Linux Audio

Check our new training course

Loading...
v4.10.11
   1#ifndef __LINUX_USB_H
   2#define __LINUX_USB_H
   3
   4#include <linux/mod_devicetable.h>
   5#include <linux/usb/ch9.h>
   6
   7#define USB_MAJOR			180
   8#define USB_DEVICE_MAJOR		189
   9
  10
  11#ifdef __KERNEL__
  12
  13#include <linux/errno.h>        /* for -ENODEV */
  14#include <linux/delay.h>	/* for mdelay() */
  15#include <linux/interrupt.h>	/* for in_interrupt() */
  16#include <linux/list.h>		/* for struct list_head */
  17#include <linux/kref.h>		/* for struct kref */
  18#include <linux/device.h>	/* for struct device */
  19#include <linux/fs.h>		/* for struct file_operations */
  20#include <linux/completion.h>	/* for struct completion */
  21#include <linux/sched.h>	/* for current && schedule_timeout */
  22#include <linux/mutex.h>	/* for struct mutex */
  23#include <linux/pm_runtime.h>	/* for runtime PM */
  24
  25struct usb_device;
  26struct usb_driver;
  27struct wusb_dev;
  28
  29/*-------------------------------------------------------------------------*/
  30
  31/*
  32 * Host-side wrappers for standard USB descriptors ... these are parsed
  33 * from the data provided by devices.  Parsing turns them from a flat
  34 * sequence of descriptors into a hierarchy:
  35 *
  36 *  - devices have one (usually) or more configs;
  37 *  - configs have one (often) or more interfaces;
  38 *  - interfaces have one (usually) or more settings;
  39 *  - each interface setting has zero or (usually) more endpoints.
  40 *  - a SuperSpeed endpoint has a companion descriptor
  41 *
  42 * And there might be other descriptors mixed in with those.
  43 *
  44 * Devices may also have class-specific or vendor-specific descriptors.
  45 */
  46
  47struct ep_device;
  48
  49/**
  50 * struct usb_host_endpoint - host-side endpoint descriptor and queue
  51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
  52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
  53 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
  54 * @urb_list: urbs queued to this endpoint; maintained by usbcore
  55 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
  56 *	with one or more transfer descriptors (TDs) per urb
  57 * @ep_dev: ep_device for sysfs info
  58 * @extra: descriptors following this endpoint in the configuration
  59 * @extralen: how many bytes of "extra" are valid
  60 * @enabled: URBs may be submitted to this endpoint
  61 * @streams: number of USB-3 streams allocated on the endpoint
  62 *
  63 * USB requests are always queued to a given endpoint, identified by a
  64 * descriptor within an active interface in a given USB configuration.
  65 */
  66struct usb_host_endpoint {
  67	struct usb_endpoint_descriptor		desc;
  68	struct usb_ss_ep_comp_descriptor	ss_ep_comp;
  69	struct usb_ssp_isoc_ep_comp_descriptor	ssp_isoc_ep_comp;
  70	struct list_head		urb_list;
  71	void				*hcpriv;
  72	struct ep_device		*ep_dev;	/* For sysfs info */
  73
  74	unsigned char *extra;   /* Extra descriptors */
  75	int extralen;
  76	int enabled;
  77	int streams;
  78};
  79
  80/* host-side wrapper for one interface setting's parsed descriptors */
  81struct usb_host_interface {
  82	struct usb_interface_descriptor	desc;
  83
  84	int extralen;
  85	unsigned char *extra;   /* Extra descriptors */
  86
  87	/* array of desc.bNumEndpoints endpoints associated with this
  88	 * interface setting.  these will be in no particular order.
  89	 */
  90	struct usb_host_endpoint *endpoint;
  91
  92	char *string;		/* iInterface string, if present */
  93};
  94
  95enum usb_interface_condition {
  96	USB_INTERFACE_UNBOUND = 0,
  97	USB_INTERFACE_BINDING,
  98	USB_INTERFACE_BOUND,
  99	USB_INTERFACE_UNBINDING,
 100};
 101
 102/**
 103 * struct usb_interface - what usb device drivers talk to
 104 * @altsetting: array of interface structures, one for each alternate
 105 *	setting that may be selected.  Each one includes a set of
 106 *	endpoint configurations.  They will be in no particular order.
 107 * @cur_altsetting: the current altsetting.
 108 * @num_altsetting: number of altsettings defined.
 109 * @intf_assoc: interface association descriptor
 110 * @minor: the minor number assigned to this interface, if this
 111 *	interface is bound to a driver that uses the USB major number.
 112 *	If this interface does not use the USB major, this field should
 113 *	be unused.  The driver should set this value in the probe()
 114 *	function of the driver, after it has been assigned a minor
 115 *	number from the USB core by calling usb_register_dev().
 116 * @condition: binding state of the interface: not bound, binding
 117 *	(in probe()), bound to a driver, or unbinding (in disconnect())
 118 * @sysfs_files_created: sysfs attributes exist
 119 * @ep_devs_created: endpoint child pseudo-devices exist
 120 * @unregistering: flag set when the interface is being unregistered
 121 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
 122 *	capability during autosuspend.
 123 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
 124 *	has been deferred.
 125 * @needs_binding: flag set when the driver should be re-probed or unbound
 126 *	following a reset or suspend operation it doesn't support.
 127 * @authorized: This allows to (de)authorize individual interfaces instead
 128 *	a whole device in contrast to the device authorization.
 129 * @dev: driver model's view of this device
 130 * @usb_dev: if an interface is bound to the USB major, this will point
 131 *	to the sysfs representation for that device.
 132 * @pm_usage_cnt: PM usage counter for this interface
 133 * @reset_ws: Used for scheduling resets from atomic context.
 
 
 
 
 134 * @resetting_device: USB core reset the device, so use alt setting 0 as
 135 *	current; needs bandwidth alloc after reset.
 136 *
 137 * USB device drivers attach to interfaces on a physical device.  Each
 138 * interface encapsulates a single high level function, such as feeding
 139 * an audio stream to a speaker or reporting a change in a volume control.
 140 * Many USB devices only have one interface.  The protocol used to talk to
 141 * an interface's endpoints can be defined in a usb "class" specification,
 142 * or by a product's vendor.  The (default) control endpoint is part of
 143 * every interface, but is never listed among the interface's descriptors.
 144 *
 145 * The driver that is bound to the interface can use standard driver model
 146 * calls such as dev_get_drvdata() on the dev member of this structure.
 147 *
 148 * Each interface may have alternate settings.  The initial configuration
 149 * of a device sets altsetting 0, but the device driver can change
 150 * that setting using usb_set_interface().  Alternate settings are often
 151 * used to control the use of periodic endpoints, such as by having
 152 * different endpoints use different amounts of reserved USB bandwidth.
 153 * All standards-conformant USB devices that use isochronous endpoints
 154 * will use them in non-default settings.
 155 *
 156 * The USB specification says that alternate setting numbers must run from
 157 * 0 to one less than the total number of alternate settings.  But some
 158 * devices manage to mess this up, and the structures aren't necessarily
 159 * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
 160 * look up an alternate setting in the altsetting array based on its number.
 161 */
 162struct usb_interface {
 163	/* array of alternate settings for this interface,
 164	 * stored in no particular order */
 165	struct usb_host_interface *altsetting;
 166
 167	struct usb_host_interface *cur_altsetting;	/* the currently
 168					 * active alternate setting */
 169	unsigned num_altsetting;	/* number of alternate settings */
 170
 171	/* If there is an interface association descriptor then it will list
 172	 * the associated interfaces */
 173	struct usb_interface_assoc_descriptor *intf_assoc;
 174
 175	int minor;			/* minor number this interface is
 176					 * bound to */
 177	enum usb_interface_condition condition;		/* state of binding */
 178	unsigned sysfs_files_created:1;	/* the sysfs attributes exist */
 179	unsigned ep_devs_created:1;	/* endpoint "devices" exist */
 180	unsigned unregistering:1;	/* unregistration is in progress */
 181	unsigned needs_remote_wakeup:1;	/* driver requires remote wakeup */
 182	unsigned needs_altsetting0:1;	/* switch to altsetting 0 is pending */
 183	unsigned needs_binding:1;	/* needs delayed unbind/rebind */
 
 184	unsigned resetting_device:1;	/* true: bandwidth alloc after reset */
 185	unsigned authorized:1;		/* used for interface authorization */
 186
 187	struct device dev;		/* interface specific device info */
 188	struct device *usb_dev;
 189	atomic_t pm_usage_cnt;		/* usage counter for autosuspend */
 190	struct work_struct reset_ws;	/* for resets in atomic context */
 191};
 192#define	to_usb_interface(d) container_of(d, struct usb_interface, dev)
 193
 194static inline void *usb_get_intfdata(struct usb_interface *intf)
 195{
 196	return dev_get_drvdata(&intf->dev);
 197}
 198
 199static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
 200{
 201	dev_set_drvdata(&intf->dev, data);
 202}
 203
 204struct usb_interface *usb_get_intf(struct usb_interface *intf);
 205void usb_put_intf(struct usb_interface *intf);
 206
 207/* Hard limit */
 208#define USB_MAXENDPOINTS	30
 209/* this maximum is arbitrary */
 210#define USB_MAXINTERFACES	32
 211#define USB_MAXIADS		(USB_MAXINTERFACES/2)
 212
 213/*
 214 * USB Resume Timer: Every Host controller driver should drive the resume
 215 * signalling on the bus for the amount of time defined by this macro.
 216 *
 217 * That way we will have a 'stable' behavior among all HCDs supported by Linux.
 218 *
 219 * Note that the USB Specification states we should drive resume for *at least*
 220 * 20 ms, but it doesn't give an upper bound. This creates two possible
 221 * situations which we want to avoid:
 222 *
 223 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
 224 * us to fail USB Electrical Tests, thus failing Certification
 225 *
 226 * (b) Some (many) devices actually need more than 20 ms of resume signalling,
 227 * and while we can argue that's against the USB Specification, we don't have
 228 * control over which devices a certification laboratory will be using for
 229 * certification. If CertLab uses a device which was tested against Windows and
 230 * that happens to have relaxed resume signalling rules, we might fall into
 231 * situations where we fail interoperability and electrical tests.
 232 *
 233 * In order to avoid both conditions, we're using a 40 ms resume timeout, which
 234 * should cope with both LPJ calibration errors and devices not following every
 235 * detail of the USB Specification.
 236 */
 237#define USB_RESUME_TIMEOUT	40 /* ms */
 238
 239/**
 240 * struct usb_interface_cache - long-term representation of a device interface
 241 * @num_altsetting: number of altsettings defined.
 242 * @ref: reference counter.
 243 * @altsetting: variable-length array of interface structures, one for
 244 *	each alternate setting that may be selected.  Each one includes a
 245 *	set of endpoint configurations.  They will be in no particular order.
 246 *
 247 * These structures persist for the lifetime of a usb_device, unlike
 248 * struct usb_interface (which persists only as long as its configuration
 249 * is installed).  The altsetting arrays can be accessed through these
 250 * structures at any time, permitting comparison of configurations and
 251 * providing support for the /proc/bus/usb/devices pseudo-file.
 252 */
 253struct usb_interface_cache {
 254	unsigned num_altsetting;	/* number of alternate settings */
 255	struct kref ref;		/* reference counter */
 256
 257	/* variable-length array of alternate settings for this interface,
 258	 * stored in no particular order */
 259	struct usb_host_interface altsetting[0];
 260};
 261#define	ref_to_usb_interface_cache(r) \
 262		container_of(r, struct usb_interface_cache, ref)
 263#define	altsetting_to_usb_interface_cache(a) \
 264		container_of(a, struct usb_interface_cache, altsetting[0])
 265
 266/**
 267 * struct usb_host_config - representation of a device's configuration
 268 * @desc: the device's configuration descriptor.
 269 * @string: pointer to the cached version of the iConfiguration string, if
 270 *	present for this configuration.
 271 * @intf_assoc: list of any interface association descriptors in this config
 272 * @interface: array of pointers to usb_interface structures, one for each
 273 *	interface in the configuration.  The number of interfaces is stored
 274 *	in desc.bNumInterfaces.  These pointers are valid only while the
 275 *	the configuration is active.
 276 * @intf_cache: array of pointers to usb_interface_cache structures, one
 277 *	for each interface in the configuration.  These structures exist
 278 *	for the entire life of the device.
 279 * @extra: pointer to buffer containing all extra descriptors associated
 280 *	with this configuration (those preceding the first interface
 281 *	descriptor).
 282 * @extralen: length of the extra descriptors buffer.
 283 *
 284 * USB devices may have multiple configurations, but only one can be active
 285 * at any time.  Each encapsulates a different operational environment;
 286 * for example, a dual-speed device would have separate configurations for
 287 * full-speed and high-speed operation.  The number of configurations
 288 * available is stored in the device descriptor as bNumConfigurations.
 289 *
 290 * A configuration can contain multiple interfaces.  Each corresponds to
 291 * a different function of the USB device, and all are available whenever
 292 * the configuration is active.  The USB standard says that interfaces
 293 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
 294 * of devices get this wrong.  In addition, the interface array is not
 295 * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
 296 * look up an interface entry based on its number.
 297 *
 298 * Device drivers should not attempt to activate configurations.  The choice
 299 * of which configuration to install is a policy decision based on such
 300 * considerations as available power, functionality provided, and the user's
 301 * desires (expressed through userspace tools).  However, drivers can call
 302 * usb_reset_configuration() to reinitialize the current configuration and
 303 * all its interfaces.
 304 */
 305struct usb_host_config {
 306	struct usb_config_descriptor	desc;
 307
 308	char *string;		/* iConfiguration string, if present */
 309
 310	/* List of any Interface Association Descriptors in this
 311	 * configuration. */
 312	struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
 313
 314	/* the interfaces associated with this configuration,
 315	 * stored in no particular order */
 316	struct usb_interface *interface[USB_MAXINTERFACES];
 317
 318	/* Interface information available even when this is not the
 319	 * active configuration */
 320	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
 321
 322	unsigned char *extra;   /* Extra descriptors */
 323	int extralen;
 324};
 325
 326/* USB2.0 and USB3.0 device BOS descriptor set */
 327struct usb_host_bos {
 328	struct usb_bos_descriptor	*desc;
 329
 330	/* wireless cap descriptor is handled by wusb */
 331	struct usb_ext_cap_descriptor	*ext_cap;
 332	struct usb_ss_cap_descriptor	*ss_cap;
 333	struct usb_ssp_cap_descriptor	*ssp_cap;
 334	struct usb_ss_container_id_descriptor	*ss_id;
 335	struct usb_ptm_cap_descriptor	*ptm_cap;
 336};
 337
 338int __usb_get_extra_descriptor(char *buffer, unsigned size,
 339	unsigned char type, void **ptr);
 340#define usb_get_extra_descriptor(ifpoint, type, ptr) \
 341				__usb_get_extra_descriptor((ifpoint)->extra, \
 342				(ifpoint)->extralen, \
 343				type, (void **)ptr)
 344
 345/* ----------------------------------------------------------------------- */
 346
 347/* USB device number allocation bitmap */
 348struct usb_devmap {
 349	unsigned long devicemap[128 / (8*sizeof(unsigned long))];
 350};
 351
 352/*
 353 * Allocated per bus (tree of devices) we have:
 354 */
 355struct usb_bus {
 356	struct device *controller;	/* host/master side hardware */
 357	int busnum;			/* Bus number (in order of reg) */
 358	const char *bus_name;		/* stable id (PCI slot_name etc) */
 359	u8 uses_dma;			/* Does the host controller use DMA? */
 360	u8 uses_pio_for_control;	/*
 361					 * Does the host controller use PIO
 362					 * for control transfers?
 363					 */
 364	u8 otg_port;			/* 0, or number of OTG/HNP port */
 365	unsigned is_b_host:1;		/* true during some HNP roleswitches */
 366	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
 367	unsigned no_stop_on_short:1;    /*
 368					 * Quirk: some controllers don't stop
 369					 * the ep queue on a short transfer
 370					 * with the URB_SHORT_NOT_OK flag set.
 371					 */
 372	unsigned no_sg_constraint:1;	/* no sg constraint */
 373	unsigned sg_tablesize;		/* 0 or largest number of sg list entries */
 374
 375	int devnum_next;		/* Next open device number in
 376					 * round-robin allocation */
 377	struct mutex devnum_next_mutex; /* devnum_next mutex */
 378
 379	struct usb_devmap devmap;	/* device address allocation map */
 380	struct usb_device *root_hub;	/* Root hub */
 381	struct usb_bus *hs_companion;	/* Companion EHCI bus, if any */
 
 382
 383	int bandwidth_allocated;	/* on this bus: how much of the time
 384					 * reserved for periodic (intr/iso)
 385					 * requests is used, on average?
 386					 * Units: microseconds/frame.
 387					 * Limits: Full/low speed reserve 90%,
 388					 * while high speed reserves 80%.
 389					 */
 390	int bandwidth_int_reqs;		/* number of Interrupt requests */
 391	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
 392
 393	unsigned resuming_ports;	/* bit array: resuming root-hub ports */
 394
 395#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
 396	struct mon_bus *mon_bus;	/* non-null when associated */
 397	int monitored;			/* non-zero when monitored */
 398#endif
 399};
 400
 401struct usb_dev_state;
 402
 403/* ----------------------------------------------------------------------- */
 404
 405struct usb_tt;
 406
 407enum usb_device_removable {
 408	USB_DEVICE_REMOVABLE_UNKNOWN = 0,
 409	USB_DEVICE_REMOVABLE,
 410	USB_DEVICE_FIXED,
 411};
 412
 413enum usb_port_connect_type {
 414	USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
 415	USB_PORT_CONNECT_TYPE_HOT_PLUG,
 416	USB_PORT_CONNECT_TYPE_HARD_WIRED,
 417	USB_PORT_NOT_USED,
 418};
 419
 420/*
 421 * USB 2.0 Link Power Management (LPM) parameters.
 422 */
 423struct usb2_lpm_parameters {
 424	/* Best effort service latency indicate how long the host will drive
 425	 * resume on an exit from L1.
 426	 */
 427	unsigned int besl;
 428
 429	/* Timeout value in microseconds for the L1 inactivity (LPM) timer.
 430	 * When the timer counts to zero, the parent hub will initiate a LPM
 431	 * transition to L1.
 432	 */
 433	int timeout;
 434};
 435
 436/*
 437 * USB 3.0 Link Power Management (LPM) parameters.
 438 *
 439 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
 440 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
 441 * All three are stored in nanoseconds.
 442 */
 443struct usb3_lpm_parameters {
 444	/*
 445	 * Maximum exit latency (MEL) for the host to send a packet to the
 446	 * device (either a Ping for isoc endpoints, or a data packet for
 447	 * interrupt endpoints), the hubs to decode the packet, and for all hubs
 448	 * in the path to transition the links to U0.
 449	 */
 450	unsigned int mel;
 451	/*
 452	 * Maximum exit latency for a device-initiated LPM transition to bring
 453	 * all links into U0.  Abbreviated as "PEL" in section 9.4.12 of the USB
 454	 * 3.0 spec, with no explanation of what "P" stands for.  "Path"?
 455	 */
 456	unsigned int pel;
 457
 458	/*
 459	 * The System Exit Latency (SEL) includes PEL, and three other
 460	 * latencies.  After a device initiates a U0 transition, it will take
 461	 * some time from when the device sends the ERDY to when it will finally
 462	 * receive the data packet.  Basically, SEL should be the worse-case
 463	 * latency from when a device starts initiating a U0 transition to when
 464	 * it will get data.
 465	 */
 466	unsigned int sel;
 467	/*
 468	 * The idle timeout value that is currently programmed into the parent
 469	 * hub for this device.  When the timer counts to zero, the parent hub
 470	 * will initiate an LPM transition to either U1 or U2.
 471	 */
 472	int timeout;
 473};
 474
 475/**
 476 * struct usb_device - kernel's representation of a USB device
 477 * @devnum: device number; address on a USB bus
 478 * @devpath: device ID string for use in messages (e.g., /port/...)
 479 * @route: tree topology hex string for use with xHCI
 480 * @state: device state: configured, not attached, etc.
 481 * @speed: device speed: high/full/low (or error)
 482 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
 483 * @ttport: device port on that tt hub
 484 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
 485 * @parent: our hub, unless we're the root
 486 * @bus: bus we're part of
 487 * @ep0: endpoint 0 data (default control pipe)
 488 * @dev: generic device interface
 489 * @descriptor: USB device descriptor
 490 * @bos: USB device BOS descriptor set
 491 * @config: all of the device's configs
 492 * @actconfig: the active configuration
 493 * @ep_in: array of IN endpoints
 494 * @ep_out: array of OUT endpoints
 495 * @rawdescriptors: raw descriptors for each config
 496 * @bus_mA: Current available from the bus
 497 * @portnum: parent port number (origin 1)
 498 * @level: number of USB hub ancestors
 499 * @can_submit: URBs may be submitted
 500 * @persist_enabled:  USB_PERSIST enabled for this device
 501 * @have_langid: whether string_langid is valid
 502 * @authorized: policy has said we can use it;
 503 *	(user space) policy determines if we authorize this device to be
 504 *	used or not. By default, wired USB devices are authorized.
 505 *	WUSB devices are not, until we authorize them from user space.
 506 *	FIXME -- complete doc
 507 * @authenticated: Crypto authentication passed
 508 * @wusb: device is Wireless USB
 509 * @lpm_capable: device supports LPM
 510 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
 511 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
 512 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
 513 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
 514 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
 515 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
 516 * @string_langid: language ID for strings
 517 * @product: iProduct string, if present (static)
 518 * @manufacturer: iManufacturer string, if present (static)
 519 * @serial: iSerialNumber string, if present (static)
 520 * @filelist: usbfs files that are open to this device
 521 * @maxchild: number of ports if hub
 522 * @quirks: quirks of the whole device
 523 * @urbnum: number of URBs submitted for the whole device
 524 * @active_duration: total time device is not suspended
 525 * @connect_time: time device was first connected
 526 * @do_remote_wakeup:  remote wakeup should be enabled
 527 * @reset_resume: needs reset instead of resume
 528 * @port_is_suspended: the upstream port is suspended (L2 or U3)
 529 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
 530 *	specific data for the device.
 531 * @slot_id: Slot ID assigned by xHCI
 532 * @removable: Device can be physically removed from this port
 533 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
 534 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
 535 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
 536 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
 537 *	to keep track of the number of functions that require USB 3.0 Link Power
 538 *	Management to be disabled for this usb_device.  This count should only
 539 *	be manipulated by those functions, with the bandwidth_mutex is held.
 540 *
 541 * Notes:
 542 * Usbcore drivers should not set usbdev->state directly.  Instead use
 543 * usb_set_device_state().
 544 */
 545struct usb_device {
 546	int		devnum;
 547	char		devpath[16];
 548	u32		route;
 549	enum usb_device_state	state;
 550	enum usb_device_speed	speed;
 551
 552	struct usb_tt	*tt;
 553	int		ttport;
 554
 555	unsigned int toggle[2];
 556
 557	struct usb_device *parent;
 558	struct usb_bus *bus;
 559	struct usb_host_endpoint ep0;
 560
 561	struct device dev;
 562
 563	struct usb_device_descriptor descriptor;
 564	struct usb_host_bos *bos;
 565	struct usb_host_config *config;
 566
 567	struct usb_host_config *actconfig;
 568	struct usb_host_endpoint *ep_in[16];
 569	struct usb_host_endpoint *ep_out[16];
 570
 571	char **rawdescriptors;
 572
 573	unsigned short bus_mA;
 574	u8 portnum;
 575	u8 level;
 576
 577	unsigned can_submit:1;
 578	unsigned persist_enabled:1;
 579	unsigned have_langid:1;
 580	unsigned authorized:1;
 581	unsigned authenticated:1;
 582	unsigned wusb:1;
 583	unsigned lpm_capable:1;
 584	unsigned usb2_hw_lpm_capable:1;
 585	unsigned usb2_hw_lpm_besl_capable:1;
 586	unsigned usb2_hw_lpm_enabled:1;
 587	unsigned usb2_hw_lpm_allowed:1;
 588	unsigned usb3_lpm_u1_enabled:1;
 589	unsigned usb3_lpm_u2_enabled:1;
 590	int string_langid;
 591
 592	/* static strings from the device */
 593	char *product;
 594	char *manufacturer;
 595	char *serial;
 596
 597	struct list_head filelist;
 598
 599	int maxchild;
 600
 601	u32 quirks;
 602	atomic_t urbnum;
 603
 604	unsigned long active_duration;
 605
 606#ifdef CONFIG_PM
 607	unsigned long connect_time;
 608
 609	unsigned do_remote_wakeup:1;
 610	unsigned reset_resume:1;
 611	unsigned port_is_suspended:1;
 612#endif
 613	struct wusb_dev *wusb_dev;
 614	int slot_id;
 615	enum usb_device_removable removable;
 616	struct usb2_lpm_parameters l1_params;
 617	struct usb3_lpm_parameters u1_params;
 618	struct usb3_lpm_parameters u2_params;
 619	unsigned lpm_disable_count;
 620};
 621#define	to_usb_device(d) container_of(d, struct usb_device, dev)
 622
 623static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
 624{
 625	return to_usb_device(intf->dev.parent);
 626}
 627
 628extern struct usb_device *usb_get_dev(struct usb_device *dev);
 629extern void usb_put_dev(struct usb_device *dev);
 630extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
 631	int port1);
 632
 633/**
 634 * usb_hub_for_each_child - iterate over all child devices on the hub
 635 * @hdev:  USB device belonging to the usb hub
 636 * @port1: portnum associated with child device
 637 * @child: child device pointer
 638 */
 639#define usb_hub_for_each_child(hdev, port1, child) \
 640	for (port1 = 1,	child =	usb_hub_find_child(hdev, port1); \
 641			port1 <= hdev->maxchild; \
 642			child = usb_hub_find_child(hdev, ++port1)) \
 643		if (!child) continue; else
 644
 645/* USB device locking */
 646#define usb_lock_device(udev)			device_lock(&(udev)->dev)
 647#define usb_unlock_device(udev)			device_unlock(&(udev)->dev)
 648#define usb_lock_device_interruptible(udev)	device_lock_interruptible(&(udev)->dev)
 649#define usb_trylock_device(udev)		device_trylock(&(udev)->dev)
 650extern int usb_lock_device_for_reset(struct usb_device *udev,
 651				     const struct usb_interface *iface);
 652
 653/* USB port reset for device reinitialization */
 654extern int usb_reset_device(struct usb_device *dev);
 655extern void usb_queue_reset_device(struct usb_interface *dev);
 656
 657#ifdef CONFIG_ACPI
 658extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
 659	bool enable);
 660extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
 661#else
 662static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
 663	bool enable) { return 0; }
 664static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
 665	{ return true; }
 666#endif
 667
 668/* USB autosuspend and autoresume */
 669#ifdef CONFIG_PM
 670extern void usb_enable_autosuspend(struct usb_device *udev);
 671extern void usb_disable_autosuspend(struct usb_device *udev);
 672
 673extern int usb_autopm_get_interface(struct usb_interface *intf);
 674extern void usb_autopm_put_interface(struct usb_interface *intf);
 675extern int usb_autopm_get_interface_async(struct usb_interface *intf);
 676extern void usb_autopm_put_interface_async(struct usb_interface *intf);
 677extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
 678extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
 679
 680static inline void usb_mark_last_busy(struct usb_device *udev)
 681{
 682	pm_runtime_mark_last_busy(&udev->dev);
 683}
 684
 685#else
 686
 687static inline int usb_enable_autosuspend(struct usb_device *udev)
 688{ return 0; }
 689static inline int usb_disable_autosuspend(struct usb_device *udev)
 690{ return 0; }
 691
 692static inline int usb_autopm_get_interface(struct usb_interface *intf)
 693{ return 0; }
 694static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
 695{ return 0; }
 696
 697static inline void usb_autopm_put_interface(struct usb_interface *intf)
 698{ }
 699static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
 700{ }
 701static inline void usb_autopm_get_interface_no_resume(
 702		struct usb_interface *intf)
 703{ }
 704static inline void usb_autopm_put_interface_no_suspend(
 705		struct usb_interface *intf)
 706{ }
 707static inline void usb_mark_last_busy(struct usb_device *udev)
 708{ }
 709#endif
 710
 711extern int usb_disable_lpm(struct usb_device *udev);
 712extern void usb_enable_lpm(struct usb_device *udev);
 713/* Same as above, but these functions lock/unlock the bandwidth_mutex. */
 714extern int usb_unlocked_disable_lpm(struct usb_device *udev);
 715extern void usb_unlocked_enable_lpm(struct usb_device *udev);
 716
 717extern int usb_disable_ltm(struct usb_device *udev);
 718extern void usb_enable_ltm(struct usb_device *udev);
 719
 720static inline bool usb_device_supports_ltm(struct usb_device *udev)
 721{
 722	if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
 723		return false;
 724	return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
 725}
 726
 727static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
 728{
 729	return udev && udev->bus && udev->bus->no_sg_constraint;
 730}
 731
 732
 733/*-------------------------------------------------------------------------*/
 734
 735/* for drivers using iso endpoints */
 736extern int usb_get_current_frame_number(struct usb_device *usb_dev);
 737
 738/* Sets up a group of bulk endpoints to support multiple stream IDs. */
 739extern int usb_alloc_streams(struct usb_interface *interface,
 740		struct usb_host_endpoint **eps, unsigned int num_eps,
 741		unsigned int num_streams, gfp_t mem_flags);
 742
 743/* Reverts a group of bulk endpoints back to not using stream IDs. */
 744extern int usb_free_streams(struct usb_interface *interface,
 745		struct usb_host_endpoint **eps, unsigned int num_eps,
 746		gfp_t mem_flags);
 747
 748/* used these for multi-interface device registration */
 749extern int usb_driver_claim_interface(struct usb_driver *driver,
 750			struct usb_interface *iface, void *priv);
 751
 752/**
 753 * usb_interface_claimed - returns true iff an interface is claimed
 754 * @iface: the interface being checked
 755 *
 756 * Return: %true (nonzero) iff the interface is claimed, else %false
 757 * (zero).
 758 *
 759 * Note:
 760 * Callers must own the driver model's usb bus readlock.  So driver
 761 * probe() entries don't need extra locking, but other call contexts
 762 * may need to explicitly claim that lock.
 763 *
 764 */
 765static inline int usb_interface_claimed(struct usb_interface *iface)
 766{
 767	return (iface->dev.driver != NULL);
 768}
 769
 770extern void usb_driver_release_interface(struct usb_driver *driver,
 771			struct usb_interface *iface);
 772const struct usb_device_id *usb_match_id(struct usb_interface *interface,
 773					 const struct usb_device_id *id);
 774extern int usb_match_one_id(struct usb_interface *interface,
 775			    const struct usb_device_id *id);
 776
 777extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
 778extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
 779		int minor);
 780extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
 781		unsigned ifnum);
 782extern struct usb_host_interface *usb_altnum_to_altsetting(
 783		const struct usb_interface *intf, unsigned int altnum);
 784extern struct usb_host_interface *usb_find_alt_setting(
 785		struct usb_host_config *config,
 786		unsigned int iface_num,
 787		unsigned int alt_num);
 788
 789/* port claiming functions */
 790int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
 791		struct usb_dev_state *owner);
 792int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
 793		struct usb_dev_state *owner);
 794
 795/**
 796 * usb_make_path - returns stable device path in the usb tree
 797 * @dev: the device whose path is being constructed
 798 * @buf: where to put the string
 799 * @size: how big is "buf"?
 800 *
 801 * Return: Length of the string (> 0) or negative if size was too small.
 802 *
 803 * Note:
 804 * This identifier is intended to be "stable", reflecting physical paths in
 805 * hardware such as physical bus addresses for host controllers or ports on
 806 * USB hubs.  That makes it stay the same until systems are physically
 807 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
 808 * controllers.  Adding and removing devices, including virtual root hubs
 809 * in host controller driver modules, does not change these path identifiers;
 810 * neither does rebooting or re-enumerating.  These are more useful identifiers
 811 * than changeable ("unstable") ones like bus numbers or device addresses.
 812 *
 813 * With a partial exception for devices connected to USB 2.0 root hubs, these
 814 * identifiers are also predictable.  So long as the device tree isn't changed,
 815 * plugging any USB device into a given hub port always gives it the same path.
 816 * Because of the use of "companion" controllers, devices connected to ports on
 817 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
 818 * high speed, and a different one if they are full or low speed.
 819 */
 820static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
 821{
 822	int actual;
 823	actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
 824			  dev->devpath);
 825	return (actual >= (int)size) ? -1 : actual;
 826}
 827
 828/*-------------------------------------------------------------------------*/
 829
 830#define USB_DEVICE_ID_MATCH_DEVICE \
 831		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
 832#define USB_DEVICE_ID_MATCH_DEV_RANGE \
 833		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
 834#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
 835		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
 836#define USB_DEVICE_ID_MATCH_DEV_INFO \
 837		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
 838		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
 839		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
 840#define USB_DEVICE_ID_MATCH_INT_INFO \
 841		(USB_DEVICE_ID_MATCH_INT_CLASS | \
 842		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
 843		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
 844
 845/**
 846 * USB_DEVICE - macro used to describe a specific usb device
 847 * @vend: the 16 bit USB Vendor ID
 848 * @prod: the 16 bit USB Product ID
 849 *
 850 * This macro is used to create a struct usb_device_id that matches a
 851 * specific device.
 852 */
 853#define USB_DEVICE(vend, prod) \
 854	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
 855	.idVendor = (vend), \
 856	.idProduct = (prod)
 857/**
 858 * USB_DEVICE_VER - describe a specific usb device with a version range
 859 * @vend: the 16 bit USB Vendor ID
 860 * @prod: the 16 bit USB Product ID
 861 * @lo: the bcdDevice_lo value
 862 * @hi: the bcdDevice_hi value
 863 *
 864 * This macro is used to create a struct usb_device_id that matches a
 865 * specific device, with a version range.
 866 */
 867#define USB_DEVICE_VER(vend, prod, lo, hi) \
 868	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
 869	.idVendor = (vend), \
 870	.idProduct = (prod), \
 871	.bcdDevice_lo = (lo), \
 872	.bcdDevice_hi = (hi)
 873
 874/**
 875 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
 876 * @vend: the 16 bit USB Vendor ID
 877 * @prod: the 16 bit USB Product ID
 878 * @cl: bInterfaceClass value
 879 *
 880 * This macro is used to create a struct usb_device_id that matches a
 881 * specific interface class of devices.
 882 */
 883#define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
 884	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
 885		       USB_DEVICE_ID_MATCH_INT_CLASS, \
 886	.idVendor = (vend), \
 887	.idProduct = (prod), \
 888	.bInterfaceClass = (cl)
 889
 890/**
 891 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
 892 * @vend: the 16 bit USB Vendor ID
 893 * @prod: the 16 bit USB Product ID
 894 * @pr: bInterfaceProtocol value
 895 *
 896 * This macro is used to create a struct usb_device_id that matches a
 897 * specific interface protocol of devices.
 898 */
 899#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
 900	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
 901		       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
 902	.idVendor = (vend), \
 903	.idProduct = (prod), \
 904	.bInterfaceProtocol = (pr)
 905
 906/**
 907 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
 908 * @vend: the 16 bit USB Vendor ID
 909 * @prod: the 16 bit USB Product ID
 910 * @num: bInterfaceNumber value
 911 *
 912 * This macro is used to create a struct usb_device_id that matches a
 913 * specific interface number of devices.
 914 */
 915#define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
 916	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
 917		       USB_DEVICE_ID_MATCH_INT_NUMBER, \
 918	.idVendor = (vend), \
 919	.idProduct = (prod), \
 920	.bInterfaceNumber = (num)
 921
 922/**
 923 * USB_DEVICE_INFO - macro used to describe a class of usb devices
 924 * @cl: bDeviceClass value
 925 * @sc: bDeviceSubClass value
 926 * @pr: bDeviceProtocol value
 927 *
 928 * This macro is used to create a struct usb_device_id that matches a
 929 * specific class of devices.
 930 */
 931#define USB_DEVICE_INFO(cl, sc, pr) \
 932	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
 933	.bDeviceClass = (cl), \
 934	.bDeviceSubClass = (sc), \
 935	.bDeviceProtocol = (pr)
 936
 937/**
 938 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
 939 * @cl: bInterfaceClass value
 940 * @sc: bInterfaceSubClass value
 941 * @pr: bInterfaceProtocol value
 942 *
 943 * This macro is used to create a struct usb_device_id that matches a
 944 * specific class of interfaces.
 945 */
 946#define USB_INTERFACE_INFO(cl, sc, pr) \
 947	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
 948	.bInterfaceClass = (cl), \
 949	.bInterfaceSubClass = (sc), \
 950	.bInterfaceProtocol = (pr)
 951
 952/**
 953 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
 954 * @vend: the 16 bit USB Vendor ID
 955 * @prod: the 16 bit USB Product ID
 956 * @cl: bInterfaceClass value
 957 * @sc: bInterfaceSubClass value
 958 * @pr: bInterfaceProtocol value
 959 *
 960 * This macro is used to create a struct usb_device_id that matches a
 961 * specific device with a specific class of interfaces.
 962 *
 963 * This is especially useful when explicitly matching devices that have
 964 * vendor specific bDeviceClass values, but standards-compliant interfaces.
 965 */
 966#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
 967	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
 968		| USB_DEVICE_ID_MATCH_DEVICE, \
 969	.idVendor = (vend), \
 970	.idProduct = (prod), \
 971	.bInterfaceClass = (cl), \
 972	.bInterfaceSubClass = (sc), \
 973	.bInterfaceProtocol = (pr)
 974
 975/**
 976 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
 977 * @vend: the 16 bit USB Vendor ID
 978 * @cl: bInterfaceClass value
 979 * @sc: bInterfaceSubClass value
 980 * @pr: bInterfaceProtocol value
 981 *
 982 * This macro is used to create a struct usb_device_id that matches a
 983 * specific vendor with a specific class of interfaces.
 984 *
 985 * This is especially useful when explicitly matching devices that have
 986 * vendor specific bDeviceClass values, but standards-compliant interfaces.
 987 */
 988#define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
 989	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
 990		| USB_DEVICE_ID_MATCH_VENDOR, \
 991	.idVendor = (vend), \
 992	.bInterfaceClass = (cl), \
 993	.bInterfaceSubClass = (sc), \
 994	.bInterfaceProtocol = (pr)
 995
 996/* ----------------------------------------------------------------------- */
 997
 998/* Stuff for dynamic usb ids */
 999struct usb_dynids {
1000	spinlock_t lock;
1001	struct list_head list;
1002};
1003
1004struct usb_dynid {
1005	struct list_head node;
1006	struct usb_device_id id;
1007};
1008
1009extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1010				const struct usb_device_id *id_table,
1011				struct device_driver *driver,
1012				const char *buf, size_t count);
1013
1014extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1015
1016/**
1017 * struct usbdrv_wrap - wrapper for driver-model structure
1018 * @driver: The driver-model core driver structure.
1019 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1020 */
1021struct usbdrv_wrap {
1022	struct device_driver driver;
1023	int for_devices;
1024};
1025
1026/**
1027 * struct usb_driver - identifies USB interface driver to usbcore
1028 * @name: The driver name should be unique among USB drivers,
1029 *	and should normally be the same as the module name.
1030 * @probe: Called to see if the driver is willing to manage a particular
1031 *	interface on a device.  If it is, probe returns zero and uses
1032 *	usb_set_intfdata() to associate driver-specific data with the
1033 *	interface.  It may also use usb_set_interface() to specify the
1034 *	appropriate altsetting.  If unwilling to manage the interface,
1035 *	return -ENODEV, if genuine IO errors occurred, an appropriate
1036 *	negative errno value.
1037 * @disconnect: Called when the interface is no longer accessible, usually
1038 *	because its device has been (or is being) disconnected or the
1039 *	driver module is being unloaded.
1040 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1041 *	the "usbfs" filesystem.  This lets devices provide ways to
1042 *	expose information to user space regardless of where they
1043 *	do (or don't) show up otherwise in the filesystem.
1044 * @suspend: Called when the device is going to be suspended by the
1045 *	system either from system sleep or runtime suspend context. The
1046 *	return value will be ignored in system sleep context, so do NOT
1047 *	try to continue using the device if suspend fails in this case.
1048 *	Instead, let the resume or reset-resume routine recover from
1049 *	the failure.
1050 * @resume: Called when the device is being resumed by the system.
1051 * @reset_resume: Called when the suspended device has been reset instead
1052 *	of being resumed.
1053 * @pre_reset: Called by usb_reset_device() when the device is about to be
1054 *	reset.  This routine must not return until the driver has no active
1055 *	URBs for the device, and no more URBs may be submitted until the
1056 *	post_reset method is called.
1057 * @post_reset: Called by usb_reset_device() after the device
1058 *	has been reset
1059 * @id_table: USB drivers use ID table to support hotplugging.
1060 *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
1061 *	or your driver's probe function will never get called.
1062 * @dynids: used internally to hold the list of dynamically added device
1063 *	ids for this driver.
1064 * @drvwrap: Driver-model core structure wrapper.
1065 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1066 *	added to this driver by preventing the sysfs file from being created.
1067 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1068 *	for interfaces bound to this driver.
1069 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1070 *	endpoints before calling the driver's disconnect method.
1071 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1072 *	to initiate lower power link state transitions when an idle timeout
1073 *	occurs.  Device-initiated USB 3.0 link PM will still be allowed.
1074 *
1075 * USB interface drivers must provide a name, probe() and disconnect()
1076 * methods, and an id_table.  Other driver fields are optional.
1077 *
1078 * The id_table is used in hotplugging.  It holds a set of descriptors,
1079 * and specialized data may be associated with each entry.  That table
1080 * is used by both user and kernel mode hotplugging support.
1081 *
1082 * The probe() and disconnect() methods are called in a context where
1083 * they can sleep, but they should avoid abusing the privilege.  Most
1084 * work to connect to a device should be done when the device is opened,
1085 * and undone at the last close.  The disconnect code needs to address
1086 * concurrency issues with respect to open() and close() methods, as
1087 * well as forcing all pending I/O requests to complete (by unlinking
1088 * them as necessary, and blocking until the unlinks complete).
1089 */
1090struct usb_driver {
1091	const char *name;
1092
1093	int (*probe) (struct usb_interface *intf,
1094		      const struct usb_device_id *id);
1095
1096	void (*disconnect) (struct usb_interface *intf);
1097
1098	int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1099			void *buf);
1100
1101	int (*suspend) (struct usb_interface *intf, pm_message_t message);
1102	int (*resume) (struct usb_interface *intf);
1103	int (*reset_resume)(struct usb_interface *intf);
1104
1105	int (*pre_reset)(struct usb_interface *intf);
1106	int (*post_reset)(struct usb_interface *intf);
1107
1108	const struct usb_device_id *id_table;
1109
1110	struct usb_dynids dynids;
1111	struct usbdrv_wrap drvwrap;
1112	unsigned int no_dynamic_id:1;
1113	unsigned int supports_autosuspend:1;
1114	unsigned int disable_hub_initiated_lpm:1;
1115	unsigned int soft_unbind:1;
1116};
1117#define	to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1118
1119/**
1120 * struct usb_device_driver - identifies USB device driver to usbcore
1121 * @name: The driver name should be unique among USB drivers,
1122 *	and should normally be the same as the module name.
1123 * @probe: Called to see if the driver is willing to manage a particular
1124 *	device.  If it is, probe returns zero and uses dev_set_drvdata()
1125 *	to associate driver-specific data with the device.  If unwilling
1126 *	to manage the device, return a negative errno value.
1127 * @disconnect: Called when the device is no longer accessible, usually
1128 *	because it has been (or is being) disconnected or the driver's
1129 *	module is being unloaded.
1130 * @suspend: Called when the device is going to be suspended by the system.
1131 * @resume: Called when the device is being resumed by the system.
1132 * @drvwrap: Driver-model core structure wrapper.
1133 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1134 *	for devices bound to this driver.
1135 *
1136 * USB drivers must provide all the fields listed above except drvwrap.
1137 */
1138struct usb_device_driver {
1139	const char *name;
1140
1141	int (*probe) (struct usb_device *udev);
1142	void (*disconnect) (struct usb_device *udev);
1143
1144	int (*suspend) (struct usb_device *udev, pm_message_t message);
1145	int (*resume) (struct usb_device *udev, pm_message_t message);
1146	struct usbdrv_wrap drvwrap;
1147	unsigned int supports_autosuspend:1;
1148};
1149#define	to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1150		drvwrap.driver)
1151
1152extern struct bus_type usb_bus_type;
1153
1154/**
1155 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1156 * @name: the usb class device name for this driver.  Will show up in sysfs.
1157 * @devnode: Callback to provide a naming hint for a possible
1158 *	device node to create.
1159 * @fops: pointer to the struct file_operations of this driver.
1160 * @minor_base: the start of the minor range for this driver.
1161 *
1162 * This structure is used for the usb_register_dev() and
1163 * usb_deregister_dev() functions, to consolidate a number of the
1164 * parameters used for them.
1165 */
1166struct usb_class_driver {
1167	char *name;
1168	char *(*devnode)(struct device *dev, umode_t *mode);
1169	const struct file_operations *fops;
1170	int minor_base;
1171};
1172
1173/*
1174 * use these in module_init()/module_exit()
1175 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1176 */
1177extern int usb_register_driver(struct usb_driver *, struct module *,
1178			       const char *);
1179
1180/* use a define to avoid include chaining to get THIS_MODULE & friends */
1181#define usb_register(driver) \
1182	usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1183
1184extern void usb_deregister(struct usb_driver *);
1185
1186/**
1187 * module_usb_driver() - Helper macro for registering a USB driver
1188 * @__usb_driver: usb_driver struct
1189 *
1190 * Helper macro for USB drivers which do not do anything special in module
1191 * init/exit. This eliminates a lot of boilerplate. Each module may only
1192 * use this macro once, and calling it replaces module_init() and module_exit()
1193 */
1194#define module_usb_driver(__usb_driver) \
1195	module_driver(__usb_driver, usb_register, \
1196		       usb_deregister)
1197
1198extern int usb_register_device_driver(struct usb_device_driver *,
1199			struct module *);
1200extern void usb_deregister_device_driver(struct usb_device_driver *);
1201
1202extern int usb_register_dev(struct usb_interface *intf,
1203			    struct usb_class_driver *class_driver);
1204extern void usb_deregister_dev(struct usb_interface *intf,
1205			       struct usb_class_driver *class_driver);
1206
1207extern int usb_disabled(void);
1208
1209/* ----------------------------------------------------------------------- */
1210
1211/*
1212 * URB support, for asynchronous request completions
1213 */
1214
1215/*
1216 * urb->transfer_flags:
1217 *
1218 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1219 */
1220#define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
1221#define URB_ISO_ASAP		0x0002	/* iso-only; use the first unexpired
1222					 * slot in the schedule */
1223#define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
1224#define URB_NO_FSBR		0x0020	/* UHCI-specific */
1225#define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
1226#define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
1227					 * needed */
1228#define URB_FREE_BUFFER		0x0100	/* Free transfer buffer with the URB */
1229
1230/* The following flags are used internally by usbcore and HCDs */
1231#define URB_DIR_IN		0x0200	/* Transfer from device to host */
1232#define URB_DIR_OUT		0
1233#define URB_DIR_MASK		URB_DIR_IN
1234
1235#define URB_DMA_MAP_SINGLE	0x00010000	/* Non-scatter-gather mapping */
1236#define URB_DMA_MAP_PAGE	0x00020000	/* HCD-unsupported S-G */
1237#define URB_DMA_MAP_SG		0x00040000	/* HCD-supported S-G */
1238#define URB_MAP_LOCAL		0x00080000	/* HCD-local-memory mapping */
1239#define URB_SETUP_MAP_SINGLE	0x00100000	/* Setup packet DMA mapped */
1240#define URB_SETUP_MAP_LOCAL	0x00200000	/* HCD-local setup packet */
1241#define URB_DMA_SG_COMBINED	0x00400000	/* S-G entries were combined */
1242#define URB_ALIGNED_TEMP_BUFFER	0x00800000	/* Temp buffer was alloc'd */
1243
1244struct usb_iso_packet_descriptor {
1245	unsigned int offset;
1246	unsigned int length;		/* expected length */
1247	unsigned int actual_length;
1248	int status;
1249};
1250
1251struct urb;
1252
1253struct usb_anchor {
1254	struct list_head urb_list;
1255	wait_queue_head_t wait;
1256	spinlock_t lock;
1257	atomic_t suspend_wakeups;
1258	unsigned int poisoned:1;
1259};
1260
1261static inline void init_usb_anchor(struct usb_anchor *anchor)
1262{
1263	memset(anchor, 0, sizeof(*anchor));
1264	INIT_LIST_HEAD(&anchor->urb_list);
1265	init_waitqueue_head(&anchor->wait);
1266	spin_lock_init(&anchor->lock);
1267}
1268
1269typedef void (*usb_complete_t)(struct urb *);
1270
1271/**
1272 * struct urb - USB Request Block
1273 * @urb_list: For use by current owner of the URB.
1274 * @anchor_list: membership in the list of an anchor
1275 * @anchor: to anchor URBs to a common mooring
1276 * @ep: Points to the endpoint's data structure.  Will eventually
1277 *	replace @pipe.
1278 * @pipe: Holds endpoint number, direction, type, and more.
1279 *	Create these values with the eight macros available;
1280 *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1281 *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
1282 *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1283 *	numbers range from zero to fifteen.  Note that "in" endpoint two
1284 *	is a different endpoint (and pipe) from "out" endpoint two.
1285 *	The current configuration controls the existence, type, and
1286 *	maximum packet size of any given endpoint.
1287 * @stream_id: the endpoint's stream ID for bulk streams
1288 * @dev: Identifies the USB device to perform the request.
1289 * @status: This is read in non-iso completion functions to get the
1290 *	status of the particular request.  ISO requests only use it
1291 *	to tell whether the URB was unlinked; detailed status for
1292 *	each frame is in the fields of the iso_frame-desc.
1293 * @transfer_flags: A variety of flags may be used to affect how URB
1294 *	submission, unlinking, or operation are handled.  Different
1295 *	kinds of URB can use different flags.
1296 * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1297 *	request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1298 *	(however, do not leave garbage in transfer_buffer even then).
1299 *	This buffer must be suitable for DMA; allocate it with
1300 *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1301 *	of this buffer will be modified.  This buffer is used for the data
1302 *	stage of control transfers.
1303 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1304 *	the device driver is saying that it provided this DMA address,
1305 *	which the host controller driver should use in preference to the
1306 *	transfer_buffer.
1307 * @sg: scatter gather buffer list, the buffer size of each element in
1308 * 	the list (except the last) must be divisible by the endpoint's
1309 * 	max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1310 * @num_mapped_sgs: (internal) number of mapped sg entries
1311 * @num_sgs: number of entries in the sg list
1312 * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1313 *	be broken up into chunks according to the current maximum packet
1314 *	size for the endpoint, which is a function of the configuration
1315 *	and is encoded in the pipe.  When the length is zero, neither
1316 *	transfer_buffer nor transfer_dma is used.
1317 * @actual_length: This is read in non-iso completion functions, and
1318 *	it tells how many bytes (out of transfer_buffer_length) were
1319 *	transferred.  It will normally be the same as requested, unless
1320 *	either an error was reported or a short read was performed.
1321 *	The URB_SHORT_NOT_OK transfer flag may be used to make such
1322 *	short reads be reported as errors.
1323 * @setup_packet: Only used for control transfers, this points to eight bytes
1324 *	of setup data.  Control transfers always start by sending this data
1325 *	to the device.  Then transfer_buffer is read or written, if needed.
1326 * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1327 *	this field; setup_packet must point to a valid buffer.
1328 * @start_frame: Returns the initial frame for isochronous transfers.
1329 * @number_of_packets: Lists the number of ISO transfer buffers.
1330 * @interval: Specifies the polling interval for interrupt or isochronous
1331 *	transfers.  The units are frames (milliseconds) for full and low
1332 *	speed devices, and microframes (1/8 millisecond) for highspeed
1333 *	and SuperSpeed devices.
1334 * @error_count: Returns the number of ISO transfers that reported errors.
1335 * @context: For use in completion functions.  This normally points to
1336 *	request-specific driver context.
1337 * @complete: Completion handler. This URB is passed as the parameter to the
1338 *	completion function.  The completion function may then do what
1339 *	it likes with the URB, including resubmitting or freeing it.
1340 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1341 *	collect the transfer status for each buffer.
1342 *
1343 * This structure identifies USB transfer requests.  URBs must be allocated by
1344 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1345 * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1346 * are submitted using usb_submit_urb(), and pending requests may be canceled
1347 * using usb_unlink_urb() or usb_kill_urb().
1348 *
1349 * Data Transfer Buffers:
1350 *
1351 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1352 * taken from the general page pool.  That is provided by transfer_buffer
1353 * (control requests also use setup_packet), and host controller drivers
1354 * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1355 * mapping operations can be expensive on some platforms (perhaps using a dma
1356 * bounce buffer or talking to an IOMMU),
1357 * although they're cheap on commodity x86 and ppc hardware.
1358 *
1359 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1360 * which tells the host controller driver that no such mapping is needed for
1361 * the transfer_buffer since
1362 * the device driver is DMA-aware.  For example, a device driver might
1363 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1364 * When this transfer flag is provided, host controller drivers will
1365 * attempt to use the dma address found in the transfer_dma
1366 * field rather than determining a dma address themselves.
1367 *
1368 * Note that transfer_buffer must still be set if the controller
1369 * does not support DMA (as indicated by bus.uses_dma) and when talking
1370 * to root hub. If you have to trasfer between highmem zone and the device
1371 * on such controller, create a bounce buffer or bail out with an error.
1372 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1373 * capable, assign NULL to it, so that usbmon knows not to use the value.
1374 * The setup_packet must always be set, so it cannot be located in highmem.
1375 *
1376 * Initialization:
1377 *
1378 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1379 * zero), and complete fields.  All URBs must also initialize
1380 * transfer_buffer and transfer_buffer_length.  They may provide the
1381 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1382 * to be treated as errors; that flag is invalid for write requests.
1383 *
1384 * Bulk URBs may
1385 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1386 * should always terminate with a short packet, even if it means adding an
1387 * extra zero length packet.
1388 *
1389 * Control URBs must provide a valid pointer in the setup_packet field.
1390 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1391 * beforehand.
1392 *
1393 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1394 * or, for highspeed devices, 125 microsecond units)
1395 * to poll for transfers.  After the URB has been submitted, the interval
1396 * field reflects how the transfer was actually scheduled.
1397 * The polling interval may be more frequent than requested.
1398 * For example, some controllers have a maximum interval of 32 milliseconds,
1399 * while others support intervals of up to 1024 milliseconds.
1400 * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1401 * endpoints, as well as high speed interrupt endpoints, the encoding of
1402 * the transfer interval in the endpoint descriptor is logarithmic.
1403 * Device drivers must convert that value to linear units themselves.)
1404 *
1405 * If an isochronous endpoint queue isn't already running, the host
1406 * controller will schedule a new URB to start as soon as bandwidth
1407 * utilization allows.  If the queue is running then a new URB will be
1408 * scheduled to start in the first transfer slot following the end of the
1409 * preceding URB, if that slot has not already expired.  If the slot has
1410 * expired (which can happen when IRQ delivery is delayed for a long time),
1411 * the scheduling behavior depends on the URB_ISO_ASAP flag.  If the flag
1412 * is clear then the URB will be scheduled to start in the expired slot,
1413 * implying that some of its packets will not be transferred; if the flag
1414 * is set then the URB will be scheduled in the first unexpired slot,
1415 * breaking the queue's synchronization.  Upon URB completion, the
1416 * start_frame field will be set to the (micro)frame number in which the
1417 * transfer was scheduled.  Ranges for frame counter values are HC-specific
1418 * and can go from as low as 256 to as high as 65536 frames.
1419 *
1420 * Isochronous URBs have a different data transfer model, in part because
1421 * the quality of service is only "best effort".  Callers provide specially
1422 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1423 * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1424 * URBs are normally queued, submitted by drivers to arrange that
1425 * transfers are at least double buffered, and then explicitly resubmitted
1426 * in completion handlers, so
1427 * that data (such as audio or video) streams at as constant a rate as the
1428 * host controller scheduler can support.
1429 *
1430 * Completion Callbacks:
1431 *
1432 * The completion callback is made in_interrupt(), and one of the first
1433 * things that a completion handler should do is check the status field.
1434 * The status field is provided for all URBs.  It is used to report
1435 * unlinked URBs, and status for all non-ISO transfers.  It should not
1436 * be examined before the URB is returned to the completion handler.
1437 *
1438 * The context field is normally used to link URBs back to the relevant
1439 * driver or request state.
1440 *
1441 * When the completion callback is invoked for non-isochronous URBs, the
1442 * actual_length field tells how many bytes were transferred.  This field
1443 * is updated even when the URB terminated with an error or was unlinked.
1444 *
1445 * ISO transfer status is reported in the status and actual_length fields
1446 * of the iso_frame_desc array, and the number of errors is reported in
1447 * error_count.  Completion callbacks for ISO transfers will normally
1448 * (re)submit URBs to ensure a constant transfer rate.
1449 *
1450 * Note that even fields marked "public" should not be touched by the driver
1451 * when the urb is owned by the hcd, that is, since the call to
1452 * usb_submit_urb() till the entry into the completion routine.
1453 */
1454struct urb {
1455	/* private: usb core and host controller only fields in the urb */
1456	struct kref kref;		/* reference count of the URB */
1457	void *hcpriv;			/* private data for host controller */
1458	atomic_t use_count;		/* concurrent submissions counter */
1459	atomic_t reject;		/* submissions will fail */
1460	int unlinked;			/* unlink error code */
1461
1462	/* public: documented fields in the urb that can be used by drivers */
1463	struct list_head urb_list;	/* list head for use by the urb's
1464					 * current owner */
1465	struct list_head anchor_list;	/* the URB may be anchored */
1466	struct usb_anchor *anchor;
1467	struct usb_device *dev;		/* (in) pointer to associated device */
1468	struct usb_host_endpoint *ep;	/* (internal) pointer to endpoint */
1469	unsigned int pipe;		/* (in) pipe information */
1470	unsigned int stream_id;		/* (in) stream ID */
1471	int status;			/* (return) non-ISO status */
1472	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
1473	void *transfer_buffer;		/* (in) associated data buffer */
1474	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
1475	struct scatterlist *sg;		/* (in) scatter gather buffer list */
1476	int num_mapped_sgs;		/* (internal) mapped sg entries */
1477	int num_sgs;			/* (in) number of entries in the sg list */
1478	u32 transfer_buffer_length;	/* (in) data buffer length */
1479	u32 actual_length;		/* (return) actual transfer length */
1480	unsigned char *setup_packet;	/* (in) setup packet (control only) */
1481	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
1482	int start_frame;		/* (modify) start frame (ISO) */
1483	int number_of_packets;		/* (in) number of ISO packets */
1484	int interval;			/* (modify) transfer interval
1485					 * (INT/ISO) */
1486	int error_count;		/* (return) number of ISO errors */
1487	void *context;			/* (in) context for completion */
1488	usb_complete_t complete;	/* (in) completion routine */
1489	struct usb_iso_packet_descriptor iso_frame_desc[0];
1490					/* (in) ISO ONLY */
1491};
1492
1493/* ----------------------------------------------------------------------- */
1494
1495/**
1496 * usb_fill_control_urb - initializes a control urb
1497 * @urb: pointer to the urb to initialize.
1498 * @dev: pointer to the struct usb_device for this urb.
1499 * @pipe: the endpoint pipe
1500 * @setup_packet: pointer to the setup_packet buffer
1501 * @transfer_buffer: pointer to the transfer buffer
1502 * @buffer_length: length of the transfer buffer
1503 * @complete_fn: pointer to the usb_complete_t function
1504 * @context: what to set the urb context to.
1505 *
1506 * Initializes a control urb with the proper information needed to submit
1507 * it to a device.
1508 */
1509static inline void usb_fill_control_urb(struct urb *urb,
1510					struct usb_device *dev,
1511					unsigned int pipe,
1512					unsigned char *setup_packet,
1513					void *transfer_buffer,
1514					int buffer_length,
1515					usb_complete_t complete_fn,
1516					void *context)
1517{
1518	urb->dev = dev;
1519	urb->pipe = pipe;
1520	urb->setup_packet = setup_packet;
1521	urb->transfer_buffer = transfer_buffer;
1522	urb->transfer_buffer_length = buffer_length;
1523	urb->complete = complete_fn;
1524	urb->context = context;
1525}
1526
1527/**
1528 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1529 * @urb: pointer to the urb to initialize.
1530 * @dev: pointer to the struct usb_device for this urb.
1531 * @pipe: the endpoint pipe
1532 * @transfer_buffer: pointer to the transfer buffer
1533 * @buffer_length: length of the transfer buffer
1534 * @complete_fn: pointer to the usb_complete_t function
1535 * @context: what to set the urb context to.
1536 *
1537 * Initializes a bulk urb with the proper information needed to submit it
1538 * to a device.
1539 */
1540static inline void usb_fill_bulk_urb(struct urb *urb,
1541				     struct usb_device *dev,
1542				     unsigned int pipe,
1543				     void *transfer_buffer,
1544				     int buffer_length,
1545				     usb_complete_t complete_fn,
1546				     void *context)
1547{
1548	urb->dev = dev;
1549	urb->pipe = pipe;
1550	urb->transfer_buffer = transfer_buffer;
1551	urb->transfer_buffer_length = buffer_length;
1552	urb->complete = complete_fn;
1553	urb->context = context;
1554}
1555
1556/**
1557 * usb_fill_int_urb - macro to help initialize a interrupt urb
1558 * @urb: pointer to the urb to initialize.
1559 * @dev: pointer to the struct usb_device for this urb.
1560 * @pipe: the endpoint pipe
1561 * @transfer_buffer: pointer to the transfer buffer
1562 * @buffer_length: length of the transfer buffer
1563 * @complete_fn: pointer to the usb_complete_t function
1564 * @context: what to set the urb context to.
1565 * @interval: what to set the urb interval to, encoded like
1566 *	the endpoint descriptor's bInterval value.
1567 *
1568 * Initializes a interrupt urb with the proper information needed to submit
1569 * it to a device.
1570 *
1571 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
1572 * encoding of the endpoint interval, and express polling intervals in
1573 * microframes (eight per millisecond) rather than in frames (one per
1574 * millisecond).
1575 *
1576 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1577 * 128us instead of 125us.  For Wireless USB devices, the interval is passed
1578 * through to the host controller, rather than being translated into microframe
1579 * units.
1580 */
1581static inline void usb_fill_int_urb(struct urb *urb,
1582				    struct usb_device *dev,
1583				    unsigned int pipe,
1584				    void *transfer_buffer,
1585				    int buffer_length,
1586				    usb_complete_t complete_fn,
1587				    void *context,
1588				    int interval)
1589{
1590	urb->dev = dev;
1591	urb->pipe = pipe;
1592	urb->transfer_buffer = transfer_buffer;
1593	urb->transfer_buffer_length = buffer_length;
1594	urb->complete = complete_fn;
1595	urb->context = context;
1596
1597	if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
1598		/* make sure interval is within allowed range */
1599		interval = clamp(interval, 1, 16);
1600
1601		urb->interval = 1 << (interval - 1);
1602	} else {
1603		urb->interval = interval;
1604	}
1605
1606	urb->start_frame = -1;
1607}
1608
1609extern void usb_init_urb(struct urb *urb);
1610extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1611extern void usb_free_urb(struct urb *urb);
1612#define usb_put_urb usb_free_urb
1613extern struct urb *usb_get_urb(struct urb *urb);
1614extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1615extern int usb_unlink_urb(struct urb *urb);
1616extern void usb_kill_urb(struct urb *urb);
1617extern void usb_poison_urb(struct urb *urb);
1618extern void usb_unpoison_urb(struct urb *urb);
1619extern void usb_block_urb(struct urb *urb);
1620extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1621extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1622extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1623extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1624extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1625extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1626extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1627extern void usb_unanchor_urb(struct urb *urb);
1628extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1629					 unsigned int timeout);
1630extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1631extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1632extern int usb_anchor_empty(struct usb_anchor *anchor);
1633
1634#define usb_unblock_urb	usb_unpoison_urb
1635
1636/**
1637 * usb_urb_dir_in - check if an URB describes an IN transfer
1638 * @urb: URB to be checked
1639 *
1640 * Return: 1 if @urb describes an IN transfer (device-to-host),
1641 * otherwise 0.
1642 */
1643static inline int usb_urb_dir_in(struct urb *urb)
1644{
1645	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1646}
1647
1648/**
1649 * usb_urb_dir_out - check if an URB describes an OUT transfer
1650 * @urb: URB to be checked
1651 *
1652 * Return: 1 if @urb describes an OUT transfer (host-to-device),
1653 * otherwise 0.
1654 */
1655static inline int usb_urb_dir_out(struct urb *urb)
1656{
1657	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1658}
1659
1660void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1661	gfp_t mem_flags, dma_addr_t *dma);
1662void usb_free_coherent(struct usb_device *dev, size_t size,
1663	void *addr, dma_addr_t dma);
1664
1665#if 0
1666struct urb *usb_buffer_map(struct urb *urb);
1667void usb_buffer_dmasync(struct urb *urb);
1668void usb_buffer_unmap(struct urb *urb);
1669#endif
1670
1671struct scatterlist;
1672int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1673		      struct scatterlist *sg, int nents);
1674#if 0
1675void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1676			   struct scatterlist *sg, int n_hw_ents);
1677#endif
1678void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1679			 struct scatterlist *sg, int n_hw_ents);
1680
1681/*-------------------------------------------------------------------*
1682 *                         SYNCHRONOUS CALL SUPPORT                  *
1683 *-------------------------------------------------------------------*/
1684
1685extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1686	__u8 request, __u8 requesttype, __u16 value, __u16 index,
1687	void *data, __u16 size, int timeout);
1688extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1689	void *data, int len, int *actual_length, int timeout);
1690extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1691	void *data, int len, int *actual_length,
1692	int timeout);
1693
1694/* wrappers around usb_control_msg() for the most common standard requests */
1695extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1696	unsigned char descindex, void *buf, int size);
1697extern int usb_get_status(struct usb_device *dev,
1698	int type, int target, void *data);
1699extern int usb_string(struct usb_device *dev, int index,
1700	char *buf, size_t size);
1701
1702/* wrappers that also update important state inside usbcore */
1703extern int usb_clear_halt(struct usb_device *dev, int pipe);
1704extern int usb_reset_configuration(struct usb_device *dev);
1705extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1706extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1707
1708/* this request isn't really synchronous, but it belongs with the others */
1709extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1710
1711/* choose and set configuration for device */
1712extern int usb_choose_configuration(struct usb_device *udev);
1713extern int usb_set_configuration(struct usb_device *dev, int configuration);
1714
1715/*
1716 * timeouts, in milliseconds, used for sending/receiving control messages
1717 * they typically complete within a few frames (msec) after they're issued
1718 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1719 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1720 */
1721#define USB_CTRL_GET_TIMEOUT	5000
1722#define USB_CTRL_SET_TIMEOUT	5000
1723
1724
1725/**
1726 * struct usb_sg_request - support for scatter/gather I/O
1727 * @status: zero indicates success, else negative errno
1728 * @bytes: counts bytes transferred.
1729 *
1730 * These requests are initialized using usb_sg_init(), and then are used
1731 * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1732 * members of the request object aren't for driver access.
1733 *
1734 * The status and bytecount values are valid only after usb_sg_wait()
1735 * returns.  If the status is zero, then the bytecount matches the total
1736 * from the request.
1737 *
1738 * After an error completion, drivers may need to clear a halt condition
1739 * on the endpoint.
1740 */
1741struct usb_sg_request {
1742	int			status;
1743	size_t			bytes;
1744
1745	/* private:
1746	 * members below are private to usbcore,
1747	 * and are not provided for driver access!
1748	 */
1749	spinlock_t		lock;
1750
1751	struct usb_device	*dev;
1752	int			pipe;
1753
1754	int			entries;
1755	struct urb		**urbs;
1756
1757	int			count;
1758	struct completion	complete;
1759};
1760
1761int usb_sg_init(
1762	struct usb_sg_request	*io,
1763	struct usb_device	*dev,
1764	unsigned		pipe,
1765	unsigned		period,
1766	struct scatterlist	*sg,
1767	int			nents,
1768	size_t			length,
1769	gfp_t			mem_flags
1770);
1771void usb_sg_cancel(struct usb_sg_request *io);
1772void usb_sg_wait(struct usb_sg_request *io);
1773
1774
1775/* ----------------------------------------------------------------------- */
1776
1777/*
1778 * For various legacy reasons, Linux has a small cookie that's paired with
1779 * a struct usb_device to identify an endpoint queue.  Queue characteristics
1780 * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1781 * an unsigned int encoded as:
1782 *
1783 *  - direction:	bit 7		(0 = Host-to-Device [Out],
1784 *					 1 = Device-to-Host [In] ...
1785 *					like endpoint bEndpointAddress)
1786 *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
1787 *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
1788 *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
1789 *					 10 = control, 11 = bulk)
1790 *
1791 * Given the device address and endpoint descriptor, pipes are redundant.
1792 */
1793
1794/* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1795/* (yet ... they're the values used by usbfs) */
1796#define PIPE_ISOCHRONOUS		0
1797#define PIPE_INTERRUPT			1
1798#define PIPE_CONTROL			2
1799#define PIPE_BULK			3
1800
1801#define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
1802#define usb_pipeout(pipe)	(!usb_pipein(pipe))
1803
1804#define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
1805#define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
1806
1807#define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
1808#define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1809#define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
1810#define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
1811#define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
1812
1813static inline unsigned int __create_pipe(struct usb_device *dev,
1814		unsigned int endpoint)
1815{
1816	return (dev->devnum << 8) | (endpoint << 15);
1817}
1818
1819/* Create various pipes... */
1820#define usb_sndctrlpipe(dev, endpoint)	\
1821	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1822#define usb_rcvctrlpipe(dev, endpoint)	\
1823	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1824#define usb_sndisocpipe(dev, endpoint)	\
1825	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1826#define usb_rcvisocpipe(dev, endpoint)	\
1827	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1828#define usb_sndbulkpipe(dev, endpoint)	\
1829	((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1830#define usb_rcvbulkpipe(dev, endpoint)	\
1831	((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1832#define usb_sndintpipe(dev, endpoint)	\
1833	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1834#define usb_rcvintpipe(dev, endpoint)	\
1835	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1836
1837static inline struct usb_host_endpoint *
1838usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1839{
1840	struct usb_host_endpoint **eps;
1841	eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1842	return eps[usb_pipeendpoint(pipe)];
1843}
1844
1845/*-------------------------------------------------------------------------*/
1846
1847static inline __u16
1848usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1849{
1850	struct usb_host_endpoint	*ep;
1851	unsigned			epnum = usb_pipeendpoint(pipe);
1852
1853	if (is_out) {
1854		WARN_ON(usb_pipein(pipe));
1855		ep = udev->ep_out[epnum];
1856	} else {
1857		WARN_ON(usb_pipeout(pipe));
1858		ep = udev->ep_in[epnum];
1859	}
1860	if (!ep)
1861		return 0;
1862
1863	/* NOTE:  only 0x07ff bits are for packet size... */
1864	return usb_endpoint_maxp(&ep->desc);
1865}
1866
1867/* ----------------------------------------------------------------------- */
1868
1869/* translate USB error codes to codes user space understands */
1870static inline int usb_translate_errors(int error_code)
1871{
1872	switch (error_code) {
1873	case 0:
1874	case -ENOMEM:
1875	case -ENODEV:
1876	case -EOPNOTSUPP:
1877		return error_code;
1878	default:
1879		return -EIO;
1880	}
1881}
1882
1883/* Events from the usb core */
1884#define USB_DEVICE_ADD		0x0001
1885#define USB_DEVICE_REMOVE	0x0002
1886#define USB_BUS_ADD		0x0003
1887#define USB_BUS_REMOVE		0x0004
1888extern void usb_register_notify(struct notifier_block *nb);
1889extern void usb_unregister_notify(struct notifier_block *nb);
1890
1891/* debugfs stuff */
1892extern struct dentry *usb_debug_root;
1893
1894/* LED triggers */
1895enum usb_led_event {
1896	USB_LED_EVENT_HOST = 0,
1897	USB_LED_EVENT_GADGET = 1,
1898};
1899
1900#ifdef CONFIG_USB_LED_TRIG
1901extern void usb_led_activity(enum usb_led_event ev);
1902#else
1903static inline void usb_led_activity(enum usb_led_event ev) {}
1904#endif
1905
1906#endif  /* __KERNEL__ */
1907
1908#endif
v3.15
   1#ifndef __LINUX_USB_H
   2#define __LINUX_USB_H
   3
   4#include <linux/mod_devicetable.h>
   5#include <linux/usb/ch9.h>
   6
   7#define USB_MAJOR			180
   8#define USB_DEVICE_MAJOR		189
   9
  10
  11#ifdef __KERNEL__
  12
  13#include <linux/errno.h>        /* for -ENODEV */
  14#include <linux/delay.h>	/* for mdelay() */
  15#include <linux/interrupt.h>	/* for in_interrupt() */
  16#include <linux/list.h>		/* for struct list_head */
  17#include <linux/kref.h>		/* for struct kref */
  18#include <linux/device.h>	/* for struct device */
  19#include <linux/fs.h>		/* for struct file_operations */
  20#include <linux/completion.h>	/* for struct completion */
  21#include <linux/sched.h>	/* for current && schedule_timeout */
  22#include <linux/mutex.h>	/* for struct mutex */
  23#include <linux/pm_runtime.h>	/* for runtime PM */
  24
  25struct usb_device;
  26struct usb_driver;
  27struct wusb_dev;
  28
  29/*-------------------------------------------------------------------------*/
  30
  31/*
  32 * Host-side wrappers for standard USB descriptors ... these are parsed
  33 * from the data provided by devices.  Parsing turns them from a flat
  34 * sequence of descriptors into a hierarchy:
  35 *
  36 *  - devices have one (usually) or more configs;
  37 *  - configs have one (often) or more interfaces;
  38 *  - interfaces have one (usually) or more settings;
  39 *  - each interface setting has zero or (usually) more endpoints.
  40 *  - a SuperSpeed endpoint has a companion descriptor
  41 *
  42 * And there might be other descriptors mixed in with those.
  43 *
  44 * Devices may also have class-specific or vendor-specific descriptors.
  45 */
  46
  47struct ep_device;
  48
  49/**
  50 * struct usb_host_endpoint - host-side endpoint descriptor and queue
  51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
  52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
 
  53 * @urb_list: urbs queued to this endpoint; maintained by usbcore
  54 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
  55 *	with one or more transfer descriptors (TDs) per urb
  56 * @ep_dev: ep_device for sysfs info
  57 * @extra: descriptors following this endpoint in the configuration
  58 * @extralen: how many bytes of "extra" are valid
  59 * @enabled: URBs may be submitted to this endpoint
  60 * @streams: number of USB-3 streams allocated on the endpoint
  61 *
  62 * USB requests are always queued to a given endpoint, identified by a
  63 * descriptor within an active interface in a given USB configuration.
  64 */
  65struct usb_host_endpoint {
  66	struct usb_endpoint_descriptor		desc;
  67	struct usb_ss_ep_comp_descriptor	ss_ep_comp;
 
  68	struct list_head		urb_list;
  69	void				*hcpriv;
  70	struct ep_device		*ep_dev;	/* For sysfs info */
  71
  72	unsigned char *extra;   /* Extra descriptors */
  73	int extralen;
  74	int enabled;
  75	int streams;
  76};
  77
  78/* host-side wrapper for one interface setting's parsed descriptors */
  79struct usb_host_interface {
  80	struct usb_interface_descriptor	desc;
  81
  82	int extralen;
  83	unsigned char *extra;   /* Extra descriptors */
  84
  85	/* array of desc.bNumEndpoint endpoints associated with this
  86	 * interface setting.  these will be in no particular order.
  87	 */
  88	struct usb_host_endpoint *endpoint;
  89
  90	char *string;		/* iInterface string, if present */
  91};
  92
  93enum usb_interface_condition {
  94	USB_INTERFACE_UNBOUND = 0,
  95	USB_INTERFACE_BINDING,
  96	USB_INTERFACE_BOUND,
  97	USB_INTERFACE_UNBINDING,
  98};
  99
 100/**
 101 * struct usb_interface - what usb device drivers talk to
 102 * @altsetting: array of interface structures, one for each alternate
 103 *	setting that may be selected.  Each one includes a set of
 104 *	endpoint configurations.  They will be in no particular order.
 105 * @cur_altsetting: the current altsetting.
 106 * @num_altsetting: number of altsettings defined.
 107 * @intf_assoc: interface association descriptor
 108 * @minor: the minor number assigned to this interface, if this
 109 *	interface is bound to a driver that uses the USB major number.
 110 *	If this interface does not use the USB major, this field should
 111 *	be unused.  The driver should set this value in the probe()
 112 *	function of the driver, after it has been assigned a minor
 113 *	number from the USB core by calling usb_register_dev().
 114 * @condition: binding state of the interface: not bound, binding
 115 *	(in probe()), bound to a driver, or unbinding (in disconnect())
 116 * @sysfs_files_created: sysfs attributes exist
 117 * @ep_devs_created: endpoint child pseudo-devices exist
 118 * @unregistering: flag set when the interface is being unregistered
 119 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
 120 *	capability during autosuspend.
 121 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
 122 *	has been deferred.
 123 * @needs_binding: flag set when the driver should be re-probed or unbound
 124 *	following a reset or suspend operation it doesn't support.
 
 
 125 * @dev: driver model's view of this device
 126 * @usb_dev: if an interface is bound to the USB major, this will point
 127 *	to the sysfs representation for that device.
 128 * @pm_usage_cnt: PM usage counter for this interface
 129 * @reset_ws: Used for scheduling resets from atomic context.
 130 * @reset_running: set to 1 if the interface is currently running a
 131 *      queued reset so that usb_cancel_queued_reset() doesn't try to
 132 *      remove from the workqueue when running inside the worker
 133 *      thread. See __usb_queue_reset_device().
 134 * @resetting_device: USB core reset the device, so use alt setting 0 as
 135 *	current; needs bandwidth alloc after reset.
 136 *
 137 * USB device drivers attach to interfaces on a physical device.  Each
 138 * interface encapsulates a single high level function, such as feeding
 139 * an audio stream to a speaker or reporting a change in a volume control.
 140 * Many USB devices only have one interface.  The protocol used to talk to
 141 * an interface's endpoints can be defined in a usb "class" specification,
 142 * or by a product's vendor.  The (default) control endpoint is part of
 143 * every interface, but is never listed among the interface's descriptors.
 144 *
 145 * The driver that is bound to the interface can use standard driver model
 146 * calls such as dev_get_drvdata() on the dev member of this structure.
 147 *
 148 * Each interface may have alternate settings.  The initial configuration
 149 * of a device sets altsetting 0, but the device driver can change
 150 * that setting using usb_set_interface().  Alternate settings are often
 151 * used to control the use of periodic endpoints, such as by having
 152 * different endpoints use different amounts of reserved USB bandwidth.
 153 * All standards-conformant USB devices that use isochronous endpoints
 154 * will use them in non-default settings.
 155 *
 156 * The USB specification says that alternate setting numbers must run from
 157 * 0 to one less than the total number of alternate settings.  But some
 158 * devices manage to mess this up, and the structures aren't necessarily
 159 * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
 160 * look up an alternate setting in the altsetting array based on its number.
 161 */
 162struct usb_interface {
 163	/* array of alternate settings for this interface,
 164	 * stored in no particular order */
 165	struct usb_host_interface *altsetting;
 166
 167	struct usb_host_interface *cur_altsetting;	/* the currently
 168					 * active alternate setting */
 169	unsigned num_altsetting;	/* number of alternate settings */
 170
 171	/* If there is an interface association descriptor then it will list
 172	 * the associated interfaces */
 173	struct usb_interface_assoc_descriptor *intf_assoc;
 174
 175	int minor;			/* minor number this interface is
 176					 * bound to */
 177	enum usb_interface_condition condition;		/* state of binding */
 178	unsigned sysfs_files_created:1;	/* the sysfs attributes exist */
 179	unsigned ep_devs_created:1;	/* endpoint "devices" exist */
 180	unsigned unregistering:1;	/* unregistration is in progress */
 181	unsigned needs_remote_wakeup:1;	/* driver requires remote wakeup */
 182	unsigned needs_altsetting0:1;	/* switch to altsetting 0 is pending */
 183	unsigned needs_binding:1;	/* needs delayed unbind/rebind */
 184	unsigned reset_running:1;
 185	unsigned resetting_device:1;	/* true: bandwidth alloc after reset */
 
 186
 187	struct device dev;		/* interface specific device info */
 188	struct device *usb_dev;
 189	atomic_t pm_usage_cnt;		/* usage counter for autosuspend */
 190	struct work_struct reset_ws;	/* for resets in atomic context */
 191};
 192#define	to_usb_interface(d) container_of(d, struct usb_interface, dev)
 193
 194static inline void *usb_get_intfdata(struct usb_interface *intf)
 195{
 196	return dev_get_drvdata(&intf->dev);
 197}
 198
 199static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
 200{
 201	dev_set_drvdata(&intf->dev, data);
 202}
 203
 204struct usb_interface *usb_get_intf(struct usb_interface *intf);
 205void usb_put_intf(struct usb_interface *intf);
 206
 207/* Hard limit */
 208#define USB_MAXENDPOINTS	30
 209/* this maximum is arbitrary */
 210#define USB_MAXINTERFACES	32
 211#define USB_MAXIADS		(USB_MAXINTERFACES/2)
 212
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 213/**
 214 * struct usb_interface_cache - long-term representation of a device interface
 215 * @num_altsetting: number of altsettings defined.
 216 * @ref: reference counter.
 217 * @altsetting: variable-length array of interface structures, one for
 218 *	each alternate setting that may be selected.  Each one includes a
 219 *	set of endpoint configurations.  They will be in no particular order.
 220 *
 221 * These structures persist for the lifetime of a usb_device, unlike
 222 * struct usb_interface (which persists only as long as its configuration
 223 * is installed).  The altsetting arrays can be accessed through these
 224 * structures at any time, permitting comparison of configurations and
 225 * providing support for the /proc/bus/usb/devices pseudo-file.
 226 */
 227struct usb_interface_cache {
 228	unsigned num_altsetting;	/* number of alternate settings */
 229	struct kref ref;		/* reference counter */
 230
 231	/* variable-length array of alternate settings for this interface,
 232	 * stored in no particular order */
 233	struct usb_host_interface altsetting[0];
 234};
 235#define	ref_to_usb_interface_cache(r) \
 236		container_of(r, struct usb_interface_cache, ref)
 237#define	altsetting_to_usb_interface_cache(a) \
 238		container_of(a, struct usb_interface_cache, altsetting[0])
 239
 240/**
 241 * struct usb_host_config - representation of a device's configuration
 242 * @desc: the device's configuration descriptor.
 243 * @string: pointer to the cached version of the iConfiguration string, if
 244 *	present for this configuration.
 245 * @intf_assoc: list of any interface association descriptors in this config
 246 * @interface: array of pointers to usb_interface structures, one for each
 247 *	interface in the configuration.  The number of interfaces is stored
 248 *	in desc.bNumInterfaces.  These pointers are valid only while the
 249 *	the configuration is active.
 250 * @intf_cache: array of pointers to usb_interface_cache structures, one
 251 *	for each interface in the configuration.  These structures exist
 252 *	for the entire life of the device.
 253 * @extra: pointer to buffer containing all extra descriptors associated
 254 *	with this configuration (those preceding the first interface
 255 *	descriptor).
 256 * @extralen: length of the extra descriptors buffer.
 257 *
 258 * USB devices may have multiple configurations, but only one can be active
 259 * at any time.  Each encapsulates a different operational environment;
 260 * for example, a dual-speed device would have separate configurations for
 261 * full-speed and high-speed operation.  The number of configurations
 262 * available is stored in the device descriptor as bNumConfigurations.
 263 *
 264 * A configuration can contain multiple interfaces.  Each corresponds to
 265 * a different function of the USB device, and all are available whenever
 266 * the configuration is active.  The USB standard says that interfaces
 267 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
 268 * of devices get this wrong.  In addition, the interface array is not
 269 * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
 270 * look up an interface entry based on its number.
 271 *
 272 * Device drivers should not attempt to activate configurations.  The choice
 273 * of which configuration to install is a policy decision based on such
 274 * considerations as available power, functionality provided, and the user's
 275 * desires (expressed through userspace tools).  However, drivers can call
 276 * usb_reset_configuration() to reinitialize the current configuration and
 277 * all its interfaces.
 278 */
 279struct usb_host_config {
 280	struct usb_config_descriptor	desc;
 281
 282	char *string;		/* iConfiguration string, if present */
 283
 284	/* List of any Interface Association Descriptors in this
 285	 * configuration. */
 286	struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
 287
 288	/* the interfaces associated with this configuration,
 289	 * stored in no particular order */
 290	struct usb_interface *interface[USB_MAXINTERFACES];
 291
 292	/* Interface information available even when this is not the
 293	 * active configuration */
 294	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
 295
 296	unsigned char *extra;   /* Extra descriptors */
 297	int extralen;
 298};
 299
 300/* USB2.0 and USB3.0 device BOS descriptor set */
 301struct usb_host_bos {
 302	struct usb_bos_descriptor	*desc;
 303
 304	/* wireless cap descriptor is handled by wusb */
 305	struct usb_ext_cap_descriptor	*ext_cap;
 306	struct usb_ss_cap_descriptor	*ss_cap;
 
 307	struct usb_ss_container_id_descriptor	*ss_id;
 
 308};
 309
 310int __usb_get_extra_descriptor(char *buffer, unsigned size,
 311	unsigned char type, void **ptr);
 312#define usb_get_extra_descriptor(ifpoint, type, ptr) \
 313				__usb_get_extra_descriptor((ifpoint)->extra, \
 314				(ifpoint)->extralen, \
 315				type, (void **)ptr)
 316
 317/* ----------------------------------------------------------------------- */
 318
 319/* USB device number allocation bitmap */
 320struct usb_devmap {
 321	unsigned long devicemap[128 / (8*sizeof(unsigned long))];
 322};
 323
 324/*
 325 * Allocated per bus (tree of devices) we have:
 326 */
 327struct usb_bus {
 328	struct device *controller;	/* host/master side hardware */
 329	int busnum;			/* Bus number (in order of reg) */
 330	const char *bus_name;		/* stable id (PCI slot_name etc) */
 331	u8 uses_dma;			/* Does the host controller use DMA? */
 332	u8 uses_pio_for_control;	/*
 333					 * Does the host controller use PIO
 334					 * for control transfers?
 335					 */
 336	u8 otg_port;			/* 0, or number of OTG/HNP port */
 337	unsigned is_b_host:1;		/* true during some HNP roleswitches */
 338	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
 339	unsigned no_stop_on_short:1;    /*
 340					 * Quirk: some controllers don't stop
 341					 * the ep queue on a short transfer
 342					 * with the URB_SHORT_NOT_OK flag set.
 343					 */
 344	unsigned no_sg_constraint:1;	/* no sg constraint */
 345	unsigned sg_tablesize;		/* 0 or largest number of sg list entries */
 346
 347	int devnum_next;		/* Next open device number in
 348					 * round-robin allocation */
 
 349
 350	struct usb_devmap devmap;	/* device address allocation map */
 351	struct usb_device *root_hub;	/* Root hub */
 352	struct usb_bus *hs_companion;	/* Companion EHCI bus, if any */
 353	struct list_head bus_list;	/* list of busses */
 354
 355	int bandwidth_allocated;	/* on this bus: how much of the time
 356					 * reserved for periodic (intr/iso)
 357					 * requests is used, on average?
 358					 * Units: microseconds/frame.
 359					 * Limits: Full/low speed reserve 90%,
 360					 * while high speed reserves 80%.
 361					 */
 362	int bandwidth_int_reqs;		/* number of Interrupt requests */
 363	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
 364
 365	unsigned resuming_ports;	/* bit array: resuming root-hub ports */
 366
 367#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
 368	struct mon_bus *mon_bus;	/* non-null when associated */
 369	int monitored;			/* non-zero when monitored */
 370#endif
 371};
 372
 373struct usb_dev_state;
 374
 375/* ----------------------------------------------------------------------- */
 376
 377struct usb_tt;
 378
 379enum usb_device_removable {
 380	USB_DEVICE_REMOVABLE_UNKNOWN = 0,
 381	USB_DEVICE_REMOVABLE,
 382	USB_DEVICE_FIXED,
 383};
 384
 385enum usb_port_connect_type {
 386	USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
 387	USB_PORT_CONNECT_TYPE_HOT_PLUG,
 388	USB_PORT_CONNECT_TYPE_HARD_WIRED,
 389	USB_PORT_NOT_USED,
 390};
 391
 392/*
 393 * USB 2.0 Link Power Management (LPM) parameters.
 394 */
 395struct usb2_lpm_parameters {
 396	/* Best effort service latency indicate how long the host will drive
 397	 * resume on an exit from L1.
 398	 */
 399	unsigned int besl;
 400
 401	/* Timeout value in microseconds for the L1 inactivity (LPM) timer.
 402	 * When the timer counts to zero, the parent hub will initiate a LPM
 403	 * transition to L1.
 404	 */
 405	int timeout;
 406};
 407
 408/*
 409 * USB 3.0 Link Power Management (LPM) parameters.
 410 *
 411 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
 412 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
 413 * All three are stored in nanoseconds.
 414 */
 415struct usb3_lpm_parameters {
 416	/*
 417	 * Maximum exit latency (MEL) for the host to send a packet to the
 418	 * device (either a Ping for isoc endpoints, or a data packet for
 419	 * interrupt endpoints), the hubs to decode the packet, and for all hubs
 420	 * in the path to transition the links to U0.
 421	 */
 422	unsigned int mel;
 423	/*
 424	 * Maximum exit latency for a device-initiated LPM transition to bring
 425	 * all links into U0.  Abbreviated as "PEL" in section 9.4.12 of the USB
 426	 * 3.0 spec, with no explanation of what "P" stands for.  "Path"?
 427	 */
 428	unsigned int pel;
 429
 430	/*
 431	 * The System Exit Latency (SEL) includes PEL, and three other
 432	 * latencies.  After a device initiates a U0 transition, it will take
 433	 * some time from when the device sends the ERDY to when it will finally
 434	 * receive the data packet.  Basically, SEL should be the worse-case
 435	 * latency from when a device starts initiating a U0 transition to when
 436	 * it will get data.
 437	 */
 438	unsigned int sel;
 439	/*
 440	 * The idle timeout value that is currently programmed into the parent
 441	 * hub for this device.  When the timer counts to zero, the parent hub
 442	 * will initiate an LPM transition to either U1 or U2.
 443	 */
 444	int timeout;
 445};
 446
 447/**
 448 * struct usb_device - kernel's representation of a USB device
 449 * @devnum: device number; address on a USB bus
 450 * @devpath: device ID string for use in messages (e.g., /port/...)
 451 * @route: tree topology hex string for use with xHCI
 452 * @state: device state: configured, not attached, etc.
 453 * @speed: device speed: high/full/low (or error)
 454 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
 455 * @ttport: device port on that tt hub
 456 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
 457 * @parent: our hub, unless we're the root
 458 * @bus: bus we're part of
 459 * @ep0: endpoint 0 data (default control pipe)
 460 * @dev: generic device interface
 461 * @descriptor: USB device descriptor
 462 * @bos: USB device BOS descriptor set
 463 * @config: all of the device's configs
 464 * @actconfig: the active configuration
 465 * @ep_in: array of IN endpoints
 466 * @ep_out: array of OUT endpoints
 467 * @rawdescriptors: raw descriptors for each config
 468 * @bus_mA: Current available from the bus
 469 * @portnum: parent port number (origin 1)
 470 * @level: number of USB hub ancestors
 471 * @can_submit: URBs may be submitted
 472 * @persist_enabled:  USB_PERSIST enabled for this device
 473 * @have_langid: whether string_langid is valid
 474 * @authorized: policy has said we can use it;
 475 *	(user space) policy determines if we authorize this device to be
 476 *	used or not. By default, wired USB devices are authorized.
 477 *	WUSB devices are not, until we authorize them from user space.
 478 *	FIXME -- complete doc
 479 * @authenticated: Crypto authentication passed
 480 * @wusb: device is Wireless USB
 481 * @lpm_capable: device supports LPM
 482 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
 483 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
 484 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
 485 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
 486 * @usb3_lpm_enabled: USB3 hardware LPM enabled
 
 487 * @string_langid: language ID for strings
 488 * @product: iProduct string, if present (static)
 489 * @manufacturer: iManufacturer string, if present (static)
 490 * @serial: iSerialNumber string, if present (static)
 491 * @filelist: usbfs files that are open to this device
 492 * @maxchild: number of ports if hub
 493 * @quirks: quirks of the whole device
 494 * @urbnum: number of URBs submitted for the whole device
 495 * @active_duration: total time device is not suspended
 496 * @connect_time: time device was first connected
 497 * @do_remote_wakeup:  remote wakeup should be enabled
 498 * @reset_resume: needs reset instead of resume
 499 * @port_is_suspended: the upstream port is suspended (L2 or U3)
 500 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
 501 *	specific data for the device.
 502 * @slot_id: Slot ID assigned by xHCI
 503 * @removable: Device can be physically removed from this port
 504 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
 505 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
 506 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
 507 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
 508 *	to keep track of the number of functions that require USB 3.0 Link Power
 509 *	Management to be disabled for this usb_device.  This count should only
 510 *	be manipulated by those functions, with the bandwidth_mutex is held.
 511 *
 512 * Notes:
 513 * Usbcore drivers should not set usbdev->state directly.  Instead use
 514 * usb_set_device_state().
 515 */
 516struct usb_device {
 517	int		devnum;
 518	char		devpath[16];
 519	u32		route;
 520	enum usb_device_state	state;
 521	enum usb_device_speed	speed;
 522
 523	struct usb_tt	*tt;
 524	int		ttport;
 525
 526	unsigned int toggle[2];
 527
 528	struct usb_device *parent;
 529	struct usb_bus *bus;
 530	struct usb_host_endpoint ep0;
 531
 532	struct device dev;
 533
 534	struct usb_device_descriptor descriptor;
 535	struct usb_host_bos *bos;
 536	struct usb_host_config *config;
 537
 538	struct usb_host_config *actconfig;
 539	struct usb_host_endpoint *ep_in[16];
 540	struct usb_host_endpoint *ep_out[16];
 541
 542	char **rawdescriptors;
 543
 544	unsigned short bus_mA;
 545	u8 portnum;
 546	u8 level;
 547
 548	unsigned can_submit:1;
 549	unsigned persist_enabled:1;
 550	unsigned have_langid:1;
 551	unsigned authorized:1;
 552	unsigned authenticated:1;
 553	unsigned wusb:1;
 554	unsigned lpm_capable:1;
 555	unsigned usb2_hw_lpm_capable:1;
 556	unsigned usb2_hw_lpm_besl_capable:1;
 557	unsigned usb2_hw_lpm_enabled:1;
 558	unsigned usb2_hw_lpm_allowed:1;
 559	unsigned usb3_lpm_enabled:1;
 
 560	int string_langid;
 561
 562	/* static strings from the device */
 563	char *product;
 564	char *manufacturer;
 565	char *serial;
 566
 567	struct list_head filelist;
 568
 569	int maxchild;
 570
 571	u32 quirks;
 572	atomic_t urbnum;
 573
 574	unsigned long active_duration;
 575
 576#ifdef CONFIG_PM
 577	unsigned long connect_time;
 578
 579	unsigned do_remote_wakeup:1;
 580	unsigned reset_resume:1;
 581	unsigned port_is_suspended:1;
 582#endif
 583	struct wusb_dev *wusb_dev;
 584	int slot_id;
 585	enum usb_device_removable removable;
 586	struct usb2_lpm_parameters l1_params;
 587	struct usb3_lpm_parameters u1_params;
 588	struct usb3_lpm_parameters u2_params;
 589	unsigned lpm_disable_count;
 590};
 591#define	to_usb_device(d) container_of(d, struct usb_device, dev)
 592
 593static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
 594{
 595	return to_usb_device(intf->dev.parent);
 596}
 597
 598extern struct usb_device *usb_get_dev(struct usb_device *dev);
 599extern void usb_put_dev(struct usb_device *dev);
 600extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
 601	int port1);
 602
 603/**
 604 * usb_hub_for_each_child - iterate over all child devices on the hub
 605 * @hdev:  USB device belonging to the usb hub
 606 * @port1: portnum associated with child device
 607 * @child: child device pointer
 608 */
 609#define usb_hub_for_each_child(hdev, port1, child) \
 610	for (port1 = 1,	child =	usb_hub_find_child(hdev, port1); \
 611			port1 <= hdev->maxchild; \
 612			child = usb_hub_find_child(hdev, ++port1)) \
 613		if (!child) continue; else
 614
 615/* USB device locking */
 616#define usb_lock_device(udev)		device_lock(&(udev)->dev)
 617#define usb_unlock_device(udev)		device_unlock(&(udev)->dev)
 618#define usb_trylock_device(udev)	device_trylock(&(udev)->dev)
 
 619extern int usb_lock_device_for_reset(struct usb_device *udev,
 620				     const struct usb_interface *iface);
 621
 622/* USB port reset for device reinitialization */
 623extern int usb_reset_device(struct usb_device *dev);
 624extern void usb_queue_reset_device(struct usb_interface *dev);
 625
 626#ifdef CONFIG_ACPI
 627extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
 628	bool enable);
 629extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
 630#else
 631static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
 632	bool enable) { return 0; }
 633static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
 634	{ return true; }
 635#endif
 636
 637/* USB autosuspend and autoresume */
 638#ifdef CONFIG_PM_RUNTIME
 639extern void usb_enable_autosuspend(struct usb_device *udev);
 640extern void usb_disable_autosuspend(struct usb_device *udev);
 641
 642extern int usb_autopm_get_interface(struct usb_interface *intf);
 643extern void usb_autopm_put_interface(struct usb_interface *intf);
 644extern int usb_autopm_get_interface_async(struct usb_interface *intf);
 645extern void usb_autopm_put_interface_async(struct usb_interface *intf);
 646extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
 647extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
 648
 649static inline void usb_mark_last_busy(struct usb_device *udev)
 650{
 651	pm_runtime_mark_last_busy(&udev->dev);
 652}
 653
 654#else
 655
 656static inline int usb_enable_autosuspend(struct usb_device *udev)
 657{ return 0; }
 658static inline int usb_disable_autosuspend(struct usb_device *udev)
 659{ return 0; }
 660
 661static inline int usb_autopm_get_interface(struct usb_interface *intf)
 662{ return 0; }
 663static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
 664{ return 0; }
 665
 666static inline void usb_autopm_put_interface(struct usb_interface *intf)
 667{ }
 668static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
 669{ }
 670static inline void usb_autopm_get_interface_no_resume(
 671		struct usb_interface *intf)
 672{ }
 673static inline void usb_autopm_put_interface_no_suspend(
 674		struct usb_interface *intf)
 675{ }
 676static inline void usb_mark_last_busy(struct usb_device *udev)
 677{ }
 678#endif
 679
 680extern int usb_disable_lpm(struct usb_device *udev);
 681extern void usb_enable_lpm(struct usb_device *udev);
 682/* Same as above, but these functions lock/unlock the bandwidth_mutex. */
 683extern int usb_unlocked_disable_lpm(struct usb_device *udev);
 684extern void usb_unlocked_enable_lpm(struct usb_device *udev);
 685
 686extern int usb_disable_ltm(struct usb_device *udev);
 687extern void usb_enable_ltm(struct usb_device *udev);
 688
 689static inline bool usb_device_supports_ltm(struct usb_device *udev)
 690{
 691	if (udev->speed != USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
 692		return false;
 693	return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
 694}
 695
 696static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
 697{
 698	return udev && udev->bus && udev->bus->no_sg_constraint;
 699}
 700
 701
 702/*-------------------------------------------------------------------------*/
 703
 704/* for drivers using iso endpoints */
 705extern int usb_get_current_frame_number(struct usb_device *usb_dev);
 706
 707/* Sets up a group of bulk endpoints to support multiple stream IDs. */
 708extern int usb_alloc_streams(struct usb_interface *interface,
 709		struct usb_host_endpoint **eps, unsigned int num_eps,
 710		unsigned int num_streams, gfp_t mem_flags);
 711
 712/* Reverts a group of bulk endpoints back to not using stream IDs. */
 713extern int usb_free_streams(struct usb_interface *interface,
 714		struct usb_host_endpoint **eps, unsigned int num_eps,
 715		gfp_t mem_flags);
 716
 717/* used these for multi-interface device registration */
 718extern int usb_driver_claim_interface(struct usb_driver *driver,
 719			struct usb_interface *iface, void *priv);
 720
 721/**
 722 * usb_interface_claimed - returns true iff an interface is claimed
 723 * @iface: the interface being checked
 724 *
 725 * Return: %true (nonzero) iff the interface is claimed, else %false
 726 * (zero).
 727 *
 728 * Note:
 729 * Callers must own the driver model's usb bus readlock.  So driver
 730 * probe() entries don't need extra locking, but other call contexts
 731 * may need to explicitly claim that lock.
 732 *
 733 */
 734static inline int usb_interface_claimed(struct usb_interface *iface)
 735{
 736	return (iface->dev.driver != NULL);
 737}
 738
 739extern void usb_driver_release_interface(struct usb_driver *driver,
 740			struct usb_interface *iface);
 741const struct usb_device_id *usb_match_id(struct usb_interface *interface,
 742					 const struct usb_device_id *id);
 743extern int usb_match_one_id(struct usb_interface *interface,
 744			    const struct usb_device_id *id);
 745
 746extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
 747extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
 748		int minor);
 749extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
 750		unsigned ifnum);
 751extern struct usb_host_interface *usb_altnum_to_altsetting(
 752		const struct usb_interface *intf, unsigned int altnum);
 753extern struct usb_host_interface *usb_find_alt_setting(
 754		struct usb_host_config *config,
 755		unsigned int iface_num,
 756		unsigned int alt_num);
 757
 758/* port claiming functions */
 759int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
 760		struct usb_dev_state *owner);
 761int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
 762		struct usb_dev_state *owner);
 763
 764/**
 765 * usb_make_path - returns stable device path in the usb tree
 766 * @dev: the device whose path is being constructed
 767 * @buf: where to put the string
 768 * @size: how big is "buf"?
 769 *
 770 * Return: Length of the string (> 0) or negative if size was too small.
 771 *
 772 * Note:
 773 * This identifier is intended to be "stable", reflecting physical paths in
 774 * hardware such as physical bus addresses for host controllers or ports on
 775 * USB hubs.  That makes it stay the same until systems are physically
 776 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
 777 * controllers.  Adding and removing devices, including virtual root hubs
 778 * in host controller driver modules, does not change these path identifiers;
 779 * neither does rebooting or re-enumerating.  These are more useful identifiers
 780 * than changeable ("unstable") ones like bus numbers or device addresses.
 781 *
 782 * With a partial exception for devices connected to USB 2.0 root hubs, these
 783 * identifiers are also predictable.  So long as the device tree isn't changed,
 784 * plugging any USB device into a given hub port always gives it the same path.
 785 * Because of the use of "companion" controllers, devices connected to ports on
 786 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
 787 * high speed, and a different one if they are full or low speed.
 788 */
 789static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
 790{
 791	int actual;
 792	actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
 793			  dev->devpath);
 794	return (actual >= (int)size) ? -1 : actual;
 795}
 796
 797/*-------------------------------------------------------------------------*/
 798
 799#define USB_DEVICE_ID_MATCH_DEVICE \
 800		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
 801#define USB_DEVICE_ID_MATCH_DEV_RANGE \
 802		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
 803#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
 804		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
 805#define USB_DEVICE_ID_MATCH_DEV_INFO \
 806		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
 807		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
 808		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
 809#define USB_DEVICE_ID_MATCH_INT_INFO \
 810		(USB_DEVICE_ID_MATCH_INT_CLASS | \
 811		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
 812		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
 813
 814/**
 815 * USB_DEVICE - macro used to describe a specific usb device
 816 * @vend: the 16 bit USB Vendor ID
 817 * @prod: the 16 bit USB Product ID
 818 *
 819 * This macro is used to create a struct usb_device_id that matches a
 820 * specific device.
 821 */
 822#define USB_DEVICE(vend, prod) \
 823	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
 824	.idVendor = (vend), \
 825	.idProduct = (prod)
 826/**
 827 * USB_DEVICE_VER - describe a specific usb device with a version range
 828 * @vend: the 16 bit USB Vendor ID
 829 * @prod: the 16 bit USB Product ID
 830 * @lo: the bcdDevice_lo value
 831 * @hi: the bcdDevice_hi value
 832 *
 833 * This macro is used to create a struct usb_device_id that matches a
 834 * specific device, with a version range.
 835 */
 836#define USB_DEVICE_VER(vend, prod, lo, hi) \
 837	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
 838	.idVendor = (vend), \
 839	.idProduct = (prod), \
 840	.bcdDevice_lo = (lo), \
 841	.bcdDevice_hi = (hi)
 842
 843/**
 844 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
 845 * @vend: the 16 bit USB Vendor ID
 846 * @prod: the 16 bit USB Product ID
 847 * @cl: bInterfaceClass value
 848 *
 849 * This macro is used to create a struct usb_device_id that matches a
 850 * specific interface class of devices.
 851 */
 852#define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
 853	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
 854		       USB_DEVICE_ID_MATCH_INT_CLASS, \
 855	.idVendor = (vend), \
 856	.idProduct = (prod), \
 857	.bInterfaceClass = (cl)
 858
 859/**
 860 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
 861 * @vend: the 16 bit USB Vendor ID
 862 * @prod: the 16 bit USB Product ID
 863 * @pr: bInterfaceProtocol value
 864 *
 865 * This macro is used to create a struct usb_device_id that matches a
 866 * specific interface protocol of devices.
 867 */
 868#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
 869	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
 870		       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
 871	.idVendor = (vend), \
 872	.idProduct = (prod), \
 873	.bInterfaceProtocol = (pr)
 874
 875/**
 876 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
 877 * @vend: the 16 bit USB Vendor ID
 878 * @prod: the 16 bit USB Product ID
 879 * @num: bInterfaceNumber value
 880 *
 881 * This macro is used to create a struct usb_device_id that matches a
 882 * specific interface number of devices.
 883 */
 884#define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
 885	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
 886		       USB_DEVICE_ID_MATCH_INT_NUMBER, \
 887	.idVendor = (vend), \
 888	.idProduct = (prod), \
 889	.bInterfaceNumber = (num)
 890
 891/**
 892 * USB_DEVICE_INFO - macro used to describe a class of usb devices
 893 * @cl: bDeviceClass value
 894 * @sc: bDeviceSubClass value
 895 * @pr: bDeviceProtocol value
 896 *
 897 * This macro is used to create a struct usb_device_id that matches a
 898 * specific class of devices.
 899 */
 900#define USB_DEVICE_INFO(cl, sc, pr) \
 901	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
 902	.bDeviceClass = (cl), \
 903	.bDeviceSubClass = (sc), \
 904	.bDeviceProtocol = (pr)
 905
 906/**
 907 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
 908 * @cl: bInterfaceClass value
 909 * @sc: bInterfaceSubClass value
 910 * @pr: bInterfaceProtocol value
 911 *
 912 * This macro is used to create a struct usb_device_id that matches a
 913 * specific class of interfaces.
 914 */
 915#define USB_INTERFACE_INFO(cl, sc, pr) \
 916	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
 917	.bInterfaceClass = (cl), \
 918	.bInterfaceSubClass = (sc), \
 919	.bInterfaceProtocol = (pr)
 920
 921/**
 922 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
 923 * @vend: the 16 bit USB Vendor ID
 924 * @prod: the 16 bit USB Product ID
 925 * @cl: bInterfaceClass value
 926 * @sc: bInterfaceSubClass value
 927 * @pr: bInterfaceProtocol value
 928 *
 929 * This macro is used to create a struct usb_device_id that matches a
 930 * specific device with a specific class of interfaces.
 931 *
 932 * This is especially useful when explicitly matching devices that have
 933 * vendor specific bDeviceClass values, but standards-compliant interfaces.
 934 */
 935#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
 936	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
 937		| USB_DEVICE_ID_MATCH_DEVICE, \
 938	.idVendor = (vend), \
 939	.idProduct = (prod), \
 940	.bInterfaceClass = (cl), \
 941	.bInterfaceSubClass = (sc), \
 942	.bInterfaceProtocol = (pr)
 943
 944/**
 945 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
 946 * @vend: the 16 bit USB Vendor ID
 947 * @cl: bInterfaceClass value
 948 * @sc: bInterfaceSubClass value
 949 * @pr: bInterfaceProtocol value
 950 *
 951 * This macro is used to create a struct usb_device_id that matches a
 952 * specific vendor with a specific class of interfaces.
 953 *
 954 * This is especially useful when explicitly matching devices that have
 955 * vendor specific bDeviceClass values, but standards-compliant interfaces.
 956 */
 957#define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
 958	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
 959		| USB_DEVICE_ID_MATCH_VENDOR, \
 960	.idVendor = (vend), \
 961	.bInterfaceClass = (cl), \
 962	.bInterfaceSubClass = (sc), \
 963	.bInterfaceProtocol = (pr)
 964
 965/* ----------------------------------------------------------------------- */
 966
 967/* Stuff for dynamic usb ids */
 968struct usb_dynids {
 969	spinlock_t lock;
 970	struct list_head list;
 971};
 972
 973struct usb_dynid {
 974	struct list_head node;
 975	struct usb_device_id id;
 976};
 977
 978extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
 979				const struct usb_device_id *id_table,
 980				struct device_driver *driver,
 981				const char *buf, size_t count);
 982
 983extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
 984
 985/**
 986 * struct usbdrv_wrap - wrapper for driver-model structure
 987 * @driver: The driver-model core driver structure.
 988 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
 989 */
 990struct usbdrv_wrap {
 991	struct device_driver driver;
 992	int for_devices;
 993};
 994
 995/**
 996 * struct usb_driver - identifies USB interface driver to usbcore
 997 * @name: The driver name should be unique among USB drivers,
 998 *	and should normally be the same as the module name.
 999 * @probe: Called to see if the driver is willing to manage a particular
1000 *	interface on a device.  If it is, probe returns zero and uses
1001 *	usb_set_intfdata() to associate driver-specific data with the
1002 *	interface.  It may also use usb_set_interface() to specify the
1003 *	appropriate altsetting.  If unwilling to manage the interface,
1004 *	return -ENODEV, if genuine IO errors occurred, an appropriate
1005 *	negative errno value.
1006 * @disconnect: Called when the interface is no longer accessible, usually
1007 *	because its device has been (or is being) disconnected or the
1008 *	driver module is being unloaded.
1009 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1010 *	the "usbfs" filesystem.  This lets devices provide ways to
1011 *	expose information to user space regardless of where they
1012 *	do (or don't) show up otherwise in the filesystem.
1013 * @suspend: Called when the device is going to be suspended by the
1014 *	system either from system sleep or runtime suspend context. The
1015 *	return value will be ignored in system sleep context, so do NOT
1016 *	try to continue using the device if suspend fails in this case.
1017 *	Instead, let the resume or reset-resume routine recover from
1018 *	the failure.
1019 * @resume: Called when the device is being resumed by the system.
1020 * @reset_resume: Called when the suspended device has been reset instead
1021 *	of being resumed.
1022 * @pre_reset: Called by usb_reset_device() when the device is about to be
1023 *	reset.  This routine must not return until the driver has no active
1024 *	URBs for the device, and no more URBs may be submitted until the
1025 *	post_reset method is called.
1026 * @post_reset: Called by usb_reset_device() after the device
1027 *	has been reset
1028 * @id_table: USB drivers use ID table to support hotplugging.
1029 *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
1030 *	or your driver's probe function will never get called.
1031 * @dynids: used internally to hold the list of dynamically added device
1032 *	ids for this driver.
1033 * @drvwrap: Driver-model core structure wrapper.
1034 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1035 *	added to this driver by preventing the sysfs file from being created.
1036 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1037 *	for interfaces bound to this driver.
1038 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1039 *	endpoints before calling the driver's disconnect method.
1040 * @disable_hub_initiated_lpm: if set to 0, the USB core will not allow hubs
1041 *	to initiate lower power link state transitions when an idle timeout
1042 *	occurs.  Device-initiated USB 3.0 link PM will still be allowed.
1043 *
1044 * USB interface drivers must provide a name, probe() and disconnect()
1045 * methods, and an id_table.  Other driver fields are optional.
1046 *
1047 * The id_table is used in hotplugging.  It holds a set of descriptors,
1048 * and specialized data may be associated with each entry.  That table
1049 * is used by both user and kernel mode hotplugging support.
1050 *
1051 * The probe() and disconnect() methods are called in a context where
1052 * they can sleep, but they should avoid abusing the privilege.  Most
1053 * work to connect to a device should be done when the device is opened,
1054 * and undone at the last close.  The disconnect code needs to address
1055 * concurrency issues with respect to open() and close() methods, as
1056 * well as forcing all pending I/O requests to complete (by unlinking
1057 * them as necessary, and blocking until the unlinks complete).
1058 */
1059struct usb_driver {
1060	const char *name;
1061
1062	int (*probe) (struct usb_interface *intf,
1063		      const struct usb_device_id *id);
1064
1065	void (*disconnect) (struct usb_interface *intf);
1066
1067	int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1068			void *buf);
1069
1070	int (*suspend) (struct usb_interface *intf, pm_message_t message);
1071	int (*resume) (struct usb_interface *intf);
1072	int (*reset_resume)(struct usb_interface *intf);
1073
1074	int (*pre_reset)(struct usb_interface *intf);
1075	int (*post_reset)(struct usb_interface *intf);
1076
1077	const struct usb_device_id *id_table;
1078
1079	struct usb_dynids dynids;
1080	struct usbdrv_wrap drvwrap;
1081	unsigned int no_dynamic_id:1;
1082	unsigned int supports_autosuspend:1;
1083	unsigned int disable_hub_initiated_lpm:1;
1084	unsigned int soft_unbind:1;
1085};
1086#define	to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1087
1088/**
1089 * struct usb_device_driver - identifies USB device driver to usbcore
1090 * @name: The driver name should be unique among USB drivers,
1091 *	and should normally be the same as the module name.
1092 * @probe: Called to see if the driver is willing to manage a particular
1093 *	device.  If it is, probe returns zero and uses dev_set_drvdata()
1094 *	to associate driver-specific data with the device.  If unwilling
1095 *	to manage the device, return a negative errno value.
1096 * @disconnect: Called when the device is no longer accessible, usually
1097 *	because it has been (or is being) disconnected or the driver's
1098 *	module is being unloaded.
1099 * @suspend: Called when the device is going to be suspended by the system.
1100 * @resume: Called when the device is being resumed by the system.
1101 * @drvwrap: Driver-model core structure wrapper.
1102 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1103 *	for devices bound to this driver.
1104 *
1105 * USB drivers must provide all the fields listed above except drvwrap.
1106 */
1107struct usb_device_driver {
1108	const char *name;
1109
1110	int (*probe) (struct usb_device *udev);
1111	void (*disconnect) (struct usb_device *udev);
1112
1113	int (*suspend) (struct usb_device *udev, pm_message_t message);
1114	int (*resume) (struct usb_device *udev, pm_message_t message);
1115	struct usbdrv_wrap drvwrap;
1116	unsigned int supports_autosuspend:1;
1117};
1118#define	to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1119		drvwrap.driver)
1120
1121extern struct bus_type usb_bus_type;
1122
1123/**
1124 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1125 * @name: the usb class device name for this driver.  Will show up in sysfs.
1126 * @devnode: Callback to provide a naming hint for a possible
1127 *	device node to create.
1128 * @fops: pointer to the struct file_operations of this driver.
1129 * @minor_base: the start of the minor range for this driver.
1130 *
1131 * This structure is used for the usb_register_dev() and
1132 * usb_unregister_dev() functions, to consolidate a number of the
1133 * parameters used for them.
1134 */
1135struct usb_class_driver {
1136	char *name;
1137	char *(*devnode)(struct device *dev, umode_t *mode);
1138	const struct file_operations *fops;
1139	int minor_base;
1140};
1141
1142/*
1143 * use these in module_init()/module_exit()
1144 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1145 */
1146extern int usb_register_driver(struct usb_driver *, struct module *,
1147			       const char *);
1148
1149/* use a define to avoid include chaining to get THIS_MODULE & friends */
1150#define usb_register(driver) \
1151	usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1152
1153extern void usb_deregister(struct usb_driver *);
1154
1155/**
1156 * module_usb_driver() - Helper macro for registering a USB driver
1157 * @__usb_driver: usb_driver struct
1158 *
1159 * Helper macro for USB drivers which do not do anything special in module
1160 * init/exit. This eliminates a lot of boilerplate. Each module may only
1161 * use this macro once, and calling it replaces module_init() and module_exit()
1162 */
1163#define module_usb_driver(__usb_driver) \
1164	module_driver(__usb_driver, usb_register, \
1165		       usb_deregister)
1166
1167extern int usb_register_device_driver(struct usb_device_driver *,
1168			struct module *);
1169extern void usb_deregister_device_driver(struct usb_device_driver *);
1170
1171extern int usb_register_dev(struct usb_interface *intf,
1172			    struct usb_class_driver *class_driver);
1173extern void usb_deregister_dev(struct usb_interface *intf,
1174			       struct usb_class_driver *class_driver);
1175
1176extern int usb_disabled(void);
1177
1178/* ----------------------------------------------------------------------- */
1179
1180/*
1181 * URB support, for asynchronous request completions
1182 */
1183
1184/*
1185 * urb->transfer_flags:
1186 *
1187 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1188 */
1189#define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
1190#define URB_ISO_ASAP		0x0002	/* iso-only; use the first unexpired
1191					 * slot in the schedule */
1192#define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
1193#define URB_NO_FSBR		0x0020	/* UHCI-specific */
1194#define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
1195#define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
1196					 * needed */
1197#define URB_FREE_BUFFER		0x0100	/* Free transfer buffer with the URB */
1198
1199/* The following flags are used internally by usbcore and HCDs */
1200#define URB_DIR_IN		0x0200	/* Transfer from device to host */
1201#define URB_DIR_OUT		0
1202#define URB_DIR_MASK		URB_DIR_IN
1203
1204#define URB_DMA_MAP_SINGLE	0x00010000	/* Non-scatter-gather mapping */
1205#define URB_DMA_MAP_PAGE	0x00020000	/* HCD-unsupported S-G */
1206#define URB_DMA_MAP_SG		0x00040000	/* HCD-supported S-G */
1207#define URB_MAP_LOCAL		0x00080000	/* HCD-local-memory mapping */
1208#define URB_SETUP_MAP_SINGLE	0x00100000	/* Setup packet DMA mapped */
1209#define URB_SETUP_MAP_LOCAL	0x00200000	/* HCD-local setup packet */
1210#define URB_DMA_SG_COMBINED	0x00400000	/* S-G entries were combined */
1211#define URB_ALIGNED_TEMP_BUFFER	0x00800000	/* Temp buffer was alloc'd */
1212
1213struct usb_iso_packet_descriptor {
1214	unsigned int offset;
1215	unsigned int length;		/* expected length */
1216	unsigned int actual_length;
1217	int status;
1218};
1219
1220struct urb;
1221
1222struct usb_anchor {
1223	struct list_head urb_list;
1224	wait_queue_head_t wait;
1225	spinlock_t lock;
1226	atomic_t suspend_wakeups;
1227	unsigned int poisoned:1;
1228};
1229
1230static inline void init_usb_anchor(struct usb_anchor *anchor)
1231{
1232	memset(anchor, 0, sizeof(*anchor));
1233	INIT_LIST_HEAD(&anchor->urb_list);
1234	init_waitqueue_head(&anchor->wait);
1235	spin_lock_init(&anchor->lock);
1236}
1237
1238typedef void (*usb_complete_t)(struct urb *);
1239
1240/**
1241 * struct urb - USB Request Block
1242 * @urb_list: For use by current owner of the URB.
1243 * @anchor_list: membership in the list of an anchor
1244 * @anchor: to anchor URBs to a common mooring
1245 * @ep: Points to the endpoint's data structure.  Will eventually
1246 *	replace @pipe.
1247 * @pipe: Holds endpoint number, direction, type, and more.
1248 *	Create these values with the eight macros available;
1249 *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1250 *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
1251 *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1252 *	numbers range from zero to fifteen.  Note that "in" endpoint two
1253 *	is a different endpoint (and pipe) from "out" endpoint two.
1254 *	The current configuration controls the existence, type, and
1255 *	maximum packet size of any given endpoint.
1256 * @stream_id: the endpoint's stream ID for bulk streams
1257 * @dev: Identifies the USB device to perform the request.
1258 * @status: This is read in non-iso completion functions to get the
1259 *	status of the particular request.  ISO requests only use it
1260 *	to tell whether the URB was unlinked; detailed status for
1261 *	each frame is in the fields of the iso_frame-desc.
1262 * @transfer_flags: A variety of flags may be used to affect how URB
1263 *	submission, unlinking, or operation are handled.  Different
1264 *	kinds of URB can use different flags.
1265 * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1266 *	request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1267 *	(however, do not leave garbage in transfer_buffer even then).
1268 *	This buffer must be suitable for DMA; allocate it with
1269 *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1270 *	of this buffer will be modified.  This buffer is used for the data
1271 *	stage of control transfers.
1272 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1273 *	the device driver is saying that it provided this DMA address,
1274 *	which the host controller driver should use in preference to the
1275 *	transfer_buffer.
1276 * @sg: scatter gather buffer list, the buffer size of each element in
1277 * 	the list (except the last) must be divisible by the endpoint's
1278 * 	max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1279 * @num_mapped_sgs: (internal) number of mapped sg entries
1280 * @num_sgs: number of entries in the sg list
1281 * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1282 *	be broken up into chunks according to the current maximum packet
1283 *	size for the endpoint, which is a function of the configuration
1284 *	and is encoded in the pipe.  When the length is zero, neither
1285 *	transfer_buffer nor transfer_dma is used.
1286 * @actual_length: This is read in non-iso completion functions, and
1287 *	it tells how many bytes (out of transfer_buffer_length) were
1288 *	transferred.  It will normally be the same as requested, unless
1289 *	either an error was reported or a short read was performed.
1290 *	The URB_SHORT_NOT_OK transfer flag may be used to make such
1291 *	short reads be reported as errors.
1292 * @setup_packet: Only used for control transfers, this points to eight bytes
1293 *	of setup data.  Control transfers always start by sending this data
1294 *	to the device.  Then transfer_buffer is read or written, if needed.
1295 * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1296 *	this field; setup_packet must point to a valid buffer.
1297 * @start_frame: Returns the initial frame for isochronous transfers.
1298 * @number_of_packets: Lists the number of ISO transfer buffers.
1299 * @interval: Specifies the polling interval for interrupt or isochronous
1300 *	transfers.  The units are frames (milliseconds) for full and low
1301 *	speed devices, and microframes (1/8 millisecond) for highspeed
1302 *	and SuperSpeed devices.
1303 * @error_count: Returns the number of ISO transfers that reported errors.
1304 * @context: For use in completion functions.  This normally points to
1305 *	request-specific driver context.
1306 * @complete: Completion handler. This URB is passed as the parameter to the
1307 *	completion function.  The completion function may then do what
1308 *	it likes with the URB, including resubmitting or freeing it.
1309 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1310 *	collect the transfer status for each buffer.
1311 *
1312 * This structure identifies USB transfer requests.  URBs must be allocated by
1313 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1314 * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1315 * are submitted using usb_submit_urb(), and pending requests may be canceled
1316 * using usb_unlink_urb() or usb_kill_urb().
1317 *
1318 * Data Transfer Buffers:
1319 *
1320 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1321 * taken from the general page pool.  That is provided by transfer_buffer
1322 * (control requests also use setup_packet), and host controller drivers
1323 * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1324 * mapping operations can be expensive on some platforms (perhaps using a dma
1325 * bounce buffer or talking to an IOMMU),
1326 * although they're cheap on commodity x86 and ppc hardware.
1327 *
1328 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1329 * which tells the host controller driver that no such mapping is needed for
1330 * the transfer_buffer since
1331 * the device driver is DMA-aware.  For example, a device driver might
1332 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1333 * When this transfer flag is provided, host controller drivers will
1334 * attempt to use the dma address found in the transfer_dma
1335 * field rather than determining a dma address themselves.
1336 *
1337 * Note that transfer_buffer must still be set if the controller
1338 * does not support DMA (as indicated by bus.uses_dma) and when talking
1339 * to root hub. If you have to trasfer between highmem zone and the device
1340 * on such controller, create a bounce buffer or bail out with an error.
1341 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1342 * capable, assign NULL to it, so that usbmon knows not to use the value.
1343 * The setup_packet must always be set, so it cannot be located in highmem.
1344 *
1345 * Initialization:
1346 *
1347 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1348 * zero), and complete fields.  All URBs must also initialize
1349 * transfer_buffer and transfer_buffer_length.  They may provide the
1350 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1351 * to be treated as errors; that flag is invalid for write requests.
1352 *
1353 * Bulk URBs may
1354 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1355 * should always terminate with a short packet, even if it means adding an
1356 * extra zero length packet.
1357 *
1358 * Control URBs must provide a valid pointer in the setup_packet field.
1359 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1360 * beforehand.
1361 *
1362 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1363 * or, for highspeed devices, 125 microsecond units)
1364 * to poll for transfers.  After the URB has been submitted, the interval
1365 * field reflects how the transfer was actually scheduled.
1366 * The polling interval may be more frequent than requested.
1367 * For example, some controllers have a maximum interval of 32 milliseconds,
1368 * while others support intervals of up to 1024 milliseconds.
1369 * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1370 * endpoints, as well as high speed interrupt endpoints, the encoding of
1371 * the transfer interval in the endpoint descriptor is logarithmic.
1372 * Device drivers must convert that value to linear units themselves.)
1373 *
1374 * If an isochronous endpoint queue isn't already running, the host
1375 * controller will schedule a new URB to start as soon as bandwidth
1376 * utilization allows.  If the queue is running then a new URB will be
1377 * scheduled to start in the first transfer slot following the end of the
1378 * preceding URB, if that slot has not already expired.  If the slot has
1379 * expired (which can happen when IRQ delivery is delayed for a long time),
1380 * the scheduling behavior depends on the URB_ISO_ASAP flag.  If the flag
1381 * is clear then the URB will be scheduled to start in the expired slot,
1382 * implying that some of its packets will not be transferred; if the flag
1383 * is set then the URB will be scheduled in the first unexpired slot,
1384 * breaking the queue's synchronization.  Upon URB completion, the
1385 * start_frame field will be set to the (micro)frame number in which the
1386 * transfer was scheduled.  Ranges for frame counter values are HC-specific
1387 * and can go from as low as 256 to as high as 65536 frames.
1388 *
1389 * Isochronous URBs have a different data transfer model, in part because
1390 * the quality of service is only "best effort".  Callers provide specially
1391 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1392 * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1393 * URBs are normally queued, submitted by drivers to arrange that
1394 * transfers are at least double buffered, and then explicitly resubmitted
1395 * in completion handlers, so
1396 * that data (such as audio or video) streams at as constant a rate as the
1397 * host controller scheduler can support.
1398 *
1399 * Completion Callbacks:
1400 *
1401 * The completion callback is made in_interrupt(), and one of the first
1402 * things that a completion handler should do is check the status field.
1403 * The status field is provided for all URBs.  It is used to report
1404 * unlinked URBs, and status for all non-ISO transfers.  It should not
1405 * be examined before the URB is returned to the completion handler.
1406 *
1407 * The context field is normally used to link URBs back to the relevant
1408 * driver or request state.
1409 *
1410 * When the completion callback is invoked for non-isochronous URBs, the
1411 * actual_length field tells how many bytes were transferred.  This field
1412 * is updated even when the URB terminated with an error or was unlinked.
1413 *
1414 * ISO transfer status is reported in the status and actual_length fields
1415 * of the iso_frame_desc array, and the number of errors is reported in
1416 * error_count.  Completion callbacks for ISO transfers will normally
1417 * (re)submit URBs to ensure a constant transfer rate.
1418 *
1419 * Note that even fields marked "public" should not be touched by the driver
1420 * when the urb is owned by the hcd, that is, since the call to
1421 * usb_submit_urb() till the entry into the completion routine.
1422 */
1423struct urb {
1424	/* private: usb core and host controller only fields in the urb */
1425	struct kref kref;		/* reference count of the URB */
1426	void *hcpriv;			/* private data for host controller */
1427	atomic_t use_count;		/* concurrent submissions counter */
1428	atomic_t reject;		/* submissions will fail */
1429	int unlinked;			/* unlink error code */
1430
1431	/* public: documented fields in the urb that can be used by drivers */
1432	struct list_head urb_list;	/* list head for use by the urb's
1433					 * current owner */
1434	struct list_head anchor_list;	/* the URB may be anchored */
1435	struct usb_anchor *anchor;
1436	struct usb_device *dev;		/* (in) pointer to associated device */
1437	struct usb_host_endpoint *ep;	/* (internal) pointer to endpoint */
1438	unsigned int pipe;		/* (in) pipe information */
1439	unsigned int stream_id;		/* (in) stream ID */
1440	int status;			/* (return) non-ISO status */
1441	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
1442	void *transfer_buffer;		/* (in) associated data buffer */
1443	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
1444	struct scatterlist *sg;		/* (in) scatter gather buffer list */
1445	int num_mapped_sgs;		/* (internal) mapped sg entries */
1446	int num_sgs;			/* (in) number of entries in the sg list */
1447	u32 transfer_buffer_length;	/* (in) data buffer length */
1448	u32 actual_length;		/* (return) actual transfer length */
1449	unsigned char *setup_packet;	/* (in) setup packet (control only) */
1450	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
1451	int start_frame;		/* (modify) start frame (ISO) */
1452	int number_of_packets;		/* (in) number of ISO packets */
1453	int interval;			/* (modify) transfer interval
1454					 * (INT/ISO) */
1455	int error_count;		/* (return) number of ISO errors */
1456	void *context;			/* (in) context for completion */
1457	usb_complete_t complete;	/* (in) completion routine */
1458	struct usb_iso_packet_descriptor iso_frame_desc[0];
1459					/* (in) ISO ONLY */
1460};
1461
1462/* ----------------------------------------------------------------------- */
1463
1464/**
1465 * usb_fill_control_urb - initializes a control urb
1466 * @urb: pointer to the urb to initialize.
1467 * @dev: pointer to the struct usb_device for this urb.
1468 * @pipe: the endpoint pipe
1469 * @setup_packet: pointer to the setup_packet buffer
1470 * @transfer_buffer: pointer to the transfer buffer
1471 * @buffer_length: length of the transfer buffer
1472 * @complete_fn: pointer to the usb_complete_t function
1473 * @context: what to set the urb context to.
1474 *
1475 * Initializes a control urb with the proper information needed to submit
1476 * it to a device.
1477 */
1478static inline void usb_fill_control_urb(struct urb *urb,
1479					struct usb_device *dev,
1480					unsigned int pipe,
1481					unsigned char *setup_packet,
1482					void *transfer_buffer,
1483					int buffer_length,
1484					usb_complete_t complete_fn,
1485					void *context)
1486{
1487	urb->dev = dev;
1488	urb->pipe = pipe;
1489	urb->setup_packet = setup_packet;
1490	urb->transfer_buffer = transfer_buffer;
1491	urb->transfer_buffer_length = buffer_length;
1492	urb->complete = complete_fn;
1493	urb->context = context;
1494}
1495
1496/**
1497 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1498 * @urb: pointer to the urb to initialize.
1499 * @dev: pointer to the struct usb_device for this urb.
1500 * @pipe: the endpoint pipe
1501 * @transfer_buffer: pointer to the transfer buffer
1502 * @buffer_length: length of the transfer buffer
1503 * @complete_fn: pointer to the usb_complete_t function
1504 * @context: what to set the urb context to.
1505 *
1506 * Initializes a bulk urb with the proper information needed to submit it
1507 * to a device.
1508 */
1509static inline void usb_fill_bulk_urb(struct urb *urb,
1510				     struct usb_device *dev,
1511				     unsigned int pipe,
1512				     void *transfer_buffer,
1513				     int buffer_length,
1514				     usb_complete_t complete_fn,
1515				     void *context)
1516{
1517	urb->dev = dev;
1518	urb->pipe = pipe;
1519	urb->transfer_buffer = transfer_buffer;
1520	urb->transfer_buffer_length = buffer_length;
1521	urb->complete = complete_fn;
1522	urb->context = context;
1523}
1524
1525/**
1526 * usb_fill_int_urb - macro to help initialize a interrupt urb
1527 * @urb: pointer to the urb to initialize.
1528 * @dev: pointer to the struct usb_device for this urb.
1529 * @pipe: the endpoint pipe
1530 * @transfer_buffer: pointer to the transfer buffer
1531 * @buffer_length: length of the transfer buffer
1532 * @complete_fn: pointer to the usb_complete_t function
1533 * @context: what to set the urb context to.
1534 * @interval: what to set the urb interval to, encoded like
1535 *	the endpoint descriptor's bInterval value.
1536 *
1537 * Initializes a interrupt urb with the proper information needed to submit
1538 * it to a device.
1539 *
1540 * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic
1541 * encoding of the endpoint interval, and express polling intervals in
1542 * microframes (eight per millisecond) rather than in frames (one per
1543 * millisecond).
1544 *
1545 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1546 * 128us instead of 125us.  For Wireless USB devices, the interval is passed
1547 * through to the host controller, rather than being translated into microframe
1548 * units.
1549 */
1550static inline void usb_fill_int_urb(struct urb *urb,
1551				    struct usb_device *dev,
1552				    unsigned int pipe,
1553				    void *transfer_buffer,
1554				    int buffer_length,
1555				    usb_complete_t complete_fn,
1556				    void *context,
1557				    int interval)
1558{
1559	urb->dev = dev;
1560	urb->pipe = pipe;
1561	urb->transfer_buffer = transfer_buffer;
1562	urb->transfer_buffer_length = buffer_length;
1563	urb->complete = complete_fn;
1564	urb->context = context;
1565
1566	if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER) {
1567		/* make sure interval is within allowed range */
1568		interval = clamp(interval, 1, 16);
1569
1570		urb->interval = 1 << (interval - 1);
1571	} else {
1572		urb->interval = interval;
1573	}
1574
1575	urb->start_frame = -1;
1576}
1577
1578extern void usb_init_urb(struct urb *urb);
1579extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1580extern void usb_free_urb(struct urb *urb);
1581#define usb_put_urb usb_free_urb
1582extern struct urb *usb_get_urb(struct urb *urb);
1583extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1584extern int usb_unlink_urb(struct urb *urb);
1585extern void usb_kill_urb(struct urb *urb);
1586extern void usb_poison_urb(struct urb *urb);
1587extern void usb_unpoison_urb(struct urb *urb);
1588extern void usb_block_urb(struct urb *urb);
1589extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1590extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1591extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1592extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1593extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1594extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1595extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1596extern void usb_unanchor_urb(struct urb *urb);
1597extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1598					 unsigned int timeout);
1599extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1600extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1601extern int usb_anchor_empty(struct usb_anchor *anchor);
1602
1603#define usb_unblock_urb	usb_unpoison_urb
1604
1605/**
1606 * usb_urb_dir_in - check if an URB describes an IN transfer
1607 * @urb: URB to be checked
1608 *
1609 * Return: 1 if @urb describes an IN transfer (device-to-host),
1610 * otherwise 0.
1611 */
1612static inline int usb_urb_dir_in(struct urb *urb)
1613{
1614	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1615}
1616
1617/**
1618 * usb_urb_dir_out - check if an URB describes an OUT transfer
1619 * @urb: URB to be checked
1620 *
1621 * Return: 1 if @urb describes an OUT transfer (host-to-device),
1622 * otherwise 0.
1623 */
1624static inline int usb_urb_dir_out(struct urb *urb)
1625{
1626	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1627}
1628
1629void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1630	gfp_t mem_flags, dma_addr_t *dma);
1631void usb_free_coherent(struct usb_device *dev, size_t size,
1632	void *addr, dma_addr_t dma);
1633
1634#if 0
1635struct urb *usb_buffer_map(struct urb *urb);
1636void usb_buffer_dmasync(struct urb *urb);
1637void usb_buffer_unmap(struct urb *urb);
1638#endif
1639
1640struct scatterlist;
1641int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1642		      struct scatterlist *sg, int nents);
1643#if 0
1644void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1645			   struct scatterlist *sg, int n_hw_ents);
1646#endif
1647void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1648			 struct scatterlist *sg, int n_hw_ents);
1649
1650/*-------------------------------------------------------------------*
1651 *                         SYNCHRONOUS CALL SUPPORT                  *
1652 *-------------------------------------------------------------------*/
1653
1654extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1655	__u8 request, __u8 requesttype, __u16 value, __u16 index,
1656	void *data, __u16 size, int timeout);
1657extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1658	void *data, int len, int *actual_length, int timeout);
1659extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1660	void *data, int len, int *actual_length,
1661	int timeout);
1662
1663/* wrappers around usb_control_msg() for the most common standard requests */
1664extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1665	unsigned char descindex, void *buf, int size);
1666extern int usb_get_status(struct usb_device *dev,
1667	int type, int target, void *data);
1668extern int usb_string(struct usb_device *dev, int index,
1669	char *buf, size_t size);
1670
1671/* wrappers that also update important state inside usbcore */
1672extern int usb_clear_halt(struct usb_device *dev, int pipe);
1673extern int usb_reset_configuration(struct usb_device *dev);
1674extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1675extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1676
1677/* this request isn't really synchronous, but it belongs with the others */
1678extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1679
1680/* choose and set configuration for device */
1681extern int usb_choose_configuration(struct usb_device *udev);
1682extern int usb_set_configuration(struct usb_device *dev, int configuration);
1683
1684/*
1685 * timeouts, in milliseconds, used for sending/receiving control messages
1686 * they typically complete within a few frames (msec) after they're issued
1687 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1688 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1689 */
1690#define USB_CTRL_GET_TIMEOUT	5000
1691#define USB_CTRL_SET_TIMEOUT	5000
1692
1693
1694/**
1695 * struct usb_sg_request - support for scatter/gather I/O
1696 * @status: zero indicates success, else negative errno
1697 * @bytes: counts bytes transferred.
1698 *
1699 * These requests are initialized using usb_sg_init(), and then are used
1700 * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1701 * members of the request object aren't for driver access.
1702 *
1703 * The status and bytecount values are valid only after usb_sg_wait()
1704 * returns.  If the status is zero, then the bytecount matches the total
1705 * from the request.
1706 *
1707 * After an error completion, drivers may need to clear a halt condition
1708 * on the endpoint.
1709 */
1710struct usb_sg_request {
1711	int			status;
1712	size_t			bytes;
1713
1714	/* private:
1715	 * members below are private to usbcore,
1716	 * and are not provided for driver access!
1717	 */
1718	spinlock_t		lock;
1719
1720	struct usb_device	*dev;
1721	int			pipe;
1722
1723	int			entries;
1724	struct urb		**urbs;
1725
1726	int			count;
1727	struct completion	complete;
1728};
1729
1730int usb_sg_init(
1731	struct usb_sg_request	*io,
1732	struct usb_device	*dev,
1733	unsigned		pipe,
1734	unsigned		period,
1735	struct scatterlist	*sg,
1736	int			nents,
1737	size_t			length,
1738	gfp_t			mem_flags
1739);
1740void usb_sg_cancel(struct usb_sg_request *io);
1741void usb_sg_wait(struct usb_sg_request *io);
1742
1743
1744/* ----------------------------------------------------------------------- */
1745
1746/*
1747 * For various legacy reasons, Linux has a small cookie that's paired with
1748 * a struct usb_device to identify an endpoint queue.  Queue characteristics
1749 * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1750 * an unsigned int encoded as:
1751 *
1752 *  - direction:	bit 7		(0 = Host-to-Device [Out],
1753 *					 1 = Device-to-Host [In] ...
1754 *					like endpoint bEndpointAddress)
1755 *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
1756 *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
1757 *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
1758 *					 10 = control, 11 = bulk)
1759 *
1760 * Given the device address and endpoint descriptor, pipes are redundant.
1761 */
1762
1763/* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1764/* (yet ... they're the values used by usbfs) */
1765#define PIPE_ISOCHRONOUS		0
1766#define PIPE_INTERRUPT			1
1767#define PIPE_CONTROL			2
1768#define PIPE_BULK			3
1769
1770#define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
1771#define usb_pipeout(pipe)	(!usb_pipein(pipe))
1772
1773#define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
1774#define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
1775
1776#define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
1777#define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1778#define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
1779#define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
1780#define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
1781
1782static inline unsigned int __create_pipe(struct usb_device *dev,
1783		unsigned int endpoint)
1784{
1785	return (dev->devnum << 8) | (endpoint << 15);
1786}
1787
1788/* Create various pipes... */
1789#define usb_sndctrlpipe(dev, endpoint)	\
1790	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1791#define usb_rcvctrlpipe(dev, endpoint)	\
1792	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1793#define usb_sndisocpipe(dev, endpoint)	\
1794	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1795#define usb_rcvisocpipe(dev, endpoint)	\
1796	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1797#define usb_sndbulkpipe(dev, endpoint)	\
1798	((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1799#define usb_rcvbulkpipe(dev, endpoint)	\
1800	((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1801#define usb_sndintpipe(dev, endpoint)	\
1802	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1803#define usb_rcvintpipe(dev, endpoint)	\
1804	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1805
1806static inline struct usb_host_endpoint *
1807usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1808{
1809	struct usb_host_endpoint **eps;
1810	eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1811	return eps[usb_pipeendpoint(pipe)];
1812}
1813
1814/*-------------------------------------------------------------------------*/
1815
1816static inline __u16
1817usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1818{
1819	struct usb_host_endpoint	*ep;
1820	unsigned			epnum = usb_pipeendpoint(pipe);
1821
1822	if (is_out) {
1823		WARN_ON(usb_pipein(pipe));
1824		ep = udev->ep_out[epnum];
1825	} else {
1826		WARN_ON(usb_pipeout(pipe));
1827		ep = udev->ep_in[epnum];
1828	}
1829	if (!ep)
1830		return 0;
1831
1832	/* NOTE:  only 0x07ff bits are for packet size... */
1833	return usb_endpoint_maxp(&ep->desc);
1834}
1835
1836/* ----------------------------------------------------------------------- */
1837
1838/* translate USB error codes to codes user space understands */
1839static inline int usb_translate_errors(int error_code)
1840{
1841	switch (error_code) {
1842	case 0:
1843	case -ENOMEM:
1844	case -ENODEV:
1845	case -EOPNOTSUPP:
1846		return error_code;
1847	default:
1848		return -EIO;
1849	}
1850}
1851
1852/* Events from the usb core */
1853#define USB_DEVICE_ADD		0x0001
1854#define USB_DEVICE_REMOVE	0x0002
1855#define USB_BUS_ADD		0x0003
1856#define USB_BUS_REMOVE		0x0004
1857extern void usb_register_notify(struct notifier_block *nb);
1858extern void usb_unregister_notify(struct notifier_block *nb);
1859
1860/* debugfs stuff */
1861extern struct dentry *usb_debug_root;
 
 
 
 
 
 
 
 
 
 
 
 
1862
1863#endif  /* __KERNEL__ */
1864
1865#endif