Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * linux/fs/nfs/direct.c
   3 *
   4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
   5 *
   6 * High-performance uncached I/O for the Linux NFS client
   7 *
   8 * There are important applications whose performance or correctness
   9 * depends on uncached access to file data.  Database clusters
  10 * (multiple copies of the same instance running on separate hosts)
  11 * implement their own cache coherency protocol that subsumes file
  12 * system cache protocols.  Applications that process datasets
  13 * considerably larger than the client's memory do not always benefit
  14 * from a local cache.  A streaming video server, for instance, has no
  15 * need to cache the contents of a file.
  16 *
  17 * When an application requests uncached I/O, all read and write requests
  18 * are made directly to the server; data stored or fetched via these
  19 * requests is not cached in the Linux page cache.  The client does not
  20 * correct unaligned requests from applications.  All requested bytes are
  21 * held on permanent storage before a direct write system call returns to
  22 * an application.
  23 *
  24 * Solaris implements an uncached I/O facility called directio() that
  25 * is used for backups and sequential I/O to very large files.  Solaris
  26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
  27 * an undocumented mount option.
  28 *
  29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
  30 * help from Andrew Morton.
  31 *
  32 * 18 Dec 2001	Initial implementation for 2.4  --cel
  33 * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
  34 * 08 Jun 2003	Port to 2.5 APIs  --cel
  35 * 31 Mar 2004	Handle direct I/O without VFS support  --cel
  36 * 15 Sep 2004	Parallel async reads  --cel
  37 * 04 May 2005	support O_DIRECT with aio  --cel
  38 *
  39 */
  40
  41#include <linux/errno.h>
  42#include <linux/sched.h>
  43#include <linux/kernel.h>
  44#include <linux/file.h>
  45#include <linux/pagemap.h>
  46#include <linux/kref.h>
  47#include <linux/slab.h>
  48#include <linux/task_io_accounting_ops.h>
  49#include <linux/module.h>
  50
  51#include <linux/nfs_fs.h>
  52#include <linux/nfs_page.h>
  53#include <linux/sunrpc/clnt.h>
  54
  55#include <linux/uaccess.h>
  56#include <linux/atomic.h>
  57
  58#include "internal.h"
  59#include "iostat.h"
  60#include "pnfs.h"
  61
  62#define NFSDBG_FACILITY		NFSDBG_VFS
  63
  64static struct kmem_cache *nfs_direct_cachep;
  65
  66/*
  67 * This represents a set of asynchronous requests that we're waiting on
  68 */
  69struct nfs_direct_mirror {
  70	ssize_t count;
  71};
  72
  73struct nfs_direct_req {
  74	struct kref		kref;		/* release manager */
  75
  76	/* I/O parameters */
  77	struct nfs_open_context	*ctx;		/* file open context info */
  78	struct nfs_lock_context *l_ctx;		/* Lock context info */
  79	struct kiocb *		iocb;		/* controlling i/o request */
  80	struct inode *		inode;		/* target file of i/o */
  81
  82	/* completion state */
  83	atomic_t		io_count;	/* i/os we're waiting for */
  84	spinlock_t		lock;		/* protect completion state */
  85
  86	struct nfs_direct_mirror mirrors[NFS_PAGEIO_DESCRIPTOR_MIRROR_MAX];
  87	int			mirror_count;
  88
  89	ssize_t			count,		/* bytes actually processed */
  90				max_count,	/* max expected count */
  91				bytes_left,	/* bytes left to be sent */
  92				io_start,	/* start of IO */
  93				error;		/* any reported error */
  94	struct completion	completion;	/* wait for i/o completion */
  95
  96	/* commit state */
  97	struct nfs_mds_commit_info mds_cinfo;	/* Storage for cinfo */
  98	struct pnfs_ds_commit_info ds_cinfo;	/* Storage for cinfo */
  99	struct work_struct	work;
 100	int			flags;
 101#define NFS_ODIRECT_DO_COMMIT		(1)	/* an unstable reply was received */
 102#define NFS_ODIRECT_RESCHED_WRITES	(2)	/* write verification failed */
 103	struct nfs_writeverf	verf;		/* unstable write verifier */
 104};
 105
 106static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
 107static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
 108static void nfs_direct_write_complete(struct nfs_direct_req *dreq);
 109static void nfs_direct_write_schedule_work(struct work_struct *work);
 110
 111static inline void get_dreq(struct nfs_direct_req *dreq)
 112{
 113	atomic_inc(&dreq->io_count);
 114}
 115
 116static inline int put_dreq(struct nfs_direct_req *dreq)
 117{
 118	return atomic_dec_and_test(&dreq->io_count);
 119}
 120
 121static void
 122nfs_direct_good_bytes(struct nfs_direct_req *dreq, struct nfs_pgio_header *hdr)
 123{
 124	int i;
 125	ssize_t count;
 126
 127	WARN_ON_ONCE(dreq->count >= dreq->max_count);
 128
 129	if (dreq->mirror_count == 1) {
 130		dreq->mirrors[hdr->pgio_mirror_idx].count += hdr->good_bytes;
 131		dreq->count += hdr->good_bytes;
 132	} else {
 133		/* mirrored writes */
 134		count = dreq->mirrors[hdr->pgio_mirror_idx].count;
 135		if (count + dreq->io_start < hdr->io_start + hdr->good_bytes) {
 136			count = hdr->io_start + hdr->good_bytes - dreq->io_start;
 137			dreq->mirrors[hdr->pgio_mirror_idx].count = count;
 138		}
 139		/* update the dreq->count by finding the minimum agreed count from all
 140		 * mirrors */
 141		count = dreq->mirrors[0].count;
 142
 143		for (i = 1; i < dreq->mirror_count; i++)
 144			count = min(count, dreq->mirrors[i].count);
 145
 146		dreq->count = count;
 147	}
 148}
 149
 150/*
 151 * nfs_direct_select_verf - select the right verifier
 152 * @dreq - direct request possibly spanning multiple servers
 153 * @ds_clp - nfs_client of data server or NULL if MDS / non-pnfs
 154 * @commit_idx - commit bucket index for the DS
 155 *
 156 * returns the correct verifier to use given the role of the server
 157 */
 158static struct nfs_writeverf *
 159nfs_direct_select_verf(struct nfs_direct_req *dreq,
 160		       struct nfs_client *ds_clp,
 161		       int commit_idx)
 162{
 163	struct nfs_writeverf *verfp = &dreq->verf;
 164
 165#ifdef CONFIG_NFS_V4_1
 166	/*
 167	 * pNFS is in use, use the DS verf except commit_through_mds is set
 168	 * for layout segment where nbuckets is zero.
 169	 */
 170	if (ds_clp && dreq->ds_cinfo.nbuckets > 0) {
 171		if (commit_idx >= 0 && commit_idx < dreq->ds_cinfo.nbuckets)
 172			verfp = &dreq->ds_cinfo.buckets[commit_idx].direct_verf;
 173		else
 174			WARN_ON_ONCE(1);
 175	}
 176#endif
 177	return verfp;
 178}
 179
 180
 181/*
 182 * nfs_direct_set_hdr_verf - set the write/commit verifier
 183 * @dreq - direct request possibly spanning multiple servers
 184 * @hdr - pageio header to validate against previously seen verfs
 185 *
 186 * Set the server's (MDS or DS) "seen" verifier
 187 */
 188static void nfs_direct_set_hdr_verf(struct nfs_direct_req *dreq,
 189				    struct nfs_pgio_header *hdr)
 190{
 191	struct nfs_writeverf *verfp;
 192
 193	verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx);
 194	WARN_ON_ONCE(verfp->committed >= 0);
 195	memcpy(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
 196	WARN_ON_ONCE(verfp->committed < 0);
 197}
 198
 199static int nfs_direct_cmp_verf(const struct nfs_writeverf *v1,
 200		const struct nfs_writeverf *v2)
 201{
 202	return nfs_write_verifier_cmp(&v1->verifier, &v2->verifier);
 203}
 204
 205/*
 206 * nfs_direct_cmp_hdr_verf - compare verifier for pgio header
 207 * @dreq - direct request possibly spanning multiple servers
 208 * @hdr - pageio header to validate against previously seen verf
 209 *
 210 * set the server's "seen" verf if not initialized.
 211 * returns result of comparison between @hdr->verf and the "seen"
 212 * verf of the server used by @hdr (DS or MDS)
 213 */
 214static int nfs_direct_set_or_cmp_hdr_verf(struct nfs_direct_req *dreq,
 215					  struct nfs_pgio_header *hdr)
 216{
 217	struct nfs_writeverf *verfp;
 218
 219	verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx);
 220	if (verfp->committed < 0) {
 221		nfs_direct_set_hdr_verf(dreq, hdr);
 222		return 0;
 223	}
 224	return nfs_direct_cmp_verf(verfp, &hdr->verf);
 225}
 226
 227/*
 228 * nfs_direct_cmp_commit_data_verf - compare verifier for commit data
 229 * @dreq - direct request possibly spanning multiple servers
 230 * @data - commit data to validate against previously seen verf
 231 *
 232 * returns result of comparison between @data->verf and the verf of
 233 * the server used by @data (DS or MDS)
 234 */
 235static int nfs_direct_cmp_commit_data_verf(struct nfs_direct_req *dreq,
 236					   struct nfs_commit_data *data)
 237{
 238	struct nfs_writeverf *verfp;
 239
 240	verfp = nfs_direct_select_verf(dreq, data->ds_clp,
 241					 data->ds_commit_index);
 242
 243	/* verifier not set so always fail */
 244	if (verfp->committed < 0)
 245		return 1;
 246
 247	return nfs_direct_cmp_verf(verfp, &data->verf);
 248}
 249
 250/**
 251 * nfs_direct_IO - NFS address space operation for direct I/O
 
 252 * @iocb: target I/O control block
 253 * @iter: I/O buffer
 
 
 254 *
 255 * The presence of this routine in the address space ops vector means
 256 * the NFS client supports direct I/O. However, for most direct IO, we
 257 * shunt off direct read and write requests before the VFS gets them,
 258 * so this method is only ever called for swap.
 259 */
 260ssize_t nfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
 261{
 262	struct inode *inode = iocb->ki_filp->f_mapping->host;
 263
 264	/* we only support swap file calling nfs_direct_IO */
 265	if (!IS_SWAPFILE(inode))
 266		return 0;
 267
 268	VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE);
 269
 270	if (iov_iter_rw(iter) == READ)
 271		return nfs_file_direct_read(iocb, iter);
 272	return nfs_file_direct_write(iocb, iter);
 
 
 
 273}
 274
 275static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
 276{
 277	unsigned int i;
 278	for (i = 0; i < npages; i++)
 279		put_page(pages[i]);
 280}
 281
 282void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
 283			      struct nfs_direct_req *dreq)
 284{
 285	cinfo->inode = dreq->inode;
 286	cinfo->mds = &dreq->mds_cinfo;
 287	cinfo->ds = &dreq->ds_cinfo;
 288	cinfo->dreq = dreq;
 289	cinfo->completion_ops = &nfs_direct_commit_completion_ops;
 290}
 291
 292static inline void nfs_direct_setup_mirroring(struct nfs_direct_req *dreq,
 293					     struct nfs_pageio_descriptor *pgio,
 294					     struct nfs_page *req)
 295{
 296	int mirror_count = 1;
 297
 298	if (pgio->pg_ops->pg_get_mirror_count)
 299		mirror_count = pgio->pg_ops->pg_get_mirror_count(pgio, req);
 300
 301	dreq->mirror_count = mirror_count;
 302}
 303
 304static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
 305{
 306	struct nfs_direct_req *dreq;
 307
 308	dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
 309	if (!dreq)
 310		return NULL;
 311
 312	kref_init(&dreq->kref);
 313	kref_get(&dreq->kref);
 314	init_completion(&dreq->completion);
 315	INIT_LIST_HEAD(&dreq->mds_cinfo.list);
 316	dreq->verf.committed = NFS_INVALID_STABLE_HOW;	/* not set yet */
 317	INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
 318	dreq->mirror_count = 1;
 319	spin_lock_init(&dreq->lock);
 320
 321	return dreq;
 322}
 323
 324static void nfs_direct_req_free(struct kref *kref)
 325{
 326	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
 327
 328	nfs_free_pnfs_ds_cinfo(&dreq->ds_cinfo);
 329	if (dreq->l_ctx != NULL)
 330		nfs_put_lock_context(dreq->l_ctx);
 331	if (dreq->ctx != NULL)
 332		put_nfs_open_context(dreq->ctx);
 333	kmem_cache_free(nfs_direct_cachep, dreq);
 334}
 335
 336static void nfs_direct_req_release(struct nfs_direct_req *dreq)
 337{
 338	kref_put(&dreq->kref, nfs_direct_req_free);
 339}
 340
 341ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
 342{
 343	return dreq->bytes_left;
 344}
 345EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
 346
 347/*
 348 * Collects and returns the final error value/byte-count.
 349 */
 350static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
 351{
 352	ssize_t result = -EIOCBQUEUED;
 353
 354	/* Async requests don't wait here */
 355	if (dreq->iocb)
 356		goto out;
 357
 358	result = wait_for_completion_killable(&dreq->completion);
 359
 360	if (!result) {
 361		result = dreq->count;
 362		WARN_ON_ONCE(dreq->count < 0);
 363	}
 364	if (!result)
 365		result = dreq->error;
 
 
 366
 367out:
 368	return (ssize_t) result;
 369}
 370
 371/*
 372 * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
 373 * the iocb is still valid here if this is a synchronous request.
 374 */
 375static void nfs_direct_complete(struct nfs_direct_req *dreq)
 376{
 377	struct inode *inode = dreq->inode;
 378
 379	inode_dio_end(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 380
 381	if (dreq->iocb) {
 382		long res = (long) dreq->error;
 383		if (dreq->count != 0) {
 384			res = (long) dreq->count;
 385			WARN_ON_ONCE(dreq->count < 0);
 386		}
 387		dreq->iocb->ki_complete(dreq->iocb, res, 0);
 388	}
 389
 390	complete(&dreq->completion);
 391
 392	nfs_direct_req_release(dreq);
 393}
 394
 395static void nfs_direct_readpage_release(struct nfs_page *req)
 396{
 397	dprintk("NFS: direct read done (%s/%llu %d@%lld)\n",
 398		req->wb_context->dentry->d_sb->s_id,
 399		(unsigned long long)NFS_FILEID(d_inode(req->wb_context->dentry)),
 400		req->wb_bytes,
 401		(long long)req_offset(req));
 402	nfs_release_request(req);
 403}
 404
 405static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
 406{
 407	unsigned long bytes = 0;
 408	struct nfs_direct_req *dreq = hdr->dreq;
 409
 410	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
 411		goto out_put;
 412
 413	spin_lock(&dreq->lock);
 414	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
 415		dreq->error = hdr->error;
 416	else
 417		nfs_direct_good_bytes(dreq, hdr);
 418
 419	spin_unlock(&dreq->lock);
 420
 421	while (!list_empty(&hdr->pages)) {
 422		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
 423		struct page *page = req->wb_page;
 424
 425		if (!PageCompound(page) && bytes < hdr->good_bytes)
 426			set_page_dirty(page);
 427		bytes += req->wb_bytes;
 428		nfs_list_remove_request(req);
 429		nfs_direct_readpage_release(req);
 430	}
 431out_put:
 432	if (put_dreq(dreq))
 433		nfs_direct_complete(dreq);
 434	hdr->release(hdr);
 435}
 436
 437static void nfs_read_sync_pgio_error(struct list_head *head)
 438{
 439	struct nfs_page *req;
 440
 441	while (!list_empty(head)) {
 442		req = nfs_list_entry(head->next);
 443		nfs_list_remove_request(req);
 444		nfs_release_request(req);
 445	}
 446}
 447
 448static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
 449{
 450	get_dreq(hdr->dreq);
 451}
 452
 453static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
 454	.error_cleanup = nfs_read_sync_pgio_error,
 455	.init_hdr = nfs_direct_pgio_init,
 456	.completion = nfs_direct_read_completion,
 457};
 458
 459/*
 460 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
 461 * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
 462 * bail and stop sending more reads.  Read length accounting is
 463 * handled automatically by nfs_direct_read_result().  Otherwise, if
 464 * no requests have been sent, just return an error.
 465 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 466
 467static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
 468					      struct iov_iter *iter,
 469					      loff_t pos)
 470{
 471	struct nfs_pageio_descriptor desc;
 472	struct inode *inode = dreq->inode;
 473	ssize_t result = -EINVAL;
 474	size_t requested_bytes = 0;
 475	size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
 476
 477	nfs_pageio_init_read(&desc, dreq->inode, false,
 478			     &nfs_direct_read_completion_ops);
 479	get_dreq(dreq);
 480	desc.pg_dreq = dreq;
 481	inode_dio_begin(inode);
 482
 483	while (iov_iter_count(iter)) {
 484		struct page **pagevec;
 485		size_t bytes;
 486		size_t pgbase;
 487		unsigned npages, i;
 488
 489		result = iov_iter_get_pages_alloc(iter, &pagevec, 
 490						  rsize, &pgbase);
 491		if (result < 0)
 
 
 
 
 
 
 492			break;
 493	
 494		bytes = result;
 495		iov_iter_advance(iter, bytes);
 496		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 497		for (i = 0; i < npages; i++) {
 498			struct nfs_page *req;
 499			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
 500			/* XXX do we need to do the eof zeroing found in async_filler? */
 501			req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
 
 502						 pgbase, req_len);
 503			if (IS_ERR(req)) {
 504				result = PTR_ERR(req);
 505				break;
 506			}
 507			req->wb_index = pos >> PAGE_SHIFT;
 508			req->wb_offset = pos & ~PAGE_MASK;
 509			if (!nfs_pageio_add_request(&desc, req)) {
 510				result = desc.pg_error;
 511				nfs_release_request(req);
 512				break;
 513			}
 514			pgbase = 0;
 515			bytes -= req_len;
 516			requested_bytes += req_len;
 
 517			pos += req_len;
 
 518			dreq->bytes_left -= req_len;
 519		}
 
 520		nfs_direct_release_pages(pagevec, npages);
 521		kvfree(pagevec);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 522		if (result < 0)
 523			break;
 
 
 
 
 524	}
 525
 526	nfs_pageio_complete(&desc);
 527
 528	/*
 529	 * If no bytes were started, return the error, and let the
 530	 * generic layer handle the completion.
 531	 */
 532	if (requested_bytes == 0) {
 533		inode_dio_end(inode);
 534		nfs_direct_req_release(dreq);
 535		return result < 0 ? result : -EIO;
 536	}
 537
 538	if (put_dreq(dreq))
 539		nfs_direct_complete(dreq);
 540	return 0;
 541}
 542
 543/**
 544 * nfs_file_direct_read - file direct read operation for NFS files
 545 * @iocb: target I/O control block
 546 * @iter: vector of user buffers into which to read data
 
 
 547 *
 548 * We use this function for direct reads instead of calling
 549 * generic_file_aio_read() in order to avoid gfar's check to see if
 550 * the request starts before the end of the file.  For that check
 551 * to work, we must generate a GETATTR before each direct read, and
 552 * even then there is a window between the GETATTR and the subsequent
 553 * READ where the file size could change.  Our preference is simply
 554 * to do all reads the application wants, and the server will take
 555 * care of managing the end of file boundary.
 556 *
 557 * This function also eliminates unnecessarily updating the file's
 558 * atime locally, as the NFS server sets the file's atime, and this
 559 * client must read the updated atime from the server back into its
 560 * cache.
 561 */
 562ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter)
 
 563{
 564	struct file *file = iocb->ki_filp;
 565	struct address_space *mapping = file->f_mapping;
 566	struct inode *inode = mapping->host;
 567	struct nfs_direct_req *dreq;
 568	struct nfs_lock_context *l_ctx;
 569	ssize_t result = -EINVAL;
 570	size_t count = iov_iter_count(iter);
 
 
 571	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
 572
 573	dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
 574		file, count, (long long) iocb->ki_pos);
 575
 576	result = 0;
 577	if (!count)
 578		goto out;
 579
 
 
 
 
 
 580	task_io_account_read(count);
 581
 582	result = -ENOMEM;
 583	dreq = nfs_direct_req_alloc();
 584	if (dreq == NULL)
 585		goto out;
 586
 587	dreq->inode = inode;
 588	dreq->bytes_left = dreq->max_count = count;
 589	dreq->io_start = iocb->ki_pos;
 590	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
 591	l_ctx = nfs_get_lock_context(dreq->ctx);
 592	if (IS_ERR(l_ctx)) {
 593		result = PTR_ERR(l_ctx);
 594		goto out_release;
 595	}
 596	dreq->l_ctx = l_ctx;
 597	if (!is_sync_kiocb(iocb))
 598		dreq->iocb = iocb;
 599
 600	nfs_start_io_direct(inode);
 
 601
 602	NFS_I(inode)->read_io += count;
 603	result = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos);
 604
 605	nfs_end_io_direct(inode);
 606
 607	if (!result) {
 608		result = nfs_direct_wait(dreq);
 609		if (result > 0)
 610			iocb->ki_pos += result;
 611	}
 612
 
 
 
 613out_release:
 614	nfs_direct_req_release(dreq);
 
 
 615out:
 616	return result;
 617}
 618
 619static void
 620nfs_direct_write_scan_commit_list(struct inode *inode,
 621				  struct list_head *list,
 622				  struct nfs_commit_info *cinfo)
 623{
 624	spin_lock(&cinfo->inode->i_lock);
 625#ifdef CONFIG_NFS_V4_1
 626	if (cinfo->ds != NULL && cinfo->ds->nwritten != 0)
 627		NFS_SERVER(inode)->pnfs_curr_ld->recover_commit_reqs(list, cinfo);
 628#endif
 629	nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
 630	spin_unlock(&cinfo->inode->i_lock);
 631}
 632
 633static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
 634{
 635	struct nfs_pageio_descriptor desc;
 636	struct nfs_page *req, *tmp;
 637	LIST_HEAD(reqs);
 638	struct nfs_commit_info cinfo;
 639	LIST_HEAD(failed);
 640	int i;
 641
 642	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 643	nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
 
 
 
 644
 645	dreq->count = 0;
 646	dreq->verf.committed = NFS_INVALID_STABLE_HOW;
 647	nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo);
 648	for (i = 0; i < dreq->mirror_count; i++)
 649		dreq->mirrors[i].count = 0;
 650	get_dreq(dreq);
 651
 652	nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
 653			      &nfs_direct_write_completion_ops);
 654	desc.pg_dreq = dreq;
 655
 656	req = nfs_list_entry(reqs.next);
 657	nfs_direct_setup_mirroring(dreq, &desc, req);
 658	if (desc.pg_error < 0) {
 659		list_splice_init(&reqs, &failed);
 660		goto out_failed;
 661	}
 662
 663	list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
 664		if (!nfs_pageio_add_request(&desc, req)) {
 665			nfs_list_remove_request(req);
 666			nfs_list_add_request(req, &failed);
 667			spin_lock(&cinfo.inode->i_lock);
 668			dreq->flags = 0;
 669			if (desc.pg_error < 0)
 670				dreq->error = desc.pg_error;
 671			else
 672				dreq->error = -EIO;
 673			spin_unlock(&cinfo.inode->i_lock);
 674		}
 675		nfs_release_request(req);
 676	}
 677	nfs_pageio_complete(&desc);
 678
 679out_failed:
 680	while (!list_empty(&failed)) {
 681		req = nfs_list_entry(failed.next);
 682		nfs_list_remove_request(req);
 683		nfs_unlock_and_release_request(req);
 684	}
 685
 686	if (put_dreq(dreq))
 687		nfs_direct_write_complete(dreq);
 688}
 689
 690static void nfs_direct_commit_complete(struct nfs_commit_data *data)
 691{
 692	struct nfs_direct_req *dreq = data->dreq;
 693	struct nfs_commit_info cinfo;
 694	struct nfs_page *req;
 695	int status = data->task.tk_status;
 696
 697	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 698	if (status < 0) {
 699		dprintk("NFS: %5u commit failed with error %d.\n",
 700			data->task.tk_pid, status);
 701		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 702	} else if (nfs_direct_cmp_commit_data_verf(dreq, data)) {
 703		dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
 704		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 705	}
 706
 707	dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
 708	while (!list_empty(&data->pages)) {
 709		req = nfs_list_entry(data->pages.next);
 710		nfs_list_remove_request(req);
 711		if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
 712			/* Note the rewrite will go through mds */
 713			nfs_mark_request_commit(req, NULL, &cinfo, 0);
 714		} else
 715			nfs_release_request(req);
 716		nfs_unlock_and_release_request(req);
 717	}
 718
 719	if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
 720		nfs_direct_write_complete(dreq);
 721}
 722
 723static void nfs_direct_resched_write(struct nfs_commit_info *cinfo,
 724		struct nfs_page *req)
 725{
 726	struct nfs_direct_req *dreq = cinfo->dreq;
 727
 728	spin_lock(&dreq->lock);
 729	dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 730	spin_unlock(&dreq->lock);
 731	nfs_mark_request_commit(req, NULL, cinfo, 0);
 732}
 733
 734static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
 735	.completion = nfs_direct_commit_complete,
 736	.resched_write = nfs_direct_resched_write,
 737};
 738
 739static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
 740{
 741	int res;
 742	struct nfs_commit_info cinfo;
 743	LIST_HEAD(mds_list);
 744
 745	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 746	nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
 747	res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
 748	if (res < 0) /* res == -ENOMEM */
 749		nfs_direct_write_reschedule(dreq);
 750}
 751
 752static void nfs_direct_write_schedule_work(struct work_struct *work)
 753{
 754	struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
 755	int flags = dreq->flags;
 756
 757	dreq->flags = 0;
 758	switch (flags) {
 759		case NFS_ODIRECT_DO_COMMIT:
 760			nfs_direct_commit_schedule(dreq);
 761			break;
 762		case NFS_ODIRECT_RESCHED_WRITES:
 763			nfs_direct_write_reschedule(dreq);
 764			break;
 765		default:
 766			nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping);
 767			nfs_direct_complete(dreq);
 768	}
 769}
 770
 771static void nfs_direct_write_complete(struct nfs_direct_req *dreq)
 772{
 773	schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
 774}
 775
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 776static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
 777{
 778	struct nfs_direct_req *dreq = hdr->dreq;
 779	struct nfs_commit_info cinfo;
 780	bool request_commit = false;
 781	struct nfs_page *req = nfs_list_entry(hdr->pages.next);
 782
 783	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
 784		goto out_put;
 785
 786	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 787
 788	spin_lock(&dreq->lock);
 789
 790	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
 791		dreq->flags = 0;
 792		dreq->error = hdr->error;
 793	}
 794	if (dreq->error == 0) {
 795		nfs_direct_good_bytes(dreq, hdr);
 796		if (nfs_write_need_commit(hdr)) {
 
 
 
 
 
 797			if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
 798				request_commit = true;
 799			else if (dreq->flags == 0) {
 800				nfs_direct_set_hdr_verf(dreq, hdr);
 801				request_commit = true;
 
 802				dreq->flags = NFS_ODIRECT_DO_COMMIT;
 803			} else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
 804				request_commit = true;
 805				if (nfs_direct_set_or_cmp_hdr_verf(dreq, hdr))
 806					dreq->flags =
 807						NFS_ODIRECT_RESCHED_WRITES;
 
 808			}
 809		}
 810	}
 811	spin_unlock(&dreq->lock);
 812
 813	while (!list_empty(&hdr->pages)) {
 814
 815		req = nfs_list_entry(hdr->pages.next);
 816		nfs_list_remove_request(req);
 817		if (request_commit) {
 
 
 818			kref_get(&req->wb_kref);
 819			nfs_mark_request_commit(req, hdr->lseg, &cinfo,
 820				hdr->ds_commit_idx);
 821		}
 822		nfs_unlock_and_release_request(req);
 823	}
 824
 825out_put:
 826	if (put_dreq(dreq))
 827		nfs_direct_write_complete(dreq);
 828	hdr->release(hdr);
 829}
 830
 831static void nfs_write_sync_pgio_error(struct list_head *head)
 832{
 833	struct nfs_page *req;
 834
 835	while (!list_empty(head)) {
 836		req = nfs_list_entry(head->next);
 837		nfs_list_remove_request(req);
 838		nfs_unlock_and_release_request(req);
 839	}
 840}
 841
 842static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr)
 843{
 844	struct nfs_direct_req *dreq = hdr->dreq;
 845
 846	spin_lock(&dreq->lock);
 847	if (dreq->error == 0) {
 848		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 849		/* fake unstable write to let common nfs resend pages */
 850		hdr->verf.committed = NFS_UNSTABLE;
 851		hdr->good_bytes = hdr->args.count;
 852	}
 853	spin_unlock(&dreq->lock);
 854}
 855
 856static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
 857	.error_cleanup = nfs_write_sync_pgio_error,
 858	.init_hdr = nfs_direct_pgio_init,
 859	.completion = nfs_direct_write_completion,
 860	.reschedule_io = nfs_direct_write_reschedule_io,
 861};
 862
 863
 864/*
 865 * NB: Return the value of the first error return code.  Subsequent
 866 *     errors after the first one are ignored.
 867 */
 868/*
 869 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
 870 * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
 871 * bail and stop sending more writes.  Write length accounting is
 872 * handled automatically by nfs_direct_write_result().  Otherwise, if
 873 * no requests have been sent, just return an error.
 874 */
 875static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
 876					       struct iov_iter *iter,
 877					       loff_t pos)
 
 878{
 879	struct nfs_pageio_descriptor desc;
 880	struct inode *inode = dreq->inode;
 881	ssize_t result = 0;
 882	size_t requested_bytes = 0;
 883	size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
 884
 885	nfs_pageio_init_write(&desc, inode, FLUSH_COND_STABLE, false,
 886			      &nfs_direct_write_completion_ops);
 887	desc.pg_dreq = dreq;
 888	get_dreq(dreq);
 889	inode_dio_begin(inode);
 890
 891	NFS_I(inode)->write_io += iov_iter_count(iter);
 892	while (iov_iter_count(iter)) {
 893		struct page **pagevec;
 894		size_t bytes;
 895		size_t pgbase;
 896		unsigned npages, i;
 897
 898		result = iov_iter_get_pages_alloc(iter, &pagevec, 
 899						  wsize, &pgbase);
 
 
 900		if (result < 0)
 901			break;
 902
 903		bytes = result;
 904		iov_iter_advance(iter, bytes);
 905		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
 906		for (i = 0; i < npages; i++) {
 907			struct nfs_page *req;
 908			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
 909
 910			req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
 911						 pgbase, req_len);
 912			if (IS_ERR(req)) {
 913				result = PTR_ERR(req);
 914				break;
 915			}
 916
 917			nfs_direct_setup_mirroring(dreq, &desc, req);
 918			if (desc.pg_error < 0) {
 919				nfs_free_request(req);
 920				result = desc.pg_error;
 921				break;
 922			}
 923
 924			nfs_lock_request(req);
 925			req->wb_index = pos >> PAGE_SHIFT;
 926			req->wb_offset = pos & ~PAGE_MASK;
 927			if (!nfs_pageio_add_request(&desc, req)) {
 928				result = desc.pg_error;
 929				nfs_unlock_and_release_request(req);
 930				break;
 931			}
 932			pgbase = 0;
 933			bytes -= req_len;
 934			requested_bytes += req_len;
 935			pos += req_len;
 936			dreq->bytes_left -= req_len;
 937		}
 938		nfs_direct_release_pages(pagevec, npages);
 939		kvfree(pagevec);
 940		if (result < 0)
 941			break;
 
 942	}
 943	nfs_pageio_complete(&desc);
 944
 945	/*
 946	 * If no bytes were started, return the error, and let the
 947	 * generic layer handle the completion.
 948	 */
 949	if (requested_bytes == 0) {
 950		inode_dio_end(inode);
 951		nfs_direct_req_release(dreq);
 952		return result < 0 ? result : -EIO;
 953	}
 954
 955	if (put_dreq(dreq))
 956		nfs_direct_write_complete(dreq);
 957	return 0;
 958}
 959
 960/**
 961 * nfs_file_direct_write - file direct write operation for NFS files
 962 * @iocb: target I/O control block
 963 * @iter: vector of user buffers from which to write data
 
 
 964 *
 965 * We use this function for direct writes instead of calling
 966 * generic_file_aio_write() in order to avoid taking the inode
 967 * semaphore and updating the i_size.  The NFS server will set
 968 * the new i_size and this client must read the updated size
 969 * back into its cache.  We let the server do generic write
 970 * parameter checking and report problems.
 971 *
 972 * We eliminate local atime updates, see direct read above.
 973 *
 974 * We avoid unnecessary page cache invalidations for normal cached
 975 * readers of this file.
 976 *
 977 * Note that O_APPEND is not supported for NFS direct writes, as there
 978 * is no atomic O_APPEND write facility in the NFS protocol.
 979 */
 980ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter)
 
 981{
 982	ssize_t result = -EINVAL;
 983	size_t count;
 984	struct file *file = iocb->ki_filp;
 985	struct address_space *mapping = file->f_mapping;
 986	struct inode *inode = mapping->host;
 987	struct nfs_direct_req *dreq;
 988	struct nfs_lock_context *l_ctx;
 989	loff_t pos, end;
 
 990
 991	dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
 992		file, iov_iter_count(iter), (long long) iocb->ki_pos);
 993
 994	result = generic_write_checks(iocb, iter);
 995	if (result <= 0)
 996		return result;
 997	count = result;
 998	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
 999
1000	pos = iocb->ki_pos;
1001	end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1002
1003	task_io_account_write(count);
1004
1005	result = -ENOMEM;
1006	dreq = nfs_direct_req_alloc();
1007	if (!dreq)
1008		goto out;
1009
1010	dreq->inode = inode;
1011	dreq->bytes_left = dreq->max_count = count;
1012	dreq->io_start = pos;
1013	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
1014	l_ctx = nfs_get_lock_context(dreq->ctx);
1015	if (IS_ERR(l_ctx)) {
1016		result = PTR_ERR(l_ctx);
1017		goto out_release;
1018	}
1019	dreq->l_ctx = l_ctx;
1020	if (!is_sync_kiocb(iocb))
1021		dreq->iocb = iocb;
1022
1023	nfs_start_io_direct(inode);
1024
1025	result = nfs_direct_write_schedule_iovec(dreq, iter, pos);
1026
1027	if (mapping->nrpages) {
1028		invalidate_inode_pages2_range(mapping,
1029					      pos >> PAGE_SHIFT, end);
1030	}
1031
1032	nfs_end_io_direct(inode);
1033
1034	if (!result) {
1035		result = nfs_direct_wait(dreq);
1036		if (result > 0) {
 
 
1037			iocb->ki_pos = pos + result;
1038			/* XXX: should check the generic_write_sync retval */
1039			generic_write_sync(iocb, result);
 
 
1040		}
1041	}
 
 
 
1042out_release:
1043	nfs_direct_req_release(dreq);
 
 
1044out:
1045	return result;
1046}
1047
1048/**
1049 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1050 *
1051 */
1052int __init nfs_init_directcache(void)
1053{
1054	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1055						sizeof(struct nfs_direct_req),
1056						0, (SLAB_RECLAIM_ACCOUNT|
1057							SLAB_MEM_SPREAD),
1058						NULL);
1059	if (nfs_direct_cachep == NULL)
1060		return -ENOMEM;
1061
1062	return 0;
1063}
1064
1065/**
1066 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1067 *
1068 */
1069void nfs_destroy_directcache(void)
1070{
1071	kmem_cache_destroy(nfs_direct_cachep);
1072}
v3.15
   1/*
   2 * linux/fs/nfs/direct.c
   3 *
   4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
   5 *
   6 * High-performance uncached I/O for the Linux NFS client
   7 *
   8 * There are important applications whose performance or correctness
   9 * depends on uncached access to file data.  Database clusters
  10 * (multiple copies of the same instance running on separate hosts)
  11 * implement their own cache coherency protocol that subsumes file
  12 * system cache protocols.  Applications that process datasets
  13 * considerably larger than the client's memory do not always benefit
  14 * from a local cache.  A streaming video server, for instance, has no
  15 * need to cache the contents of a file.
  16 *
  17 * When an application requests uncached I/O, all read and write requests
  18 * are made directly to the server; data stored or fetched via these
  19 * requests is not cached in the Linux page cache.  The client does not
  20 * correct unaligned requests from applications.  All requested bytes are
  21 * held on permanent storage before a direct write system call returns to
  22 * an application.
  23 *
  24 * Solaris implements an uncached I/O facility called directio() that
  25 * is used for backups and sequential I/O to very large files.  Solaris
  26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
  27 * an undocumented mount option.
  28 *
  29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
  30 * help from Andrew Morton.
  31 *
  32 * 18 Dec 2001	Initial implementation for 2.4  --cel
  33 * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
  34 * 08 Jun 2003	Port to 2.5 APIs  --cel
  35 * 31 Mar 2004	Handle direct I/O without VFS support  --cel
  36 * 15 Sep 2004	Parallel async reads  --cel
  37 * 04 May 2005	support O_DIRECT with aio  --cel
  38 *
  39 */
  40
  41#include <linux/errno.h>
  42#include <linux/sched.h>
  43#include <linux/kernel.h>
  44#include <linux/file.h>
  45#include <linux/pagemap.h>
  46#include <linux/kref.h>
  47#include <linux/slab.h>
  48#include <linux/task_io_accounting_ops.h>
  49#include <linux/module.h>
  50
  51#include <linux/nfs_fs.h>
  52#include <linux/nfs_page.h>
  53#include <linux/sunrpc/clnt.h>
  54
  55#include <asm/uaccess.h>
  56#include <linux/atomic.h>
  57
  58#include "internal.h"
  59#include "iostat.h"
  60#include "pnfs.h"
  61
  62#define NFSDBG_FACILITY		NFSDBG_VFS
  63
  64static struct kmem_cache *nfs_direct_cachep;
  65
  66/*
  67 * This represents a set of asynchronous requests that we're waiting on
  68 */
 
 
 
 
  69struct nfs_direct_req {
  70	struct kref		kref;		/* release manager */
  71
  72	/* I/O parameters */
  73	struct nfs_open_context	*ctx;		/* file open context info */
  74	struct nfs_lock_context *l_ctx;		/* Lock context info */
  75	struct kiocb *		iocb;		/* controlling i/o request */
  76	struct inode *		inode;		/* target file of i/o */
  77
  78	/* completion state */
  79	atomic_t		io_count;	/* i/os we're waiting for */
  80	spinlock_t		lock;		/* protect completion state */
 
 
 
 
  81	ssize_t			count,		/* bytes actually processed */
 
  82				bytes_left,	/* bytes left to be sent */
 
  83				error;		/* any reported error */
  84	struct completion	completion;	/* wait for i/o completion */
  85
  86	/* commit state */
  87	struct nfs_mds_commit_info mds_cinfo;	/* Storage for cinfo */
  88	struct pnfs_ds_commit_info ds_cinfo;	/* Storage for cinfo */
  89	struct work_struct	work;
  90	int			flags;
  91#define NFS_ODIRECT_DO_COMMIT		(1)	/* an unstable reply was received */
  92#define NFS_ODIRECT_RESCHED_WRITES	(2)	/* write verification failed */
  93	struct nfs_writeverf	verf;		/* unstable write verifier */
  94};
  95
  96static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
  97static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
  98static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
  99static void nfs_direct_write_schedule_work(struct work_struct *work);
 100
 101static inline void get_dreq(struct nfs_direct_req *dreq)
 102{
 103	atomic_inc(&dreq->io_count);
 104}
 105
 106static inline int put_dreq(struct nfs_direct_req *dreq)
 107{
 108	return atomic_dec_and_test(&dreq->io_count);
 109}
 110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 111/**
 112 * nfs_direct_IO - NFS address space operation for direct I/O
 113 * @rw: direction (read or write)
 114 * @iocb: target I/O control block
 115 * @iov: array of vectors that define I/O buffer
 116 * @pos: offset in file to begin the operation
 117 * @nr_segs: size of iovec array
 118 *
 119 * The presence of this routine in the address space ops vector means
 120 * the NFS client supports direct I/O. However, for most direct IO, we
 121 * shunt off direct read and write requests before the VFS gets them,
 122 * so this method is only ever called for swap.
 123 */
 124ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
 125{
 126#ifndef CONFIG_NFS_SWAP
 127	dprintk("NFS: nfs_direct_IO (%pD) off/no(%Ld/%lu) EINVAL\n",
 128			iocb->ki_filp, (long long) pos, nr_segs);
 129
 130	return -EINVAL;
 131#else
 132	VM_BUG_ON(iocb->ki_nbytes != PAGE_SIZE);
 133
 134	if (rw == READ || rw == KERNEL_READ)
 135		return nfs_file_direct_read(iocb, iov, nr_segs, pos,
 136				rw == READ ? true : false);
 137	return nfs_file_direct_write(iocb, iov, nr_segs, pos,
 138				rw == WRITE ? true : false);
 139#endif /* CONFIG_NFS_SWAP */
 140}
 141
 142static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
 143{
 144	unsigned int i;
 145	for (i = 0; i < npages; i++)
 146		page_cache_release(pages[i]);
 147}
 148
 149void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
 150			      struct nfs_direct_req *dreq)
 151{
 152	cinfo->lock = &dreq->lock;
 153	cinfo->mds = &dreq->mds_cinfo;
 154	cinfo->ds = &dreq->ds_cinfo;
 155	cinfo->dreq = dreq;
 156	cinfo->completion_ops = &nfs_direct_commit_completion_ops;
 157}
 158
 
 
 
 
 
 
 
 
 
 
 
 
 159static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
 160{
 161	struct nfs_direct_req *dreq;
 162
 163	dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
 164	if (!dreq)
 165		return NULL;
 166
 167	kref_init(&dreq->kref);
 168	kref_get(&dreq->kref);
 169	init_completion(&dreq->completion);
 170	INIT_LIST_HEAD(&dreq->mds_cinfo.list);
 
 171	INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
 
 172	spin_lock_init(&dreq->lock);
 173
 174	return dreq;
 175}
 176
 177static void nfs_direct_req_free(struct kref *kref)
 178{
 179	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
 180
 
 181	if (dreq->l_ctx != NULL)
 182		nfs_put_lock_context(dreq->l_ctx);
 183	if (dreq->ctx != NULL)
 184		put_nfs_open_context(dreq->ctx);
 185	kmem_cache_free(nfs_direct_cachep, dreq);
 186}
 187
 188static void nfs_direct_req_release(struct nfs_direct_req *dreq)
 189{
 190	kref_put(&dreq->kref, nfs_direct_req_free);
 191}
 192
 193ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
 194{
 195	return dreq->bytes_left;
 196}
 197EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
 198
 199/*
 200 * Collects and returns the final error value/byte-count.
 201 */
 202static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
 203{
 204	ssize_t result = -EIOCBQUEUED;
 205
 206	/* Async requests don't wait here */
 207	if (dreq->iocb)
 208		goto out;
 209
 210	result = wait_for_completion_killable(&dreq->completion);
 211
 
 
 
 
 212	if (!result)
 213		result = dreq->error;
 214	if (!result)
 215		result = dreq->count;
 216
 217out:
 218	return (ssize_t) result;
 219}
 220
 221/*
 222 * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
 223 * the iocb is still valid here if this is a synchronous request.
 224 */
 225static void nfs_direct_complete(struct nfs_direct_req *dreq, bool write)
 226{
 227	struct inode *inode = dreq->inode;
 228
 229	if (dreq->iocb && write) {
 230		loff_t pos = dreq->iocb->ki_pos + dreq->count;
 231
 232		spin_lock(&inode->i_lock);
 233		if (i_size_read(inode) < pos)
 234			i_size_write(inode, pos);
 235		spin_unlock(&inode->i_lock);
 236	}
 237
 238	if (write)
 239		nfs_zap_mapping(inode, inode->i_mapping);
 240
 241	inode_dio_done(inode);
 242
 243	if (dreq->iocb) {
 244		long res = (long) dreq->error;
 245		if (!res)
 246			res = (long) dreq->count;
 247		aio_complete(dreq->iocb, res, 0);
 
 
 248	}
 249
 250	complete_all(&dreq->completion);
 251
 252	nfs_direct_req_release(dreq);
 253}
 254
 255static void nfs_direct_readpage_release(struct nfs_page *req)
 256{
 257	dprintk("NFS: direct read done (%s/%llu %d@%lld)\n",
 258		req->wb_context->dentry->d_inode->i_sb->s_id,
 259		(unsigned long long)NFS_FILEID(req->wb_context->dentry->d_inode),
 260		req->wb_bytes,
 261		(long long)req_offset(req));
 262	nfs_release_request(req);
 263}
 264
 265static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
 266{
 267	unsigned long bytes = 0;
 268	struct nfs_direct_req *dreq = hdr->dreq;
 269
 270	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
 271		goto out_put;
 272
 273	spin_lock(&dreq->lock);
 274	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
 275		dreq->error = hdr->error;
 276	else
 277		dreq->count += hdr->good_bytes;
 
 278	spin_unlock(&dreq->lock);
 279
 280	while (!list_empty(&hdr->pages)) {
 281		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
 282		struct page *page = req->wb_page;
 283
 284		if (!PageCompound(page) && bytes < hdr->good_bytes)
 285			set_page_dirty(page);
 286		bytes += req->wb_bytes;
 287		nfs_list_remove_request(req);
 288		nfs_direct_readpage_release(req);
 289	}
 290out_put:
 291	if (put_dreq(dreq))
 292		nfs_direct_complete(dreq, false);
 293	hdr->release(hdr);
 294}
 295
 296static void nfs_read_sync_pgio_error(struct list_head *head)
 297{
 298	struct nfs_page *req;
 299
 300	while (!list_empty(head)) {
 301		req = nfs_list_entry(head->next);
 302		nfs_list_remove_request(req);
 303		nfs_release_request(req);
 304	}
 305}
 306
 307static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
 308{
 309	get_dreq(hdr->dreq);
 310}
 311
 312static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
 313	.error_cleanup = nfs_read_sync_pgio_error,
 314	.init_hdr = nfs_direct_pgio_init,
 315	.completion = nfs_direct_read_completion,
 316};
 317
 318/*
 319 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
 320 * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
 321 * bail and stop sending more reads.  Read length accounting is
 322 * handled automatically by nfs_direct_read_result().  Otherwise, if
 323 * no requests have been sent, just return an error.
 324 */
 325static ssize_t nfs_direct_read_schedule_segment(struct nfs_pageio_descriptor *desc,
 326						const struct iovec *iov,
 327						loff_t pos, bool uio)
 328{
 329	struct nfs_direct_req *dreq = desc->pg_dreq;
 330	struct nfs_open_context *ctx = dreq->ctx;
 331	struct inode *inode = ctx->dentry->d_inode;
 332	unsigned long user_addr = (unsigned long)iov->iov_base;
 333	size_t count = iov->iov_len;
 334	size_t rsize = NFS_SERVER(inode)->rsize;
 335	unsigned int pgbase;
 336	int result;
 337	ssize_t started = 0;
 338	struct page **pagevec = NULL;
 339	unsigned int npages;
 340
 341	do {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 342		size_t bytes;
 343		int i;
 
 344
 345		pgbase = user_addr & ~PAGE_MASK;
 346		bytes = min(max_t(size_t, rsize, PAGE_SIZE), count);
 347
 348		result = -ENOMEM;
 349		npages = nfs_page_array_len(pgbase, bytes);
 350		if (!pagevec)
 351			pagevec = kmalloc(npages * sizeof(struct page *),
 352					  GFP_KERNEL);
 353		if (!pagevec)
 354			break;
 355		if (uio) {
 356			down_read(&current->mm->mmap_sem);
 357			result = get_user_pages(current, current->mm, user_addr,
 358					npages, 1, 0, pagevec, NULL);
 359			up_read(&current->mm->mmap_sem);
 360			if (result < 0)
 361				break;
 362		} else {
 363			WARN_ON(npages != 1);
 364			result = get_kernel_page(user_addr, 1, pagevec);
 365			if (WARN_ON(result != 1))
 366				break;
 367		}
 368
 369		if ((unsigned)result < npages) {
 370			bytes = result * PAGE_SIZE;
 371			if (bytes <= pgbase) {
 372				nfs_direct_release_pages(pagevec, result);
 373				break;
 374			}
 375			bytes -= pgbase;
 376			npages = result;
 377		}
 378
 379		for (i = 0; i < npages; i++) {
 380			struct nfs_page *req;
 381			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
 382			/* XXX do we need to do the eof zeroing found in async_filler? */
 383			req = nfs_create_request(dreq->ctx, dreq->inode,
 384						 pagevec[i],
 385						 pgbase, req_len);
 386			if (IS_ERR(req)) {
 387				result = PTR_ERR(req);
 388				break;
 389			}
 390			req->wb_index = pos >> PAGE_SHIFT;
 391			req->wb_offset = pos & ~PAGE_MASK;
 392			if (!nfs_pageio_add_request(desc, req)) {
 393				result = desc->pg_error;
 394				nfs_release_request(req);
 395				break;
 396			}
 397			pgbase = 0;
 398			bytes -= req_len;
 399			started += req_len;
 400			user_addr += req_len;
 401			pos += req_len;
 402			count -= req_len;
 403			dreq->bytes_left -= req_len;
 404		}
 405		/* The nfs_page now hold references to these pages */
 406		nfs_direct_release_pages(pagevec, npages);
 407	} while (count != 0 && result >= 0);
 408
 409	kfree(pagevec);
 410
 411	if (started)
 412		return started;
 413	return result < 0 ? (ssize_t) result : -EFAULT;
 414}
 415
 416static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
 417					      const struct iovec *iov,
 418					      unsigned long nr_segs,
 419					      loff_t pos, bool uio)
 420{
 421	struct nfs_pageio_descriptor desc;
 422	struct inode *inode = dreq->inode;
 423	ssize_t result = -EINVAL;
 424	size_t requested_bytes = 0;
 425	unsigned long seg;
 426
 427	NFS_PROTO(dreq->inode)->read_pageio_init(&desc, dreq->inode,
 428			     &nfs_direct_read_completion_ops);
 429	get_dreq(dreq);
 430	desc.pg_dreq = dreq;
 431	atomic_inc(&inode->i_dio_count);
 432
 433	for (seg = 0; seg < nr_segs; seg++) {
 434		const struct iovec *vec = &iov[seg];
 435		result = nfs_direct_read_schedule_segment(&desc, vec, pos, uio);
 436		if (result < 0)
 437			break;
 438		requested_bytes += result;
 439		if ((size_t)result < vec->iov_len)
 440			break;
 441		pos += vec->iov_len;
 442	}
 443
 444	nfs_pageio_complete(&desc);
 445
 446	/*
 447	 * If no bytes were started, return the error, and let the
 448	 * generic layer handle the completion.
 449	 */
 450	if (requested_bytes == 0) {
 451		inode_dio_done(inode);
 452		nfs_direct_req_release(dreq);
 453		return result < 0 ? result : -EIO;
 454	}
 455
 456	if (put_dreq(dreq))
 457		nfs_direct_complete(dreq, false);
 458	return 0;
 459}
 460
 461/**
 462 * nfs_file_direct_read - file direct read operation for NFS files
 463 * @iocb: target I/O control block
 464 * @iov: vector of user buffers into which to read data
 465 * @nr_segs: size of iov vector
 466 * @pos: byte offset in file where reading starts
 467 *
 468 * We use this function for direct reads instead of calling
 469 * generic_file_aio_read() in order to avoid gfar's check to see if
 470 * the request starts before the end of the file.  For that check
 471 * to work, we must generate a GETATTR before each direct read, and
 472 * even then there is a window between the GETATTR and the subsequent
 473 * READ where the file size could change.  Our preference is simply
 474 * to do all reads the application wants, and the server will take
 475 * care of managing the end of file boundary.
 476 *
 477 * This function also eliminates unnecessarily updating the file's
 478 * atime locally, as the NFS server sets the file's atime, and this
 479 * client must read the updated atime from the server back into its
 480 * cache.
 481 */
 482ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
 483				unsigned long nr_segs, loff_t pos, bool uio)
 484{
 485	struct file *file = iocb->ki_filp;
 486	struct address_space *mapping = file->f_mapping;
 487	struct inode *inode = mapping->host;
 488	struct nfs_direct_req *dreq;
 489	struct nfs_lock_context *l_ctx;
 490	ssize_t result = -EINVAL;
 491	size_t count;
 492
 493	count = iov_length(iov, nr_segs);
 494	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
 495
 496	dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
 497		file, count, (long long) pos);
 498
 499	result = 0;
 500	if (!count)
 501		goto out;
 502
 503	mutex_lock(&inode->i_mutex);
 504	result = nfs_sync_mapping(mapping);
 505	if (result)
 506		goto out_unlock;
 507
 508	task_io_account_read(count);
 509
 510	result = -ENOMEM;
 511	dreq = nfs_direct_req_alloc();
 512	if (dreq == NULL)
 513		goto out_unlock;
 514
 515	dreq->inode = inode;
 516	dreq->bytes_left = iov_length(iov, nr_segs);
 
 517	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
 518	l_ctx = nfs_get_lock_context(dreq->ctx);
 519	if (IS_ERR(l_ctx)) {
 520		result = PTR_ERR(l_ctx);
 521		goto out_release;
 522	}
 523	dreq->l_ctx = l_ctx;
 524	if (!is_sync_kiocb(iocb))
 525		dreq->iocb = iocb;
 526
 527	NFS_I(inode)->read_io += iov_length(iov, nr_segs);
 528	result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos, uio);
 529
 530	mutex_unlock(&inode->i_mutex);
 
 
 
 531
 532	if (!result) {
 533		result = nfs_direct_wait(dreq);
 534		if (result > 0)
 535			iocb->ki_pos = pos + result;
 536	}
 537
 538	nfs_direct_req_release(dreq);
 539	return result;
 540
 541out_release:
 542	nfs_direct_req_release(dreq);
 543out_unlock:
 544	mutex_unlock(&inode->i_mutex);
 545out:
 546	return result;
 547}
 548
 549#if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
 
 
 
 
 
 
 
 
 
 
 
 
 
 550static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
 551{
 552	struct nfs_pageio_descriptor desc;
 553	struct nfs_page *req, *tmp;
 554	LIST_HEAD(reqs);
 555	struct nfs_commit_info cinfo;
 556	LIST_HEAD(failed);
 
 557
 558	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 559	pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo);
 560	spin_lock(cinfo.lock);
 561	nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0);
 562	spin_unlock(cinfo.lock);
 563
 564	dreq->count = 0;
 
 
 
 
 565	get_dreq(dreq);
 566
 567	NFS_PROTO(dreq->inode)->write_pageio_init(&desc, dreq->inode, FLUSH_STABLE,
 568			      &nfs_direct_write_completion_ops);
 569	desc.pg_dreq = dreq;
 570
 
 
 
 
 
 
 
 571	list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
 572		if (!nfs_pageio_add_request(&desc, req)) {
 573			nfs_list_remove_request(req);
 574			nfs_list_add_request(req, &failed);
 575			spin_lock(cinfo.lock);
 576			dreq->flags = 0;
 577			dreq->error = -EIO;
 578			spin_unlock(cinfo.lock);
 
 
 
 579		}
 580		nfs_release_request(req);
 581	}
 582	nfs_pageio_complete(&desc);
 583
 
 584	while (!list_empty(&failed)) {
 585		req = nfs_list_entry(failed.next);
 586		nfs_list_remove_request(req);
 587		nfs_unlock_and_release_request(req);
 588	}
 589
 590	if (put_dreq(dreq))
 591		nfs_direct_write_complete(dreq, dreq->inode);
 592}
 593
 594static void nfs_direct_commit_complete(struct nfs_commit_data *data)
 595{
 596	struct nfs_direct_req *dreq = data->dreq;
 597	struct nfs_commit_info cinfo;
 598	struct nfs_page *req;
 599	int status = data->task.tk_status;
 600
 601	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 602	if (status < 0) {
 603		dprintk("NFS: %5u commit failed with error %d.\n",
 604			data->task.tk_pid, status);
 605		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 606	} else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
 607		dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
 608		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 609	}
 610
 611	dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
 612	while (!list_empty(&data->pages)) {
 613		req = nfs_list_entry(data->pages.next);
 614		nfs_list_remove_request(req);
 615		if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
 616			/* Note the rewrite will go through mds */
 617			nfs_mark_request_commit(req, NULL, &cinfo);
 618		} else
 619			nfs_release_request(req);
 620		nfs_unlock_and_release_request(req);
 621	}
 622
 623	if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
 624		nfs_direct_write_complete(dreq, data->inode);
 625}
 626
 627static void nfs_direct_error_cleanup(struct nfs_inode *nfsi)
 
 628{
 629	/* There is no lock to clear */
 
 
 
 
 
 630}
 631
 632static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
 633	.completion = nfs_direct_commit_complete,
 634	.error_cleanup = nfs_direct_error_cleanup,
 635};
 636
 637static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
 638{
 639	int res;
 640	struct nfs_commit_info cinfo;
 641	LIST_HEAD(mds_list);
 642
 643	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 644	nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
 645	res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
 646	if (res < 0) /* res == -ENOMEM */
 647		nfs_direct_write_reschedule(dreq);
 648}
 649
 650static void nfs_direct_write_schedule_work(struct work_struct *work)
 651{
 652	struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
 653	int flags = dreq->flags;
 654
 655	dreq->flags = 0;
 656	switch (flags) {
 657		case NFS_ODIRECT_DO_COMMIT:
 658			nfs_direct_commit_schedule(dreq);
 659			break;
 660		case NFS_ODIRECT_RESCHED_WRITES:
 661			nfs_direct_write_reschedule(dreq);
 662			break;
 663		default:
 664			nfs_direct_complete(dreq, true);
 
 665	}
 666}
 667
 668static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
 669{
 670	schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
 671}
 672
 673#else
 674static void nfs_direct_write_schedule_work(struct work_struct *work)
 675{
 676}
 677
 678static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
 679{
 680	nfs_direct_complete(dreq, true);
 681}
 682#endif
 683
 684/*
 685 * NB: Return the value of the first error return code.  Subsequent
 686 *     errors after the first one are ignored.
 687 */
 688/*
 689 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
 690 * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
 691 * bail and stop sending more writes.  Write length accounting is
 692 * handled automatically by nfs_direct_write_result().  Otherwise, if
 693 * no requests have been sent, just return an error.
 694 */
 695static ssize_t nfs_direct_write_schedule_segment(struct nfs_pageio_descriptor *desc,
 696						 const struct iovec *iov,
 697						 loff_t pos, bool uio)
 698{
 699	struct nfs_direct_req *dreq = desc->pg_dreq;
 700	struct nfs_open_context *ctx = dreq->ctx;
 701	struct inode *inode = ctx->dentry->d_inode;
 702	unsigned long user_addr = (unsigned long)iov->iov_base;
 703	size_t count = iov->iov_len;
 704	size_t wsize = NFS_SERVER(inode)->wsize;
 705	unsigned int pgbase;
 706	int result;
 707	ssize_t started = 0;
 708	struct page **pagevec = NULL;
 709	unsigned int npages;
 710
 711	do {
 712		size_t bytes;
 713		int i;
 714
 715		pgbase = user_addr & ~PAGE_MASK;
 716		bytes = min(max_t(size_t, wsize, PAGE_SIZE), count);
 717
 718		result = -ENOMEM;
 719		npages = nfs_page_array_len(pgbase, bytes);
 720		if (!pagevec)
 721			pagevec = kmalloc(npages * sizeof(struct page *), GFP_KERNEL);
 722		if (!pagevec)
 723			break;
 724
 725		if (uio) {
 726			down_read(&current->mm->mmap_sem);
 727			result = get_user_pages(current, current->mm, user_addr,
 728						npages, 0, 0, pagevec, NULL);
 729			up_read(&current->mm->mmap_sem);
 730			if (result < 0)
 731				break;
 732		} else {
 733			WARN_ON(npages != 1);
 734			result = get_kernel_page(user_addr, 0, pagevec);
 735			if (WARN_ON(result != 1))
 736				break;
 737		}
 738
 739		if ((unsigned)result < npages) {
 740			bytes = result * PAGE_SIZE;
 741			if (bytes <= pgbase) {
 742				nfs_direct_release_pages(pagevec, result);
 743				break;
 744			}
 745			bytes -= pgbase;
 746			npages = result;
 747		}
 748
 749		for (i = 0; i < npages; i++) {
 750			struct nfs_page *req;
 751			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
 752
 753			req = nfs_create_request(dreq->ctx, dreq->inode,
 754						 pagevec[i],
 755						 pgbase, req_len);
 756			if (IS_ERR(req)) {
 757				result = PTR_ERR(req);
 758				break;
 759			}
 760			nfs_lock_request(req);
 761			req->wb_index = pos >> PAGE_SHIFT;
 762			req->wb_offset = pos & ~PAGE_MASK;
 763			if (!nfs_pageio_add_request(desc, req)) {
 764				result = desc->pg_error;
 765				nfs_unlock_and_release_request(req);
 766				break;
 767			}
 768			pgbase = 0;
 769			bytes -= req_len;
 770			started += req_len;
 771			user_addr += req_len;
 772			pos += req_len;
 773			count -= req_len;
 774			dreq->bytes_left -= req_len;
 775		}
 776		/* The nfs_page now hold references to these pages */
 777		nfs_direct_release_pages(pagevec, npages);
 778	} while (count != 0 && result >= 0);
 779
 780	kfree(pagevec);
 781
 782	if (started)
 783		return started;
 784	return result < 0 ? (ssize_t) result : -EFAULT;
 785}
 786
 787static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
 788{
 789	struct nfs_direct_req *dreq = hdr->dreq;
 790	struct nfs_commit_info cinfo;
 791	int bit = -1;
 792	struct nfs_page *req = nfs_list_entry(hdr->pages.next);
 793
 794	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
 795		goto out_put;
 796
 797	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 798
 799	spin_lock(&dreq->lock);
 800
 801	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
 802		dreq->flags = 0;
 803		dreq->error = hdr->error;
 804	}
 805	if (dreq->error != 0)
 806		bit = NFS_IOHDR_ERROR;
 807	else {
 808		dreq->count += hdr->good_bytes;
 809		if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) {
 810			dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 811			bit = NFS_IOHDR_NEED_RESCHED;
 812		} else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) {
 813			if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
 814				bit = NFS_IOHDR_NEED_RESCHED;
 815			else if (dreq->flags == 0) {
 816				memcpy(&dreq->verf, hdr->verf,
 817				       sizeof(dreq->verf));
 818				bit = NFS_IOHDR_NEED_COMMIT;
 819				dreq->flags = NFS_ODIRECT_DO_COMMIT;
 820			} else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
 821				if (memcmp(&dreq->verf, hdr->verf, sizeof(dreq->verf))) {
 822					dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 823					bit = NFS_IOHDR_NEED_RESCHED;
 824				} else
 825					bit = NFS_IOHDR_NEED_COMMIT;
 826			}
 827		}
 828	}
 829	spin_unlock(&dreq->lock);
 830
 831	while (!list_empty(&hdr->pages)) {
 
 832		req = nfs_list_entry(hdr->pages.next);
 833		nfs_list_remove_request(req);
 834		switch (bit) {
 835		case NFS_IOHDR_NEED_RESCHED:
 836		case NFS_IOHDR_NEED_COMMIT:
 837			kref_get(&req->wb_kref);
 838			nfs_mark_request_commit(req, hdr->lseg, &cinfo);
 
 839		}
 840		nfs_unlock_and_release_request(req);
 841	}
 842
 843out_put:
 844	if (put_dreq(dreq))
 845		nfs_direct_write_complete(dreq, hdr->inode);
 846	hdr->release(hdr);
 847}
 848
 849static void nfs_write_sync_pgio_error(struct list_head *head)
 850{
 851	struct nfs_page *req;
 852
 853	while (!list_empty(head)) {
 854		req = nfs_list_entry(head->next);
 855		nfs_list_remove_request(req);
 856		nfs_unlock_and_release_request(req);
 857	}
 858}
 859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 860static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
 861	.error_cleanup = nfs_write_sync_pgio_error,
 862	.init_hdr = nfs_direct_pgio_init,
 863	.completion = nfs_direct_write_completion,
 
 864};
 865
 
 
 
 
 
 
 
 
 
 
 
 
 866static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
 867					       const struct iovec *iov,
 868					       unsigned long nr_segs,
 869					       loff_t pos, bool uio)
 870{
 871	struct nfs_pageio_descriptor desc;
 872	struct inode *inode = dreq->inode;
 873	ssize_t result = 0;
 874	size_t requested_bytes = 0;
 875	unsigned long seg;
 876
 877	NFS_PROTO(inode)->write_pageio_init(&desc, inode, FLUSH_COND_STABLE,
 878			      &nfs_direct_write_completion_ops);
 879	desc.pg_dreq = dreq;
 880	get_dreq(dreq);
 881	atomic_inc(&inode->i_dio_count);
 
 
 
 
 
 
 
 882
 883	NFS_I(dreq->inode)->write_io += iov_length(iov, nr_segs);
 884	for (seg = 0; seg < nr_segs; seg++) {
 885		const struct iovec *vec = &iov[seg];
 886		result = nfs_direct_write_schedule_segment(&desc, vec, pos, uio);
 887		if (result < 0)
 888			break;
 889		requested_bytes += result;
 890		if ((size_t)result < vec->iov_len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 891			break;
 892		pos += vec->iov_len;
 893	}
 894	nfs_pageio_complete(&desc);
 895
 896	/*
 897	 * If no bytes were started, return the error, and let the
 898	 * generic layer handle the completion.
 899	 */
 900	if (requested_bytes == 0) {
 901		inode_dio_done(inode);
 902		nfs_direct_req_release(dreq);
 903		return result < 0 ? result : -EIO;
 904	}
 905
 906	if (put_dreq(dreq))
 907		nfs_direct_write_complete(dreq, dreq->inode);
 908	return 0;
 909}
 910
 911/**
 912 * nfs_file_direct_write - file direct write operation for NFS files
 913 * @iocb: target I/O control block
 914 * @iov: vector of user buffers from which to write data
 915 * @nr_segs: size of iov vector
 916 * @pos: byte offset in file where writing starts
 917 *
 918 * We use this function for direct writes instead of calling
 919 * generic_file_aio_write() in order to avoid taking the inode
 920 * semaphore and updating the i_size.  The NFS server will set
 921 * the new i_size and this client must read the updated size
 922 * back into its cache.  We let the server do generic write
 923 * parameter checking and report problems.
 924 *
 925 * We eliminate local atime updates, see direct read above.
 926 *
 927 * We avoid unnecessary page cache invalidations for normal cached
 928 * readers of this file.
 929 *
 930 * Note that O_APPEND is not supported for NFS direct writes, as there
 931 * is no atomic O_APPEND write facility in the NFS protocol.
 932 */
 933ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
 934				unsigned long nr_segs, loff_t pos, bool uio)
 935{
 936	ssize_t result = -EINVAL;
 
 937	struct file *file = iocb->ki_filp;
 938	struct address_space *mapping = file->f_mapping;
 939	struct inode *inode = mapping->host;
 940	struct nfs_direct_req *dreq;
 941	struct nfs_lock_context *l_ctx;
 942	loff_t end;
 943	size_t count;
 944
 945	count = iov_length(iov, nr_segs);
 946	end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
 947
 
 
 
 
 948	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
 949
 950	dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
 951		file, count, (long long) pos);
 952
 953	result = generic_write_checks(file, &pos, &count, 0);
 954	if (result)
 955		goto out;
 956
 957	result = -EINVAL;
 958	if ((ssize_t) count < 0)
 959		goto out;
 960	result = 0;
 961	if (!count)
 962		goto out;
 963
 964	mutex_lock(&inode->i_mutex);
 965
 966	result = nfs_sync_mapping(mapping);
 967	if (result)
 968		goto out_unlock;
 969
 970	if (mapping->nrpages) {
 971		result = invalidate_inode_pages2_range(mapping,
 972					pos >> PAGE_CACHE_SHIFT, end);
 973		if (result)
 974			goto out_unlock;
 975	}
 976
 977	task_io_account_write(count);
 978
 979	result = -ENOMEM;
 980	dreq = nfs_direct_req_alloc();
 981	if (!dreq)
 982		goto out_unlock;
 983
 984	dreq->inode = inode;
 985	dreq->bytes_left = count;
 
 986	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
 987	l_ctx = nfs_get_lock_context(dreq->ctx);
 988	if (IS_ERR(l_ctx)) {
 989		result = PTR_ERR(l_ctx);
 990		goto out_release;
 991	}
 992	dreq->l_ctx = l_ctx;
 993	if (!is_sync_kiocb(iocb))
 994		dreq->iocb = iocb;
 995
 996	result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, uio);
 
 
 997
 998	if (mapping->nrpages) {
 999		invalidate_inode_pages2_range(mapping,
1000					      pos >> PAGE_CACHE_SHIFT, end);
1001	}
1002
1003	mutex_unlock(&inode->i_mutex);
1004
1005	if (!result) {
1006		result = nfs_direct_wait(dreq);
1007		if (result > 0) {
1008			struct inode *inode = mapping->host;
1009
1010			iocb->ki_pos = pos + result;
1011			spin_lock(&inode->i_lock);
1012			if (i_size_read(inode) < iocb->ki_pos)
1013				i_size_write(inode, iocb->ki_pos);
1014			spin_unlock(&inode->i_lock);
1015		}
1016	}
1017	nfs_direct_req_release(dreq);
1018	return result;
1019
1020out_release:
1021	nfs_direct_req_release(dreq);
1022out_unlock:
1023	mutex_unlock(&inode->i_mutex);
1024out:
1025	return result;
1026}
1027
1028/**
1029 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1030 *
1031 */
1032int __init nfs_init_directcache(void)
1033{
1034	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1035						sizeof(struct nfs_direct_req),
1036						0, (SLAB_RECLAIM_ACCOUNT|
1037							SLAB_MEM_SPREAD),
1038						NULL);
1039	if (nfs_direct_cachep == NULL)
1040		return -ENOMEM;
1041
1042	return 0;
1043}
1044
1045/**
1046 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1047 *
1048 */
1049void nfs_destroy_directcache(void)
1050{
1051	kmem_cache_destroy(nfs_direct_cachep);
1052}