Loading...
1#ifndef __LINUX_USB_H
2#define __LINUX_USB_H
3
4#include <linux/mod_devicetable.h>
5#include <linux/usb/ch9.h>
6
7#define USB_MAJOR 180
8#define USB_DEVICE_MAJOR 189
9
10
11#ifdef __KERNEL__
12
13#include <linux/errno.h> /* for -ENODEV */
14#include <linux/delay.h> /* for mdelay() */
15#include <linux/interrupt.h> /* for in_interrupt() */
16#include <linux/list.h> /* for struct list_head */
17#include <linux/kref.h> /* for struct kref */
18#include <linux/device.h> /* for struct device */
19#include <linux/fs.h> /* for struct file_operations */
20#include <linux/completion.h> /* for struct completion */
21#include <linux/sched.h> /* for current && schedule_timeout */
22#include <linux/mutex.h> /* for struct mutex */
23#include <linux/pm_runtime.h> /* for runtime PM */
24
25struct usb_device;
26struct usb_driver;
27struct wusb_dev;
28
29/*-------------------------------------------------------------------------*/
30
31/*
32 * Host-side wrappers for standard USB descriptors ... these are parsed
33 * from the data provided by devices. Parsing turns them from a flat
34 * sequence of descriptors into a hierarchy:
35 *
36 * - devices have one (usually) or more configs;
37 * - configs have one (often) or more interfaces;
38 * - interfaces have one (usually) or more settings;
39 * - each interface setting has zero or (usually) more endpoints.
40 * - a SuperSpeed endpoint has a companion descriptor
41 *
42 * And there might be other descriptors mixed in with those.
43 *
44 * Devices may also have class-specific or vendor-specific descriptors.
45 */
46
47struct ep_device;
48
49/**
50 * struct usb_host_endpoint - host-side endpoint descriptor and queue
51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
53 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
54 * @urb_list: urbs queued to this endpoint; maintained by usbcore
55 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
56 * with one or more transfer descriptors (TDs) per urb
57 * @ep_dev: ep_device for sysfs info
58 * @extra: descriptors following this endpoint in the configuration
59 * @extralen: how many bytes of "extra" are valid
60 * @enabled: URBs may be submitted to this endpoint
61 * @streams: number of USB-3 streams allocated on the endpoint
62 *
63 * USB requests are always queued to a given endpoint, identified by a
64 * descriptor within an active interface in a given USB configuration.
65 */
66struct usb_host_endpoint {
67 struct usb_endpoint_descriptor desc;
68 struct usb_ss_ep_comp_descriptor ss_ep_comp;
69 struct usb_ssp_isoc_ep_comp_descriptor ssp_isoc_ep_comp;
70 struct list_head urb_list;
71 void *hcpriv;
72 struct ep_device *ep_dev; /* For sysfs info */
73
74 unsigned char *extra; /* Extra descriptors */
75 int extralen;
76 int enabled;
77 int streams;
78};
79
80/* host-side wrapper for one interface setting's parsed descriptors */
81struct usb_host_interface {
82 struct usb_interface_descriptor desc;
83
84 int extralen;
85 unsigned char *extra; /* Extra descriptors */
86
87 /* array of desc.bNumEndpoints endpoints associated with this
88 * interface setting. these will be in no particular order.
89 */
90 struct usb_host_endpoint *endpoint;
91
92 char *string; /* iInterface string, if present */
93};
94
95enum usb_interface_condition {
96 USB_INTERFACE_UNBOUND = 0,
97 USB_INTERFACE_BINDING,
98 USB_INTERFACE_BOUND,
99 USB_INTERFACE_UNBINDING,
100};
101
102/**
103 * struct usb_interface - what usb device drivers talk to
104 * @altsetting: array of interface structures, one for each alternate
105 * setting that may be selected. Each one includes a set of
106 * endpoint configurations. They will be in no particular order.
107 * @cur_altsetting: the current altsetting.
108 * @num_altsetting: number of altsettings defined.
109 * @intf_assoc: interface association descriptor
110 * @minor: the minor number assigned to this interface, if this
111 * interface is bound to a driver that uses the USB major number.
112 * If this interface does not use the USB major, this field should
113 * be unused. The driver should set this value in the probe()
114 * function of the driver, after it has been assigned a minor
115 * number from the USB core by calling usb_register_dev().
116 * @condition: binding state of the interface: not bound, binding
117 * (in probe()), bound to a driver, or unbinding (in disconnect())
118 * @sysfs_files_created: sysfs attributes exist
119 * @ep_devs_created: endpoint child pseudo-devices exist
120 * @unregistering: flag set when the interface is being unregistered
121 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
122 * capability during autosuspend.
123 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
124 * has been deferred.
125 * @needs_binding: flag set when the driver should be re-probed or unbound
126 * following a reset or suspend operation it doesn't support.
127 * @authorized: This allows to (de)authorize individual interfaces instead
128 * a whole device in contrast to the device authorization.
129 * @dev: driver model's view of this device
130 * @usb_dev: if an interface is bound to the USB major, this will point
131 * to the sysfs representation for that device.
132 * @pm_usage_cnt: PM usage counter for this interface
133 * @reset_ws: Used for scheduling resets from atomic context.
134 * @resetting_device: USB core reset the device, so use alt setting 0 as
135 * current; needs bandwidth alloc after reset.
136 *
137 * USB device drivers attach to interfaces on a physical device. Each
138 * interface encapsulates a single high level function, such as feeding
139 * an audio stream to a speaker or reporting a change in a volume control.
140 * Many USB devices only have one interface. The protocol used to talk to
141 * an interface's endpoints can be defined in a usb "class" specification,
142 * or by a product's vendor. The (default) control endpoint is part of
143 * every interface, but is never listed among the interface's descriptors.
144 *
145 * The driver that is bound to the interface can use standard driver model
146 * calls such as dev_get_drvdata() on the dev member of this structure.
147 *
148 * Each interface may have alternate settings. The initial configuration
149 * of a device sets altsetting 0, but the device driver can change
150 * that setting using usb_set_interface(). Alternate settings are often
151 * used to control the use of periodic endpoints, such as by having
152 * different endpoints use different amounts of reserved USB bandwidth.
153 * All standards-conformant USB devices that use isochronous endpoints
154 * will use them in non-default settings.
155 *
156 * The USB specification says that alternate setting numbers must run from
157 * 0 to one less than the total number of alternate settings. But some
158 * devices manage to mess this up, and the structures aren't necessarily
159 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
160 * look up an alternate setting in the altsetting array based on its number.
161 */
162struct usb_interface {
163 /* array of alternate settings for this interface,
164 * stored in no particular order */
165 struct usb_host_interface *altsetting;
166
167 struct usb_host_interface *cur_altsetting; /* the currently
168 * active alternate setting */
169 unsigned num_altsetting; /* number of alternate settings */
170
171 /* If there is an interface association descriptor then it will list
172 * the associated interfaces */
173 struct usb_interface_assoc_descriptor *intf_assoc;
174
175 int minor; /* minor number this interface is
176 * bound to */
177 enum usb_interface_condition condition; /* state of binding */
178 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
179 unsigned ep_devs_created:1; /* endpoint "devices" exist */
180 unsigned unregistering:1; /* unregistration is in progress */
181 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
182 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */
183 unsigned needs_binding:1; /* needs delayed unbind/rebind */
184 unsigned resetting_device:1; /* true: bandwidth alloc after reset */
185 unsigned authorized:1; /* used for interface authorization */
186
187 struct device dev; /* interface specific device info */
188 struct device *usb_dev;
189 atomic_t pm_usage_cnt; /* usage counter for autosuspend */
190 struct work_struct reset_ws; /* for resets in atomic context */
191};
192#define to_usb_interface(d) container_of(d, struct usb_interface, dev)
193
194static inline void *usb_get_intfdata(struct usb_interface *intf)
195{
196 return dev_get_drvdata(&intf->dev);
197}
198
199static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
200{
201 dev_set_drvdata(&intf->dev, data);
202}
203
204struct usb_interface *usb_get_intf(struct usb_interface *intf);
205void usb_put_intf(struct usb_interface *intf);
206
207/* Hard limit */
208#define USB_MAXENDPOINTS 30
209/* this maximum is arbitrary */
210#define USB_MAXINTERFACES 32
211#define USB_MAXIADS (USB_MAXINTERFACES/2)
212
213/*
214 * USB Resume Timer: Every Host controller driver should drive the resume
215 * signalling on the bus for the amount of time defined by this macro.
216 *
217 * That way we will have a 'stable' behavior among all HCDs supported by Linux.
218 *
219 * Note that the USB Specification states we should drive resume for *at least*
220 * 20 ms, but it doesn't give an upper bound. This creates two possible
221 * situations which we want to avoid:
222 *
223 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
224 * us to fail USB Electrical Tests, thus failing Certification
225 *
226 * (b) Some (many) devices actually need more than 20 ms of resume signalling,
227 * and while we can argue that's against the USB Specification, we don't have
228 * control over which devices a certification laboratory will be using for
229 * certification. If CertLab uses a device which was tested against Windows and
230 * that happens to have relaxed resume signalling rules, we might fall into
231 * situations where we fail interoperability and electrical tests.
232 *
233 * In order to avoid both conditions, we're using a 40 ms resume timeout, which
234 * should cope with both LPJ calibration errors and devices not following every
235 * detail of the USB Specification.
236 */
237#define USB_RESUME_TIMEOUT 40 /* ms */
238
239/**
240 * struct usb_interface_cache - long-term representation of a device interface
241 * @num_altsetting: number of altsettings defined.
242 * @ref: reference counter.
243 * @altsetting: variable-length array of interface structures, one for
244 * each alternate setting that may be selected. Each one includes a
245 * set of endpoint configurations. They will be in no particular order.
246 *
247 * These structures persist for the lifetime of a usb_device, unlike
248 * struct usb_interface (which persists only as long as its configuration
249 * is installed). The altsetting arrays can be accessed through these
250 * structures at any time, permitting comparison of configurations and
251 * providing support for the /proc/bus/usb/devices pseudo-file.
252 */
253struct usb_interface_cache {
254 unsigned num_altsetting; /* number of alternate settings */
255 struct kref ref; /* reference counter */
256
257 /* variable-length array of alternate settings for this interface,
258 * stored in no particular order */
259 struct usb_host_interface altsetting[0];
260};
261#define ref_to_usb_interface_cache(r) \
262 container_of(r, struct usb_interface_cache, ref)
263#define altsetting_to_usb_interface_cache(a) \
264 container_of(a, struct usb_interface_cache, altsetting[0])
265
266/**
267 * struct usb_host_config - representation of a device's configuration
268 * @desc: the device's configuration descriptor.
269 * @string: pointer to the cached version of the iConfiguration string, if
270 * present for this configuration.
271 * @intf_assoc: list of any interface association descriptors in this config
272 * @interface: array of pointers to usb_interface structures, one for each
273 * interface in the configuration. The number of interfaces is stored
274 * in desc.bNumInterfaces. These pointers are valid only while the
275 * the configuration is active.
276 * @intf_cache: array of pointers to usb_interface_cache structures, one
277 * for each interface in the configuration. These structures exist
278 * for the entire life of the device.
279 * @extra: pointer to buffer containing all extra descriptors associated
280 * with this configuration (those preceding the first interface
281 * descriptor).
282 * @extralen: length of the extra descriptors buffer.
283 *
284 * USB devices may have multiple configurations, but only one can be active
285 * at any time. Each encapsulates a different operational environment;
286 * for example, a dual-speed device would have separate configurations for
287 * full-speed and high-speed operation. The number of configurations
288 * available is stored in the device descriptor as bNumConfigurations.
289 *
290 * A configuration can contain multiple interfaces. Each corresponds to
291 * a different function of the USB device, and all are available whenever
292 * the configuration is active. The USB standard says that interfaces
293 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
294 * of devices get this wrong. In addition, the interface array is not
295 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
296 * look up an interface entry based on its number.
297 *
298 * Device drivers should not attempt to activate configurations. The choice
299 * of which configuration to install is a policy decision based on such
300 * considerations as available power, functionality provided, and the user's
301 * desires (expressed through userspace tools). However, drivers can call
302 * usb_reset_configuration() to reinitialize the current configuration and
303 * all its interfaces.
304 */
305struct usb_host_config {
306 struct usb_config_descriptor desc;
307
308 char *string; /* iConfiguration string, if present */
309
310 /* List of any Interface Association Descriptors in this
311 * configuration. */
312 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
313
314 /* the interfaces associated with this configuration,
315 * stored in no particular order */
316 struct usb_interface *interface[USB_MAXINTERFACES];
317
318 /* Interface information available even when this is not the
319 * active configuration */
320 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
321
322 unsigned char *extra; /* Extra descriptors */
323 int extralen;
324};
325
326/* USB2.0 and USB3.0 device BOS descriptor set */
327struct usb_host_bos {
328 struct usb_bos_descriptor *desc;
329
330 /* wireless cap descriptor is handled by wusb */
331 struct usb_ext_cap_descriptor *ext_cap;
332 struct usb_ss_cap_descriptor *ss_cap;
333 struct usb_ssp_cap_descriptor *ssp_cap;
334 struct usb_ss_container_id_descriptor *ss_id;
335 struct usb_ptm_cap_descriptor *ptm_cap;
336};
337
338int __usb_get_extra_descriptor(char *buffer, unsigned size,
339 unsigned char type, void **ptr);
340#define usb_get_extra_descriptor(ifpoint, type, ptr) \
341 __usb_get_extra_descriptor((ifpoint)->extra, \
342 (ifpoint)->extralen, \
343 type, (void **)ptr)
344
345/* ----------------------------------------------------------------------- */
346
347/* USB device number allocation bitmap */
348struct usb_devmap {
349 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
350};
351
352/*
353 * Allocated per bus (tree of devices) we have:
354 */
355struct usb_bus {
356 struct device *controller; /* host/master side hardware */
357 int busnum; /* Bus number (in order of reg) */
358 const char *bus_name; /* stable id (PCI slot_name etc) */
359 u8 uses_dma; /* Does the host controller use DMA? */
360 u8 uses_pio_for_control; /*
361 * Does the host controller use PIO
362 * for control transfers?
363 */
364 u8 otg_port; /* 0, or number of OTG/HNP port */
365 unsigned is_b_host:1; /* true during some HNP roleswitches */
366 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
367 unsigned no_stop_on_short:1; /*
368 * Quirk: some controllers don't stop
369 * the ep queue on a short transfer
370 * with the URB_SHORT_NOT_OK flag set.
371 */
372 unsigned no_sg_constraint:1; /* no sg constraint */
373 unsigned sg_tablesize; /* 0 or largest number of sg list entries */
374
375 int devnum_next; /* Next open device number in
376 * round-robin allocation */
377 struct mutex devnum_next_mutex; /* devnum_next mutex */
378
379 struct usb_devmap devmap; /* device address allocation map */
380 struct usb_device *root_hub; /* Root hub */
381 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */
382
383 int bandwidth_allocated; /* on this bus: how much of the time
384 * reserved for periodic (intr/iso)
385 * requests is used, on average?
386 * Units: microseconds/frame.
387 * Limits: Full/low speed reserve 90%,
388 * while high speed reserves 80%.
389 */
390 int bandwidth_int_reqs; /* number of Interrupt requests */
391 int bandwidth_isoc_reqs; /* number of Isoc. requests */
392
393 unsigned resuming_ports; /* bit array: resuming root-hub ports */
394
395#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
396 struct mon_bus *mon_bus; /* non-null when associated */
397 int monitored; /* non-zero when monitored */
398#endif
399};
400
401struct usb_dev_state;
402
403/* ----------------------------------------------------------------------- */
404
405struct usb_tt;
406
407enum usb_device_removable {
408 USB_DEVICE_REMOVABLE_UNKNOWN = 0,
409 USB_DEVICE_REMOVABLE,
410 USB_DEVICE_FIXED,
411};
412
413enum usb_port_connect_type {
414 USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
415 USB_PORT_CONNECT_TYPE_HOT_PLUG,
416 USB_PORT_CONNECT_TYPE_HARD_WIRED,
417 USB_PORT_NOT_USED,
418};
419
420/*
421 * USB 2.0 Link Power Management (LPM) parameters.
422 */
423struct usb2_lpm_parameters {
424 /* Best effort service latency indicate how long the host will drive
425 * resume on an exit from L1.
426 */
427 unsigned int besl;
428
429 /* Timeout value in microseconds for the L1 inactivity (LPM) timer.
430 * When the timer counts to zero, the parent hub will initiate a LPM
431 * transition to L1.
432 */
433 int timeout;
434};
435
436/*
437 * USB 3.0 Link Power Management (LPM) parameters.
438 *
439 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
440 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
441 * All three are stored in nanoseconds.
442 */
443struct usb3_lpm_parameters {
444 /*
445 * Maximum exit latency (MEL) for the host to send a packet to the
446 * device (either a Ping for isoc endpoints, or a data packet for
447 * interrupt endpoints), the hubs to decode the packet, and for all hubs
448 * in the path to transition the links to U0.
449 */
450 unsigned int mel;
451 /*
452 * Maximum exit latency for a device-initiated LPM transition to bring
453 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB
454 * 3.0 spec, with no explanation of what "P" stands for. "Path"?
455 */
456 unsigned int pel;
457
458 /*
459 * The System Exit Latency (SEL) includes PEL, and three other
460 * latencies. After a device initiates a U0 transition, it will take
461 * some time from when the device sends the ERDY to when it will finally
462 * receive the data packet. Basically, SEL should be the worse-case
463 * latency from when a device starts initiating a U0 transition to when
464 * it will get data.
465 */
466 unsigned int sel;
467 /*
468 * The idle timeout value that is currently programmed into the parent
469 * hub for this device. When the timer counts to zero, the parent hub
470 * will initiate an LPM transition to either U1 or U2.
471 */
472 int timeout;
473};
474
475/**
476 * struct usb_device - kernel's representation of a USB device
477 * @devnum: device number; address on a USB bus
478 * @devpath: device ID string for use in messages (e.g., /port/...)
479 * @route: tree topology hex string for use with xHCI
480 * @state: device state: configured, not attached, etc.
481 * @speed: device speed: high/full/low (or error)
482 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
483 * @ttport: device port on that tt hub
484 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
485 * @parent: our hub, unless we're the root
486 * @bus: bus we're part of
487 * @ep0: endpoint 0 data (default control pipe)
488 * @dev: generic device interface
489 * @descriptor: USB device descriptor
490 * @bos: USB device BOS descriptor set
491 * @config: all of the device's configs
492 * @actconfig: the active configuration
493 * @ep_in: array of IN endpoints
494 * @ep_out: array of OUT endpoints
495 * @rawdescriptors: raw descriptors for each config
496 * @bus_mA: Current available from the bus
497 * @portnum: parent port number (origin 1)
498 * @level: number of USB hub ancestors
499 * @can_submit: URBs may be submitted
500 * @persist_enabled: USB_PERSIST enabled for this device
501 * @have_langid: whether string_langid is valid
502 * @authorized: policy has said we can use it;
503 * (user space) policy determines if we authorize this device to be
504 * used or not. By default, wired USB devices are authorized.
505 * WUSB devices are not, until we authorize them from user space.
506 * FIXME -- complete doc
507 * @authenticated: Crypto authentication passed
508 * @wusb: device is Wireless USB
509 * @lpm_capable: device supports LPM
510 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
511 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
512 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
513 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
514 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
515 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
516 * @string_langid: language ID for strings
517 * @product: iProduct string, if present (static)
518 * @manufacturer: iManufacturer string, if present (static)
519 * @serial: iSerialNumber string, if present (static)
520 * @filelist: usbfs files that are open to this device
521 * @maxchild: number of ports if hub
522 * @quirks: quirks of the whole device
523 * @urbnum: number of URBs submitted for the whole device
524 * @active_duration: total time device is not suspended
525 * @connect_time: time device was first connected
526 * @do_remote_wakeup: remote wakeup should be enabled
527 * @reset_resume: needs reset instead of resume
528 * @port_is_suspended: the upstream port is suspended (L2 or U3)
529 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
530 * specific data for the device.
531 * @slot_id: Slot ID assigned by xHCI
532 * @removable: Device can be physically removed from this port
533 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
534 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
535 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
536 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
537 * to keep track of the number of functions that require USB 3.0 Link Power
538 * Management to be disabled for this usb_device. This count should only
539 * be manipulated by those functions, with the bandwidth_mutex is held.
540 *
541 * Notes:
542 * Usbcore drivers should not set usbdev->state directly. Instead use
543 * usb_set_device_state().
544 */
545struct usb_device {
546 int devnum;
547 char devpath[16];
548 u32 route;
549 enum usb_device_state state;
550 enum usb_device_speed speed;
551
552 struct usb_tt *tt;
553 int ttport;
554
555 unsigned int toggle[2];
556
557 struct usb_device *parent;
558 struct usb_bus *bus;
559 struct usb_host_endpoint ep0;
560
561 struct device dev;
562
563 struct usb_device_descriptor descriptor;
564 struct usb_host_bos *bos;
565 struct usb_host_config *config;
566
567 struct usb_host_config *actconfig;
568 struct usb_host_endpoint *ep_in[16];
569 struct usb_host_endpoint *ep_out[16];
570
571 char **rawdescriptors;
572
573 unsigned short bus_mA;
574 u8 portnum;
575 u8 level;
576
577 unsigned can_submit:1;
578 unsigned persist_enabled:1;
579 unsigned have_langid:1;
580 unsigned authorized:1;
581 unsigned authenticated:1;
582 unsigned wusb:1;
583 unsigned lpm_capable:1;
584 unsigned usb2_hw_lpm_capable:1;
585 unsigned usb2_hw_lpm_besl_capable:1;
586 unsigned usb2_hw_lpm_enabled:1;
587 unsigned usb2_hw_lpm_allowed:1;
588 unsigned usb3_lpm_u1_enabled:1;
589 unsigned usb3_lpm_u2_enabled:1;
590 int string_langid;
591
592 /* static strings from the device */
593 char *product;
594 char *manufacturer;
595 char *serial;
596
597 struct list_head filelist;
598
599 int maxchild;
600
601 u32 quirks;
602 atomic_t urbnum;
603
604 unsigned long active_duration;
605
606#ifdef CONFIG_PM
607 unsigned long connect_time;
608
609 unsigned do_remote_wakeup:1;
610 unsigned reset_resume:1;
611 unsigned port_is_suspended:1;
612#endif
613 struct wusb_dev *wusb_dev;
614 int slot_id;
615 enum usb_device_removable removable;
616 struct usb2_lpm_parameters l1_params;
617 struct usb3_lpm_parameters u1_params;
618 struct usb3_lpm_parameters u2_params;
619 unsigned lpm_disable_count;
620};
621#define to_usb_device(d) container_of(d, struct usb_device, dev)
622
623static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
624{
625 return to_usb_device(intf->dev.parent);
626}
627
628extern struct usb_device *usb_get_dev(struct usb_device *dev);
629extern void usb_put_dev(struct usb_device *dev);
630extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
631 int port1);
632
633/**
634 * usb_hub_for_each_child - iterate over all child devices on the hub
635 * @hdev: USB device belonging to the usb hub
636 * @port1: portnum associated with child device
637 * @child: child device pointer
638 */
639#define usb_hub_for_each_child(hdev, port1, child) \
640 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
641 port1 <= hdev->maxchild; \
642 child = usb_hub_find_child(hdev, ++port1)) \
643 if (!child) continue; else
644
645/* USB device locking */
646#define usb_lock_device(udev) device_lock(&(udev)->dev)
647#define usb_unlock_device(udev) device_unlock(&(udev)->dev)
648#define usb_lock_device_interruptible(udev) device_lock_interruptible(&(udev)->dev)
649#define usb_trylock_device(udev) device_trylock(&(udev)->dev)
650extern int usb_lock_device_for_reset(struct usb_device *udev,
651 const struct usb_interface *iface);
652
653/* USB port reset for device reinitialization */
654extern int usb_reset_device(struct usb_device *dev);
655extern void usb_queue_reset_device(struct usb_interface *dev);
656
657#ifdef CONFIG_ACPI
658extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
659 bool enable);
660extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
661#else
662static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
663 bool enable) { return 0; }
664static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
665 { return true; }
666#endif
667
668/* USB autosuspend and autoresume */
669#ifdef CONFIG_PM
670extern void usb_enable_autosuspend(struct usb_device *udev);
671extern void usb_disable_autosuspend(struct usb_device *udev);
672
673extern int usb_autopm_get_interface(struct usb_interface *intf);
674extern void usb_autopm_put_interface(struct usb_interface *intf);
675extern int usb_autopm_get_interface_async(struct usb_interface *intf);
676extern void usb_autopm_put_interface_async(struct usb_interface *intf);
677extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
678extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
679
680static inline void usb_mark_last_busy(struct usb_device *udev)
681{
682 pm_runtime_mark_last_busy(&udev->dev);
683}
684
685#else
686
687static inline int usb_enable_autosuspend(struct usb_device *udev)
688{ return 0; }
689static inline int usb_disable_autosuspend(struct usb_device *udev)
690{ return 0; }
691
692static inline int usb_autopm_get_interface(struct usb_interface *intf)
693{ return 0; }
694static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
695{ return 0; }
696
697static inline void usb_autopm_put_interface(struct usb_interface *intf)
698{ }
699static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
700{ }
701static inline void usb_autopm_get_interface_no_resume(
702 struct usb_interface *intf)
703{ }
704static inline void usb_autopm_put_interface_no_suspend(
705 struct usb_interface *intf)
706{ }
707static inline void usb_mark_last_busy(struct usb_device *udev)
708{ }
709#endif
710
711extern int usb_disable_lpm(struct usb_device *udev);
712extern void usb_enable_lpm(struct usb_device *udev);
713/* Same as above, but these functions lock/unlock the bandwidth_mutex. */
714extern int usb_unlocked_disable_lpm(struct usb_device *udev);
715extern void usb_unlocked_enable_lpm(struct usb_device *udev);
716
717extern int usb_disable_ltm(struct usb_device *udev);
718extern void usb_enable_ltm(struct usb_device *udev);
719
720static inline bool usb_device_supports_ltm(struct usb_device *udev)
721{
722 if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
723 return false;
724 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
725}
726
727static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
728{
729 return udev && udev->bus && udev->bus->no_sg_constraint;
730}
731
732
733/*-------------------------------------------------------------------------*/
734
735/* for drivers using iso endpoints */
736extern int usb_get_current_frame_number(struct usb_device *usb_dev);
737
738/* Sets up a group of bulk endpoints to support multiple stream IDs. */
739extern int usb_alloc_streams(struct usb_interface *interface,
740 struct usb_host_endpoint **eps, unsigned int num_eps,
741 unsigned int num_streams, gfp_t mem_flags);
742
743/* Reverts a group of bulk endpoints back to not using stream IDs. */
744extern int usb_free_streams(struct usb_interface *interface,
745 struct usb_host_endpoint **eps, unsigned int num_eps,
746 gfp_t mem_flags);
747
748/* used these for multi-interface device registration */
749extern int usb_driver_claim_interface(struct usb_driver *driver,
750 struct usb_interface *iface, void *priv);
751
752/**
753 * usb_interface_claimed - returns true iff an interface is claimed
754 * @iface: the interface being checked
755 *
756 * Return: %true (nonzero) iff the interface is claimed, else %false
757 * (zero).
758 *
759 * Note:
760 * Callers must own the driver model's usb bus readlock. So driver
761 * probe() entries don't need extra locking, but other call contexts
762 * may need to explicitly claim that lock.
763 *
764 */
765static inline int usb_interface_claimed(struct usb_interface *iface)
766{
767 return (iface->dev.driver != NULL);
768}
769
770extern void usb_driver_release_interface(struct usb_driver *driver,
771 struct usb_interface *iface);
772const struct usb_device_id *usb_match_id(struct usb_interface *interface,
773 const struct usb_device_id *id);
774extern int usb_match_one_id(struct usb_interface *interface,
775 const struct usb_device_id *id);
776
777extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
778extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
779 int minor);
780extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
781 unsigned ifnum);
782extern struct usb_host_interface *usb_altnum_to_altsetting(
783 const struct usb_interface *intf, unsigned int altnum);
784extern struct usb_host_interface *usb_find_alt_setting(
785 struct usb_host_config *config,
786 unsigned int iface_num,
787 unsigned int alt_num);
788
789/* port claiming functions */
790int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
791 struct usb_dev_state *owner);
792int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
793 struct usb_dev_state *owner);
794
795/**
796 * usb_make_path - returns stable device path in the usb tree
797 * @dev: the device whose path is being constructed
798 * @buf: where to put the string
799 * @size: how big is "buf"?
800 *
801 * Return: Length of the string (> 0) or negative if size was too small.
802 *
803 * Note:
804 * This identifier is intended to be "stable", reflecting physical paths in
805 * hardware such as physical bus addresses for host controllers or ports on
806 * USB hubs. That makes it stay the same until systems are physically
807 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
808 * controllers. Adding and removing devices, including virtual root hubs
809 * in host controller driver modules, does not change these path identifiers;
810 * neither does rebooting or re-enumerating. These are more useful identifiers
811 * than changeable ("unstable") ones like bus numbers or device addresses.
812 *
813 * With a partial exception for devices connected to USB 2.0 root hubs, these
814 * identifiers are also predictable. So long as the device tree isn't changed,
815 * plugging any USB device into a given hub port always gives it the same path.
816 * Because of the use of "companion" controllers, devices connected to ports on
817 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
818 * high speed, and a different one if they are full or low speed.
819 */
820static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
821{
822 int actual;
823 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
824 dev->devpath);
825 return (actual >= (int)size) ? -1 : actual;
826}
827
828/*-------------------------------------------------------------------------*/
829
830#define USB_DEVICE_ID_MATCH_DEVICE \
831 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
832#define USB_DEVICE_ID_MATCH_DEV_RANGE \
833 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
834#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
835 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
836#define USB_DEVICE_ID_MATCH_DEV_INFO \
837 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
838 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
839 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
840#define USB_DEVICE_ID_MATCH_INT_INFO \
841 (USB_DEVICE_ID_MATCH_INT_CLASS | \
842 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
843 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
844
845/**
846 * USB_DEVICE - macro used to describe a specific usb device
847 * @vend: the 16 bit USB Vendor ID
848 * @prod: the 16 bit USB Product ID
849 *
850 * This macro is used to create a struct usb_device_id that matches a
851 * specific device.
852 */
853#define USB_DEVICE(vend, prod) \
854 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
855 .idVendor = (vend), \
856 .idProduct = (prod)
857/**
858 * USB_DEVICE_VER - describe a specific usb device with a version range
859 * @vend: the 16 bit USB Vendor ID
860 * @prod: the 16 bit USB Product ID
861 * @lo: the bcdDevice_lo value
862 * @hi: the bcdDevice_hi value
863 *
864 * This macro is used to create a struct usb_device_id that matches a
865 * specific device, with a version range.
866 */
867#define USB_DEVICE_VER(vend, prod, lo, hi) \
868 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
869 .idVendor = (vend), \
870 .idProduct = (prod), \
871 .bcdDevice_lo = (lo), \
872 .bcdDevice_hi = (hi)
873
874/**
875 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
876 * @vend: the 16 bit USB Vendor ID
877 * @prod: the 16 bit USB Product ID
878 * @cl: bInterfaceClass value
879 *
880 * This macro is used to create a struct usb_device_id that matches a
881 * specific interface class of devices.
882 */
883#define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
884 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
885 USB_DEVICE_ID_MATCH_INT_CLASS, \
886 .idVendor = (vend), \
887 .idProduct = (prod), \
888 .bInterfaceClass = (cl)
889
890/**
891 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
892 * @vend: the 16 bit USB Vendor ID
893 * @prod: the 16 bit USB Product ID
894 * @pr: bInterfaceProtocol value
895 *
896 * This macro is used to create a struct usb_device_id that matches a
897 * specific interface protocol of devices.
898 */
899#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
900 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
901 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
902 .idVendor = (vend), \
903 .idProduct = (prod), \
904 .bInterfaceProtocol = (pr)
905
906/**
907 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
908 * @vend: the 16 bit USB Vendor ID
909 * @prod: the 16 bit USB Product ID
910 * @num: bInterfaceNumber value
911 *
912 * This macro is used to create a struct usb_device_id that matches a
913 * specific interface number of devices.
914 */
915#define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
916 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
917 USB_DEVICE_ID_MATCH_INT_NUMBER, \
918 .idVendor = (vend), \
919 .idProduct = (prod), \
920 .bInterfaceNumber = (num)
921
922/**
923 * USB_DEVICE_INFO - macro used to describe a class of usb devices
924 * @cl: bDeviceClass value
925 * @sc: bDeviceSubClass value
926 * @pr: bDeviceProtocol value
927 *
928 * This macro is used to create a struct usb_device_id that matches a
929 * specific class of devices.
930 */
931#define USB_DEVICE_INFO(cl, sc, pr) \
932 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
933 .bDeviceClass = (cl), \
934 .bDeviceSubClass = (sc), \
935 .bDeviceProtocol = (pr)
936
937/**
938 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
939 * @cl: bInterfaceClass value
940 * @sc: bInterfaceSubClass value
941 * @pr: bInterfaceProtocol value
942 *
943 * This macro is used to create a struct usb_device_id that matches a
944 * specific class of interfaces.
945 */
946#define USB_INTERFACE_INFO(cl, sc, pr) \
947 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
948 .bInterfaceClass = (cl), \
949 .bInterfaceSubClass = (sc), \
950 .bInterfaceProtocol = (pr)
951
952/**
953 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
954 * @vend: the 16 bit USB Vendor ID
955 * @prod: the 16 bit USB Product ID
956 * @cl: bInterfaceClass value
957 * @sc: bInterfaceSubClass value
958 * @pr: bInterfaceProtocol value
959 *
960 * This macro is used to create a struct usb_device_id that matches a
961 * specific device with a specific class of interfaces.
962 *
963 * This is especially useful when explicitly matching devices that have
964 * vendor specific bDeviceClass values, but standards-compliant interfaces.
965 */
966#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
967 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
968 | USB_DEVICE_ID_MATCH_DEVICE, \
969 .idVendor = (vend), \
970 .idProduct = (prod), \
971 .bInterfaceClass = (cl), \
972 .bInterfaceSubClass = (sc), \
973 .bInterfaceProtocol = (pr)
974
975/**
976 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
977 * @vend: the 16 bit USB Vendor ID
978 * @cl: bInterfaceClass value
979 * @sc: bInterfaceSubClass value
980 * @pr: bInterfaceProtocol value
981 *
982 * This macro is used to create a struct usb_device_id that matches a
983 * specific vendor with a specific class of interfaces.
984 *
985 * This is especially useful when explicitly matching devices that have
986 * vendor specific bDeviceClass values, but standards-compliant interfaces.
987 */
988#define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
989 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
990 | USB_DEVICE_ID_MATCH_VENDOR, \
991 .idVendor = (vend), \
992 .bInterfaceClass = (cl), \
993 .bInterfaceSubClass = (sc), \
994 .bInterfaceProtocol = (pr)
995
996/* ----------------------------------------------------------------------- */
997
998/* Stuff for dynamic usb ids */
999struct usb_dynids {
1000 spinlock_t lock;
1001 struct list_head list;
1002};
1003
1004struct usb_dynid {
1005 struct list_head node;
1006 struct usb_device_id id;
1007};
1008
1009extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1010 const struct usb_device_id *id_table,
1011 struct device_driver *driver,
1012 const char *buf, size_t count);
1013
1014extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1015
1016/**
1017 * struct usbdrv_wrap - wrapper for driver-model structure
1018 * @driver: The driver-model core driver structure.
1019 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1020 */
1021struct usbdrv_wrap {
1022 struct device_driver driver;
1023 int for_devices;
1024};
1025
1026/**
1027 * struct usb_driver - identifies USB interface driver to usbcore
1028 * @name: The driver name should be unique among USB drivers,
1029 * and should normally be the same as the module name.
1030 * @probe: Called to see if the driver is willing to manage a particular
1031 * interface on a device. If it is, probe returns zero and uses
1032 * usb_set_intfdata() to associate driver-specific data with the
1033 * interface. It may also use usb_set_interface() to specify the
1034 * appropriate altsetting. If unwilling to manage the interface,
1035 * return -ENODEV, if genuine IO errors occurred, an appropriate
1036 * negative errno value.
1037 * @disconnect: Called when the interface is no longer accessible, usually
1038 * because its device has been (or is being) disconnected or the
1039 * driver module is being unloaded.
1040 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1041 * the "usbfs" filesystem. This lets devices provide ways to
1042 * expose information to user space regardless of where they
1043 * do (or don't) show up otherwise in the filesystem.
1044 * @suspend: Called when the device is going to be suspended by the
1045 * system either from system sleep or runtime suspend context. The
1046 * return value will be ignored in system sleep context, so do NOT
1047 * try to continue using the device if suspend fails in this case.
1048 * Instead, let the resume or reset-resume routine recover from
1049 * the failure.
1050 * @resume: Called when the device is being resumed by the system.
1051 * @reset_resume: Called when the suspended device has been reset instead
1052 * of being resumed.
1053 * @pre_reset: Called by usb_reset_device() when the device is about to be
1054 * reset. This routine must not return until the driver has no active
1055 * URBs for the device, and no more URBs may be submitted until the
1056 * post_reset method is called.
1057 * @post_reset: Called by usb_reset_device() after the device
1058 * has been reset
1059 * @id_table: USB drivers use ID table to support hotplugging.
1060 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
1061 * or your driver's probe function will never get called.
1062 * @dynids: used internally to hold the list of dynamically added device
1063 * ids for this driver.
1064 * @drvwrap: Driver-model core structure wrapper.
1065 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1066 * added to this driver by preventing the sysfs file from being created.
1067 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1068 * for interfaces bound to this driver.
1069 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1070 * endpoints before calling the driver's disconnect method.
1071 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1072 * to initiate lower power link state transitions when an idle timeout
1073 * occurs. Device-initiated USB 3.0 link PM will still be allowed.
1074 *
1075 * USB interface drivers must provide a name, probe() and disconnect()
1076 * methods, and an id_table. Other driver fields are optional.
1077 *
1078 * The id_table is used in hotplugging. It holds a set of descriptors,
1079 * and specialized data may be associated with each entry. That table
1080 * is used by both user and kernel mode hotplugging support.
1081 *
1082 * The probe() and disconnect() methods are called in a context where
1083 * they can sleep, but they should avoid abusing the privilege. Most
1084 * work to connect to a device should be done when the device is opened,
1085 * and undone at the last close. The disconnect code needs to address
1086 * concurrency issues with respect to open() and close() methods, as
1087 * well as forcing all pending I/O requests to complete (by unlinking
1088 * them as necessary, and blocking until the unlinks complete).
1089 */
1090struct usb_driver {
1091 const char *name;
1092
1093 int (*probe) (struct usb_interface *intf,
1094 const struct usb_device_id *id);
1095
1096 void (*disconnect) (struct usb_interface *intf);
1097
1098 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1099 void *buf);
1100
1101 int (*suspend) (struct usb_interface *intf, pm_message_t message);
1102 int (*resume) (struct usb_interface *intf);
1103 int (*reset_resume)(struct usb_interface *intf);
1104
1105 int (*pre_reset)(struct usb_interface *intf);
1106 int (*post_reset)(struct usb_interface *intf);
1107
1108 const struct usb_device_id *id_table;
1109
1110 struct usb_dynids dynids;
1111 struct usbdrv_wrap drvwrap;
1112 unsigned int no_dynamic_id:1;
1113 unsigned int supports_autosuspend:1;
1114 unsigned int disable_hub_initiated_lpm:1;
1115 unsigned int soft_unbind:1;
1116};
1117#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1118
1119/**
1120 * struct usb_device_driver - identifies USB device driver to usbcore
1121 * @name: The driver name should be unique among USB drivers,
1122 * and should normally be the same as the module name.
1123 * @probe: Called to see if the driver is willing to manage a particular
1124 * device. If it is, probe returns zero and uses dev_set_drvdata()
1125 * to associate driver-specific data with the device. If unwilling
1126 * to manage the device, return a negative errno value.
1127 * @disconnect: Called when the device is no longer accessible, usually
1128 * because it has been (or is being) disconnected or the driver's
1129 * module is being unloaded.
1130 * @suspend: Called when the device is going to be suspended by the system.
1131 * @resume: Called when the device is being resumed by the system.
1132 * @drvwrap: Driver-model core structure wrapper.
1133 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1134 * for devices bound to this driver.
1135 *
1136 * USB drivers must provide all the fields listed above except drvwrap.
1137 */
1138struct usb_device_driver {
1139 const char *name;
1140
1141 int (*probe) (struct usb_device *udev);
1142 void (*disconnect) (struct usb_device *udev);
1143
1144 int (*suspend) (struct usb_device *udev, pm_message_t message);
1145 int (*resume) (struct usb_device *udev, pm_message_t message);
1146 struct usbdrv_wrap drvwrap;
1147 unsigned int supports_autosuspend:1;
1148};
1149#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1150 drvwrap.driver)
1151
1152extern struct bus_type usb_bus_type;
1153
1154/**
1155 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1156 * @name: the usb class device name for this driver. Will show up in sysfs.
1157 * @devnode: Callback to provide a naming hint for a possible
1158 * device node to create.
1159 * @fops: pointer to the struct file_operations of this driver.
1160 * @minor_base: the start of the minor range for this driver.
1161 *
1162 * This structure is used for the usb_register_dev() and
1163 * usb_deregister_dev() functions, to consolidate a number of the
1164 * parameters used for them.
1165 */
1166struct usb_class_driver {
1167 char *name;
1168 char *(*devnode)(struct device *dev, umode_t *mode);
1169 const struct file_operations *fops;
1170 int minor_base;
1171};
1172
1173/*
1174 * use these in module_init()/module_exit()
1175 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1176 */
1177extern int usb_register_driver(struct usb_driver *, struct module *,
1178 const char *);
1179
1180/* use a define to avoid include chaining to get THIS_MODULE & friends */
1181#define usb_register(driver) \
1182 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1183
1184extern void usb_deregister(struct usb_driver *);
1185
1186/**
1187 * module_usb_driver() - Helper macro for registering a USB driver
1188 * @__usb_driver: usb_driver struct
1189 *
1190 * Helper macro for USB drivers which do not do anything special in module
1191 * init/exit. This eliminates a lot of boilerplate. Each module may only
1192 * use this macro once, and calling it replaces module_init() and module_exit()
1193 */
1194#define module_usb_driver(__usb_driver) \
1195 module_driver(__usb_driver, usb_register, \
1196 usb_deregister)
1197
1198extern int usb_register_device_driver(struct usb_device_driver *,
1199 struct module *);
1200extern void usb_deregister_device_driver(struct usb_device_driver *);
1201
1202extern int usb_register_dev(struct usb_interface *intf,
1203 struct usb_class_driver *class_driver);
1204extern void usb_deregister_dev(struct usb_interface *intf,
1205 struct usb_class_driver *class_driver);
1206
1207extern int usb_disabled(void);
1208
1209/* ----------------------------------------------------------------------- */
1210
1211/*
1212 * URB support, for asynchronous request completions
1213 */
1214
1215/*
1216 * urb->transfer_flags:
1217 *
1218 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1219 */
1220#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
1221#define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired
1222 * slot in the schedule */
1223#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
1224#define URB_NO_FSBR 0x0020 /* UHCI-specific */
1225#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
1226#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
1227 * needed */
1228#define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1229
1230/* The following flags are used internally by usbcore and HCDs */
1231#define URB_DIR_IN 0x0200 /* Transfer from device to host */
1232#define URB_DIR_OUT 0
1233#define URB_DIR_MASK URB_DIR_IN
1234
1235#define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */
1236#define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */
1237#define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */
1238#define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */
1239#define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */
1240#define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */
1241#define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */
1242#define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */
1243
1244struct usb_iso_packet_descriptor {
1245 unsigned int offset;
1246 unsigned int length; /* expected length */
1247 unsigned int actual_length;
1248 int status;
1249};
1250
1251struct urb;
1252
1253struct usb_anchor {
1254 struct list_head urb_list;
1255 wait_queue_head_t wait;
1256 spinlock_t lock;
1257 atomic_t suspend_wakeups;
1258 unsigned int poisoned:1;
1259};
1260
1261static inline void init_usb_anchor(struct usb_anchor *anchor)
1262{
1263 memset(anchor, 0, sizeof(*anchor));
1264 INIT_LIST_HEAD(&anchor->urb_list);
1265 init_waitqueue_head(&anchor->wait);
1266 spin_lock_init(&anchor->lock);
1267}
1268
1269typedef void (*usb_complete_t)(struct urb *);
1270
1271/**
1272 * struct urb - USB Request Block
1273 * @urb_list: For use by current owner of the URB.
1274 * @anchor_list: membership in the list of an anchor
1275 * @anchor: to anchor URBs to a common mooring
1276 * @ep: Points to the endpoint's data structure. Will eventually
1277 * replace @pipe.
1278 * @pipe: Holds endpoint number, direction, type, and more.
1279 * Create these values with the eight macros available;
1280 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1281 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1282 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1283 * numbers range from zero to fifteen. Note that "in" endpoint two
1284 * is a different endpoint (and pipe) from "out" endpoint two.
1285 * The current configuration controls the existence, type, and
1286 * maximum packet size of any given endpoint.
1287 * @stream_id: the endpoint's stream ID for bulk streams
1288 * @dev: Identifies the USB device to perform the request.
1289 * @status: This is read in non-iso completion functions to get the
1290 * status of the particular request. ISO requests only use it
1291 * to tell whether the URB was unlinked; detailed status for
1292 * each frame is in the fields of the iso_frame-desc.
1293 * @transfer_flags: A variety of flags may be used to affect how URB
1294 * submission, unlinking, or operation are handled. Different
1295 * kinds of URB can use different flags.
1296 * @transfer_buffer: This identifies the buffer to (or from) which the I/O
1297 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1298 * (however, do not leave garbage in transfer_buffer even then).
1299 * This buffer must be suitable for DMA; allocate it with
1300 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1301 * of this buffer will be modified. This buffer is used for the data
1302 * stage of control transfers.
1303 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1304 * the device driver is saying that it provided this DMA address,
1305 * which the host controller driver should use in preference to the
1306 * transfer_buffer.
1307 * @sg: scatter gather buffer list, the buffer size of each element in
1308 * the list (except the last) must be divisible by the endpoint's
1309 * max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1310 * @num_mapped_sgs: (internal) number of mapped sg entries
1311 * @num_sgs: number of entries in the sg list
1312 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1313 * be broken up into chunks according to the current maximum packet
1314 * size for the endpoint, which is a function of the configuration
1315 * and is encoded in the pipe. When the length is zero, neither
1316 * transfer_buffer nor transfer_dma is used.
1317 * @actual_length: This is read in non-iso completion functions, and
1318 * it tells how many bytes (out of transfer_buffer_length) were
1319 * transferred. It will normally be the same as requested, unless
1320 * either an error was reported or a short read was performed.
1321 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1322 * short reads be reported as errors.
1323 * @setup_packet: Only used for control transfers, this points to eight bytes
1324 * of setup data. Control transfers always start by sending this data
1325 * to the device. Then transfer_buffer is read or written, if needed.
1326 * @setup_dma: DMA pointer for the setup packet. The caller must not use
1327 * this field; setup_packet must point to a valid buffer.
1328 * @start_frame: Returns the initial frame for isochronous transfers.
1329 * @number_of_packets: Lists the number of ISO transfer buffers.
1330 * @interval: Specifies the polling interval for interrupt or isochronous
1331 * transfers. The units are frames (milliseconds) for full and low
1332 * speed devices, and microframes (1/8 millisecond) for highspeed
1333 * and SuperSpeed devices.
1334 * @error_count: Returns the number of ISO transfers that reported errors.
1335 * @context: For use in completion functions. This normally points to
1336 * request-specific driver context.
1337 * @complete: Completion handler. This URB is passed as the parameter to the
1338 * completion function. The completion function may then do what
1339 * it likes with the URB, including resubmitting or freeing it.
1340 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1341 * collect the transfer status for each buffer.
1342 *
1343 * This structure identifies USB transfer requests. URBs must be allocated by
1344 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1345 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1346 * are submitted using usb_submit_urb(), and pending requests may be canceled
1347 * using usb_unlink_urb() or usb_kill_urb().
1348 *
1349 * Data Transfer Buffers:
1350 *
1351 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1352 * taken from the general page pool. That is provided by transfer_buffer
1353 * (control requests also use setup_packet), and host controller drivers
1354 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1355 * mapping operations can be expensive on some platforms (perhaps using a dma
1356 * bounce buffer or talking to an IOMMU),
1357 * although they're cheap on commodity x86 and ppc hardware.
1358 *
1359 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1360 * which tells the host controller driver that no such mapping is needed for
1361 * the transfer_buffer since
1362 * the device driver is DMA-aware. For example, a device driver might
1363 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1364 * When this transfer flag is provided, host controller drivers will
1365 * attempt to use the dma address found in the transfer_dma
1366 * field rather than determining a dma address themselves.
1367 *
1368 * Note that transfer_buffer must still be set if the controller
1369 * does not support DMA (as indicated by bus.uses_dma) and when talking
1370 * to root hub. If you have to trasfer between highmem zone and the device
1371 * on such controller, create a bounce buffer or bail out with an error.
1372 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1373 * capable, assign NULL to it, so that usbmon knows not to use the value.
1374 * The setup_packet must always be set, so it cannot be located in highmem.
1375 *
1376 * Initialization:
1377 *
1378 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1379 * zero), and complete fields. All URBs must also initialize
1380 * transfer_buffer and transfer_buffer_length. They may provide the
1381 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1382 * to be treated as errors; that flag is invalid for write requests.
1383 *
1384 * Bulk URBs may
1385 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1386 * should always terminate with a short packet, even if it means adding an
1387 * extra zero length packet.
1388 *
1389 * Control URBs must provide a valid pointer in the setup_packet field.
1390 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1391 * beforehand.
1392 *
1393 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1394 * or, for highspeed devices, 125 microsecond units)
1395 * to poll for transfers. After the URB has been submitted, the interval
1396 * field reflects how the transfer was actually scheduled.
1397 * The polling interval may be more frequent than requested.
1398 * For example, some controllers have a maximum interval of 32 milliseconds,
1399 * while others support intervals of up to 1024 milliseconds.
1400 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1401 * endpoints, as well as high speed interrupt endpoints, the encoding of
1402 * the transfer interval in the endpoint descriptor is logarithmic.
1403 * Device drivers must convert that value to linear units themselves.)
1404 *
1405 * If an isochronous endpoint queue isn't already running, the host
1406 * controller will schedule a new URB to start as soon as bandwidth
1407 * utilization allows. If the queue is running then a new URB will be
1408 * scheduled to start in the first transfer slot following the end of the
1409 * preceding URB, if that slot has not already expired. If the slot has
1410 * expired (which can happen when IRQ delivery is delayed for a long time),
1411 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag
1412 * is clear then the URB will be scheduled to start in the expired slot,
1413 * implying that some of its packets will not be transferred; if the flag
1414 * is set then the URB will be scheduled in the first unexpired slot,
1415 * breaking the queue's synchronization. Upon URB completion, the
1416 * start_frame field will be set to the (micro)frame number in which the
1417 * transfer was scheduled. Ranges for frame counter values are HC-specific
1418 * and can go from as low as 256 to as high as 65536 frames.
1419 *
1420 * Isochronous URBs have a different data transfer model, in part because
1421 * the quality of service is only "best effort". Callers provide specially
1422 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1423 * at the end. Each such packet is an individual ISO transfer. Isochronous
1424 * URBs are normally queued, submitted by drivers to arrange that
1425 * transfers are at least double buffered, and then explicitly resubmitted
1426 * in completion handlers, so
1427 * that data (such as audio or video) streams at as constant a rate as the
1428 * host controller scheduler can support.
1429 *
1430 * Completion Callbacks:
1431 *
1432 * The completion callback is made in_interrupt(), and one of the first
1433 * things that a completion handler should do is check the status field.
1434 * The status field is provided for all URBs. It is used to report
1435 * unlinked URBs, and status for all non-ISO transfers. It should not
1436 * be examined before the URB is returned to the completion handler.
1437 *
1438 * The context field is normally used to link URBs back to the relevant
1439 * driver or request state.
1440 *
1441 * When the completion callback is invoked for non-isochronous URBs, the
1442 * actual_length field tells how many bytes were transferred. This field
1443 * is updated even when the URB terminated with an error or was unlinked.
1444 *
1445 * ISO transfer status is reported in the status and actual_length fields
1446 * of the iso_frame_desc array, and the number of errors is reported in
1447 * error_count. Completion callbacks for ISO transfers will normally
1448 * (re)submit URBs to ensure a constant transfer rate.
1449 *
1450 * Note that even fields marked "public" should not be touched by the driver
1451 * when the urb is owned by the hcd, that is, since the call to
1452 * usb_submit_urb() till the entry into the completion routine.
1453 */
1454struct urb {
1455 /* private: usb core and host controller only fields in the urb */
1456 struct kref kref; /* reference count of the URB */
1457 void *hcpriv; /* private data for host controller */
1458 atomic_t use_count; /* concurrent submissions counter */
1459 atomic_t reject; /* submissions will fail */
1460 int unlinked; /* unlink error code */
1461
1462 /* public: documented fields in the urb that can be used by drivers */
1463 struct list_head urb_list; /* list head for use by the urb's
1464 * current owner */
1465 struct list_head anchor_list; /* the URB may be anchored */
1466 struct usb_anchor *anchor;
1467 struct usb_device *dev; /* (in) pointer to associated device */
1468 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1469 unsigned int pipe; /* (in) pipe information */
1470 unsigned int stream_id; /* (in) stream ID */
1471 int status; /* (return) non-ISO status */
1472 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1473 void *transfer_buffer; /* (in) associated data buffer */
1474 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1475 struct scatterlist *sg; /* (in) scatter gather buffer list */
1476 int num_mapped_sgs; /* (internal) mapped sg entries */
1477 int num_sgs; /* (in) number of entries in the sg list */
1478 u32 transfer_buffer_length; /* (in) data buffer length */
1479 u32 actual_length; /* (return) actual transfer length */
1480 unsigned char *setup_packet; /* (in) setup packet (control only) */
1481 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1482 int start_frame; /* (modify) start frame (ISO) */
1483 int number_of_packets; /* (in) number of ISO packets */
1484 int interval; /* (modify) transfer interval
1485 * (INT/ISO) */
1486 int error_count; /* (return) number of ISO errors */
1487 void *context; /* (in) context for completion */
1488 usb_complete_t complete; /* (in) completion routine */
1489 struct usb_iso_packet_descriptor iso_frame_desc[0];
1490 /* (in) ISO ONLY */
1491};
1492
1493/* ----------------------------------------------------------------------- */
1494
1495/**
1496 * usb_fill_control_urb - initializes a control urb
1497 * @urb: pointer to the urb to initialize.
1498 * @dev: pointer to the struct usb_device for this urb.
1499 * @pipe: the endpoint pipe
1500 * @setup_packet: pointer to the setup_packet buffer
1501 * @transfer_buffer: pointer to the transfer buffer
1502 * @buffer_length: length of the transfer buffer
1503 * @complete_fn: pointer to the usb_complete_t function
1504 * @context: what to set the urb context to.
1505 *
1506 * Initializes a control urb with the proper information needed to submit
1507 * it to a device.
1508 */
1509static inline void usb_fill_control_urb(struct urb *urb,
1510 struct usb_device *dev,
1511 unsigned int pipe,
1512 unsigned char *setup_packet,
1513 void *transfer_buffer,
1514 int buffer_length,
1515 usb_complete_t complete_fn,
1516 void *context)
1517{
1518 urb->dev = dev;
1519 urb->pipe = pipe;
1520 urb->setup_packet = setup_packet;
1521 urb->transfer_buffer = transfer_buffer;
1522 urb->transfer_buffer_length = buffer_length;
1523 urb->complete = complete_fn;
1524 urb->context = context;
1525}
1526
1527/**
1528 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1529 * @urb: pointer to the urb to initialize.
1530 * @dev: pointer to the struct usb_device for this urb.
1531 * @pipe: the endpoint pipe
1532 * @transfer_buffer: pointer to the transfer buffer
1533 * @buffer_length: length of the transfer buffer
1534 * @complete_fn: pointer to the usb_complete_t function
1535 * @context: what to set the urb context to.
1536 *
1537 * Initializes a bulk urb with the proper information needed to submit it
1538 * to a device.
1539 */
1540static inline void usb_fill_bulk_urb(struct urb *urb,
1541 struct usb_device *dev,
1542 unsigned int pipe,
1543 void *transfer_buffer,
1544 int buffer_length,
1545 usb_complete_t complete_fn,
1546 void *context)
1547{
1548 urb->dev = dev;
1549 urb->pipe = pipe;
1550 urb->transfer_buffer = transfer_buffer;
1551 urb->transfer_buffer_length = buffer_length;
1552 urb->complete = complete_fn;
1553 urb->context = context;
1554}
1555
1556/**
1557 * usb_fill_int_urb - macro to help initialize a interrupt urb
1558 * @urb: pointer to the urb to initialize.
1559 * @dev: pointer to the struct usb_device for this urb.
1560 * @pipe: the endpoint pipe
1561 * @transfer_buffer: pointer to the transfer buffer
1562 * @buffer_length: length of the transfer buffer
1563 * @complete_fn: pointer to the usb_complete_t function
1564 * @context: what to set the urb context to.
1565 * @interval: what to set the urb interval to, encoded like
1566 * the endpoint descriptor's bInterval value.
1567 *
1568 * Initializes a interrupt urb with the proper information needed to submit
1569 * it to a device.
1570 *
1571 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
1572 * encoding of the endpoint interval, and express polling intervals in
1573 * microframes (eight per millisecond) rather than in frames (one per
1574 * millisecond).
1575 *
1576 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1577 * 128us instead of 125us. For Wireless USB devices, the interval is passed
1578 * through to the host controller, rather than being translated into microframe
1579 * units.
1580 */
1581static inline void usb_fill_int_urb(struct urb *urb,
1582 struct usb_device *dev,
1583 unsigned int pipe,
1584 void *transfer_buffer,
1585 int buffer_length,
1586 usb_complete_t complete_fn,
1587 void *context,
1588 int interval)
1589{
1590 urb->dev = dev;
1591 urb->pipe = pipe;
1592 urb->transfer_buffer = transfer_buffer;
1593 urb->transfer_buffer_length = buffer_length;
1594 urb->complete = complete_fn;
1595 urb->context = context;
1596
1597 if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
1598 /* make sure interval is within allowed range */
1599 interval = clamp(interval, 1, 16);
1600
1601 urb->interval = 1 << (interval - 1);
1602 } else {
1603 urb->interval = interval;
1604 }
1605
1606 urb->start_frame = -1;
1607}
1608
1609extern void usb_init_urb(struct urb *urb);
1610extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1611extern void usb_free_urb(struct urb *urb);
1612#define usb_put_urb usb_free_urb
1613extern struct urb *usb_get_urb(struct urb *urb);
1614extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1615extern int usb_unlink_urb(struct urb *urb);
1616extern void usb_kill_urb(struct urb *urb);
1617extern void usb_poison_urb(struct urb *urb);
1618extern void usb_unpoison_urb(struct urb *urb);
1619extern void usb_block_urb(struct urb *urb);
1620extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1621extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1622extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1623extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1624extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1625extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1626extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1627extern void usb_unanchor_urb(struct urb *urb);
1628extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1629 unsigned int timeout);
1630extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1631extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1632extern int usb_anchor_empty(struct usb_anchor *anchor);
1633
1634#define usb_unblock_urb usb_unpoison_urb
1635
1636/**
1637 * usb_urb_dir_in - check if an URB describes an IN transfer
1638 * @urb: URB to be checked
1639 *
1640 * Return: 1 if @urb describes an IN transfer (device-to-host),
1641 * otherwise 0.
1642 */
1643static inline int usb_urb_dir_in(struct urb *urb)
1644{
1645 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1646}
1647
1648/**
1649 * usb_urb_dir_out - check if an URB describes an OUT transfer
1650 * @urb: URB to be checked
1651 *
1652 * Return: 1 if @urb describes an OUT transfer (host-to-device),
1653 * otherwise 0.
1654 */
1655static inline int usb_urb_dir_out(struct urb *urb)
1656{
1657 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1658}
1659
1660void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1661 gfp_t mem_flags, dma_addr_t *dma);
1662void usb_free_coherent(struct usb_device *dev, size_t size,
1663 void *addr, dma_addr_t dma);
1664
1665#if 0
1666struct urb *usb_buffer_map(struct urb *urb);
1667void usb_buffer_dmasync(struct urb *urb);
1668void usb_buffer_unmap(struct urb *urb);
1669#endif
1670
1671struct scatterlist;
1672int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1673 struct scatterlist *sg, int nents);
1674#if 0
1675void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1676 struct scatterlist *sg, int n_hw_ents);
1677#endif
1678void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1679 struct scatterlist *sg, int n_hw_ents);
1680
1681/*-------------------------------------------------------------------*
1682 * SYNCHRONOUS CALL SUPPORT *
1683 *-------------------------------------------------------------------*/
1684
1685extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1686 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1687 void *data, __u16 size, int timeout);
1688extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1689 void *data, int len, int *actual_length, int timeout);
1690extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1691 void *data, int len, int *actual_length,
1692 int timeout);
1693
1694/* wrappers around usb_control_msg() for the most common standard requests */
1695extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1696 unsigned char descindex, void *buf, int size);
1697extern int usb_get_status(struct usb_device *dev,
1698 int type, int target, void *data);
1699extern int usb_string(struct usb_device *dev, int index,
1700 char *buf, size_t size);
1701
1702/* wrappers that also update important state inside usbcore */
1703extern int usb_clear_halt(struct usb_device *dev, int pipe);
1704extern int usb_reset_configuration(struct usb_device *dev);
1705extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1706extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1707
1708/* this request isn't really synchronous, but it belongs with the others */
1709extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1710
1711/* choose and set configuration for device */
1712extern int usb_choose_configuration(struct usb_device *udev);
1713extern int usb_set_configuration(struct usb_device *dev, int configuration);
1714
1715/*
1716 * timeouts, in milliseconds, used for sending/receiving control messages
1717 * they typically complete within a few frames (msec) after they're issued
1718 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1719 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1720 */
1721#define USB_CTRL_GET_TIMEOUT 5000
1722#define USB_CTRL_SET_TIMEOUT 5000
1723
1724
1725/**
1726 * struct usb_sg_request - support for scatter/gather I/O
1727 * @status: zero indicates success, else negative errno
1728 * @bytes: counts bytes transferred.
1729 *
1730 * These requests are initialized using usb_sg_init(), and then are used
1731 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1732 * members of the request object aren't for driver access.
1733 *
1734 * The status and bytecount values are valid only after usb_sg_wait()
1735 * returns. If the status is zero, then the bytecount matches the total
1736 * from the request.
1737 *
1738 * After an error completion, drivers may need to clear a halt condition
1739 * on the endpoint.
1740 */
1741struct usb_sg_request {
1742 int status;
1743 size_t bytes;
1744
1745 /* private:
1746 * members below are private to usbcore,
1747 * and are not provided for driver access!
1748 */
1749 spinlock_t lock;
1750
1751 struct usb_device *dev;
1752 int pipe;
1753
1754 int entries;
1755 struct urb **urbs;
1756
1757 int count;
1758 struct completion complete;
1759};
1760
1761int usb_sg_init(
1762 struct usb_sg_request *io,
1763 struct usb_device *dev,
1764 unsigned pipe,
1765 unsigned period,
1766 struct scatterlist *sg,
1767 int nents,
1768 size_t length,
1769 gfp_t mem_flags
1770);
1771void usb_sg_cancel(struct usb_sg_request *io);
1772void usb_sg_wait(struct usb_sg_request *io);
1773
1774
1775/* ----------------------------------------------------------------------- */
1776
1777/*
1778 * For various legacy reasons, Linux has a small cookie that's paired with
1779 * a struct usb_device to identify an endpoint queue. Queue characteristics
1780 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1781 * an unsigned int encoded as:
1782 *
1783 * - direction: bit 7 (0 = Host-to-Device [Out],
1784 * 1 = Device-to-Host [In] ...
1785 * like endpoint bEndpointAddress)
1786 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1787 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1788 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1789 * 10 = control, 11 = bulk)
1790 *
1791 * Given the device address and endpoint descriptor, pipes are redundant.
1792 */
1793
1794/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1795/* (yet ... they're the values used by usbfs) */
1796#define PIPE_ISOCHRONOUS 0
1797#define PIPE_INTERRUPT 1
1798#define PIPE_CONTROL 2
1799#define PIPE_BULK 3
1800
1801#define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1802#define usb_pipeout(pipe) (!usb_pipein(pipe))
1803
1804#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1805#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1806
1807#define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1808#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1809#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1810#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1811#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1812
1813static inline unsigned int __create_pipe(struct usb_device *dev,
1814 unsigned int endpoint)
1815{
1816 return (dev->devnum << 8) | (endpoint << 15);
1817}
1818
1819/* Create various pipes... */
1820#define usb_sndctrlpipe(dev, endpoint) \
1821 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1822#define usb_rcvctrlpipe(dev, endpoint) \
1823 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1824#define usb_sndisocpipe(dev, endpoint) \
1825 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1826#define usb_rcvisocpipe(dev, endpoint) \
1827 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1828#define usb_sndbulkpipe(dev, endpoint) \
1829 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1830#define usb_rcvbulkpipe(dev, endpoint) \
1831 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1832#define usb_sndintpipe(dev, endpoint) \
1833 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1834#define usb_rcvintpipe(dev, endpoint) \
1835 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1836
1837static inline struct usb_host_endpoint *
1838usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1839{
1840 struct usb_host_endpoint **eps;
1841 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1842 return eps[usb_pipeendpoint(pipe)];
1843}
1844
1845/*-------------------------------------------------------------------------*/
1846
1847static inline __u16
1848usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1849{
1850 struct usb_host_endpoint *ep;
1851 unsigned epnum = usb_pipeendpoint(pipe);
1852
1853 if (is_out) {
1854 WARN_ON(usb_pipein(pipe));
1855 ep = udev->ep_out[epnum];
1856 } else {
1857 WARN_ON(usb_pipeout(pipe));
1858 ep = udev->ep_in[epnum];
1859 }
1860 if (!ep)
1861 return 0;
1862
1863 /* NOTE: only 0x07ff bits are for packet size... */
1864 return usb_endpoint_maxp(&ep->desc);
1865}
1866
1867/* ----------------------------------------------------------------------- */
1868
1869/* translate USB error codes to codes user space understands */
1870static inline int usb_translate_errors(int error_code)
1871{
1872 switch (error_code) {
1873 case 0:
1874 case -ENOMEM:
1875 case -ENODEV:
1876 case -EOPNOTSUPP:
1877 return error_code;
1878 default:
1879 return -EIO;
1880 }
1881}
1882
1883/* Events from the usb core */
1884#define USB_DEVICE_ADD 0x0001
1885#define USB_DEVICE_REMOVE 0x0002
1886#define USB_BUS_ADD 0x0003
1887#define USB_BUS_REMOVE 0x0004
1888extern void usb_register_notify(struct notifier_block *nb);
1889extern void usb_unregister_notify(struct notifier_block *nb);
1890
1891/* debugfs stuff */
1892extern struct dentry *usb_debug_root;
1893
1894/* LED triggers */
1895enum usb_led_event {
1896 USB_LED_EVENT_HOST = 0,
1897 USB_LED_EVENT_GADGET = 1,
1898};
1899
1900#ifdef CONFIG_USB_LED_TRIG
1901extern void usb_led_activity(enum usb_led_event ev);
1902#else
1903static inline void usb_led_activity(enum usb_led_event ev) {}
1904#endif
1905
1906#endif /* __KERNEL__ */
1907
1908#endif
1#ifndef __LINUX_USB_H
2#define __LINUX_USB_H
3
4#include <linux/mod_devicetable.h>
5#include <linux/usb/ch9.h>
6
7#define USB_MAJOR 180
8#define USB_DEVICE_MAJOR 189
9
10
11#ifdef __KERNEL__
12
13#include <linux/errno.h> /* for -ENODEV */
14#include <linux/delay.h> /* for mdelay() */
15#include <linux/interrupt.h> /* for in_interrupt() */
16#include <linux/list.h> /* for struct list_head */
17#include <linux/kref.h> /* for struct kref */
18#include <linux/device.h> /* for struct device */
19#include <linux/fs.h> /* for struct file_operations */
20#include <linux/completion.h> /* for struct completion */
21#include <linux/sched.h> /* for current && schedule_timeout */
22#include <linux/mutex.h> /* for struct mutex */
23#include <linux/pm_runtime.h> /* for runtime PM */
24
25struct usb_device;
26struct usb_driver;
27struct wusb_dev;
28
29/*-------------------------------------------------------------------------*/
30
31/*
32 * Host-side wrappers for standard USB descriptors ... these are parsed
33 * from the data provided by devices. Parsing turns them from a flat
34 * sequence of descriptors into a hierarchy:
35 *
36 * - devices have one (usually) or more configs;
37 * - configs have one (often) or more interfaces;
38 * - interfaces have one (usually) or more settings;
39 * - each interface setting has zero or (usually) more endpoints.
40 * - a SuperSpeed endpoint has a companion descriptor
41 *
42 * And there might be other descriptors mixed in with those.
43 *
44 * Devices may also have class-specific or vendor-specific descriptors.
45 */
46
47struct ep_device;
48
49/**
50 * struct usb_host_endpoint - host-side endpoint descriptor and queue
51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
53 * @urb_list: urbs queued to this endpoint; maintained by usbcore
54 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
55 * with one or more transfer descriptors (TDs) per urb
56 * @ep_dev: ep_device for sysfs info
57 * @extra: descriptors following this endpoint in the configuration
58 * @extralen: how many bytes of "extra" are valid
59 * @enabled: URBs may be submitted to this endpoint
60 * @streams: number of USB-3 streams allocated on the endpoint
61 *
62 * USB requests are always queued to a given endpoint, identified by a
63 * descriptor within an active interface in a given USB configuration.
64 */
65struct usb_host_endpoint {
66 struct usb_endpoint_descriptor desc;
67 struct usb_ss_ep_comp_descriptor ss_ep_comp;
68 struct list_head urb_list;
69 void *hcpriv;
70 struct ep_device *ep_dev; /* For sysfs info */
71
72 unsigned char *extra; /* Extra descriptors */
73 int extralen;
74 int enabled;
75 int streams;
76};
77
78/* host-side wrapper for one interface setting's parsed descriptors */
79struct usb_host_interface {
80 struct usb_interface_descriptor desc;
81
82 int extralen;
83 unsigned char *extra; /* Extra descriptors */
84
85 /* array of desc.bNumEndpoint endpoints associated with this
86 * interface setting. these will be in no particular order.
87 */
88 struct usb_host_endpoint *endpoint;
89
90 char *string; /* iInterface string, if present */
91};
92
93enum usb_interface_condition {
94 USB_INTERFACE_UNBOUND = 0,
95 USB_INTERFACE_BINDING,
96 USB_INTERFACE_BOUND,
97 USB_INTERFACE_UNBINDING,
98};
99
100/**
101 * struct usb_interface - what usb device drivers talk to
102 * @altsetting: array of interface structures, one for each alternate
103 * setting that may be selected. Each one includes a set of
104 * endpoint configurations. They will be in no particular order.
105 * @cur_altsetting: the current altsetting.
106 * @num_altsetting: number of altsettings defined.
107 * @intf_assoc: interface association descriptor
108 * @minor: the minor number assigned to this interface, if this
109 * interface is bound to a driver that uses the USB major number.
110 * If this interface does not use the USB major, this field should
111 * be unused. The driver should set this value in the probe()
112 * function of the driver, after it has been assigned a minor
113 * number from the USB core by calling usb_register_dev().
114 * @condition: binding state of the interface: not bound, binding
115 * (in probe()), bound to a driver, or unbinding (in disconnect())
116 * @sysfs_files_created: sysfs attributes exist
117 * @ep_devs_created: endpoint child pseudo-devices exist
118 * @unregistering: flag set when the interface is being unregistered
119 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
120 * capability during autosuspend.
121 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
122 * has been deferred.
123 * @needs_binding: flag set when the driver should be re-probed or unbound
124 * following a reset or suspend operation it doesn't support.
125 * @dev: driver model's view of this device
126 * @usb_dev: if an interface is bound to the USB major, this will point
127 * to the sysfs representation for that device.
128 * @pm_usage_cnt: PM usage counter for this interface
129 * @reset_ws: Used for scheduling resets from atomic context.
130 * @reset_running: set to 1 if the interface is currently running a
131 * queued reset so that usb_cancel_queued_reset() doesn't try to
132 * remove from the workqueue when running inside the worker
133 * thread. See __usb_queue_reset_device().
134 * @resetting_device: USB core reset the device, so use alt setting 0 as
135 * current; needs bandwidth alloc after reset.
136 *
137 * USB device drivers attach to interfaces on a physical device. Each
138 * interface encapsulates a single high level function, such as feeding
139 * an audio stream to a speaker or reporting a change in a volume control.
140 * Many USB devices only have one interface. The protocol used to talk to
141 * an interface's endpoints can be defined in a usb "class" specification,
142 * or by a product's vendor. The (default) control endpoint is part of
143 * every interface, but is never listed among the interface's descriptors.
144 *
145 * The driver that is bound to the interface can use standard driver model
146 * calls such as dev_get_drvdata() on the dev member of this structure.
147 *
148 * Each interface may have alternate settings. The initial configuration
149 * of a device sets altsetting 0, but the device driver can change
150 * that setting using usb_set_interface(). Alternate settings are often
151 * used to control the use of periodic endpoints, such as by having
152 * different endpoints use different amounts of reserved USB bandwidth.
153 * All standards-conformant USB devices that use isochronous endpoints
154 * will use them in non-default settings.
155 *
156 * The USB specification says that alternate setting numbers must run from
157 * 0 to one less than the total number of alternate settings. But some
158 * devices manage to mess this up, and the structures aren't necessarily
159 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
160 * look up an alternate setting in the altsetting array based on its number.
161 */
162struct usb_interface {
163 /* array of alternate settings for this interface,
164 * stored in no particular order */
165 struct usb_host_interface *altsetting;
166
167 struct usb_host_interface *cur_altsetting; /* the currently
168 * active alternate setting */
169 unsigned num_altsetting; /* number of alternate settings */
170
171 /* If there is an interface association descriptor then it will list
172 * the associated interfaces */
173 struct usb_interface_assoc_descriptor *intf_assoc;
174
175 int minor; /* minor number this interface is
176 * bound to */
177 enum usb_interface_condition condition; /* state of binding */
178 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
179 unsigned ep_devs_created:1; /* endpoint "devices" exist */
180 unsigned unregistering:1; /* unregistration is in progress */
181 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
182 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */
183 unsigned needs_binding:1; /* needs delayed unbind/rebind */
184 unsigned reset_running:1;
185 unsigned resetting_device:1; /* true: bandwidth alloc after reset */
186
187 struct device dev; /* interface specific device info */
188 struct device *usb_dev;
189 atomic_t pm_usage_cnt; /* usage counter for autosuspend */
190 struct work_struct reset_ws; /* for resets in atomic context */
191};
192#define to_usb_interface(d) container_of(d, struct usb_interface, dev)
193
194static inline void *usb_get_intfdata(struct usb_interface *intf)
195{
196 return dev_get_drvdata(&intf->dev);
197}
198
199static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
200{
201 dev_set_drvdata(&intf->dev, data);
202}
203
204struct usb_interface *usb_get_intf(struct usb_interface *intf);
205void usb_put_intf(struct usb_interface *intf);
206
207/* Hard limit */
208#define USB_MAXENDPOINTS 30
209/* this maximum is arbitrary */
210#define USB_MAXINTERFACES 32
211#define USB_MAXIADS (USB_MAXINTERFACES/2)
212
213/**
214 * struct usb_interface_cache - long-term representation of a device interface
215 * @num_altsetting: number of altsettings defined.
216 * @ref: reference counter.
217 * @altsetting: variable-length array of interface structures, one for
218 * each alternate setting that may be selected. Each one includes a
219 * set of endpoint configurations. They will be in no particular order.
220 *
221 * These structures persist for the lifetime of a usb_device, unlike
222 * struct usb_interface (which persists only as long as its configuration
223 * is installed). The altsetting arrays can be accessed through these
224 * structures at any time, permitting comparison of configurations and
225 * providing support for the /proc/bus/usb/devices pseudo-file.
226 */
227struct usb_interface_cache {
228 unsigned num_altsetting; /* number of alternate settings */
229 struct kref ref; /* reference counter */
230
231 /* variable-length array of alternate settings for this interface,
232 * stored in no particular order */
233 struct usb_host_interface altsetting[0];
234};
235#define ref_to_usb_interface_cache(r) \
236 container_of(r, struct usb_interface_cache, ref)
237#define altsetting_to_usb_interface_cache(a) \
238 container_of(a, struct usb_interface_cache, altsetting[0])
239
240/**
241 * struct usb_host_config - representation of a device's configuration
242 * @desc: the device's configuration descriptor.
243 * @string: pointer to the cached version of the iConfiguration string, if
244 * present for this configuration.
245 * @intf_assoc: list of any interface association descriptors in this config
246 * @interface: array of pointers to usb_interface structures, one for each
247 * interface in the configuration. The number of interfaces is stored
248 * in desc.bNumInterfaces. These pointers are valid only while the
249 * the configuration is active.
250 * @intf_cache: array of pointers to usb_interface_cache structures, one
251 * for each interface in the configuration. These structures exist
252 * for the entire life of the device.
253 * @extra: pointer to buffer containing all extra descriptors associated
254 * with this configuration (those preceding the first interface
255 * descriptor).
256 * @extralen: length of the extra descriptors buffer.
257 *
258 * USB devices may have multiple configurations, but only one can be active
259 * at any time. Each encapsulates a different operational environment;
260 * for example, a dual-speed device would have separate configurations for
261 * full-speed and high-speed operation. The number of configurations
262 * available is stored in the device descriptor as bNumConfigurations.
263 *
264 * A configuration can contain multiple interfaces. Each corresponds to
265 * a different function of the USB device, and all are available whenever
266 * the configuration is active. The USB standard says that interfaces
267 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
268 * of devices get this wrong. In addition, the interface array is not
269 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
270 * look up an interface entry based on its number.
271 *
272 * Device drivers should not attempt to activate configurations. The choice
273 * of which configuration to install is a policy decision based on such
274 * considerations as available power, functionality provided, and the user's
275 * desires (expressed through userspace tools). However, drivers can call
276 * usb_reset_configuration() to reinitialize the current configuration and
277 * all its interfaces.
278 */
279struct usb_host_config {
280 struct usb_config_descriptor desc;
281
282 char *string; /* iConfiguration string, if present */
283
284 /* List of any Interface Association Descriptors in this
285 * configuration. */
286 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
287
288 /* the interfaces associated with this configuration,
289 * stored in no particular order */
290 struct usb_interface *interface[USB_MAXINTERFACES];
291
292 /* Interface information available even when this is not the
293 * active configuration */
294 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
295
296 unsigned char *extra; /* Extra descriptors */
297 int extralen;
298};
299
300/* USB2.0 and USB3.0 device BOS descriptor set */
301struct usb_host_bos {
302 struct usb_bos_descriptor *desc;
303
304 /* wireless cap descriptor is handled by wusb */
305 struct usb_ext_cap_descriptor *ext_cap;
306 struct usb_ss_cap_descriptor *ss_cap;
307 struct usb_ss_container_id_descriptor *ss_id;
308};
309
310int __usb_get_extra_descriptor(char *buffer, unsigned size,
311 unsigned char type, void **ptr);
312#define usb_get_extra_descriptor(ifpoint, type, ptr) \
313 __usb_get_extra_descriptor((ifpoint)->extra, \
314 (ifpoint)->extralen, \
315 type, (void **)ptr)
316
317/* ----------------------------------------------------------------------- */
318
319/* USB device number allocation bitmap */
320struct usb_devmap {
321 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
322};
323
324/*
325 * Allocated per bus (tree of devices) we have:
326 */
327struct usb_bus {
328 struct device *controller; /* host/master side hardware */
329 int busnum; /* Bus number (in order of reg) */
330 const char *bus_name; /* stable id (PCI slot_name etc) */
331 u8 uses_dma; /* Does the host controller use DMA? */
332 u8 uses_pio_for_control; /*
333 * Does the host controller use PIO
334 * for control transfers?
335 */
336 u8 otg_port; /* 0, or number of OTG/HNP port */
337 unsigned is_b_host:1; /* true during some HNP roleswitches */
338 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
339 unsigned no_stop_on_short:1; /*
340 * Quirk: some controllers don't stop
341 * the ep queue on a short transfer
342 * with the URB_SHORT_NOT_OK flag set.
343 */
344 unsigned no_sg_constraint:1; /* no sg constraint */
345 unsigned sg_tablesize; /* 0 or largest number of sg list entries */
346
347 int devnum_next; /* Next open device number in
348 * round-robin allocation */
349
350 struct usb_devmap devmap; /* device address allocation map */
351 struct usb_device *root_hub; /* Root hub */
352 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */
353 struct list_head bus_list; /* list of busses */
354
355 int bandwidth_allocated; /* on this bus: how much of the time
356 * reserved for periodic (intr/iso)
357 * requests is used, on average?
358 * Units: microseconds/frame.
359 * Limits: Full/low speed reserve 90%,
360 * while high speed reserves 80%.
361 */
362 int bandwidth_int_reqs; /* number of Interrupt requests */
363 int bandwidth_isoc_reqs; /* number of Isoc. requests */
364
365 unsigned resuming_ports; /* bit array: resuming root-hub ports */
366
367#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
368 struct mon_bus *mon_bus; /* non-null when associated */
369 int monitored; /* non-zero when monitored */
370#endif
371};
372
373struct usb_dev_state;
374
375/* ----------------------------------------------------------------------- */
376
377struct usb_tt;
378
379enum usb_device_removable {
380 USB_DEVICE_REMOVABLE_UNKNOWN = 0,
381 USB_DEVICE_REMOVABLE,
382 USB_DEVICE_FIXED,
383};
384
385enum usb_port_connect_type {
386 USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
387 USB_PORT_CONNECT_TYPE_HOT_PLUG,
388 USB_PORT_CONNECT_TYPE_HARD_WIRED,
389 USB_PORT_NOT_USED,
390};
391
392/*
393 * USB 2.0 Link Power Management (LPM) parameters.
394 */
395struct usb2_lpm_parameters {
396 /* Best effort service latency indicate how long the host will drive
397 * resume on an exit from L1.
398 */
399 unsigned int besl;
400
401 /* Timeout value in microseconds for the L1 inactivity (LPM) timer.
402 * When the timer counts to zero, the parent hub will initiate a LPM
403 * transition to L1.
404 */
405 int timeout;
406};
407
408/*
409 * USB 3.0 Link Power Management (LPM) parameters.
410 *
411 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
412 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
413 * All three are stored in nanoseconds.
414 */
415struct usb3_lpm_parameters {
416 /*
417 * Maximum exit latency (MEL) for the host to send a packet to the
418 * device (either a Ping for isoc endpoints, or a data packet for
419 * interrupt endpoints), the hubs to decode the packet, and for all hubs
420 * in the path to transition the links to U0.
421 */
422 unsigned int mel;
423 /*
424 * Maximum exit latency for a device-initiated LPM transition to bring
425 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB
426 * 3.0 spec, with no explanation of what "P" stands for. "Path"?
427 */
428 unsigned int pel;
429
430 /*
431 * The System Exit Latency (SEL) includes PEL, and three other
432 * latencies. After a device initiates a U0 transition, it will take
433 * some time from when the device sends the ERDY to when it will finally
434 * receive the data packet. Basically, SEL should be the worse-case
435 * latency from when a device starts initiating a U0 transition to when
436 * it will get data.
437 */
438 unsigned int sel;
439 /*
440 * The idle timeout value that is currently programmed into the parent
441 * hub for this device. When the timer counts to zero, the parent hub
442 * will initiate an LPM transition to either U1 or U2.
443 */
444 int timeout;
445};
446
447/**
448 * struct usb_device - kernel's representation of a USB device
449 * @devnum: device number; address on a USB bus
450 * @devpath: device ID string for use in messages (e.g., /port/...)
451 * @route: tree topology hex string for use with xHCI
452 * @state: device state: configured, not attached, etc.
453 * @speed: device speed: high/full/low (or error)
454 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
455 * @ttport: device port on that tt hub
456 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
457 * @parent: our hub, unless we're the root
458 * @bus: bus we're part of
459 * @ep0: endpoint 0 data (default control pipe)
460 * @dev: generic device interface
461 * @descriptor: USB device descriptor
462 * @bos: USB device BOS descriptor set
463 * @config: all of the device's configs
464 * @actconfig: the active configuration
465 * @ep_in: array of IN endpoints
466 * @ep_out: array of OUT endpoints
467 * @rawdescriptors: raw descriptors for each config
468 * @bus_mA: Current available from the bus
469 * @portnum: parent port number (origin 1)
470 * @level: number of USB hub ancestors
471 * @can_submit: URBs may be submitted
472 * @persist_enabled: USB_PERSIST enabled for this device
473 * @have_langid: whether string_langid is valid
474 * @authorized: policy has said we can use it;
475 * (user space) policy determines if we authorize this device to be
476 * used or not. By default, wired USB devices are authorized.
477 * WUSB devices are not, until we authorize them from user space.
478 * FIXME -- complete doc
479 * @authenticated: Crypto authentication passed
480 * @wusb: device is Wireless USB
481 * @lpm_capable: device supports LPM
482 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
483 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
484 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
485 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
486 * @usb3_lpm_enabled: USB3 hardware LPM enabled
487 * @string_langid: language ID for strings
488 * @product: iProduct string, if present (static)
489 * @manufacturer: iManufacturer string, if present (static)
490 * @serial: iSerialNumber string, if present (static)
491 * @filelist: usbfs files that are open to this device
492 * @maxchild: number of ports if hub
493 * @quirks: quirks of the whole device
494 * @urbnum: number of URBs submitted for the whole device
495 * @active_duration: total time device is not suspended
496 * @connect_time: time device was first connected
497 * @do_remote_wakeup: remote wakeup should be enabled
498 * @reset_resume: needs reset instead of resume
499 * @port_is_suspended: the upstream port is suspended (L2 or U3)
500 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
501 * specific data for the device.
502 * @slot_id: Slot ID assigned by xHCI
503 * @removable: Device can be physically removed from this port
504 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
505 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
506 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
507 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
508 * to keep track of the number of functions that require USB 3.0 Link Power
509 * Management to be disabled for this usb_device. This count should only
510 * be manipulated by those functions, with the bandwidth_mutex is held.
511 *
512 * Notes:
513 * Usbcore drivers should not set usbdev->state directly. Instead use
514 * usb_set_device_state().
515 */
516struct usb_device {
517 int devnum;
518 char devpath[16];
519 u32 route;
520 enum usb_device_state state;
521 enum usb_device_speed speed;
522
523 struct usb_tt *tt;
524 int ttport;
525
526 unsigned int toggle[2];
527
528 struct usb_device *parent;
529 struct usb_bus *bus;
530 struct usb_host_endpoint ep0;
531
532 struct device dev;
533
534 struct usb_device_descriptor descriptor;
535 struct usb_host_bos *bos;
536 struct usb_host_config *config;
537
538 struct usb_host_config *actconfig;
539 struct usb_host_endpoint *ep_in[16];
540 struct usb_host_endpoint *ep_out[16];
541
542 char **rawdescriptors;
543
544 unsigned short bus_mA;
545 u8 portnum;
546 u8 level;
547
548 unsigned can_submit:1;
549 unsigned persist_enabled:1;
550 unsigned have_langid:1;
551 unsigned authorized:1;
552 unsigned authenticated:1;
553 unsigned wusb:1;
554 unsigned lpm_capable:1;
555 unsigned usb2_hw_lpm_capable:1;
556 unsigned usb2_hw_lpm_besl_capable:1;
557 unsigned usb2_hw_lpm_enabled:1;
558 unsigned usb2_hw_lpm_allowed:1;
559 unsigned usb3_lpm_enabled:1;
560 int string_langid;
561
562 /* static strings from the device */
563 char *product;
564 char *manufacturer;
565 char *serial;
566
567 struct list_head filelist;
568
569 int maxchild;
570
571 u32 quirks;
572 atomic_t urbnum;
573
574 unsigned long active_duration;
575
576#ifdef CONFIG_PM
577 unsigned long connect_time;
578
579 unsigned do_remote_wakeup:1;
580 unsigned reset_resume:1;
581 unsigned port_is_suspended:1;
582#endif
583 struct wusb_dev *wusb_dev;
584 int slot_id;
585 enum usb_device_removable removable;
586 struct usb2_lpm_parameters l1_params;
587 struct usb3_lpm_parameters u1_params;
588 struct usb3_lpm_parameters u2_params;
589 unsigned lpm_disable_count;
590};
591#define to_usb_device(d) container_of(d, struct usb_device, dev)
592
593static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
594{
595 return to_usb_device(intf->dev.parent);
596}
597
598extern struct usb_device *usb_get_dev(struct usb_device *dev);
599extern void usb_put_dev(struct usb_device *dev);
600extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
601 int port1);
602
603/**
604 * usb_hub_for_each_child - iterate over all child devices on the hub
605 * @hdev: USB device belonging to the usb hub
606 * @port1: portnum associated with child device
607 * @child: child device pointer
608 */
609#define usb_hub_for_each_child(hdev, port1, child) \
610 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
611 port1 <= hdev->maxchild; \
612 child = usb_hub_find_child(hdev, ++port1)) \
613 if (!child) continue; else
614
615/* USB device locking */
616#define usb_lock_device(udev) device_lock(&(udev)->dev)
617#define usb_unlock_device(udev) device_unlock(&(udev)->dev)
618#define usb_trylock_device(udev) device_trylock(&(udev)->dev)
619extern int usb_lock_device_for_reset(struct usb_device *udev,
620 const struct usb_interface *iface);
621
622/* USB port reset for device reinitialization */
623extern int usb_reset_device(struct usb_device *dev);
624extern void usb_queue_reset_device(struct usb_interface *dev);
625
626#ifdef CONFIG_ACPI
627extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
628 bool enable);
629extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
630#else
631static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
632 bool enable) { return 0; }
633static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
634 { return true; }
635#endif
636
637/* USB autosuspend and autoresume */
638#ifdef CONFIG_PM_RUNTIME
639extern void usb_enable_autosuspend(struct usb_device *udev);
640extern void usb_disable_autosuspend(struct usb_device *udev);
641
642extern int usb_autopm_get_interface(struct usb_interface *intf);
643extern void usb_autopm_put_interface(struct usb_interface *intf);
644extern int usb_autopm_get_interface_async(struct usb_interface *intf);
645extern void usb_autopm_put_interface_async(struct usb_interface *intf);
646extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
647extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
648
649static inline void usb_mark_last_busy(struct usb_device *udev)
650{
651 pm_runtime_mark_last_busy(&udev->dev);
652}
653
654#else
655
656static inline int usb_enable_autosuspend(struct usb_device *udev)
657{ return 0; }
658static inline int usb_disable_autosuspend(struct usb_device *udev)
659{ return 0; }
660
661static inline int usb_autopm_get_interface(struct usb_interface *intf)
662{ return 0; }
663static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
664{ return 0; }
665
666static inline void usb_autopm_put_interface(struct usb_interface *intf)
667{ }
668static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
669{ }
670static inline void usb_autopm_get_interface_no_resume(
671 struct usb_interface *intf)
672{ }
673static inline void usb_autopm_put_interface_no_suspend(
674 struct usb_interface *intf)
675{ }
676static inline void usb_mark_last_busy(struct usb_device *udev)
677{ }
678#endif
679
680extern int usb_disable_lpm(struct usb_device *udev);
681extern void usb_enable_lpm(struct usb_device *udev);
682/* Same as above, but these functions lock/unlock the bandwidth_mutex. */
683extern int usb_unlocked_disable_lpm(struct usb_device *udev);
684extern void usb_unlocked_enable_lpm(struct usb_device *udev);
685
686extern int usb_disable_ltm(struct usb_device *udev);
687extern void usb_enable_ltm(struct usb_device *udev);
688
689static inline bool usb_device_supports_ltm(struct usb_device *udev)
690{
691 if (udev->speed != USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
692 return false;
693 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
694}
695
696static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
697{
698 return udev && udev->bus && udev->bus->no_sg_constraint;
699}
700
701
702/*-------------------------------------------------------------------------*/
703
704/* for drivers using iso endpoints */
705extern int usb_get_current_frame_number(struct usb_device *usb_dev);
706
707/* Sets up a group of bulk endpoints to support multiple stream IDs. */
708extern int usb_alloc_streams(struct usb_interface *interface,
709 struct usb_host_endpoint **eps, unsigned int num_eps,
710 unsigned int num_streams, gfp_t mem_flags);
711
712/* Reverts a group of bulk endpoints back to not using stream IDs. */
713extern int usb_free_streams(struct usb_interface *interface,
714 struct usb_host_endpoint **eps, unsigned int num_eps,
715 gfp_t mem_flags);
716
717/* used these for multi-interface device registration */
718extern int usb_driver_claim_interface(struct usb_driver *driver,
719 struct usb_interface *iface, void *priv);
720
721/**
722 * usb_interface_claimed - returns true iff an interface is claimed
723 * @iface: the interface being checked
724 *
725 * Return: %true (nonzero) iff the interface is claimed, else %false
726 * (zero).
727 *
728 * Note:
729 * Callers must own the driver model's usb bus readlock. So driver
730 * probe() entries don't need extra locking, but other call contexts
731 * may need to explicitly claim that lock.
732 *
733 */
734static inline int usb_interface_claimed(struct usb_interface *iface)
735{
736 return (iface->dev.driver != NULL);
737}
738
739extern void usb_driver_release_interface(struct usb_driver *driver,
740 struct usb_interface *iface);
741const struct usb_device_id *usb_match_id(struct usb_interface *interface,
742 const struct usb_device_id *id);
743extern int usb_match_one_id(struct usb_interface *interface,
744 const struct usb_device_id *id);
745
746extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
747extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
748 int minor);
749extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
750 unsigned ifnum);
751extern struct usb_host_interface *usb_altnum_to_altsetting(
752 const struct usb_interface *intf, unsigned int altnum);
753extern struct usb_host_interface *usb_find_alt_setting(
754 struct usb_host_config *config,
755 unsigned int iface_num,
756 unsigned int alt_num);
757
758/* port claiming functions */
759int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
760 struct usb_dev_state *owner);
761int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
762 struct usb_dev_state *owner);
763
764/**
765 * usb_make_path - returns stable device path in the usb tree
766 * @dev: the device whose path is being constructed
767 * @buf: where to put the string
768 * @size: how big is "buf"?
769 *
770 * Return: Length of the string (> 0) or negative if size was too small.
771 *
772 * Note:
773 * This identifier is intended to be "stable", reflecting physical paths in
774 * hardware such as physical bus addresses for host controllers or ports on
775 * USB hubs. That makes it stay the same until systems are physically
776 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
777 * controllers. Adding and removing devices, including virtual root hubs
778 * in host controller driver modules, does not change these path identifiers;
779 * neither does rebooting or re-enumerating. These are more useful identifiers
780 * than changeable ("unstable") ones like bus numbers or device addresses.
781 *
782 * With a partial exception for devices connected to USB 2.0 root hubs, these
783 * identifiers are also predictable. So long as the device tree isn't changed,
784 * plugging any USB device into a given hub port always gives it the same path.
785 * Because of the use of "companion" controllers, devices connected to ports on
786 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
787 * high speed, and a different one if they are full or low speed.
788 */
789static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
790{
791 int actual;
792 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
793 dev->devpath);
794 return (actual >= (int)size) ? -1 : actual;
795}
796
797/*-------------------------------------------------------------------------*/
798
799#define USB_DEVICE_ID_MATCH_DEVICE \
800 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
801#define USB_DEVICE_ID_MATCH_DEV_RANGE \
802 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
803#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
804 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
805#define USB_DEVICE_ID_MATCH_DEV_INFO \
806 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
807 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
808 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
809#define USB_DEVICE_ID_MATCH_INT_INFO \
810 (USB_DEVICE_ID_MATCH_INT_CLASS | \
811 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
812 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
813
814/**
815 * USB_DEVICE - macro used to describe a specific usb device
816 * @vend: the 16 bit USB Vendor ID
817 * @prod: the 16 bit USB Product ID
818 *
819 * This macro is used to create a struct usb_device_id that matches a
820 * specific device.
821 */
822#define USB_DEVICE(vend, prod) \
823 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
824 .idVendor = (vend), \
825 .idProduct = (prod)
826/**
827 * USB_DEVICE_VER - describe a specific usb device with a version range
828 * @vend: the 16 bit USB Vendor ID
829 * @prod: the 16 bit USB Product ID
830 * @lo: the bcdDevice_lo value
831 * @hi: the bcdDevice_hi value
832 *
833 * This macro is used to create a struct usb_device_id that matches a
834 * specific device, with a version range.
835 */
836#define USB_DEVICE_VER(vend, prod, lo, hi) \
837 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
838 .idVendor = (vend), \
839 .idProduct = (prod), \
840 .bcdDevice_lo = (lo), \
841 .bcdDevice_hi = (hi)
842
843/**
844 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
845 * @vend: the 16 bit USB Vendor ID
846 * @prod: the 16 bit USB Product ID
847 * @cl: bInterfaceClass value
848 *
849 * This macro is used to create a struct usb_device_id that matches a
850 * specific interface class of devices.
851 */
852#define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
853 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
854 USB_DEVICE_ID_MATCH_INT_CLASS, \
855 .idVendor = (vend), \
856 .idProduct = (prod), \
857 .bInterfaceClass = (cl)
858
859/**
860 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
861 * @vend: the 16 bit USB Vendor ID
862 * @prod: the 16 bit USB Product ID
863 * @pr: bInterfaceProtocol value
864 *
865 * This macro is used to create a struct usb_device_id that matches a
866 * specific interface protocol of devices.
867 */
868#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
869 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
870 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
871 .idVendor = (vend), \
872 .idProduct = (prod), \
873 .bInterfaceProtocol = (pr)
874
875/**
876 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
877 * @vend: the 16 bit USB Vendor ID
878 * @prod: the 16 bit USB Product ID
879 * @num: bInterfaceNumber value
880 *
881 * This macro is used to create a struct usb_device_id that matches a
882 * specific interface number of devices.
883 */
884#define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
885 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
886 USB_DEVICE_ID_MATCH_INT_NUMBER, \
887 .idVendor = (vend), \
888 .idProduct = (prod), \
889 .bInterfaceNumber = (num)
890
891/**
892 * USB_DEVICE_INFO - macro used to describe a class of usb devices
893 * @cl: bDeviceClass value
894 * @sc: bDeviceSubClass value
895 * @pr: bDeviceProtocol value
896 *
897 * This macro is used to create a struct usb_device_id that matches a
898 * specific class of devices.
899 */
900#define USB_DEVICE_INFO(cl, sc, pr) \
901 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
902 .bDeviceClass = (cl), \
903 .bDeviceSubClass = (sc), \
904 .bDeviceProtocol = (pr)
905
906/**
907 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
908 * @cl: bInterfaceClass value
909 * @sc: bInterfaceSubClass value
910 * @pr: bInterfaceProtocol value
911 *
912 * This macro is used to create a struct usb_device_id that matches a
913 * specific class of interfaces.
914 */
915#define USB_INTERFACE_INFO(cl, sc, pr) \
916 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
917 .bInterfaceClass = (cl), \
918 .bInterfaceSubClass = (sc), \
919 .bInterfaceProtocol = (pr)
920
921/**
922 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
923 * @vend: the 16 bit USB Vendor ID
924 * @prod: the 16 bit USB Product ID
925 * @cl: bInterfaceClass value
926 * @sc: bInterfaceSubClass value
927 * @pr: bInterfaceProtocol value
928 *
929 * This macro is used to create a struct usb_device_id that matches a
930 * specific device with a specific class of interfaces.
931 *
932 * This is especially useful when explicitly matching devices that have
933 * vendor specific bDeviceClass values, but standards-compliant interfaces.
934 */
935#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
936 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
937 | USB_DEVICE_ID_MATCH_DEVICE, \
938 .idVendor = (vend), \
939 .idProduct = (prod), \
940 .bInterfaceClass = (cl), \
941 .bInterfaceSubClass = (sc), \
942 .bInterfaceProtocol = (pr)
943
944/**
945 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
946 * @vend: the 16 bit USB Vendor ID
947 * @cl: bInterfaceClass value
948 * @sc: bInterfaceSubClass value
949 * @pr: bInterfaceProtocol value
950 *
951 * This macro is used to create a struct usb_device_id that matches a
952 * specific vendor with a specific class of interfaces.
953 *
954 * This is especially useful when explicitly matching devices that have
955 * vendor specific bDeviceClass values, but standards-compliant interfaces.
956 */
957#define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
958 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
959 | USB_DEVICE_ID_MATCH_VENDOR, \
960 .idVendor = (vend), \
961 .bInterfaceClass = (cl), \
962 .bInterfaceSubClass = (sc), \
963 .bInterfaceProtocol = (pr)
964
965/* ----------------------------------------------------------------------- */
966
967/* Stuff for dynamic usb ids */
968struct usb_dynids {
969 spinlock_t lock;
970 struct list_head list;
971};
972
973struct usb_dynid {
974 struct list_head node;
975 struct usb_device_id id;
976};
977
978extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
979 const struct usb_device_id *id_table,
980 struct device_driver *driver,
981 const char *buf, size_t count);
982
983extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
984
985/**
986 * struct usbdrv_wrap - wrapper for driver-model structure
987 * @driver: The driver-model core driver structure.
988 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
989 */
990struct usbdrv_wrap {
991 struct device_driver driver;
992 int for_devices;
993};
994
995/**
996 * struct usb_driver - identifies USB interface driver to usbcore
997 * @name: The driver name should be unique among USB drivers,
998 * and should normally be the same as the module name.
999 * @probe: Called to see if the driver is willing to manage a particular
1000 * interface on a device. If it is, probe returns zero and uses
1001 * usb_set_intfdata() to associate driver-specific data with the
1002 * interface. It may also use usb_set_interface() to specify the
1003 * appropriate altsetting. If unwilling to manage the interface,
1004 * return -ENODEV, if genuine IO errors occurred, an appropriate
1005 * negative errno value.
1006 * @disconnect: Called when the interface is no longer accessible, usually
1007 * because its device has been (or is being) disconnected or the
1008 * driver module is being unloaded.
1009 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1010 * the "usbfs" filesystem. This lets devices provide ways to
1011 * expose information to user space regardless of where they
1012 * do (or don't) show up otherwise in the filesystem.
1013 * @suspend: Called when the device is going to be suspended by the
1014 * system either from system sleep or runtime suspend context. The
1015 * return value will be ignored in system sleep context, so do NOT
1016 * try to continue using the device if suspend fails in this case.
1017 * Instead, let the resume or reset-resume routine recover from
1018 * the failure.
1019 * @resume: Called when the device is being resumed by the system.
1020 * @reset_resume: Called when the suspended device has been reset instead
1021 * of being resumed.
1022 * @pre_reset: Called by usb_reset_device() when the device is about to be
1023 * reset. This routine must not return until the driver has no active
1024 * URBs for the device, and no more URBs may be submitted until the
1025 * post_reset method is called.
1026 * @post_reset: Called by usb_reset_device() after the device
1027 * has been reset
1028 * @id_table: USB drivers use ID table to support hotplugging.
1029 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
1030 * or your driver's probe function will never get called.
1031 * @dynids: used internally to hold the list of dynamically added device
1032 * ids for this driver.
1033 * @drvwrap: Driver-model core structure wrapper.
1034 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1035 * added to this driver by preventing the sysfs file from being created.
1036 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1037 * for interfaces bound to this driver.
1038 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1039 * endpoints before calling the driver's disconnect method.
1040 * @disable_hub_initiated_lpm: if set to 0, the USB core will not allow hubs
1041 * to initiate lower power link state transitions when an idle timeout
1042 * occurs. Device-initiated USB 3.0 link PM will still be allowed.
1043 *
1044 * USB interface drivers must provide a name, probe() and disconnect()
1045 * methods, and an id_table. Other driver fields are optional.
1046 *
1047 * The id_table is used in hotplugging. It holds a set of descriptors,
1048 * and specialized data may be associated with each entry. That table
1049 * is used by both user and kernel mode hotplugging support.
1050 *
1051 * The probe() and disconnect() methods are called in a context where
1052 * they can sleep, but they should avoid abusing the privilege. Most
1053 * work to connect to a device should be done when the device is opened,
1054 * and undone at the last close. The disconnect code needs to address
1055 * concurrency issues with respect to open() and close() methods, as
1056 * well as forcing all pending I/O requests to complete (by unlinking
1057 * them as necessary, and blocking until the unlinks complete).
1058 */
1059struct usb_driver {
1060 const char *name;
1061
1062 int (*probe) (struct usb_interface *intf,
1063 const struct usb_device_id *id);
1064
1065 void (*disconnect) (struct usb_interface *intf);
1066
1067 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1068 void *buf);
1069
1070 int (*suspend) (struct usb_interface *intf, pm_message_t message);
1071 int (*resume) (struct usb_interface *intf);
1072 int (*reset_resume)(struct usb_interface *intf);
1073
1074 int (*pre_reset)(struct usb_interface *intf);
1075 int (*post_reset)(struct usb_interface *intf);
1076
1077 const struct usb_device_id *id_table;
1078
1079 struct usb_dynids dynids;
1080 struct usbdrv_wrap drvwrap;
1081 unsigned int no_dynamic_id:1;
1082 unsigned int supports_autosuspend:1;
1083 unsigned int disable_hub_initiated_lpm:1;
1084 unsigned int soft_unbind:1;
1085};
1086#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1087
1088/**
1089 * struct usb_device_driver - identifies USB device driver to usbcore
1090 * @name: The driver name should be unique among USB drivers,
1091 * and should normally be the same as the module name.
1092 * @probe: Called to see if the driver is willing to manage a particular
1093 * device. If it is, probe returns zero and uses dev_set_drvdata()
1094 * to associate driver-specific data with the device. If unwilling
1095 * to manage the device, return a negative errno value.
1096 * @disconnect: Called when the device is no longer accessible, usually
1097 * because it has been (or is being) disconnected or the driver's
1098 * module is being unloaded.
1099 * @suspend: Called when the device is going to be suspended by the system.
1100 * @resume: Called when the device is being resumed by the system.
1101 * @drvwrap: Driver-model core structure wrapper.
1102 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1103 * for devices bound to this driver.
1104 *
1105 * USB drivers must provide all the fields listed above except drvwrap.
1106 */
1107struct usb_device_driver {
1108 const char *name;
1109
1110 int (*probe) (struct usb_device *udev);
1111 void (*disconnect) (struct usb_device *udev);
1112
1113 int (*suspend) (struct usb_device *udev, pm_message_t message);
1114 int (*resume) (struct usb_device *udev, pm_message_t message);
1115 struct usbdrv_wrap drvwrap;
1116 unsigned int supports_autosuspend:1;
1117};
1118#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1119 drvwrap.driver)
1120
1121extern struct bus_type usb_bus_type;
1122
1123/**
1124 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1125 * @name: the usb class device name for this driver. Will show up in sysfs.
1126 * @devnode: Callback to provide a naming hint for a possible
1127 * device node to create.
1128 * @fops: pointer to the struct file_operations of this driver.
1129 * @minor_base: the start of the minor range for this driver.
1130 *
1131 * This structure is used for the usb_register_dev() and
1132 * usb_unregister_dev() functions, to consolidate a number of the
1133 * parameters used for them.
1134 */
1135struct usb_class_driver {
1136 char *name;
1137 char *(*devnode)(struct device *dev, umode_t *mode);
1138 const struct file_operations *fops;
1139 int minor_base;
1140};
1141
1142/*
1143 * use these in module_init()/module_exit()
1144 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1145 */
1146extern int usb_register_driver(struct usb_driver *, struct module *,
1147 const char *);
1148
1149/* use a define to avoid include chaining to get THIS_MODULE & friends */
1150#define usb_register(driver) \
1151 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1152
1153extern void usb_deregister(struct usb_driver *);
1154
1155/**
1156 * module_usb_driver() - Helper macro for registering a USB driver
1157 * @__usb_driver: usb_driver struct
1158 *
1159 * Helper macro for USB drivers which do not do anything special in module
1160 * init/exit. This eliminates a lot of boilerplate. Each module may only
1161 * use this macro once, and calling it replaces module_init() and module_exit()
1162 */
1163#define module_usb_driver(__usb_driver) \
1164 module_driver(__usb_driver, usb_register, \
1165 usb_deregister)
1166
1167extern int usb_register_device_driver(struct usb_device_driver *,
1168 struct module *);
1169extern void usb_deregister_device_driver(struct usb_device_driver *);
1170
1171extern int usb_register_dev(struct usb_interface *intf,
1172 struct usb_class_driver *class_driver);
1173extern void usb_deregister_dev(struct usb_interface *intf,
1174 struct usb_class_driver *class_driver);
1175
1176extern int usb_disabled(void);
1177
1178/* ----------------------------------------------------------------------- */
1179
1180/*
1181 * URB support, for asynchronous request completions
1182 */
1183
1184/*
1185 * urb->transfer_flags:
1186 *
1187 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1188 */
1189#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
1190#define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired
1191 * slot in the schedule */
1192#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
1193#define URB_NO_FSBR 0x0020 /* UHCI-specific */
1194#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
1195#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
1196 * needed */
1197#define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1198
1199/* The following flags are used internally by usbcore and HCDs */
1200#define URB_DIR_IN 0x0200 /* Transfer from device to host */
1201#define URB_DIR_OUT 0
1202#define URB_DIR_MASK URB_DIR_IN
1203
1204#define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */
1205#define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */
1206#define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */
1207#define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */
1208#define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */
1209#define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */
1210#define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */
1211#define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */
1212
1213struct usb_iso_packet_descriptor {
1214 unsigned int offset;
1215 unsigned int length; /* expected length */
1216 unsigned int actual_length;
1217 int status;
1218};
1219
1220struct urb;
1221
1222struct usb_anchor {
1223 struct list_head urb_list;
1224 wait_queue_head_t wait;
1225 spinlock_t lock;
1226 atomic_t suspend_wakeups;
1227 unsigned int poisoned:1;
1228};
1229
1230static inline void init_usb_anchor(struct usb_anchor *anchor)
1231{
1232 memset(anchor, 0, sizeof(*anchor));
1233 INIT_LIST_HEAD(&anchor->urb_list);
1234 init_waitqueue_head(&anchor->wait);
1235 spin_lock_init(&anchor->lock);
1236}
1237
1238typedef void (*usb_complete_t)(struct urb *);
1239
1240/**
1241 * struct urb - USB Request Block
1242 * @urb_list: For use by current owner of the URB.
1243 * @anchor_list: membership in the list of an anchor
1244 * @anchor: to anchor URBs to a common mooring
1245 * @ep: Points to the endpoint's data structure. Will eventually
1246 * replace @pipe.
1247 * @pipe: Holds endpoint number, direction, type, and more.
1248 * Create these values with the eight macros available;
1249 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1250 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1251 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1252 * numbers range from zero to fifteen. Note that "in" endpoint two
1253 * is a different endpoint (and pipe) from "out" endpoint two.
1254 * The current configuration controls the existence, type, and
1255 * maximum packet size of any given endpoint.
1256 * @stream_id: the endpoint's stream ID for bulk streams
1257 * @dev: Identifies the USB device to perform the request.
1258 * @status: This is read in non-iso completion functions to get the
1259 * status of the particular request. ISO requests only use it
1260 * to tell whether the URB was unlinked; detailed status for
1261 * each frame is in the fields of the iso_frame-desc.
1262 * @transfer_flags: A variety of flags may be used to affect how URB
1263 * submission, unlinking, or operation are handled. Different
1264 * kinds of URB can use different flags.
1265 * @transfer_buffer: This identifies the buffer to (or from) which the I/O
1266 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1267 * (however, do not leave garbage in transfer_buffer even then).
1268 * This buffer must be suitable for DMA; allocate it with
1269 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1270 * of this buffer will be modified. This buffer is used for the data
1271 * stage of control transfers.
1272 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1273 * the device driver is saying that it provided this DMA address,
1274 * which the host controller driver should use in preference to the
1275 * transfer_buffer.
1276 * @sg: scatter gather buffer list, the buffer size of each element in
1277 * the list (except the last) must be divisible by the endpoint's
1278 * max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1279 * @num_mapped_sgs: (internal) number of mapped sg entries
1280 * @num_sgs: number of entries in the sg list
1281 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1282 * be broken up into chunks according to the current maximum packet
1283 * size for the endpoint, which is a function of the configuration
1284 * and is encoded in the pipe. When the length is zero, neither
1285 * transfer_buffer nor transfer_dma is used.
1286 * @actual_length: This is read in non-iso completion functions, and
1287 * it tells how many bytes (out of transfer_buffer_length) were
1288 * transferred. It will normally be the same as requested, unless
1289 * either an error was reported or a short read was performed.
1290 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1291 * short reads be reported as errors.
1292 * @setup_packet: Only used for control transfers, this points to eight bytes
1293 * of setup data. Control transfers always start by sending this data
1294 * to the device. Then transfer_buffer is read or written, if needed.
1295 * @setup_dma: DMA pointer for the setup packet. The caller must not use
1296 * this field; setup_packet must point to a valid buffer.
1297 * @start_frame: Returns the initial frame for isochronous transfers.
1298 * @number_of_packets: Lists the number of ISO transfer buffers.
1299 * @interval: Specifies the polling interval for interrupt or isochronous
1300 * transfers. The units are frames (milliseconds) for full and low
1301 * speed devices, and microframes (1/8 millisecond) for highspeed
1302 * and SuperSpeed devices.
1303 * @error_count: Returns the number of ISO transfers that reported errors.
1304 * @context: For use in completion functions. This normally points to
1305 * request-specific driver context.
1306 * @complete: Completion handler. This URB is passed as the parameter to the
1307 * completion function. The completion function may then do what
1308 * it likes with the URB, including resubmitting or freeing it.
1309 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1310 * collect the transfer status for each buffer.
1311 *
1312 * This structure identifies USB transfer requests. URBs must be allocated by
1313 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1314 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1315 * are submitted using usb_submit_urb(), and pending requests may be canceled
1316 * using usb_unlink_urb() or usb_kill_urb().
1317 *
1318 * Data Transfer Buffers:
1319 *
1320 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1321 * taken from the general page pool. That is provided by transfer_buffer
1322 * (control requests also use setup_packet), and host controller drivers
1323 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1324 * mapping operations can be expensive on some platforms (perhaps using a dma
1325 * bounce buffer or talking to an IOMMU),
1326 * although they're cheap on commodity x86 and ppc hardware.
1327 *
1328 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1329 * which tells the host controller driver that no such mapping is needed for
1330 * the transfer_buffer since
1331 * the device driver is DMA-aware. For example, a device driver might
1332 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1333 * When this transfer flag is provided, host controller drivers will
1334 * attempt to use the dma address found in the transfer_dma
1335 * field rather than determining a dma address themselves.
1336 *
1337 * Note that transfer_buffer must still be set if the controller
1338 * does not support DMA (as indicated by bus.uses_dma) and when talking
1339 * to root hub. If you have to trasfer between highmem zone and the device
1340 * on such controller, create a bounce buffer or bail out with an error.
1341 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1342 * capable, assign NULL to it, so that usbmon knows not to use the value.
1343 * The setup_packet must always be set, so it cannot be located in highmem.
1344 *
1345 * Initialization:
1346 *
1347 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1348 * zero), and complete fields. All URBs must also initialize
1349 * transfer_buffer and transfer_buffer_length. They may provide the
1350 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1351 * to be treated as errors; that flag is invalid for write requests.
1352 *
1353 * Bulk URBs may
1354 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1355 * should always terminate with a short packet, even if it means adding an
1356 * extra zero length packet.
1357 *
1358 * Control URBs must provide a valid pointer in the setup_packet field.
1359 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1360 * beforehand.
1361 *
1362 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1363 * or, for highspeed devices, 125 microsecond units)
1364 * to poll for transfers. After the URB has been submitted, the interval
1365 * field reflects how the transfer was actually scheduled.
1366 * The polling interval may be more frequent than requested.
1367 * For example, some controllers have a maximum interval of 32 milliseconds,
1368 * while others support intervals of up to 1024 milliseconds.
1369 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1370 * endpoints, as well as high speed interrupt endpoints, the encoding of
1371 * the transfer interval in the endpoint descriptor is logarithmic.
1372 * Device drivers must convert that value to linear units themselves.)
1373 *
1374 * If an isochronous endpoint queue isn't already running, the host
1375 * controller will schedule a new URB to start as soon as bandwidth
1376 * utilization allows. If the queue is running then a new URB will be
1377 * scheduled to start in the first transfer slot following the end of the
1378 * preceding URB, if that slot has not already expired. If the slot has
1379 * expired (which can happen when IRQ delivery is delayed for a long time),
1380 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag
1381 * is clear then the URB will be scheduled to start in the expired slot,
1382 * implying that some of its packets will not be transferred; if the flag
1383 * is set then the URB will be scheduled in the first unexpired slot,
1384 * breaking the queue's synchronization. Upon URB completion, the
1385 * start_frame field will be set to the (micro)frame number in which the
1386 * transfer was scheduled. Ranges for frame counter values are HC-specific
1387 * and can go from as low as 256 to as high as 65536 frames.
1388 *
1389 * Isochronous URBs have a different data transfer model, in part because
1390 * the quality of service is only "best effort". Callers provide specially
1391 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1392 * at the end. Each such packet is an individual ISO transfer. Isochronous
1393 * URBs are normally queued, submitted by drivers to arrange that
1394 * transfers are at least double buffered, and then explicitly resubmitted
1395 * in completion handlers, so
1396 * that data (such as audio or video) streams at as constant a rate as the
1397 * host controller scheduler can support.
1398 *
1399 * Completion Callbacks:
1400 *
1401 * The completion callback is made in_interrupt(), and one of the first
1402 * things that a completion handler should do is check the status field.
1403 * The status field is provided for all URBs. It is used to report
1404 * unlinked URBs, and status for all non-ISO transfers. It should not
1405 * be examined before the URB is returned to the completion handler.
1406 *
1407 * The context field is normally used to link URBs back to the relevant
1408 * driver or request state.
1409 *
1410 * When the completion callback is invoked for non-isochronous URBs, the
1411 * actual_length field tells how many bytes were transferred. This field
1412 * is updated even when the URB terminated with an error or was unlinked.
1413 *
1414 * ISO transfer status is reported in the status and actual_length fields
1415 * of the iso_frame_desc array, and the number of errors is reported in
1416 * error_count. Completion callbacks for ISO transfers will normally
1417 * (re)submit URBs to ensure a constant transfer rate.
1418 *
1419 * Note that even fields marked "public" should not be touched by the driver
1420 * when the urb is owned by the hcd, that is, since the call to
1421 * usb_submit_urb() till the entry into the completion routine.
1422 */
1423struct urb {
1424 /* private: usb core and host controller only fields in the urb */
1425 struct kref kref; /* reference count of the URB */
1426 void *hcpriv; /* private data for host controller */
1427 atomic_t use_count; /* concurrent submissions counter */
1428 atomic_t reject; /* submissions will fail */
1429 int unlinked; /* unlink error code */
1430
1431 /* public: documented fields in the urb that can be used by drivers */
1432 struct list_head urb_list; /* list head for use by the urb's
1433 * current owner */
1434 struct list_head anchor_list; /* the URB may be anchored */
1435 struct usb_anchor *anchor;
1436 struct usb_device *dev; /* (in) pointer to associated device */
1437 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1438 unsigned int pipe; /* (in) pipe information */
1439 unsigned int stream_id; /* (in) stream ID */
1440 int status; /* (return) non-ISO status */
1441 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1442 void *transfer_buffer; /* (in) associated data buffer */
1443 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1444 struct scatterlist *sg; /* (in) scatter gather buffer list */
1445 int num_mapped_sgs; /* (internal) mapped sg entries */
1446 int num_sgs; /* (in) number of entries in the sg list */
1447 u32 transfer_buffer_length; /* (in) data buffer length */
1448 u32 actual_length; /* (return) actual transfer length */
1449 unsigned char *setup_packet; /* (in) setup packet (control only) */
1450 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1451 int start_frame; /* (modify) start frame (ISO) */
1452 int number_of_packets; /* (in) number of ISO packets */
1453 int interval; /* (modify) transfer interval
1454 * (INT/ISO) */
1455 int error_count; /* (return) number of ISO errors */
1456 void *context; /* (in) context for completion */
1457 usb_complete_t complete; /* (in) completion routine */
1458 struct usb_iso_packet_descriptor iso_frame_desc[0];
1459 /* (in) ISO ONLY */
1460};
1461
1462/* ----------------------------------------------------------------------- */
1463
1464/**
1465 * usb_fill_control_urb - initializes a control urb
1466 * @urb: pointer to the urb to initialize.
1467 * @dev: pointer to the struct usb_device for this urb.
1468 * @pipe: the endpoint pipe
1469 * @setup_packet: pointer to the setup_packet buffer
1470 * @transfer_buffer: pointer to the transfer buffer
1471 * @buffer_length: length of the transfer buffer
1472 * @complete_fn: pointer to the usb_complete_t function
1473 * @context: what to set the urb context to.
1474 *
1475 * Initializes a control urb with the proper information needed to submit
1476 * it to a device.
1477 */
1478static inline void usb_fill_control_urb(struct urb *urb,
1479 struct usb_device *dev,
1480 unsigned int pipe,
1481 unsigned char *setup_packet,
1482 void *transfer_buffer,
1483 int buffer_length,
1484 usb_complete_t complete_fn,
1485 void *context)
1486{
1487 urb->dev = dev;
1488 urb->pipe = pipe;
1489 urb->setup_packet = setup_packet;
1490 urb->transfer_buffer = transfer_buffer;
1491 urb->transfer_buffer_length = buffer_length;
1492 urb->complete = complete_fn;
1493 urb->context = context;
1494}
1495
1496/**
1497 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1498 * @urb: pointer to the urb to initialize.
1499 * @dev: pointer to the struct usb_device for this urb.
1500 * @pipe: the endpoint pipe
1501 * @transfer_buffer: pointer to the transfer buffer
1502 * @buffer_length: length of the transfer buffer
1503 * @complete_fn: pointer to the usb_complete_t function
1504 * @context: what to set the urb context to.
1505 *
1506 * Initializes a bulk urb with the proper information needed to submit it
1507 * to a device.
1508 */
1509static inline void usb_fill_bulk_urb(struct urb *urb,
1510 struct usb_device *dev,
1511 unsigned int pipe,
1512 void *transfer_buffer,
1513 int buffer_length,
1514 usb_complete_t complete_fn,
1515 void *context)
1516{
1517 urb->dev = dev;
1518 urb->pipe = pipe;
1519 urb->transfer_buffer = transfer_buffer;
1520 urb->transfer_buffer_length = buffer_length;
1521 urb->complete = complete_fn;
1522 urb->context = context;
1523}
1524
1525/**
1526 * usb_fill_int_urb - macro to help initialize a interrupt urb
1527 * @urb: pointer to the urb to initialize.
1528 * @dev: pointer to the struct usb_device for this urb.
1529 * @pipe: the endpoint pipe
1530 * @transfer_buffer: pointer to the transfer buffer
1531 * @buffer_length: length of the transfer buffer
1532 * @complete_fn: pointer to the usb_complete_t function
1533 * @context: what to set the urb context to.
1534 * @interval: what to set the urb interval to, encoded like
1535 * the endpoint descriptor's bInterval value.
1536 *
1537 * Initializes a interrupt urb with the proper information needed to submit
1538 * it to a device.
1539 *
1540 * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic
1541 * encoding of the endpoint interval, and express polling intervals in
1542 * microframes (eight per millisecond) rather than in frames (one per
1543 * millisecond).
1544 *
1545 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1546 * 128us instead of 125us. For Wireless USB devices, the interval is passed
1547 * through to the host controller, rather than being translated into microframe
1548 * units.
1549 */
1550static inline void usb_fill_int_urb(struct urb *urb,
1551 struct usb_device *dev,
1552 unsigned int pipe,
1553 void *transfer_buffer,
1554 int buffer_length,
1555 usb_complete_t complete_fn,
1556 void *context,
1557 int interval)
1558{
1559 urb->dev = dev;
1560 urb->pipe = pipe;
1561 urb->transfer_buffer = transfer_buffer;
1562 urb->transfer_buffer_length = buffer_length;
1563 urb->complete = complete_fn;
1564 urb->context = context;
1565
1566 if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER) {
1567 /* make sure interval is within allowed range */
1568 interval = clamp(interval, 1, 16);
1569
1570 urb->interval = 1 << (interval - 1);
1571 } else {
1572 urb->interval = interval;
1573 }
1574
1575 urb->start_frame = -1;
1576}
1577
1578extern void usb_init_urb(struct urb *urb);
1579extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1580extern void usb_free_urb(struct urb *urb);
1581#define usb_put_urb usb_free_urb
1582extern struct urb *usb_get_urb(struct urb *urb);
1583extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1584extern int usb_unlink_urb(struct urb *urb);
1585extern void usb_kill_urb(struct urb *urb);
1586extern void usb_poison_urb(struct urb *urb);
1587extern void usb_unpoison_urb(struct urb *urb);
1588extern void usb_block_urb(struct urb *urb);
1589extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1590extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1591extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1592extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1593extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1594extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1595extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1596extern void usb_unanchor_urb(struct urb *urb);
1597extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1598 unsigned int timeout);
1599extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1600extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1601extern int usb_anchor_empty(struct usb_anchor *anchor);
1602
1603#define usb_unblock_urb usb_unpoison_urb
1604
1605/**
1606 * usb_urb_dir_in - check if an URB describes an IN transfer
1607 * @urb: URB to be checked
1608 *
1609 * Return: 1 if @urb describes an IN transfer (device-to-host),
1610 * otherwise 0.
1611 */
1612static inline int usb_urb_dir_in(struct urb *urb)
1613{
1614 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1615}
1616
1617/**
1618 * usb_urb_dir_out - check if an URB describes an OUT transfer
1619 * @urb: URB to be checked
1620 *
1621 * Return: 1 if @urb describes an OUT transfer (host-to-device),
1622 * otherwise 0.
1623 */
1624static inline int usb_urb_dir_out(struct urb *urb)
1625{
1626 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1627}
1628
1629void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1630 gfp_t mem_flags, dma_addr_t *dma);
1631void usb_free_coherent(struct usb_device *dev, size_t size,
1632 void *addr, dma_addr_t dma);
1633
1634#if 0
1635struct urb *usb_buffer_map(struct urb *urb);
1636void usb_buffer_dmasync(struct urb *urb);
1637void usb_buffer_unmap(struct urb *urb);
1638#endif
1639
1640struct scatterlist;
1641int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1642 struct scatterlist *sg, int nents);
1643#if 0
1644void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1645 struct scatterlist *sg, int n_hw_ents);
1646#endif
1647void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1648 struct scatterlist *sg, int n_hw_ents);
1649
1650/*-------------------------------------------------------------------*
1651 * SYNCHRONOUS CALL SUPPORT *
1652 *-------------------------------------------------------------------*/
1653
1654extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1655 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1656 void *data, __u16 size, int timeout);
1657extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1658 void *data, int len, int *actual_length, int timeout);
1659extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1660 void *data, int len, int *actual_length,
1661 int timeout);
1662
1663/* wrappers around usb_control_msg() for the most common standard requests */
1664extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1665 unsigned char descindex, void *buf, int size);
1666extern int usb_get_status(struct usb_device *dev,
1667 int type, int target, void *data);
1668extern int usb_string(struct usb_device *dev, int index,
1669 char *buf, size_t size);
1670
1671/* wrappers that also update important state inside usbcore */
1672extern int usb_clear_halt(struct usb_device *dev, int pipe);
1673extern int usb_reset_configuration(struct usb_device *dev);
1674extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1675extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1676
1677/* this request isn't really synchronous, but it belongs with the others */
1678extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1679
1680/* choose and set configuration for device */
1681extern int usb_choose_configuration(struct usb_device *udev);
1682extern int usb_set_configuration(struct usb_device *dev, int configuration);
1683
1684/*
1685 * timeouts, in milliseconds, used for sending/receiving control messages
1686 * they typically complete within a few frames (msec) after they're issued
1687 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1688 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1689 */
1690#define USB_CTRL_GET_TIMEOUT 5000
1691#define USB_CTRL_SET_TIMEOUT 5000
1692
1693
1694/**
1695 * struct usb_sg_request - support for scatter/gather I/O
1696 * @status: zero indicates success, else negative errno
1697 * @bytes: counts bytes transferred.
1698 *
1699 * These requests are initialized using usb_sg_init(), and then are used
1700 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1701 * members of the request object aren't for driver access.
1702 *
1703 * The status and bytecount values are valid only after usb_sg_wait()
1704 * returns. If the status is zero, then the bytecount matches the total
1705 * from the request.
1706 *
1707 * After an error completion, drivers may need to clear a halt condition
1708 * on the endpoint.
1709 */
1710struct usb_sg_request {
1711 int status;
1712 size_t bytes;
1713
1714 /* private:
1715 * members below are private to usbcore,
1716 * and are not provided for driver access!
1717 */
1718 spinlock_t lock;
1719
1720 struct usb_device *dev;
1721 int pipe;
1722
1723 int entries;
1724 struct urb **urbs;
1725
1726 int count;
1727 struct completion complete;
1728};
1729
1730int usb_sg_init(
1731 struct usb_sg_request *io,
1732 struct usb_device *dev,
1733 unsigned pipe,
1734 unsigned period,
1735 struct scatterlist *sg,
1736 int nents,
1737 size_t length,
1738 gfp_t mem_flags
1739);
1740void usb_sg_cancel(struct usb_sg_request *io);
1741void usb_sg_wait(struct usb_sg_request *io);
1742
1743
1744/* ----------------------------------------------------------------------- */
1745
1746/*
1747 * For various legacy reasons, Linux has a small cookie that's paired with
1748 * a struct usb_device to identify an endpoint queue. Queue characteristics
1749 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1750 * an unsigned int encoded as:
1751 *
1752 * - direction: bit 7 (0 = Host-to-Device [Out],
1753 * 1 = Device-to-Host [In] ...
1754 * like endpoint bEndpointAddress)
1755 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1756 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1757 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1758 * 10 = control, 11 = bulk)
1759 *
1760 * Given the device address and endpoint descriptor, pipes are redundant.
1761 */
1762
1763/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1764/* (yet ... they're the values used by usbfs) */
1765#define PIPE_ISOCHRONOUS 0
1766#define PIPE_INTERRUPT 1
1767#define PIPE_CONTROL 2
1768#define PIPE_BULK 3
1769
1770#define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1771#define usb_pipeout(pipe) (!usb_pipein(pipe))
1772
1773#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1774#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1775
1776#define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1777#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1778#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1779#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1780#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1781
1782static inline unsigned int __create_pipe(struct usb_device *dev,
1783 unsigned int endpoint)
1784{
1785 return (dev->devnum << 8) | (endpoint << 15);
1786}
1787
1788/* Create various pipes... */
1789#define usb_sndctrlpipe(dev, endpoint) \
1790 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1791#define usb_rcvctrlpipe(dev, endpoint) \
1792 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1793#define usb_sndisocpipe(dev, endpoint) \
1794 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1795#define usb_rcvisocpipe(dev, endpoint) \
1796 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1797#define usb_sndbulkpipe(dev, endpoint) \
1798 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1799#define usb_rcvbulkpipe(dev, endpoint) \
1800 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1801#define usb_sndintpipe(dev, endpoint) \
1802 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1803#define usb_rcvintpipe(dev, endpoint) \
1804 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1805
1806static inline struct usb_host_endpoint *
1807usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1808{
1809 struct usb_host_endpoint **eps;
1810 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1811 return eps[usb_pipeendpoint(pipe)];
1812}
1813
1814/*-------------------------------------------------------------------------*/
1815
1816static inline __u16
1817usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1818{
1819 struct usb_host_endpoint *ep;
1820 unsigned epnum = usb_pipeendpoint(pipe);
1821
1822 if (is_out) {
1823 WARN_ON(usb_pipein(pipe));
1824 ep = udev->ep_out[epnum];
1825 } else {
1826 WARN_ON(usb_pipeout(pipe));
1827 ep = udev->ep_in[epnum];
1828 }
1829 if (!ep)
1830 return 0;
1831
1832 /* NOTE: only 0x07ff bits are for packet size... */
1833 return usb_endpoint_maxp(&ep->desc);
1834}
1835
1836/* ----------------------------------------------------------------------- */
1837
1838/* translate USB error codes to codes user space understands */
1839static inline int usb_translate_errors(int error_code)
1840{
1841 switch (error_code) {
1842 case 0:
1843 case -ENOMEM:
1844 case -ENODEV:
1845 case -EOPNOTSUPP:
1846 return error_code;
1847 default:
1848 return -EIO;
1849 }
1850}
1851
1852/* Events from the usb core */
1853#define USB_DEVICE_ADD 0x0001
1854#define USB_DEVICE_REMOVE 0x0002
1855#define USB_BUS_ADD 0x0003
1856#define USB_BUS_REMOVE 0x0004
1857extern void usb_register_notify(struct notifier_block *nb);
1858extern void usb_unregister_notify(struct notifier_block *nb);
1859
1860/* debugfs stuff */
1861extern struct dentry *usb_debug_root;
1862
1863#endif /* __KERNEL__ */
1864
1865#endif