
458 wake_up(&delayed_root->wait);
459}
460
461static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
462{
463 struct rb_root *root;
464 struct btrfs_delayed_root *delayed_root;
465
466 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
467
468 BUG_ON(!delayed_root);
469 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
470 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
471
472 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
473 root = &delayed_item->delayed_node->ins_root;
474 else
475 root = &delayed_item->delayed_node->del_root;
476
477 rb_erase(&delayed_item->rb_node, root);
478 delayed_item->delayed_node->count--;
479
480 finish_one_item(delayed_root);
481}
482
483static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
484{
485 if (item) {
486 __btrfs_remove_delayed_item(item);
487 if (atomic_dec_and_test(&item->refs))
488 kfree(item);
489 }
490}
491
492static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
493 struct btrfs_delayed_node *delayed_node)
494{
495 struct rb_node *p;
496 struct btrfs_delayed_item *item = NULL;
497
498 p = rb_first(&delayed_node->ins_root);
499 if (p)
500 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
501
502 return item;
503}
504
505static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
506 struct btrfs_delayed_node *delayed_node)
507{
508 struct rb_node *p;
509 struct btrfs_delayed_item *item = NULL;
510
511 p = rb_first(&delayed_node->del_root);
512 if (p)
513 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
514
515 return item;
516}
517
518static struct btrfs_delayed_item *__btrfs_next_delayed_item(
519 struct btrfs_delayed_item *item)
520{
521 struct rb_node *p;
522 struct btrfs_delayed_item *next = NULL;
523
524 p = rb_next(&item->rb_node);
525 if (p)
526 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
527
528 return next;
529}
530
531static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
532 struct btrfs_fs_info *fs_info,
533 struct btrfs_delayed_item *item)
534{
535 struct btrfs_block_rsv *src_rsv;
536 struct btrfs_block_rsv *dst_rsv;
537 u64 num_bytes;
538 int ret;
539
540 if (!trans->bytes_reserved)
541 return 0;
542
543 src_rsv = trans->block_rsv;
544 dst_rsv = &fs_info->delayed_block_rsv;
545
546 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
547 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
548 if (!ret) {
549 trace_btrfs_space_reservation(fs_info, "delayed_item",
550 item->key.objectid,
551 num_bytes, 1);
552 item->bytes_reserved = num_bytes;
553 }
554
555 return ret;
556}
557
558static void btrfs_delayed_item_release_metadata(struct btrfs_fs_info *fs_info,
559 struct btrfs_delayed_item *item)
560{
561 struct btrfs_block_rsv *rsv;
562
563 if (!item->bytes_reserved)
564 return;
565
566 rsv = &fs_info->delayed_block_rsv;
567 trace_btrfs_space_reservation(fs_info, "delayed_item",
568 item->key.objectid, item->bytes_reserved,
569 0);
570 btrfs_block_rsv_release(fs_info, rsv,
571 item->bytes_reserved);
572}
573
574static int btrfs_delayed_inode_reserve_metadata(
575 struct btrfs_trans_handle *trans,
576 struct btrfs_root *root,
577 struct inode *inode,
578 struct btrfs_delayed_node *node)
579{
580 struct btrfs_fs_info *fs_info = root->fs_info;
581 struct btrfs_block_rsv *src_rsv;
582 struct btrfs_block_rsv *dst_rsv;
583 u64 num_bytes;
584 int ret;
585 bool release = false;
586
587 src_rsv = trans->block_rsv;
588 dst_rsv = &fs_info->delayed_block_rsv;
589
590 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
591
592 /*
593 * If our block_rsv is the delalloc block reserve then check and see if
594 * we have our extra reservation for updating the inode. If not fall
595 * through and try to reserve space quickly.
596 *
597 * We used to try and steal from the delalloc block rsv or the global
598 * reserve, but we'd steal a full reservation, which isn't kind. We are
599 * here through delalloc which means we've likely just cowed down close
600 * to the leaf that contains the inode, so we would steal less just
601 * doing the fallback inode update, so if we do end up having to steal
602 * from the global block rsv we hopefully only steal one or two blocks
603 * worth which is less likely to hurt us.
604 */
605 if (src_rsv && src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
606 spin_lock(&BTRFS_I(inode)->lock);
607 if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
608 &BTRFS_I(inode)->runtime_flags))
609 release = true;
610 else
611 src_rsv = NULL;
612 spin_unlock(&BTRFS_I(inode)->lock);
613 }
614
615 /*
616 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
617 * which doesn't reserve space for speed. This is a problem since we
618 * still need to reserve space for this update, so try to reserve the
619 * space.
620 *
621 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
622 * we're accounted for.
623 */
624 if (!src_rsv || (!trans->bytes_reserved &&
625 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
626 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
627 BTRFS_RESERVE_NO_FLUSH);
628 /*
629 * Since we're under a transaction reserve_metadata_bytes could
630 * try to commit the transaction which will make it return
631 * EAGAIN to make us stop the transaction we have, so return
632 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
633 */
634 if (ret == -EAGAIN)
635 ret = -ENOSPC;
636 if (!ret) {
637 node->bytes_reserved = num_bytes;
638 trace_btrfs_space_reservation(fs_info,
639 "delayed_inode",
640 btrfs_ino(inode),
641 num_bytes, 1);
642 }
643 return ret;
644 }
645
646 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
647
648 /*
649 * Migrate only takes a reservation, it doesn't touch the size of the
650 * block_rsv. This is to simplify people who don't normally have things
651 * migrated from their block rsv. If they go to release their
652 * reservation, that will decrease the size as well, so if migrate
653 * reduced size we'd end up with a negative size. But for the
654 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
655 * but we could in fact do this reserve/migrate dance several times
656 * between the time we did the original reservation and we'd clean it
657 * up. So to take care of this, release the space for the meta
658 * reservation here. I think it may be time for a documentation page on
659 * how block rsvs. work.
660 */
661 if (!ret) {
662 trace_btrfs_space_reservation(fs_info, "delayed_inode",
663 btrfs_ino(inode), num_bytes, 1);
664 node->bytes_reserved = num_bytes;
665 }
666
667 if (release) {
668 trace_btrfs_space_reservation(fs_info, "delalloc",
669 btrfs_ino(inode), num_bytes, 0);
670 btrfs_block_rsv_release(fs_info, src_rsv, num_bytes);
671 }
672
673 return ret;
674}
675
676static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
677 struct btrfs_delayed_node *node)
678{
679 struct btrfs_block_rsv *rsv;
680
681 if (!node->bytes_reserved)
682 return;
683
684 rsv = &fs_info->delayed_block_rsv;
685 trace_btrfs_space_reservation(fs_info, "delayed_inode",
686 node->inode_id, node->bytes_reserved, 0);
687 btrfs_block_rsv_release(fs_info, rsv,
688 node->bytes_reserved);
689 node->bytes_reserved = 0;
690}
691
692/*
693 * This helper will insert some continuous items into the same leaf according
694 * to the free space of the leaf.
695 */
696static int btrfs_batch_insert_items(struct btrfs_root *root,
697 struct btrfs_path *path,
698 struct btrfs_delayed_item *item)
699{
700 struct btrfs_fs_info *fs_info = root->fs_info;
701 struct btrfs_delayed_item *curr, *next;
702 int free_space;
703 int total_data_size = 0, total_size = 0;
704 struct extent_buffer *leaf;
705 char *data_ptr;
706 struct btrfs_key *keys;
707 u32 *data_size;
708 struct list_head head;
709 int slot;
710 int nitems;
711 int i;
712 int ret = 0;
713
714 BUG_ON(!path->nodes[0]);
715
716 leaf = path->nodes[0];
717 free_space = btrfs_leaf_free_space(fs_info, leaf);
718 INIT_LIST_HEAD(&head);
719
720 next = item;
721 nitems = 0;
722
723 /*
724 * count the number of the continuous items that we can insert in batch
725 */
726 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
727 free_space) {
728 total_data_size += next->data_len;
729 total_size += next->data_len + sizeof(struct btrfs_item);
730 list_add_tail(&next->tree_list, &head);
731 nitems++;
732
733 curr = next;
734 next = __btrfs_next_delayed_item(curr);
735 if (!next)
736 break;
737
738 if (!btrfs_is_continuous_delayed_item(curr, next))
739 break;
740 }
741
742 if (!nitems) {
743 ret = 0;
744 goto out;
745 }
746
747 /*
748 * we need allocate some memory space, but it might cause the task
749 * to sleep, so we set all locked nodes in the path to blocking locks
750 * first.
751 */
752 btrfs_set_path_blocking(path);
753
754 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
755 if (!keys) {
756 ret = -ENOMEM;
757 goto out;
758 }
759
760 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
761 if (!data_size) {
762 ret = -ENOMEM;
763 goto error;
764 }
765
766 /* get keys of all the delayed items */
767 i = 0;
768 list_for_each_entry(next, &head, tree_list) {
769 keys[i] = next->key;
770 data_size[i] = next->data_len;
771 i++;
772 }
773
774 /* reset all the locked nodes in the patch to spinning locks. */
775 btrfs_clear_path_blocking(path, NULL, 0);
776
777 /* insert the keys of the items */
778 setup_items_for_insert(root, path, keys, data_size,
779 total_data_size, total_size, nitems);
780
781 /* insert the dir index items */
782 slot = path->slots[0];
783 list_for_each_entry_safe(curr, next, &head, tree_list) {
784 data_ptr = btrfs_item_ptr(leaf, slot, char);
785 write_extent_buffer(leaf, &curr->data,
786 (unsigned long)data_ptr,
787 curr->data_len);
788 slot++;
789
790 btrfs_delayed_item_release_metadata(fs_info, curr);
791
792 list_del(&curr->tree_list);
793 btrfs_release_delayed_item(curr);
794 }
795
796error:
797 kfree(data_size);
798 kfree(keys);
799out:
800 return ret;
801}
802
803/*
804 * This helper can just do simple insertion that needn't extend item for new
805 * data, such as directory name index insertion, inode insertion.
806 */
807static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
808 struct btrfs_root *root,
809 struct btrfs_path *path,
810 struct btrfs_delayed_item *delayed_item)
811{
812 struct btrfs_fs_info *fs_info = root->fs_info;
813 struct extent_buffer *leaf;
814 char *ptr;
815 int ret;
816
817 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
818 delayed_item->data_len);
819 if (ret < 0 && ret != -EEXIST)
820 return ret;
821
822 leaf = path->nodes[0];
823
824 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
825
826 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
827 delayed_item->data_len);
828 btrfs_mark_buffer_dirty(leaf);
829
830 btrfs_delayed_item_release_metadata(fs_info, delayed_item);
831 return 0;
832}
833
834/*
835 * we insert an item first, then if there are some continuous items, we try
836 * to insert those items into the same leaf.
837 */
838static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
839 struct btrfs_path *path,
840 struct btrfs_root *root,
841 struct btrfs_delayed_node *node)
842{
843 struct btrfs_delayed_item *curr, *prev;
844 int ret = 0;
845
846do_again:
847 mutex_lock(&node->mutex);
848 curr = __btrfs_first_delayed_insertion_item(node);
849 if (!curr)
850 goto insert_end;
851
852 ret = btrfs_insert_delayed_item(trans, root, path, curr);
853 if (ret < 0) {
854 btrfs_release_path(path);
855 goto insert_end;
856 }
857
858 prev = curr;
859 curr = __btrfs_next_delayed_item(prev);
860 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
861 /* insert the continuous items into the same leaf */
862 path->slots[0]++;
863 btrfs_batch_insert_items(root, path, curr);
864 }
865 btrfs_release_delayed_item(prev);
866 btrfs_mark_buffer_dirty(path->nodes[0]);
867
868 btrfs_release_path(path);
869 mutex_unlock(&node->mutex);
870 goto do_again;
871
872insert_end:
873 mutex_unlock(&node->mutex);
874 return ret;
875}
876
877static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
878 struct btrfs_root *root,
879 struct btrfs_path *path,
880 struct btrfs_delayed_item *item)
881{
882 struct btrfs_fs_info *fs_info = root->fs_info;
883 struct btrfs_delayed_item *curr, *next;
884 struct extent_buffer *leaf;
885 struct btrfs_key key;
886 struct list_head head;
887 int nitems, i, last_item;
888 int ret = 0;
889
890 BUG_ON(!path->nodes[0]);
891
892 leaf = path->nodes[0];
893
894 i = path->slots[0];
895 last_item = btrfs_header_nritems(leaf) - 1;
896 if (i > last_item)
897 return -ENOENT; /* FIXME: Is errno suitable? */
898
899 next = item;
900 INIT_LIST_HEAD(&head);
901 btrfs_item_key_to_cpu(leaf, &key, i);
902 nitems = 0;
903 /*
904 * count the number of the dir index items that we can delete in batch
905 */
906 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
907 list_add_tail(&next->tree_list, &head);
908 nitems++;
909
910 curr = next;
911 next = __btrfs_next_delayed_item(curr);
912 if (!next)
913 break;
914
915 if (!btrfs_is_continuous_delayed_item(curr, next))
916 break;
917
918 i++;
919 if (i > last_item)
920 break;
921 btrfs_item_key_to_cpu(leaf, &key, i);
922 }
923
924 if (!nitems)
925 return 0;
926
927 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
928 if (ret)
929 goto out;
930
931 list_for_each_entry_safe(curr, next, &head, tree_list) {
932 btrfs_delayed_item_release_metadata(fs_info, curr);
933 list_del(&curr->tree_list);
934 btrfs_release_delayed_item(curr);
935 }
936
937out:
938 return ret;
939}
940
941static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
942 struct btrfs_path *path,
943 struct btrfs_root *root,
944 struct btrfs_delayed_node *node)
945{
946 struct btrfs_delayed_item *curr, *prev;
947 int ret = 0;
948
949do_again:
950 mutex_lock(&node->mutex);
951 curr = __btrfs_first_delayed_deletion_item(node);
952 if (!curr)
953 goto delete_fail;
954
955 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
956 if (ret < 0)
957 goto delete_fail;
958 else if (ret > 0) {
959 /*
960 * can't find the item which the node points to, so this node
961 * is invalid, just drop it.
962 */
963 prev = curr;
964 curr = __btrfs_next_delayed_item(prev);
965 btrfs_release_delayed_item(prev);
966 ret = 0;
967 btrfs_release_path(path);
968 if (curr) {
969 mutex_unlock(&node->mutex);
970 goto do_again;
971 } else
972 goto delete_fail;
973 }
974
975 btrfs_batch_delete_items(trans, root, path, curr);
976 btrfs_release_path(path);
977 mutex_unlock(&node->mutex);
978 goto do_again;
979
980delete_fail:
981 btrfs_release_path(path);
982 mutex_unlock(&node->mutex);
983 return ret;
984}
985
986static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
987{
988 struct btrfs_delayed_root *delayed_root;
989
990 if (delayed_node &&
991 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
992 BUG_ON(!delayed_node->root);
993 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
994 delayed_node->count--;
995
996 delayed_root = delayed_node->root->fs_info->delayed_root;
997 finish_one_item(delayed_root);
998 }
999}
1000
1001static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
1002{
1003 struct btrfs_delayed_root *delayed_root;
1004
1005 ASSERT(delayed_node->root);
1006 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1007 delayed_node->count--;
1008
1009 delayed_root = delayed_node->root->fs_info->delayed_root;
1010 finish_one_item(delayed_root);
1011}
1012
1013static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1014 struct btrfs_root *root,
1015 struct btrfs_path *path,
1016 struct btrfs_delayed_node *node)
1017{
1018 struct btrfs_fs_info *fs_info = root->fs_info;
1019 struct btrfs_key key;
1020 struct btrfs_inode_item *inode_item;
1021 struct extent_buffer *leaf;
1022 int mod;
1023 int ret;
1024
1025 key.objectid = node->inode_id;
1026 key.type = BTRFS_INODE_ITEM_KEY;
1027 key.offset = 0;
1028
1029 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1030 mod = -1;
1031 else
1032 mod = 1;
1033
1034 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1035 if (ret > 0) {
1036 btrfs_release_path(path);
1037 return -ENOENT;
1038 } else if (ret < 0) {
1039 return ret;
1040 }
1041
1042 leaf = path->nodes[0];
1043 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1044 struct btrfs_inode_item);
1045 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1046 sizeof(struct btrfs_inode_item));
1047 btrfs_mark_buffer_dirty(leaf);
1048
1049 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1050 goto no_iref;
1051
1052 path->slots[0]++;
1053 if (path->slots[0] >= btrfs_header_nritems(leaf))
1054 goto search;
1055again:
1056 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1057 if (key.objectid != node->inode_id)
1058 goto out;
1059
1060 if (key.type != BTRFS_INODE_REF_KEY &&
1061 key.type != BTRFS_INODE_EXTREF_KEY)
1062 goto out;
1063
1064 /*
1065 * Delayed iref deletion is for the inode who has only one link,
1066 * so there is only one iref. The case that several irefs are
1067 * in the same item doesn't exist.
1068 */
1069 btrfs_del_item(trans, root, path);
1070out:
1071 btrfs_release_delayed_iref(node);
1072no_iref:
1073 btrfs_release_path(path);
1074err_out:
1075 btrfs_delayed_inode_release_metadata(fs_info, node);
1076 btrfs_release_delayed_inode(node);
1077
1078 return ret;
1079
1080search:
1081 btrfs_release_path(path);
1082
1083 key.type = BTRFS_INODE_EXTREF_KEY;
1084 key.offset = -1;
1085 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1086 if (ret < 0)
1087 goto err_out;
1088 ASSERT(ret);
1089
1090 ret = 0;
1091 leaf = path->nodes[0];
1092 path->slots[0]--;
1093 goto again;
1094}
1095
1096static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1097 struct btrfs_root *root,
1098 struct btrfs_path *path,
1099 struct btrfs_delayed_node *node)
1100{
1101 int ret;
1102
1103 mutex_lock(&node->mutex);
1104 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1105 mutex_unlock(&node->mutex);
1106 return 0;
1107 }
1108
1109 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1110 mutex_unlock(&node->mutex);
1111 return ret;
1112}
1113
1114static inline int
1115__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1116 struct btrfs_path *path,
1117 struct btrfs_delayed_node *node)
1118{
1119 int ret;
1120
1121 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1122 if (ret)
1123 return ret;
1124
1125 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1126 if (ret)
1127 return ret;
1128
1129 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1130 return ret;
1131}
1132
1133/*
1134 * Called when committing the transaction.
1135 * Returns 0 on success.
1136 * Returns < 0 on error and returns with an aborted transaction with any
1137 * outstanding delayed items cleaned up.
1138 */
1139static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1140 struct btrfs_fs_info *fs_info, int nr)
1141{
1142 struct btrfs_delayed_root *delayed_root;
1143 struct btrfs_delayed_node *curr_node, *prev_node;
1144 struct btrfs_path *path;
1145 struct btrfs_block_rsv *block_rsv;
1146 int ret = 0;
1147 bool count = (nr > 0);
1148
1149 if (trans->aborted)
1150 return -EIO;
1151
1152 path = btrfs_alloc_path();
1153 if (!path)
1154 return -ENOMEM;
1155 path->leave_spinning = 1;
1156
1157 block_rsv = trans->block_rsv;
1158 trans->block_rsv = &fs_info->delayed_block_rsv;
1159
1160 delayed_root = fs_info->delayed_root;
1161
1162 curr_node = btrfs_first_delayed_node(delayed_root);
1163 while (curr_node && (!count || (count && nr--))) {
1164 ret = __btrfs_commit_inode_delayed_items(trans, path,
1165 curr_node);
1166 if (ret) {
1167 btrfs_release_delayed_node(curr_node);
1168 curr_node = NULL;
1169 btrfs_abort_transaction(trans, ret);
1170 break;
1171 }
1172
1173 prev_node = curr_node;
1174 curr_node = btrfs_next_delayed_node(curr_node);
1175 btrfs_release_delayed_node(prev_node);
1176 }
1177
1178 if (curr_node)
1179 btrfs_release_delayed_node(curr_node);
1180 btrfs_free_path(path);
1181 trans->block_rsv = block_rsv;
1182
1183 return ret;
1184}
1185
1186int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1187 struct btrfs_fs_info *fs_info)
1188{
1189 return __btrfs_run_delayed_items(trans, fs_info, -1);
1190}
1191
1192int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1193 struct btrfs_fs_info *fs_info, int nr)
1194{
1195 return __btrfs_run_delayed_items(trans, fs_info, nr);
1196}
1197
1198int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1199 struct inode *inode)
1200{
1201 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1202 struct btrfs_path *path;
1203 struct btrfs_block_rsv *block_rsv;
1204 int ret;
1205
1206 if (!delayed_node)
1207 return 0;
1208
1209 mutex_lock(&delayed_node->mutex);
1210 if (!delayed_node->count) {
1211 mutex_unlock(&delayed_node->mutex);
1212 btrfs_release_delayed_node(delayed_node);
1213 return 0;
1214 }
1215 mutex_unlock(&delayed_node->mutex);
1216
1217 path = btrfs_alloc_path();
1218 if (!path) {
1219 btrfs_release_delayed_node(delayed_node);
1220 return -ENOMEM;
1221 }
1222 path->leave_spinning = 1;
1223
1224 block_rsv = trans->block_rsv;
1225 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1226
1227 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1228
1229 btrfs_release_delayed_node(delayed_node);
1230 btrfs_free_path(path);
1231 trans->block_rsv = block_rsv;
1232
1233 return ret;
1234}
1235
1236int btrfs_commit_inode_delayed_inode(struct inode *inode)
1237{
1238 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1239 struct btrfs_trans_handle *trans;
1240 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1241 struct btrfs_path *path;
1242 struct btrfs_block_rsv *block_rsv;
1243 int ret;
1244
1245 if (!delayed_node)
1246 return 0;
1247
1248 mutex_lock(&delayed_node->mutex);
1249 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1250 mutex_unlock(&delayed_node->mutex);
1251 btrfs_release_delayed_node(delayed_node);
1252 return 0;
1253 }
1254 mutex_unlock(&delayed_node->mutex);
1255
1256 trans = btrfs_join_transaction(delayed_node->root);
1257 if (IS_ERR(trans)) {
1258 ret = PTR_ERR(trans);
1259 goto out;
1260 }
1261
1262 path = btrfs_alloc_path();
1263 if (!path) {
1264 ret = -ENOMEM;
1265 goto trans_out;
1266 }
1267 path->leave_spinning = 1;
1268
1269 block_rsv = trans->block_rsv;
1270 trans->block_rsv = &fs_info->delayed_block_rsv;
1271
1272 mutex_lock(&delayed_node->mutex);
1273 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1274 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1275 path, delayed_node);
1276 else
1277 ret = 0;
1278 mutex_unlock(&delayed_node->mutex);
1279
1280 btrfs_free_path(path);
1281 trans->block_rsv = block_rsv;
1282trans_out:
1283 btrfs_end_transaction(trans);
1284 btrfs_btree_balance_dirty(fs_info);
1285out:
1286 btrfs_release_delayed_node(delayed_node);
1287
1288 return ret;
1289}
1290
1291void btrfs_remove_delayed_node(struct inode *inode)
1292{
1293 struct btrfs_delayed_node *delayed_node;
1294
1295 delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1296 if (!delayed_node)
1297 return;
1298
1299 BTRFS_I(inode)->delayed_node = NULL;
1300 btrfs_release_delayed_node(delayed_node);
1301}
1302
1303struct btrfs_async_delayed_work {
1304 struct btrfs_delayed_root *delayed_root;
1305 int nr;
1306 struct btrfs_work work;
1307};
1308
1309static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1310{
1311 struct btrfs_async_delayed_work *async_work;
1312 struct btrfs_delayed_root *delayed_root;
1313 struct btrfs_trans_handle *trans;
1314 struct btrfs_path *path;
1315 struct btrfs_delayed_node *delayed_node = NULL;
1316 struct btrfs_root *root;
1317 struct btrfs_block_rsv *block_rsv;
1318 int total_done = 0;
1319
1320 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1321 delayed_root = async_work->delayed_root;
1322
1323 path = btrfs_alloc_path();
1324 if (!path)
1325 goto out;
1326
1327again:
1328 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
1329 goto free_path;
1330
1331 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1332 if (!delayed_node)
1333 goto free_path;
1334
1335 path->leave_spinning = 1;
1336 root = delayed_node->root;
1337
1338 trans = btrfs_join_transaction(root);
1339 if (IS_ERR(trans))
1340 goto release_path;
1341
1342 block_rsv = trans->block_rsv;
1343 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1344
1345 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1346
1347 trans->block_rsv = block_rsv;
1348 btrfs_end_transaction(trans);
1349 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1350
1351release_path:
1352 btrfs_release_path(path);
1353 total_done++;
1354
1355 btrfs_release_prepared_delayed_node(delayed_node);
1356 if ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) ||
1357 total_done < async_work->nr)
1358 goto again;
1359
1360free_path:
1361 btrfs_free_path(path);
1362out:
1363 wake_up(&delayed_root->wait);
1364 kfree(async_work);
1365}
1366
1367
1368static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1369 struct btrfs_fs_info *fs_info, int nr)
1370{
1371 struct btrfs_async_delayed_work *async_work;
1372
1373 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND ||
1374 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1375 return 0;
1376
1377 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1378 if (!async_work)
1379 return -ENOMEM;
1380
1381 async_work->delayed_root = delayed_root;
1382 btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1383 btrfs_async_run_delayed_root, NULL, NULL);
1384 async_work->nr = nr;
1385
1386 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1387 return 0;
1388}
1389
1390void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1391{
1392 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1393}
1394
1395static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1396{
1397 int val = atomic_read(&delayed_root->items_seq);
1398
1399 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1400 return 1;
1401
1402 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1403 return 1;
1404
1405 return 0;
1406}
1407
1408void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1409{
1410 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1411
1412 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1413 return;
1414
1415 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1416 int seq;
1417 int ret;
1418
1419 seq = atomic_read(&delayed_root->items_seq);
1420
1421 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1422 if (ret)
1423 return;
1424
1425 wait_event_interruptible(delayed_root->wait,
1426 could_end_wait(delayed_root, seq));
1427 return;
1428 }
1429
1430 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1431}
1432
1433/* Will return 0 or -ENOMEM */
1434int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1435 struct btrfs_fs_info *fs_info,
1436 const char *name, int name_len,
1437 struct inode *dir,
1438 struct btrfs_disk_key *disk_key, u8 type,
1439 u64 index)
1440{
1441 struct btrfs_delayed_node *delayed_node;
1442 struct btrfs_delayed_item *delayed_item;
1443 struct btrfs_dir_item *dir_item;
1444 int ret;
1445
1446 delayed_node = btrfs_get_or_create_delayed_node(dir);
1447 if (IS_ERR(delayed_node))
1448 return PTR_ERR(delayed_node);
1449
1450 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1451 if (!delayed_item) {
1452 ret = -ENOMEM;
1453 goto release_node;
1454 }
1455
1456 delayed_item->key.objectid = btrfs_ino(dir);
1457 delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1458 delayed_item->key.offset = index;
1459
1460 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1461 dir_item->location = *disk_key;
1462 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1463 btrfs_set_stack_dir_data_len(dir_item, 0);
1464 btrfs_set_stack_dir_name_len(dir_item, name_len);
1465 btrfs_set_stack_dir_type(dir_item, type);
1466 memcpy((char *)(dir_item + 1), name, name_len);
1467
1468 ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, delayed_item);
1469 /*
1470 * we have reserved enough space when we start a new transaction,
1471 * so reserving metadata failure is impossible
1472 */
1473 BUG_ON(ret);
1474
1475
1476 mutex_lock(&delayed_node->mutex);
1477 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1478 if (unlikely(ret)) {
1479 btrfs_err(fs_info,
1480 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1481 name_len, name, delayed_node->root->objectid,
1482 delayed_node->inode_id, ret);
1483 BUG();
1484 }
1485 mutex_unlock(&delayed_node->mutex);
1486
1487release_node:
1488 btrfs_release_delayed_node(delayed_node);
1489 return ret;
1490}
1491
1492static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1493 struct btrfs_delayed_node *node,
1494 struct btrfs_key *key)
1495{
1496 struct btrfs_delayed_item *item;
1497
1498 mutex_lock(&node->mutex);
1499 item = __btrfs_lookup_delayed_insertion_item(node, key);
1500 if (!item) {
1501 mutex_unlock(&node->mutex);
1502 return 1;
1503 }
1504
1505 btrfs_delayed_item_release_metadata(fs_info, item);
1506 btrfs_release_delayed_item(item);
1507 mutex_unlock(&node->mutex);
1508 return 0;
1509}
1510
1511int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1512 struct btrfs_fs_info *fs_info,
1513 struct inode *dir, u64 index)
1514{
1515 struct btrfs_delayed_node *node;
1516 struct btrfs_delayed_item *item;
1517 struct btrfs_key item_key;
1518 int ret;
1519
1520 node = btrfs_get_or_create_delayed_node(dir);
1521 if (IS_ERR(node))
1522 return PTR_ERR(node);
1523
1524 item_key.objectid = btrfs_ino(dir);
1525 item_key.type = BTRFS_DIR_INDEX_KEY;
1526 item_key.offset = index;
1527
1528 ret = btrfs_delete_delayed_insertion_item(fs_info, node, &item_key);
1529 if (!ret)
1530 goto end;
1531
1532 item = btrfs_alloc_delayed_item(0);
1533 if (!item) {
1534 ret = -ENOMEM;
1535 goto end;
1536 }
1537
1538 item->key = item_key;
1539
1540 ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, item);
1541 /*
1542 * we have reserved enough space when we start a new transaction,
1543 * so reserving metadata failure is impossible.
1544 */
1545 BUG_ON(ret);
1546
1547 mutex_lock(&node->mutex);
1548 ret = __btrfs_add_delayed_deletion_item(node, item);
1549 if (unlikely(ret)) {
1550 btrfs_err(fs_info,
1551 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1552 index, node->root->objectid, node->inode_id, ret);
1553 BUG();
1554 }
1555 mutex_unlock(&node->mutex);
1556end:
1557 btrfs_release_delayed_node(node);
1558 return ret;
1559}
1560
1561int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1562{
1563 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1564
1565 if (!delayed_node)
1566 return -ENOENT;
1567
1568 /*
1569 * Since we have held i_mutex of this directory, it is impossible that
1570 * a new directory index is added into the delayed node and index_cnt
1571 * is updated now. So we needn't lock the delayed node.
1572 */
1573 if (!delayed_node->index_cnt) {
1574 btrfs_release_delayed_node(delayed_node);
1575 return -EINVAL;
1576 }
1577
1578 BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1579 btrfs_release_delayed_node(delayed_node);
1580 return 0;
1581}
1582
1583bool btrfs_readdir_get_delayed_items(struct inode *inode,
1584 struct list_head *ins_list,
1585 struct list_head *del_list)
1586{
1587 struct btrfs_delayed_node *delayed_node;
1588 struct btrfs_delayed_item *item;
1589
1590 delayed_node = btrfs_get_delayed_node(inode);
1591 if (!delayed_node)
1592 return false;
1593
1594 /*
1595 * We can only do one readdir with delayed items at a time because of
1596 * item->readdir_list.
1597 */
1598 inode_unlock_shared(inode);
1599 inode_lock(inode);
1600
1601 mutex_lock(&delayed_node->mutex);
1602 item = __btrfs_first_delayed_insertion_item(delayed_node);
1603 while (item) {
1604 atomic_inc(&item->refs);
1605 list_add_tail(&item->readdir_list, ins_list);
1606 item = __btrfs_next_delayed_item(item);
1607 }
1608
1609 item = __btrfs_first_delayed_deletion_item(delayed_node);
1610 while (item) {
1611 atomic_inc(&item->refs);
1612 list_add_tail(&item->readdir_list, del_list);
1613 item = __btrfs_next_delayed_item(item);
1614 }
1615 mutex_unlock(&delayed_node->mutex);
1616 /*
1617 * This delayed node is still cached in the btrfs inode, so refs
1618 * must be > 1 now, and we needn't check it is going to be freed
1619 * or not.
1620 *
1621 * Besides that, this function is used to read dir, we do not
1622 * insert/delete delayed items in this period. So we also needn't
1623 * requeue or dequeue this delayed node.
1624 */
1625 atomic_dec(&delayed_node->refs);
1626
1627 return true;
1628}
1629
1630void btrfs_readdir_put_delayed_items(struct inode *inode,
1631 struct list_head *ins_list,
1632 struct list_head *del_list)
1633{
1634 struct btrfs_delayed_item *curr, *next;
1635
1636 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1637 list_del(&curr->readdir_list);
1638 if (atomic_dec_and_test(&curr->refs))
1639 kfree(curr);
1640 }
1641
1642 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1643 list_del(&curr->readdir_list);
1644 if (atomic_dec_and_test(&curr->refs))
1645 kfree(curr);
1646 }
1647
1648 /*
1649 * The VFS is going to do up_read(), so we need to downgrade back to a
1650 * read lock.
1651 */
1652 downgrade_write(&inode->i_rwsem);
1653}
1654
1655int btrfs_should_delete_dir_index(struct list_head *del_list,
1656 u64 index)
1657{
1658 struct btrfs_delayed_item *curr, *next;
1659 int ret;
1660
1661 if (list_empty(del_list))
1662 return 0;
1663
1664 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1665 if (curr->key.offset > index)
1666 break;
1667
1668 list_del(&curr->readdir_list);
1669 ret = (curr->key.offset == index);
1670
1671 if (atomic_dec_and_test(&curr->refs))
1672 kfree(curr);
1673
1674 if (ret)
1675 return 1;
1676 else
1677 continue;
1678 }
1679 return 0;
1680}
1681
1682/*
1683 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1684 *
1685 */
1686int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1687 struct list_head *ins_list)
1688{
1689 struct btrfs_dir_item *di;
1690 struct btrfs_delayed_item *curr, *next;
1691 struct btrfs_key location;
1692 char *name;
1693 int name_len;
1694 int over = 0;
1695 unsigned char d_type;
1696
1697 if (list_empty(ins_list))
1698 return 0;
1699
1700 /*
1701 * Changing the data of the delayed item is impossible. So
1702 * we needn't lock them. And we have held i_mutex of the
1703 * directory, nobody can delete any directory indexes now.
1704 */
1705 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1706 list_del(&curr->readdir_list);
1707
1708 if (curr->key.offset < ctx->pos) {
1709 if (atomic_dec_and_test(&curr->refs))
1710 kfree(curr);
1711 continue;
1712 }
1713
1714 ctx->pos = curr->key.offset;
1715
1716 di = (struct btrfs_dir_item *)curr->data;
1717 name = (char *)(di + 1);
1718 name_len = btrfs_stack_dir_name_len(di);
1719
1720 d_type = btrfs_filetype_table[di->type];
1721 btrfs_disk_key_to_cpu(&location, &di->location);
1722
1723 over = !dir_emit(ctx, name, name_len,
1724 location.objectid, d_type);
1725
1726 if (atomic_dec_and_test(&curr->refs))
1727 kfree(curr);
1728
1729 if (over)
1730 return 1;
1731 }
1732 return 0;
1733}
1734
1735static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1736 struct btrfs_inode_item *inode_item,
1737 struct inode *inode)
1738{
1739 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1740 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1741 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1742 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1743 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1744 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1745 btrfs_set_stack_inode_generation(inode_item,
1746 BTRFS_I(inode)->generation);
1747 btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1748 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1749 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1750 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1751 btrfs_set_stack_inode_block_group(inode_item, 0);
1752
1753 btrfs_set_stack_timespec_sec(&inode_item->atime,
1754 inode->i_atime.tv_sec);
1755 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1756 inode->i_atime.tv_nsec);
1757
1758 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1759 inode->i_mtime.tv_sec);
1760 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1761 inode->i_mtime.tv_nsec);
1762
1763 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1764 inode->i_ctime.tv_sec);
1765 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1766 inode->i_ctime.tv_nsec);
1767
1768 btrfs_set_stack_timespec_sec(&inode_item->otime,
1769 BTRFS_I(inode)->i_otime.tv_sec);
1770 btrfs_set_stack_timespec_nsec(&inode_item->otime,
1771 BTRFS_I(inode)->i_otime.tv_nsec);
1772}
1773
1774int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1775{
1776 struct btrfs_delayed_node *delayed_node;
1777 struct btrfs_inode_item *inode_item;
1778
1779 delayed_node = btrfs_get_delayed_node(inode);
1780 if (!delayed_node)
1781 return -ENOENT;
1782
1783 mutex_lock(&delayed_node->mutex);
1784 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1785 mutex_unlock(&delayed_node->mutex);
1786 btrfs_release_delayed_node(delayed_node);
1787 return -ENOENT;
1788 }
1789
1790 inode_item = &delayed_node->inode_item;
1791
1792 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1793 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1794 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1795 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1796 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1797 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1798 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1799 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1800
1801 inode->i_version = btrfs_stack_inode_sequence(inode_item);
1802 inode->i_rdev = 0;
1803 *rdev = btrfs_stack_inode_rdev(inode_item);
1804 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1805
1806 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1807 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1808
1809 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1810 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1811
1812 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1813 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1814
1815 BTRFS_I(inode)->i_otime.tv_sec =
1816 btrfs_stack_timespec_sec(&inode_item->otime);
1817 BTRFS_I(inode)->i_otime.tv_nsec =
1818 btrfs_stack_timespec_nsec(&inode_item->otime);
1819
1820 inode->i_generation = BTRFS_I(inode)->generation;
1821 BTRFS_I(inode)->index_cnt = (u64)-1;
1822
1823 mutex_unlock(&delayed_node->mutex);
1824 btrfs_release_delayed_node(delayed_node);
1825 return 0;
1826}
1827
1828int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1829 struct btrfs_root *root, struct inode *inode)
1830{
1831 struct btrfs_delayed_node *delayed_node;
1832 int ret = 0;
1833
1834 delayed_node = btrfs_get_or_create_delayed_node(inode);
1835 if (IS_ERR(delayed_node))
1836 return PTR_ERR(delayed_node);
1837
1838 mutex_lock(&delayed_node->mutex);
1839 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1840 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1841 goto release_node;
1842 }
1843
1844 ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1845 delayed_node);
1846 if (ret)
1847 goto release_node;
1848
1849 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1850 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1851 delayed_node->count++;
1852 atomic_inc(&root->fs_info->delayed_root->items);
1853release_node:
1854 mutex_unlock(&delayed_node->mutex);
1855 btrfs_release_delayed_node(delayed_node);
1856 return ret;
1857}
1858
1859int btrfs_delayed_delete_inode_ref(struct inode *inode)
1860{
1861 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1862 struct btrfs_delayed_node *delayed_node;
1863
1864 /*
1865 * we don't do delayed inode updates during log recovery because it
1866 * leads to enospc problems. This means we also can't do
1867 * delayed inode refs
1868 */
1869 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1870 return -EAGAIN;
1871
1872 delayed_node = btrfs_get_or_create_delayed_node(inode);
1873 if (IS_ERR(delayed_node))
1874 return PTR_ERR(delayed_node);
1875
1876 /*
1877 * We don't reserve space for inode ref deletion is because:
1878 * - We ONLY do async inode ref deletion for the inode who has only
1879 * one link(i_nlink == 1), it means there is only one inode ref.
1880 * And in most case, the inode ref and the inode item are in the
1881 * same leaf, and we will deal with them at the same time.
1882 * Since we are sure we will reserve the space for the inode item,
1883 * it is unnecessary to reserve space for inode ref deletion.
1884 * - If the inode ref and the inode item are not in the same leaf,
1885 * We also needn't worry about enospc problem, because we reserve
1886 * much more space for the inode update than it needs.
1887 * - At the worst, we can steal some space from the global reservation.
1888 * It is very rare.
1889 */
1890 mutex_lock(&delayed_node->mutex);
1891 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1892 goto release_node;
1893
1894 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1895 delayed_node->count++;
1896 atomic_inc(&fs_info->delayed_root->items);
1897release_node:
1898 mutex_unlock(&delayed_node->mutex);
1899 btrfs_release_delayed_node(delayed_node);
1900 return 0;
1901}
1902
1903static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1904{
1905 struct btrfs_root *root = delayed_node->root;
1906 struct btrfs_fs_info *fs_info = root->fs_info;
1907 struct btrfs_delayed_item *curr_item, *prev_item;
1908
1909 mutex_lock(&delayed_node->mutex);
1910 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1911 while (curr_item) {
1912 btrfs_delayed_item_release_metadata(fs_info, curr_item);
1913 prev_item = curr_item;
1914 curr_item = __btrfs_next_delayed_item(prev_item);
1915 btrfs_release_delayed_item(prev_item);
1916 }
1917
1918 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1919 while (curr_item) {
1920 btrfs_delayed_item_release_metadata(fs_info, curr_item);
1921 prev_item = curr_item;
1922 curr_item = __btrfs_next_delayed_item(prev_item);
1923 btrfs_release_delayed_item(prev_item);
1924 }
1925
1926 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1927 btrfs_release_delayed_iref(delayed_node);
1928
1929 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1930 btrfs_delayed_inode_release_metadata(fs_info, delayed_node);
1931 btrfs_release_delayed_inode(delayed_node);
1932 }
1933 mutex_unlock(&delayed_node->mutex);
1934}
1935
1936void btrfs_kill_delayed_inode_items(struct inode *inode)
1937{
1938 struct btrfs_delayed_node *delayed_node;
1939
1940 delayed_node = btrfs_get_delayed_node(inode);
1941 if (!delayed_node)
1942 return;
1943
1944 __btrfs_kill_delayed_node(delayed_node);
1945 btrfs_release_delayed_node(delayed_node);
1946}
1947
1948void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1949{
1950 u64 inode_id = 0;
1951 struct btrfs_delayed_node *delayed_nodes[8];
1952 int i, n;
1953
1954 while (1) {
1955 spin_lock(&root->inode_lock);
1956 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1957 (void **)delayed_nodes, inode_id,
1958 ARRAY_SIZE(delayed_nodes));
1959 if (!n) {
1960 spin_unlock(&root->inode_lock);
1961 break;
1962 }
1963
1964 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1965
1966 for (i = 0; i < n; i++)
1967 atomic_inc(&delayed_nodes[i]->refs);
1968 spin_unlock(&root->inode_lock);
1969
1970 for (i = 0; i < n; i++) {
1971 __btrfs_kill_delayed_node(delayed_nodes[i]);
1972 btrfs_release_delayed_node(delayed_nodes[i]);
1973 }
1974 }
1975}
1976
1977void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1978{
1979 struct btrfs_delayed_node *curr_node, *prev_node;
1980
1981 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1982 while (curr_node) {
1983 __btrfs_kill_delayed_node(curr_node);
1984
1985 prev_node = curr_node;
1986 curr_node = btrfs_next_delayed_node(curr_node);
1987 btrfs_release_delayed_node(prev_node);
1988 }
1989}
1990
1/*
2 * Copyright (C) 2011 Fujitsu. All rights reserved.
3 * Written by Miao Xie <miaox@cn.fujitsu.com>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
18 */
19
20#include <linux/slab.h>
21#include "delayed-inode.h"
22#include "disk-io.h"
23#include "transaction.h"
24
25#define BTRFS_DELAYED_WRITEBACK 400
26#define BTRFS_DELAYED_BACKGROUND 100
27
28static struct kmem_cache *delayed_node_cache;
29
30int __init btrfs_delayed_inode_init(void)
31{
32 delayed_node_cache = kmem_cache_create("delayed_node",
33 sizeof(struct btrfs_delayed_node),
34 0,
35 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
36 NULL);
37 if (!delayed_node_cache)
38 return -ENOMEM;
39 return 0;
40}
41
42void btrfs_delayed_inode_exit(void)
43{
44 if (delayed_node_cache)
45 kmem_cache_destroy(delayed_node_cache);
46}
47
48static inline void btrfs_init_delayed_node(
49 struct btrfs_delayed_node *delayed_node,
50 struct btrfs_root *root, u64 inode_id)
51{
52 delayed_node->root = root;
53 delayed_node->inode_id = inode_id;
54 atomic_set(&delayed_node->refs, 0);
55 delayed_node->count = 0;
56 delayed_node->in_list = 0;
57 delayed_node->inode_dirty = 0;
58 delayed_node->ins_root = RB_ROOT;
59 delayed_node->del_root = RB_ROOT;
60 mutex_init(&delayed_node->mutex);
61 delayed_node->index_cnt = 0;
62 INIT_LIST_HEAD(&delayed_node->n_list);
63 INIT_LIST_HEAD(&delayed_node->p_list);
64 delayed_node->bytes_reserved = 0;
65}
66
67static inline int btrfs_is_continuous_delayed_item(
68 struct btrfs_delayed_item *item1,
69 struct btrfs_delayed_item *item2)
70{
71 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
72 item1->key.objectid == item2->key.objectid &&
73 item1->key.type == item2->key.type &&
74 item1->key.offset + 1 == item2->key.offset)
75 return 1;
76 return 0;
77}
78
79static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
80 struct btrfs_root *root)
81{
82 return root->fs_info->delayed_root;
83}
84
85static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
86{
87 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
88 struct btrfs_root *root = btrfs_inode->root;
89 u64 ino = btrfs_ino(inode);
90 struct btrfs_delayed_node *node;
91
92 node = ACCESS_ONCE(btrfs_inode->delayed_node);
93 if (node) {
94 atomic_inc(&node->refs);
95 return node;
96 }
97
98 spin_lock(&root->inode_lock);
99 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
100 if (node) {
101 if (btrfs_inode->delayed_node) {
102 atomic_inc(&node->refs); /* can be accessed */
103 BUG_ON(btrfs_inode->delayed_node != node);
104 spin_unlock(&root->inode_lock);
105 return node;
106 }
107 btrfs_inode->delayed_node = node;
108 atomic_inc(&node->refs); /* can be accessed */
109 atomic_inc(&node->refs); /* cached in the inode */
110 spin_unlock(&root->inode_lock);
111 return node;
112 }
113 spin_unlock(&root->inode_lock);
114
115 return NULL;
116}
117
118/* Will return either the node or PTR_ERR(-ENOMEM) */
119static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
120 struct inode *inode)
121{
122 struct btrfs_delayed_node *node;
123 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
124 struct btrfs_root *root = btrfs_inode->root;
125 u64 ino = btrfs_ino(inode);
126 int ret;
127
128again:
129 node = btrfs_get_delayed_node(inode);
130 if (node)
131 return node;
132
133 node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
134 if (!node)
135 return ERR_PTR(-ENOMEM);
136 btrfs_init_delayed_node(node, root, ino);
137
138 atomic_inc(&node->refs); /* cached in the btrfs inode */
139 atomic_inc(&node->refs); /* can be accessed */
140
141 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
142 if (ret) {
143 kmem_cache_free(delayed_node_cache, node);
144 return ERR_PTR(ret);
145 }
146
147 spin_lock(&root->inode_lock);
148 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
149 if (ret == -EEXIST) {
150 kmem_cache_free(delayed_node_cache, node);
151 spin_unlock(&root->inode_lock);
152 radix_tree_preload_end();
153 goto again;
154 }
155 btrfs_inode->delayed_node = node;
156 spin_unlock(&root->inode_lock);
157 radix_tree_preload_end();
158
159 return node;
160}
161
162/*
163 * Call it when holding delayed_node->mutex
164 *
165 * If mod = 1, add this node into the prepared list.
166 */
167static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
168 struct btrfs_delayed_node *node,
169 int mod)
170{
171 spin_lock(&root->lock);
172 if (node->in_list) {
173 if (!list_empty(&node->p_list))
174 list_move_tail(&node->p_list, &root->prepare_list);
175 else if (mod)
176 list_add_tail(&node->p_list, &root->prepare_list);
177 } else {
178 list_add_tail(&node->n_list, &root->node_list);
179 list_add_tail(&node->p_list, &root->prepare_list);
180 atomic_inc(&node->refs); /* inserted into list */
181 root->nodes++;
182 node->in_list = 1;
183 }
184 spin_unlock(&root->lock);
185}
186
187/* Call it when holding delayed_node->mutex */
188static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
189 struct btrfs_delayed_node *node)
190{
191 spin_lock(&root->lock);
192 if (node->in_list) {
193 root->nodes--;
194 atomic_dec(&node->refs); /* not in the list */
195 list_del_init(&node->n_list);
196 if (!list_empty(&node->p_list))
197 list_del_init(&node->p_list);
198 node->in_list = 0;
199 }
200 spin_unlock(&root->lock);
201}
202
203struct btrfs_delayed_node *btrfs_first_delayed_node(
204 struct btrfs_delayed_root *delayed_root)
205{
206 struct list_head *p;
207 struct btrfs_delayed_node *node = NULL;
208
209 spin_lock(&delayed_root->lock);
210 if (list_empty(&delayed_root->node_list))
211 goto out;
212
213 p = delayed_root->node_list.next;
214 node = list_entry(p, struct btrfs_delayed_node, n_list);
215 atomic_inc(&node->refs);
216out:
217 spin_unlock(&delayed_root->lock);
218
219 return node;
220}
221
222struct btrfs_delayed_node *btrfs_next_delayed_node(
223 struct btrfs_delayed_node *node)
224{
225 struct btrfs_delayed_root *delayed_root;
226 struct list_head *p;
227 struct btrfs_delayed_node *next = NULL;
228
229 delayed_root = node->root->fs_info->delayed_root;
230 spin_lock(&delayed_root->lock);
231 if (!node->in_list) { /* not in the list */
232 if (list_empty(&delayed_root->node_list))
233 goto out;
234 p = delayed_root->node_list.next;
235 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
236 goto out;
237 else
238 p = node->n_list.next;
239
240 next = list_entry(p, struct btrfs_delayed_node, n_list);
241 atomic_inc(&next->refs);
242out:
243 spin_unlock(&delayed_root->lock);
244
245 return next;
246}
247
248static void __btrfs_release_delayed_node(
249 struct btrfs_delayed_node *delayed_node,
250 int mod)
251{
252 struct btrfs_delayed_root *delayed_root;
253
254 if (!delayed_node)
255 return;
256
257 delayed_root = delayed_node->root->fs_info->delayed_root;
258
259 mutex_lock(&delayed_node->mutex);
260 if (delayed_node->count)
261 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
262 else
263 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
264 mutex_unlock(&delayed_node->mutex);
265
266 if (atomic_dec_and_test(&delayed_node->refs)) {
267 struct btrfs_root *root = delayed_node->root;
268 spin_lock(&root->inode_lock);
269 if (atomic_read(&delayed_node->refs) == 0) {
270 radix_tree_delete(&root->delayed_nodes_tree,
271 delayed_node->inode_id);
272 kmem_cache_free(delayed_node_cache, delayed_node);
273 }
274 spin_unlock(&root->inode_lock);
275 }
276}
277
278static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
279{
280 __btrfs_release_delayed_node(node, 0);
281}
282
283struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
284 struct btrfs_delayed_root *delayed_root)
285{
286 struct list_head *p;
287 struct btrfs_delayed_node *node = NULL;
288
289 spin_lock(&delayed_root->lock);
290 if (list_empty(&delayed_root->prepare_list))
291 goto out;
292
293 p = delayed_root->prepare_list.next;
294 list_del_init(p);
295 node = list_entry(p, struct btrfs_delayed_node, p_list);
296 atomic_inc(&node->refs);
297out:
298 spin_unlock(&delayed_root->lock);
299
300 return node;
301}
302
303static inline void btrfs_release_prepared_delayed_node(
304 struct btrfs_delayed_node *node)
305{
306 __btrfs_release_delayed_node(node, 1);
307}
308
309struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
310{
311 struct btrfs_delayed_item *item;
312 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
313 if (item) {
314 item->data_len = data_len;
315 item->ins_or_del = 0;
316 item->bytes_reserved = 0;
317 item->delayed_node = NULL;
318 atomic_set(&item->refs, 1);
319 }
320 return item;
321}
322
323/*
324 * __btrfs_lookup_delayed_item - look up the delayed item by key
325 * @delayed_node: pointer to the delayed node
326 * @key: the key to look up
327 * @prev: used to store the prev item if the right item isn't found
328 * @next: used to store the next item if the right item isn't found
329 *
330 * Note: if we don't find the right item, we will return the prev item and
331 * the next item.
332 */
333static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
334 struct rb_root *root,
335 struct btrfs_key *key,
336 struct btrfs_delayed_item **prev,
337 struct btrfs_delayed_item **next)
338{
339 struct rb_node *node, *prev_node = NULL;
340 struct btrfs_delayed_item *delayed_item = NULL;
341 int ret = 0;
342
343 node = root->rb_node;
344
345 while (node) {
346 delayed_item = rb_entry(node, struct btrfs_delayed_item,
347 rb_node);
348 prev_node = node;
349 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
350 if (ret < 0)
351 node = node->rb_right;
352 else if (ret > 0)
353 node = node->rb_left;
354 else
355 return delayed_item;
356 }
357
358 if (prev) {
359 if (!prev_node)
360 *prev = NULL;
361 else if (ret < 0)
362 *prev = delayed_item;
363 else if ((node = rb_prev(prev_node)) != NULL) {
364 *prev = rb_entry(node, struct btrfs_delayed_item,
365 rb_node);
366 } else
367 *prev = NULL;
368 }
369
370 if (next) {
371 if (!prev_node)
372 *next = NULL;
373 else if (ret > 0)
374 *next = delayed_item;
375 else if ((node = rb_next(prev_node)) != NULL) {
376 *next = rb_entry(node, struct btrfs_delayed_item,
377 rb_node);
378 } else
379 *next = NULL;
380 }
381 return NULL;
382}
383
384struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
385 struct btrfs_delayed_node *delayed_node,
386 struct btrfs_key *key)
387{
388 struct btrfs_delayed_item *item;
389
390 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
391 NULL, NULL);
392 return item;
393}
394
395struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
396 struct btrfs_delayed_node *delayed_node,
397 struct btrfs_key *key)
398{
399 struct btrfs_delayed_item *item;
400
401 item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
402 NULL, NULL);
403 return item;
404}
405
406struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
407 struct btrfs_delayed_node *delayed_node,
408 struct btrfs_key *key)
409{
410 struct btrfs_delayed_item *item, *next;
411
412 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
413 NULL, &next);
414 if (!item)
415 item = next;
416
417 return item;
418}
419
420struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
421 struct btrfs_delayed_node *delayed_node,
422 struct btrfs_key *key)
423{
424 struct btrfs_delayed_item *item, *next;
425
426 item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
427 NULL, &next);
428 if (!item)
429 item = next;
430
431 return item;
432}
433
434static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
435 struct btrfs_delayed_item *ins,
436 int action)
437{
438 struct rb_node **p, *node;
439 struct rb_node *parent_node = NULL;
440 struct rb_root *root;
441 struct btrfs_delayed_item *item;
442 int cmp;
443
444 if (action == BTRFS_DELAYED_INSERTION_ITEM)
445 root = &delayed_node->ins_root;
446 else if (action == BTRFS_DELAYED_DELETION_ITEM)
447 root = &delayed_node->del_root;
448 else
449 BUG();
450 p = &root->rb_node;
451 node = &ins->rb_node;
452
453 while (*p) {
454 parent_node = *p;
455 item = rb_entry(parent_node, struct btrfs_delayed_item,
456 rb_node);
457
458 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
459 if (cmp < 0)
460 p = &(*p)->rb_right;
461 else if (cmp > 0)
462 p = &(*p)->rb_left;
463 else
464 return -EEXIST;
465 }
466
467 rb_link_node(node, parent_node, p);
468 rb_insert_color(node, root);
469 ins->delayed_node = delayed_node;
470 ins->ins_or_del = action;
471
472 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
473 action == BTRFS_DELAYED_INSERTION_ITEM &&
474 ins->key.offset >= delayed_node->index_cnt)
475 delayed_node->index_cnt = ins->key.offset + 1;
476
477 delayed_node->count++;
478 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
479 return 0;
480}
481
482static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
483 struct btrfs_delayed_item *item)
484{
485 return __btrfs_add_delayed_item(node, item,
486 BTRFS_DELAYED_INSERTION_ITEM);
487}
488
489static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
490 struct btrfs_delayed_item *item)
491{
492 return __btrfs_add_delayed_item(node, item,
493 BTRFS_DELAYED_DELETION_ITEM);
494}
495
496static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
497{
498 struct rb_root *root;
499 struct btrfs_delayed_root *delayed_root;
500
501 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
502
503 BUG_ON(!delayed_root);
504 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
505 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
506
507 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
508 root = &delayed_item->delayed_node->ins_root;
509 else
510 root = &delayed_item->delayed_node->del_root;
511
512 rb_erase(&delayed_item->rb_node, root);
513 delayed_item->delayed_node->count--;
514 atomic_dec(&delayed_root->items);
515 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND &&
516 waitqueue_active(&delayed_root->wait))
517 wake_up(&delayed_root->wait);
518}
519
520static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
521{
522 if (item) {
523 __btrfs_remove_delayed_item(item);
524 if (atomic_dec_and_test(&item->refs))
525 kfree(item);
526 }
527}
528
529struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
530 struct btrfs_delayed_node *delayed_node)
531{
532 struct rb_node *p;
533 struct btrfs_delayed_item *item = NULL;
534
535 p = rb_first(&delayed_node->ins_root);
536 if (p)
537 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
538
539 return item;
540}
541
542struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
543 struct btrfs_delayed_node *delayed_node)
544{
545 struct rb_node *p;
546 struct btrfs_delayed_item *item = NULL;
547
548 p = rb_first(&delayed_node->del_root);
549 if (p)
550 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
551
552 return item;
553}
554
555struct btrfs_delayed_item *__btrfs_next_delayed_item(
556 struct btrfs_delayed_item *item)
557{
558 struct rb_node *p;
559 struct btrfs_delayed_item *next = NULL;
560
561 p = rb_next(&item->rb_node);
562 if (p)
563 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
564
565 return next;
566}
567
568static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
569 u64 root_id)
570{
571 struct btrfs_key root_key;
572
573 if (root->objectid == root_id)
574 return root;
575
576 root_key.objectid = root_id;
577 root_key.type = BTRFS_ROOT_ITEM_KEY;
578 root_key.offset = (u64)-1;
579 return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
580}
581
582static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
583 struct btrfs_root *root,
584 struct btrfs_delayed_item *item)
585{
586 struct btrfs_block_rsv *src_rsv;
587 struct btrfs_block_rsv *dst_rsv;
588 u64 num_bytes;
589 int ret;
590
591 if (!trans->bytes_reserved)
592 return 0;
593
594 src_rsv = trans->block_rsv;
595 dst_rsv = &root->fs_info->delayed_block_rsv;
596
597 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
598 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
599 if (!ret) {
600 trace_btrfs_space_reservation(root->fs_info, "delayed_item",
601 item->key.objectid,
602 num_bytes, 1);
603 item->bytes_reserved = num_bytes;
604 }
605
606 return ret;
607}
608
609static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
610 struct btrfs_delayed_item *item)
611{
612 struct btrfs_block_rsv *rsv;
613
614 if (!item->bytes_reserved)
615 return;
616
617 rsv = &root->fs_info->delayed_block_rsv;
618 trace_btrfs_space_reservation(root->fs_info, "delayed_item",
619 item->key.objectid, item->bytes_reserved,
620 0);
621 btrfs_block_rsv_release(root, rsv,
622 item->bytes_reserved);
623}
624
625static int btrfs_delayed_inode_reserve_metadata(
626 struct btrfs_trans_handle *trans,
627 struct btrfs_root *root,
628 struct inode *inode,
629 struct btrfs_delayed_node *node)
630{
631 struct btrfs_block_rsv *src_rsv;
632 struct btrfs_block_rsv *dst_rsv;
633 u64 num_bytes;
634 int ret;
635 bool release = false;
636
637 src_rsv = trans->block_rsv;
638 dst_rsv = &root->fs_info->delayed_block_rsv;
639
640 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
641
642 /*
643 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
644 * which doesn't reserve space for speed. This is a problem since we
645 * still need to reserve space for this update, so try to reserve the
646 * space.
647 *
648 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
649 * we're accounted for.
650 */
651 if (!src_rsv || (!trans->bytes_reserved &&
652 src_rsv != &root->fs_info->delalloc_block_rsv)) {
653 ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes);
654 /*
655 * Since we're under a transaction reserve_metadata_bytes could
656 * try to commit the transaction which will make it return
657 * EAGAIN to make us stop the transaction we have, so return
658 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
659 */
660 if (ret == -EAGAIN)
661 ret = -ENOSPC;
662 if (!ret) {
663 node->bytes_reserved = num_bytes;
664 trace_btrfs_space_reservation(root->fs_info,
665 "delayed_inode",
666 btrfs_ino(inode),
667 num_bytes, 1);
668 }
669 return ret;
670 } else if (src_rsv == &root->fs_info->delalloc_block_rsv) {
671 spin_lock(&BTRFS_I(inode)->lock);
672 if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
673 &BTRFS_I(inode)->runtime_flags)) {
674 spin_unlock(&BTRFS_I(inode)->lock);
675 release = true;
676 goto migrate;
677 }
678 spin_unlock(&BTRFS_I(inode)->lock);
679
680 /* Ok we didn't have space pre-reserved. This shouldn't happen
681 * too often but it can happen if we do delalloc to an existing
682 * inode which gets dirtied because of the time update, and then
683 * isn't touched again until after the transaction commits and
684 * then we try to write out the data. First try to be nice and
685 * reserve something strictly for us. If not be a pain and try
686 * to steal from the delalloc block rsv.
687 */
688 ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes);
689 if (!ret)
690 goto out;
691
692 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
693 if (!ret)
694 goto out;
695
696 /*
697 * Ok this is a problem, let's just steal from the global rsv
698 * since this really shouldn't happen that often.
699 */
700 WARN_ON(1);
701 ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
702 dst_rsv, num_bytes);
703 goto out;
704 }
705
706migrate:
707 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
708
709out:
710 /*
711 * Migrate only takes a reservation, it doesn't touch the size of the
712 * block_rsv. This is to simplify people who don't normally have things
713 * migrated from their block rsv. If they go to release their
714 * reservation, that will decrease the size as well, so if migrate
715 * reduced size we'd end up with a negative size. But for the
716 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
717 * but we could in fact do this reserve/migrate dance several times
718 * between the time we did the original reservation and we'd clean it
719 * up. So to take care of this, release the space for the meta
720 * reservation here. I think it may be time for a documentation page on
721 * how block rsvs. work.
722 */
723 if (!ret) {
724 trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
725 btrfs_ino(inode), num_bytes, 1);
726 node->bytes_reserved = num_bytes;
727 }
728
729 if (release) {
730 trace_btrfs_space_reservation(root->fs_info, "delalloc",
731 btrfs_ino(inode), num_bytes, 0);
732 btrfs_block_rsv_release(root, src_rsv, num_bytes);
733 }
734
735 return ret;
736}
737
738static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
739 struct btrfs_delayed_node *node)
740{
741 struct btrfs_block_rsv *rsv;
742
743 if (!node->bytes_reserved)
744 return;
745
746 rsv = &root->fs_info->delayed_block_rsv;
747 trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
748 node->inode_id, node->bytes_reserved, 0);
749 btrfs_block_rsv_release(root, rsv,
750 node->bytes_reserved);
751 node->bytes_reserved = 0;
752}
753
754/*
755 * This helper will insert some continuous items into the same leaf according
756 * to the free space of the leaf.
757 */
758static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
759 struct btrfs_root *root,
760 struct btrfs_path *path,
761 struct btrfs_delayed_item *item)
762{
763 struct btrfs_delayed_item *curr, *next;
764 int free_space;
765 int total_data_size = 0, total_size = 0;
766 struct extent_buffer *leaf;
767 char *data_ptr;
768 struct btrfs_key *keys;
769 u32 *data_size;
770 struct list_head head;
771 int slot;
772 int nitems;
773 int i;
774 int ret = 0;
775
776 BUG_ON(!path->nodes[0]);
777
778 leaf = path->nodes[0];
779 free_space = btrfs_leaf_free_space(root, leaf);
780 INIT_LIST_HEAD(&head);
781
782 next = item;
783 nitems = 0;
784
785 /*
786 * count the number of the continuous items that we can insert in batch
787 */
788 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
789 free_space) {
790 total_data_size += next->data_len;
791 total_size += next->data_len + sizeof(struct btrfs_item);
792 list_add_tail(&next->tree_list, &head);
793 nitems++;
794
795 curr = next;
796 next = __btrfs_next_delayed_item(curr);
797 if (!next)
798 break;
799
800 if (!btrfs_is_continuous_delayed_item(curr, next))
801 break;
802 }
803
804 if (!nitems) {
805 ret = 0;
806 goto out;
807 }
808
809 /*
810 * we need allocate some memory space, but it might cause the task
811 * to sleep, so we set all locked nodes in the path to blocking locks
812 * first.
813 */
814 btrfs_set_path_blocking(path);
815
816 keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
817 if (!keys) {
818 ret = -ENOMEM;
819 goto out;
820 }
821
822 data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
823 if (!data_size) {
824 ret = -ENOMEM;
825 goto error;
826 }
827
828 /* get keys of all the delayed items */
829 i = 0;
830 list_for_each_entry(next, &head, tree_list) {
831 keys[i] = next->key;
832 data_size[i] = next->data_len;
833 i++;
834 }
835
836 /* reset all the locked nodes in the patch to spinning locks. */
837 btrfs_clear_path_blocking(path, NULL, 0);
838
839 /* insert the keys of the items */
840 setup_items_for_insert(trans, root, path, keys, data_size,
841 total_data_size, total_size, nitems);
842
843 /* insert the dir index items */
844 slot = path->slots[0];
845 list_for_each_entry_safe(curr, next, &head, tree_list) {
846 data_ptr = btrfs_item_ptr(leaf, slot, char);
847 write_extent_buffer(leaf, &curr->data,
848 (unsigned long)data_ptr,
849 curr->data_len);
850 slot++;
851
852 btrfs_delayed_item_release_metadata(root, curr);
853
854 list_del(&curr->tree_list);
855 btrfs_release_delayed_item(curr);
856 }
857
858error:
859 kfree(data_size);
860 kfree(keys);
861out:
862 return ret;
863}
864
865/*
866 * This helper can just do simple insertion that needn't extend item for new
867 * data, such as directory name index insertion, inode insertion.
868 */
869static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
870 struct btrfs_root *root,
871 struct btrfs_path *path,
872 struct btrfs_delayed_item *delayed_item)
873{
874 struct extent_buffer *leaf;
875 struct btrfs_item *item;
876 char *ptr;
877 int ret;
878
879 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
880 delayed_item->data_len);
881 if (ret < 0 && ret != -EEXIST)
882 return ret;
883
884 leaf = path->nodes[0];
885
886 item = btrfs_item_nr(leaf, path->slots[0]);
887 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
888
889 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
890 delayed_item->data_len);
891 btrfs_mark_buffer_dirty(leaf);
892
893 btrfs_delayed_item_release_metadata(root, delayed_item);
894 return 0;
895}
896
897/*
898 * we insert an item first, then if there are some continuous items, we try
899 * to insert those items into the same leaf.
900 */
901static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
902 struct btrfs_path *path,
903 struct btrfs_root *root,
904 struct btrfs_delayed_node *node)
905{
906 struct btrfs_delayed_item *curr, *prev;
907 int ret = 0;
908
909do_again:
910 mutex_lock(&node->mutex);
911 curr = __btrfs_first_delayed_insertion_item(node);
912 if (!curr)
913 goto insert_end;
914
915 ret = btrfs_insert_delayed_item(trans, root, path, curr);
916 if (ret < 0) {
917 btrfs_release_path(path);
918 goto insert_end;
919 }
920
921 prev = curr;
922 curr = __btrfs_next_delayed_item(prev);
923 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
924 /* insert the continuous items into the same leaf */
925 path->slots[0]++;
926 btrfs_batch_insert_items(trans, root, path, curr);
927 }
928 btrfs_release_delayed_item(prev);
929 btrfs_mark_buffer_dirty(path->nodes[0]);
930
931 btrfs_release_path(path);
932 mutex_unlock(&node->mutex);
933 goto do_again;
934
935insert_end:
936 mutex_unlock(&node->mutex);
937 return ret;
938}
939
940static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
941 struct btrfs_root *root,
942 struct btrfs_path *path,
943 struct btrfs_delayed_item *item)
944{
945 struct btrfs_delayed_item *curr, *next;
946 struct extent_buffer *leaf;
947 struct btrfs_key key;
948 struct list_head head;
949 int nitems, i, last_item;
950 int ret = 0;
951
952 BUG_ON(!path->nodes[0]);
953
954 leaf = path->nodes[0];
955
956 i = path->slots[0];
957 last_item = btrfs_header_nritems(leaf) - 1;
958 if (i > last_item)
959 return -ENOENT; /* FIXME: Is errno suitable? */
960
961 next = item;
962 INIT_LIST_HEAD(&head);
963 btrfs_item_key_to_cpu(leaf, &key, i);
964 nitems = 0;
965 /*
966 * count the number of the dir index items that we can delete in batch
967 */
968 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
969 list_add_tail(&next->tree_list, &head);
970 nitems++;
971
972 curr = next;
973 next = __btrfs_next_delayed_item(curr);
974 if (!next)
975 break;
976
977 if (!btrfs_is_continuous_delayed_item(curr, next))
978 break;
979
980 i++;
981 if (i > last_item)
982 break;
983 btrfs_item_key_to_cpu(leaf, &key, i);
984 }
985
986 if (!nitems)
987 return 0;
988
989 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
990 if (ret)
991 goto out;
992
993 list_for_each_entry_safe(curr, next, &head, tree_list) {
994 btrfs_delayed_item_release_metadata(root, curr);
995 list_del(&curr->tree_list);
996 btrfs_release_delayed_item(curr);
997 }
998
999out:
1000 return ret;
1001}
1002
1003static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
1004 struct btrfs_path *path,
1005 struct btrfs_root *root,
1006 struct btrfs_delayed_node *node)
1007{
1008 struct btrfs_delayed_item *curr, *prev;
1009 int ret = 0;
1010
1011do_again:
1012 mutex_lock(&node->mutex);
1013 curr = __btrfs_first_delayed_deletion_item(node);
1014 if (!curr)
1015 goto delete_fail;
1016
1017 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
1018 if (ret < 0)
1019 goto delete_fail;
1020 else if (ret > 0) {
1021 /*
1022 * can't find the item which the node points to, so this node
1023 * is invalid, just drop it.
1024 */
1025 prev = curr;
1026 curr = __btrfs_next_delayed_item(prev);
1027 btrfs_release_delayed_item(prev);
1028 ret = 0;
1029 btrfs_release_path(path);
1030 if (curr)
1031 goto do_again;
1032 else
1033 goto delete_fail;
1034 }
1035
1036 btrfs_batch_delete_items(trans, root, path, curr);
1037 btrfs_release_path(path);
1038 mutex_unlock(&node->mutex);
1039 goto do_again;
1040
1041delete_fail:
1042 btrfs_release_path(path);
1043 mutex_unlock(&node->mutex);
1044 return ret;
1045}
1046
1047static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
1048{
1049 struct btrfs_delayed_root *delayed_root;
1050
1051 if (delayed_node && delayed_node->inode_dirty) {
1052 BUG_ON(!delayed_node->root);
1053 delayed_node->inode_dirty = 0;
1054 delayed_node->count--;
1055
1056 delayed_root = delayed_node->root->fs_info->delayed_root;
1057 atomic_dec(&delayed_root->items);
1058 if (atomic_read(&delayed_root->items) <
1059 BTRFS_DELAYED_BACKGROUND &&
1060 waitqueue_active(&delayed_root->wait))
1061 wake_up(&delayed_root->wait);
1062 }
1063}
1064
1065static int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1066 struct btrfs_root *root,
1067 struct btrfs_path *path,
1068 struct btrfs_delayed_node *node)
1069{
1070 struct btrfs_key key;
1071 struct btrfs_inode_item *inode_item;
1072 struct extent_buffer *leaf;
1073 int ret;
1074
1075 mutex_lock(&node->mutex);
1076 if (!node->inode_dirty) {
1077 mutex_unlock(&node->mutex);
1078 return 0;
1079 }
1080
1081 key.objectid = node->inode_id;
1082 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
1083 key.offset = 0;
1084 ret = btrfs_lookup_inode(trans, root, path, &key, 1);
1085 if (ret > 0) {
1086 btrfs_release_path(path);
1087 mutex_unlock(&node->mutex);
1088 return -ENOENT;
1089 } else if (ret < 0) {
1090 mutex_unlock(&node->mutex);
1091 return ret;
1092 }
1093
1094 btrfs_unlock_up_safe(path, 1);
1095 leaf = path->nodes[0];
1096 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1097 struct btrfs_inode_item);
1098 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1099 sizeof(struct btrfs_inode_item));
1100 btrfs_mark_buffer_dirty(leaf);
1101 btrfs_release_path(path);
1102
1103 btrfs_delayed_inode_release_metadata(root, node);
1104 btrfs_release_delayed_inode(node);
1105 mutex_unlock(&node->mutex);
1106
1107 return 0;
1108}
1109
1110/*
1111 * Called when committing the transaction.
1112 * Returns 0 on success.
1113 * Returns < 0 on error and returns with an aborted transaction with any
1114 * outstanding delayed items cleaned up.
1115 */
1116int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1117 struct btrfs_root *root)
1118{
1119 struct btrfs_root *curr_root = root;
1120 struct btrfs_delayed_root *delayed_root;
1121 struct btrfs_delayed_node *curr_node, *prev_node;
1122 struct btrfs_path *path;
1123 struct btrfs_block_rsv *block_rsv;
1124 int ret = 0;
1125
1126 if (trans->aborted)
1127 return -EIO;
1128
1129 path = btrfs_alloc_path();
1130 if (!path)
1131 return -ENOMEM;
1132 path->leave_spinning = 1;
1133
1134 block_rsv = trans->block_rsv;
1135 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1136
1137 delayed_root = btrfs_get_delayed_root(root);
1138
1139 curr_node = btrfs_first_delayed_node(delayed_root);
1140 while (curr_node) {
1141 curr_root = curr_node->root;
1142 ret = btrfs_insert_delayed_items(trans, path, curr_root,
1143 curr_node);
1144 if (!ret)
1145 ret = btrfs_delete_delayed_items(trans, path,
1146 curr_root, curr_node);
1147 if (!ret)
1148 ret = btrfs_update_delayed_inode(trans, curr_root,
1149 path, curr_node);
1150 if (ret) {
1151 btrfs_release_delayed_node(curr_node);
1152 btrfs_abort_transaction(trans, root, ret);
1153 break;
1154 }
1155
1156 prev_node = curr_node;
1157 curr_node = btrfs_next_delayed_node(curr_node);
1158 btrfs_release_delayed_node(prev_node);
1159 }
1160
1161 btrfs_free_path(path);
1162 trans->block_rsv = block_rsv;
1163
1164 return ret;
1165}
1166
1167static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1168 struct btrfs_delayed_node *node)
1169{
1170 struct btrfs_path *path;
1171 struct btrfs_block_rsv *block_rsv;
1172 int ret;
1173
1174 path = btrfs_alloc_path();
1175 if (!path)
1176 return -ENOMEM;
1177 path->leave_spinning = 1;
1178
1179 block_rsv = trans->block_rsv;
1180 trans->block_rsv = &node->root->fs_info->delayed_block_rsv;
1181
1182 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1183 if (!ret)
1184 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1185 if (!ret)
1186 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1187 btrfs_free_path(path);
1188
1189 trans->block_rsv = block_rsv;
1190 return ret;
1191}
1192
1193int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1194 struct inode *inode)
1195{
1196 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1197 int ret;
1198
1199 if (!delayed_node)
1200 return 0;
1201
1202 mutex_lock(&delayed_node->mutex);
1203 if (!delayed_node->count) {
1204 mutex_unlock(&delayed_node->mutex);
1205 btrfs_release_delayed_node(delayed_node);
1206 return 0;
1207 }
1208 mutex_unlock(&delayed_node->mutex);
1209
1210 ret = __btrfs_commit_inode_delayed_items(trans, delayed_node);
1211 btrfs_release_delayed_node(delayed_node);
1212 return ret;
1213}
1214
1215void btrfs_remove_delayed_node(struct inode *inode)
1216{
1217 struct btrfs_delayed_node *delayed_node;
1218
1219 delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1220 if (!delayed_node)
1221 return;
1222
1223 BTRFS_I(inode)->delayed_node = NULL;
1224 btrfs_release_delayed_node(delayed_node);
1225}
1226
1227struct btrfs_async_delayed_node {
1228 struct btrfs_root *root;
1229 struct btrfs_delayed_node *delayed_node;
1230 struct btrfs_work work;
1231};
1232
1233static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
1234{
1235 struct btrfs_async_delayed_node *async_node;
1236 struct btrfs_trans_handle *trans;
1237 struct btrfs_path *path;
1238 struct btrfs_delayed_node *delayed_node = NULL;
1239 struct btrfs_root *root;
1240 struct btrfs_block_rsv *block_rsv;
1241 unsigned long nr = 0;
1242 int need_requeue = 0;
1243 int ret;
1244
1245 async_node = container_of(work, struct btrfs_async_delayed_node, work);
1246
1247 path = btrfs_alloc_path();
1248 if (!path)
1249 goto out;
1250 path->leave_spinning = 1;
1251
1252 delayed_node = async_node->delayed_node;
1253 root = delayed_node->root;
1254
1255 trans = btrfs_join_transaction(root);
1256 if (IS_ERR(trans))
1257 goto free_path;
1258
1259 block_rsv = trans->block_rsv;
1260 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1261
1262 ret = btrfs_insert_delayed_items(trans, path, root, delayed_node);
1263 if (!ret)
1264 ret = btrfs_delete_delayed_items(trans, path, root,
1265 delayed_node);
1266
1267 if (!ret)
1268 btrfs_update_delayed_inode(trans, root, path, delayed_node);
1269
1270 /*
1271 * Maybe new delayed items have been inserted, so we need requeue
1272 * the work. Besides that, we must dequeue the empty delayed nodes
1273 * to avoid the race between delayed items balance and the worker.
1274 * The race like this:
1275 * Task1 Worker thread
1276 * count == 0, needn't requeue
1277 * also needn't insert the
1278 * delayed node into prepare
1279 * list again.
1280 * add lots of delayed items
1281 * queue the delayed node
1282 * already in the list,
1283 * and not in the prepare
1284 * list, it means the delayed
1285 * node is being dealt with
1286 * by the worker.
1287 * do delayed items balance
1288 * the delayed node is being
1289 * dealt with by the worker
1290 * now, just wait.
1291 * the worker goto idle.
1292 * Task1 will sleep until the transaction is commited.
1293 */
1294 mutex_lock(&delayed_node->mutex);
1295 if (delayed_node->count)
1296 need_requeue = 1;
1297 else
1298 btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
1299 delayed_node);
1300 mutex_unlock(&delayed_node->mutex);
1301
1302 nr = trans->blocks_used;
1303
1304 trans->block_rsv = block_rsv;
1305 btrfs_end_transaction_dmeta(trans, root);
1306 __btrfs_btree_balance_dirty(root, nr);
1307free_path:
1308 btrfs_free_path(path);
1309out:
1310 if (need_requeue)
1311 btrfs_requeue_work(&async_node->work);
1312 else {
1313 btrfs_release_prepared_delayed_node(delayed_node);
1314 kfree(async_node);
1315 }
1316}
1317
1318static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1319 struct btrfs_root *root, int all)
1320{
1321 struct btrfs_async_delayed_node *async_node;
1322 struct btrfs_delayed_node *curr;
1323 int count = 0;
1324
1325again:
1326 curr = btrfs_first_prepared_delayed_node(delayed_root);
1327 if (!curr)
1328 return 0;
1329
1330 async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
1331 if (!async_node) {
1332 btrfs_release_prepared_delayed_node(curr);
1333 return -ENOMEM;
1334 }
1335
1336 async_node->root = root;
1337 async_node->delayed_node = curr;
1338
1339 async_node->work.func = btrfs_async_run_delayed_node_done;
1340 async_node->work.flags = 0;
1341
1342 btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
1343 count++;
1344
1345 if (all || count < 4)
1346 goto again;
1347
1348 return 0;
1349}
1350
1351void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1352{
1353 struct btrfs_delayed_root *delayed_root;
1354 delayed_root = btrfs_get_delayed_root(root);
1355 WARN_ON(btrfs_first_delayed_node(delayed_root));
1356}
1357
1358void btrfs_balance_delayed_items(struct btrfs_root *root)
1359{
1360 struct btrfs_delayed_root *delayed_root;
1361
1362 delayed_root = btrfs_get_delayed_root(root);
1363
1364 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1365 return;
1366
1367 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1368 int ret;
1369 ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
1370 if (ret)
1371 return;
1372
1373 wait_event_interruptible_timeout(
1374 delayed_root->wait,
1375 (atomic_read(&delayed_root->items) <
1376 BTRFS_DELAYED_BACKGROUND),
1377 HZ);
1378 return;
1379 }
1380
1381 btrfs_wq_run_delayed_node(delayed_root, root, 0);
1382}
1383
1384/* Will return 0 or -ENOMEM */
1385int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1386 struct btrfs_root *root, const char *name,
1387 int name_len, struct inode *dir,
1388 struct btrfs_disk_key *disk_key, u8 type,
1389 u64 index)
1390{
1391 struct btrfs_delayed_node *delayed_node;
1392 struct btrfs_delayed_item *delayed_item;
1393 struct btrfs_dir_item *dir_item;
1394 int ret;
1395
1396 delayed_node = btrfs_get_or_create_delayed_node(dir);
1397 if (IS_ERR(delayed_node))
1398 return PTR_ERR(delayed_node);
1399
1400 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1401 if (!delayed_item) {
1402 ret = -ENOMEM;
1403 goto release_node;
1404 }
1405
1406 delayed_item->key.objectid = btrfs_ino(dir);
1407 btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
1408 delayed_item->key.offset = index;
1409
1410 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1411 dir_item->location = *disk_key;
1412 dir_item->transid = cpu_to_le64(trans->transid);
1413 dir_item->data_len = 0;
1414 dir_item->name_len = cpu_to_le16(name_len);
1415 dir_item->type = type;
1416 memcpy((char *)(dir_item + 1), name, name_len);
1417
1418 ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1419 /*
1420 * we have reserved enough space when we start a new transaction,
1421 * so reserving metadata failure is impossible
1422 */
1423 BUG_ON(ret);
1424
1425
1426 mutex_lock(&delayed_node->mutex);
1427 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1428 if (unlikely(ret)) {
1429 printk(KERN_ERR "err add delayed dir index item(name: %s) into "
1430 "the insertion tree of the delayed node"
1431 "(root id: %llu, inode id: %llu, errno: %d)\n",
1432 name,
1433 (unsigned long long)delayed_node->root->objectid,
1434 (unsigned long long)delayed_node->inode_id,
1435 ret);
1436 BUG();
1437 }
1438 mutex_unlock(&delayed_node->mutex);
1439
1440release_node:
1441 btrfs_release_delayed_node(delayed_node);
1442 return ret;
1443}
1444
1445static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1446 struct btrfs_delayed_node *node,
1447 struct btrfs_key *key)
1448{
1449 struct btrfs_delayed_item *item;
1450
1451 mutex_lock(&node->mutex);
1452 item = __btrfs_lookup_delayed_insertion_item(node, key);
1453 if (!item) {
1454 mutex_unlock(&node->mutex);
1455 return 1;
1456 }
1457
1458 btrfs_delayed_item_release_metadata(root, item);
1459 btrfs_release_delayed_item(item);
1460 mutex_unlock(&node->mutex);
1461 return 0;
1462}
1463
1464int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1465 struct btrfs_root *root, struct inode *dir,
1466 u64 index)
1467{
1468 struct btrfs_delayed_node *node;
1469 struct btrfs_delayed_item *item;
1470 struct btrfs_key item_key;
1471 int ret;
1472
1473 node = btrfs_get_or_create_delayed_node(dir);
1474 if (IS_ERR(node))
1475 return PTR_ERR(node);
1476
1477 item_key.objectid = btrfs_ino(dir);
1478 btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
1479 item_key.offset = index;
1480
1481 ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1482 if (!ret)
1483 goto end;
1484
1485 item = btrfs_alloc_delayed_item(0);
1486 if (!item) {
1487 ret = -ENOMEM;
1488 goto end;
1489 }
1490
1491 item->key = item_key;
1492
1493 ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1494 /*
1495 * we have reserved enough space when we start a new transaction,
1496 * so reserving metadata failure is impossible.
1497 */
1498 BUG_ON(ret);
1499
1500 mutex_lock(&node->mutex);
1501 ret = __btrfs_add_delayed_deletion_item(node, item);
1502 if (unlikely(ret)) {
1503 printk(KERN_ERR "err add delayed dir index item(index: %llu) "
1504 "into the deletion tree of the delayed node"
1505 "(root id: %llu, inode id: %llu, errno: %d)\n",
1506 (unsigned long long)index,
1507 (unsigned long long)node->root->objectid,
1508 (unsigned long long)node->inode_id,
1509 ret);
1510 BUG();
1511 }
1512 mutex_unlock(&node->mutex);
1513end:
1514 btrfs_release_delayed_node(node);
1515 return ret;
1516}
1517
1518int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1519{
1520 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1521
1522 if (!delayed_node)
1523 return -ENOENT;
1524
1525 /*
1526 * Since we have held i_mutex of this directory, it is impossible that
1527 * a new directory index is added into the delayed node and index_cnt
1528 * is updated now. So we needn't lock the delayed node.
1529 */
1530 if (!delayed_node->index_cnt) {
1531 btrfs_release_delayed_node(delayed_node);
1532 return -EINVAL;
1533 }
1534
1535 BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1536 btrfs_release_delayed_node(delayed_node);
1537 return 0;
1538}
1539
1540void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1541 struct list_head *del_list)
1542{
1543 struct btrfs_delayed_node *delayed_node;
1544 struct btrfs_delayed_item *item;
1545
1546 delayed_node = btrfs_get_delayed_node(inode);
1547 if (!delayed_node)
1548 return;
1549
1550 mutex_lock(&delayed_node->mutex);
1551 item = __btrfs_first_delayed_insertion_item(delayed_node);
1552 while (item) {
1553 atomic_inc(&item->refs);
1554 list_add_tail(&item->readdir_list, ins_list);
1555 item = __btrfs_next_delayed_item(item);
1556 }
1557
1558 item = __btrfs_first_delayed_deletion_item(delayed_node);
1559 while (item) {
1560 atomic_inc(&item->refs);
1561 list_add_tail(&item->readdir_list, del_list);
1562 item = __btrfs_next_delayed_item(item);
1563 }
1564 mutex_unlock(&delayed_node->mutex);
1565 /*
1566 * This delayed node is still cached in the btrfs inode, so refs
1567 * must be > 1 now, and we needn't check it is going to be freed
1568 * or not.
1569 *
1570 * Besides that, this function is used to read dir, we do not
1571 * insert/delete delayed items in this period. So we also needn't
1572 * requeue or dequeue this delayed node.
1573 */
1574 atomic_dec(&delayed_node->refs);
1575}
1576
1577void btrfs_put_delayed_items(struct list_head *ins_list,
1578 struct list_head *del_list)
1579{
1580 struct btrfs_delayed_item *curr, *next;
1581
1582 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1583 list_del(&curr->readdir_list);
1584 if (atomic_dec_and_test(&curr->refs))
1585 kfree(curr);
1586 }
1587
1588 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1589 list_del(&curr->readdir_list);
1590 if (atomic_dec_and_test(&curr->refs))
1591 kfree(curr);
1592 }
1593}
1594
1595int btrfs_should_delete_dir_index(struct list_head *del_list,
1596 u64 index)
1597{
1598 struct btrfs_delayed_item *curr, *next;
1599 int ret;
1600
1601 if (list_empty(del_list))
1602 return 0;
1603
1604 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1605 if (curr->key.offset > index)
1606 break;
1607
1608 list_del(&curr->readdir_list);
1609 ret = (curr->key.offset == index);
1610
1611 if (atomic_dec_and_test(&curr->refs))
1612 kfree(curr);
1613
1614 if (ret)
1615 return 1;
1616 else
1617 continue;
1618 }
1619 return 0;
1620}
1621
1622/*
1623 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1624 *
1625 */
1626int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
1627 filldir_t filldir,
1628 struct list_head *ins_list)
1629{
1630 struct btrfs_dir_item *di;
1631 struct btrfs_delayed_item *curr, *next;
1632 struct btrfs_key location;
1633 char *name;
1634 int name_len;
1635 int over = 0;
1636 unsigned char d_type;
1637
1638 if (list_empty(ins_list))
1639 return 0;
1640
1641 /*
1642 * Changing the data of the delayed item is impossible. So
1643 * we needn't lock them. And we have held i_mutex of the
1644 * directory, nobody can delete any directory indexes now.
1645 */
1646 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1647 list_del(&curr->readdir_list);
1648
1649 if (curr->key.offset < filp->f_pos) {
1650 if (atomic_dec_and_test(&curr->refs))
1651 kfree(curr);
1652 continue;
1653 }
1654
1655 filp->f_pos = curr->key.offset;
1656
1657 di = (struct btrfs_dir_item *)curr->data;
1658 name = (char *)(di + 1);
1659 name_len = le16_to_cpu(di->name_len);
1660
1661 d_type = btrfs_filetype_table[di->type];
1662 btrfs_disk_key_to_cpu(&location, &di->location);
1663
1664 over = filldir(dirent, name, name_len, curr->key.offset,
1665 location.objectid, d_type);
1666
1667 if (atomic_dec_and_test(&curr->refs))
1668 kfree(curr);
1669
1670 if (over)
1671 return 1;
1672 }
1673 return 0;
1674}
1675
1676BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1677 generation, 64);
1678BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1679 sequence, 64);
1680BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1681 transid, 64);
1682BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1683BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1684 nbytes, 64);
1685BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1686 block_group, 64);
1687BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1688BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1689BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1690BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1691BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1692BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1693
1694BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1695BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1696
1697static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1698 struct btrfs_inode_item *inode_item,
1699 struct inode *inode)
1700{
1701 btrfs_set_stack_inode_uid(inode_item, inode->i_uid);
1702 btrfs_set_stack_inode_gid(inode_item, inode->i_gid);
1703 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1704 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1705 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1706 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1707 btrfs_set_stack_inode_generation(inode_item,
1708 BTRFS_I(inode)->generation);
1709 btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1710 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1711 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1712 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1713 btrfs_set_stack_inode_block_group(inode_item, 0);
1714
1715 btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
1716 inode->i_atime.tv_sec);
1717 btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
1718 inode->i_atime.tv_nsec);
1719
1720 btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
1721 inode->i_mtime.tv_sec);
1722 btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
1723 inode->i_mtime.tv_nsec);
1724
1725 btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
1726 inode->i_ctime.tv_sec);
1727 btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
1728 inode->i_ctime.tv_nsec);
1729}
1730
1731int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1732{
1733 struct btrfs_delayed_node *delayed_node;
1734 struct btrfs_inode_item *inode_item;
1735 struct btrfs_timespec *tspec;
1736
1737 delayed_node = btrfs_get_delayed_node(inode);
1738 if (!delayed_node)
1739 return -ENOENT;
1740
1741 mutex_lock(&delayed_node->mutex);
1742 if (!delayed_node->inode_dirty) {
1743 mutex_unlock(&delayed_node->mutex);
1744 btrfs_release_delayed_node(delayed_node);
1745 return -ENOENT;
1746 }
1747
1748 inode_item = &delayed_node->inode_item;
1749
1750 inode->i_uid = btrfs_stack_inode_uid(inode_item);
1751 inode->i_gid = btrfs_stack_inode_gid(inode_item);
1752 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1753 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1754 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1755 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1756 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1757 inode->i_version = btrfs_stack_inode_sequence(inode_item);
1758 inode->i_rdev = 0;
1759 *rdev = btrfs_stack_inode_rdev(inode_item);
1760 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1761
1762 tspec = btrfs_inode_atime(inode_item);
1763 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
1764 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1765
1766 tspec = btrfs_inode_mtime(inode_item);
1767 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
1768 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1769
1770 tspec = btrfs_inode_ctime(inode_item);
1771 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
1772 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1773
1774 inode->i_generation = BTRFS_I(inode)->generation;
1775 BTRFS_I(inode)->index_cnt = (u64)-1;
1776
1777 mutex_unlock(&delayed_node->mutex);
1778 btrfs_release_delayed_node(delayed_node);
1779 return 0;
1780}
1781
1782int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1783 struct btrfs_root *root, struct inode *inode)
1784{
1785 struct btrfs_delayed_node *delayed_node;
1786 int ret = 0;
1787
1788 delayed_node = btrfs_get_or_create_delayed_node(inode);
1789 if (IS_ERR(delayed_node))
1790 return PTR_ERR(delayed_node);
1791
1792 mutex_lock(&delayed_node->mutex);
1793 if (delayed_node->inode_dirty) {
1794 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1795 goto release_node;
1796 }
1797
1798 ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1799 delayed_node);
1800 if (ret)
1801 goto release_node;
1802
1803 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1804 delayed_node->inode_dirty = 1;
1805 delayed_node->count++;
1806 atomic_inc(&root->fs_info->delayed_root->items);
1807release_node:
1808 mutex_unlock(&delayed_node->mutex);
1809 btrfs_release_delayed_node(delayed_node);
1810 return ret;
1811}
1812
1813static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1814{
1815 struct btrfs_root *root = delayed_node->root;
1816 struct btrfs_delayed_item *curr_item, *prev_item;
1817
1818 mutex_lock(&delayed_node->mutex);
1819 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1820 while (curr_item) {
1821 btrfs_delayed_item_release_metadata(root, curr_item);
1822 prev_item = curr_item;
1823 curr_item = __btrfs_next_delayed_item(prev_item);
1824 btrfs_release_delayed_item(prev_item);
1825 }
1826
1827 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1828 while (curr_item) {
1829 btrfs_delayed_item_release_metadata(root, curr_item);
1830 prev_item = curr_item;
1831 curr_item = __btrfs_next_delayed_item(prev_item);
1832 btrfs_release_delayed_item(prev_item);
1833 }
1834
1835 if (delayed_node->inode_dirty) {
1836 btrfs_delayed_inode_release_metadata(root, delayed_node);
1837 btrfs_release_delayed_inode(delayed_node);
1838 }
1839 mutex_unlock(&delayed_node->mutex);
1840}
1841
1842void btrfs_kill_delayed_inode_items(struct inode *inode)
1843{
1844 struct btrfs_delayed_node *delayed_node;
1845
1846 delayed_node = btrfs_get_delayed_node(inode);
1847 if (!delayed_node)
1848 return;
1849
1850 __btrfs_kill_delayed_node(delayed_node);
1851 btrfs_release_delayed_node(delayed_node);
1852}
1853
1854void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1855{
1856 u64 inode_id = 0;
1857 struct btrfs_delayed_node *delayed_nodes[8];
1858 int i, n;
1859
1860 while (1) {
1861 spin_lock(&root->inode_lock);
1862 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1863 (void **)delayed_nodes, inode_id,
1864 ARRAY_SIZE(delayed_nodes));
1865 if (!n) {
1866 spin_unlock(&root->inode_lock);
1867 break;
1868 }
1869
1870 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1871
1872 for (i = 0; i < n; i++)
1873 atomic_inc(&delayed_nodes[i]->refs);
1874 spin_unlock(&root->inode_lock);
1875
1876 for (i = 0; i < n; i++) {
1877 __btrfs_kill_delayed_node(delayed_nodes[i]);
1878 btrfs_release_delayed_node(delayed_nodes[i]);
1879 }
1880 }
1881}
1882
1883void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
1884{
1885 struct btrfs_delayed_root *delayed_root;
1886 struct btrfs_delayed_node *curr_node, *prev_node;
1887
1888 delayed_root = btrfs_get_delayed_root(root);
1889
1890 curr_node = btrfs_first_delayed_node(delayed_root);
1891 while (curr_node) {
1892 __btrfs_kill_delayed_node(curr_node);
1893
1894 prev_node = curr_node;
1895 curr_node = btrfs_next_delayed_node(curr_node);
1896 btrfs_release_delayed_node(prev_node);
1897 }
1898}
1899