Loading...
1/* linux/arch/arm/mach-exynos4/mct.c
2 *
3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
5 *
6 * EXYNOS4 MCT(Multi-Core Timer) support
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11*/
12
13#include <linux/sched.h>
14#include <linux/interrupt.h>
15#include <linux/irq.h>
16#include <linux/err.h>
17#include <linux/clk.h>
18#include <linux/clockchips.h>
19#include <linux/cpu.h>
20#include <linux/platform_device.h>
21#include <linux/delay.h>
22#include <linux/percpu.h>
23#include <linux/of.h>
24#include <linux/of_irq.h>
25#include <linux/of_address.h>
26#include <linux/clocksource.h>
27#include <linux/sched_clock.h>
28
29#define EXYNOS4_MCTREG(x) (x)
30#define EXYNOS4_MCT_G_CNT_L EXYNOS4_MCTREG(0x100)
31#define EXYNOS4_MCT_G_CNT_U EXYNOS4_MCTREG(0x104)
32#define EXYNOS4_MCT_G_CNT_WSTAT EXYNOS4_MCTREG(0x110)
33#define EXYNOS4_MCT_G_COMP0_L EXYNOS4_MCTREG(0x200)
34#define EXYNOS4_MCT_G_COMP0_U EXYNOS4_MCTREG(0x204)
35#define EXYNOS4_MCT_G_COMP0_ADD_INCR EXYNOS4_MCTREG(0x208)
36#define EXYNOS4_MCT_G_TCON EXYNOS4_MCTREG(0x240)
37#define EXYNOS4_MCT_G_INT_CSTAT EXYNOS4_MCTREG(0x244)
38#define EXYNOS4_MCT_G_INT_ENB EXYNOS4_MCTREG(0x248)
39#define EXYNOS4_MCT_G_WSTAT EXYNOS4_MCTREG(0x24C)
40#define _EXYNOS4_MCT_L_BASE EXYNOS4_MCTREG(0x300)
41#define EXYNOS4_MCT_L_BASE(x) (_EXYNOS4_MCT_L_BASE + (0x100 * x))
42#define EXYNOS4_MCT_L_MASK (0xffffff00)
43
44#define MCT_L_TCNTB_OFFSET (0x00)
45#define MCT_L_ICNTB_OFFSET (0x08)
46#define MCT_L_TCON_OFFSET (0x20)
47#define MCT_L_INT_CSTAT_OFFSET (0x30)
48#define MCT_L_INT_ENB_OFFSET (0x34)
49#define MCT_L_WSTAT_OFFSET (0x40)
50#define MCT_G_TCON_START (1 << 8)
51#define MCT_G_TCON_COMP0_AUTO_INC (1 << 1)
52#define MCT_G_TCON_COMP0_ENABLE (1 << 0)
53#define MCT_L_TCON_INTERVAL_MODE (1 << 2)
54#define MCT_L_TCON_INT_START (1 << 1)
55#define MCT_L_TCON_TIMER_START (1 << 0)
56
57#define TICK_BASE_CNT 1
58
59enum {
60 MCT_INT_SPI,
61 MCT_INT_PPI
62};
63
64enum {
65 MCT_G0_IRQ,
66 MCT_G1_IRQ,
67 MCT_G2_IRQ,
68 MCT_G3_IRQ,
69 MCT_L0_IRQ,
70 MCT_L1_IRQ,
71 MCT_L2_IRQ,
72 MCT_L3_IRQ,
73 MCT_L4_IRQ,
74 MCT_L5_IRQ,
75 MCT_L6_IRQ,
76 MCT_L7_IRQ,
77 MCT_NR_IRQS,
78};
79
80static void __iomem *reg_base;
81static unsigned long clk_rate;
82static unsigned int mct_int_type;
83static int mct_irqs[MCT_NR_IRQS];
84
85struct mct_clock_event_device {
86 struct clock_event_device evt;
87 unsigned long base;
88 char name[10];
89};
90
91static void exynos4_mct_write(unsigned int value, unsigned long offset)
92{
93 unsigned long stat_addr;
94 u32 mask;
95 u32 i;
96
97 writel_relaxed(value, reg_base + offset);
98
99 if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
100 stat_addr = (offset & EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
101 switch (offset & ~EXYNOS4_MCT_L_MASK) {
102 case MCT_L_TCON_OFFSET:
103 mask = 1 << 3; /* L_TCON write status */
104 break;
105 case MCT_L_ICNTB_OFFSET:
106 mask = 1 << 1; /* L_ICNTB write status */
107 break;
108 case MCT_L_TCNTB_OFFSET:
109 mask = 1 << 0; /* L_TCNTB write status */
110 break;
111 default:
112 return;
113 }
114 } else {
115 switch (offset) {
116 case EXYNOS4_MCT_G_TCON:
117 stat_addr = EXYNOS4_MCT_G_WSTAT;
118 mask = 1 << 16; /* G_TCON write status */
119 break;
120 case EXYNOS4_MCT_G_COMP0_L:
121 stat_addr = EXYNOS4_MCT_G_WSTAT;
122 mask = 1 << 0; /* G_COMP0_L write status */
123 break;
124 case EXYNOS4_MCT_G_COMP0_U:
125 stat_addr = EXYNOS4_MCT_G_WSTAT;
126 mask = 1 << 1; /* G_COMP0_U write status */
127 break;
128 case EXYNOS4_MCT_G_COMP0_ADD_INCR:
129 stat_addr = EXYNOS4_MCT_G_WSTAT;
130 mask = 1 << 2; /* G_COMP0_ADD_INCR w status */
131 break;
132 case EXYNOS4_MCT_G_CNT_L:
133 stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
134 mask = 1 << 0; /* G_CNT_L write status */
135 break;
136 case EXYNOS4_MCT_G_CNT_U:
137 stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
138 mask = 1 << 1; /* G_CNT_U write status */
139 break;
140 default:
141 return;
142 }
143 }
144
145 /* Wait maximum 1 ms until written values are applied */
146 for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
147 if (readl_relaxed(reg_base + stat_addr) & mask) {
148 writel_relaxed(mask, reg_base + stat_addr);
149 return;
150 }
151
152 panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
153}
154
155/* Clocksource handling */
156static void exynos4_mct_frc_start(void)
157{
158 u32 reg;
159
160 reg = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
161 reg |= MCT_G_TCON_START;
162 exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
163}
164
165/**
166 * exynos4_read_count_64 - Read all 64-bits of the global counter
167 *
168 * This will read all 64-bits of the global counter taking care to make sure
169 * that the upper and lower half match. Note that reading the MCT can be quite
170 * slow (hundreds of nanoseconds) so you should use the 32-bit (lower half
171 * only) version when possible.
172 *
173 * Returns the number of cycles in the global counter.
174 */
175static u64 exynos4_read_count_64(void)
176{
177 unsigned int lo, hi;
178 u32 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
179
180 do {
181 hi = hi2;
182 lo = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
183 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
184 } while (hi != hi2);
185
186 return ((u64)hi << 32) | lo;
187}
188
189/**
190 * exynos4_read_count_32 - Read the lower 32-bits of the global counter
191 *
192 * This will read just the lower 32-bits of the global counter. This is marked
193 * as notrace so it can be used by the scheduler clock.
194 *
195 * Returns the number of cycles in the global counter (lower 32 bits).
196 */
197static u32 notrace exynos4_read_count_32(void)
198{
199 return readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
200}
201
202static u64 exynos4_frc_read(struct clocksource *cs)
203{
204 return exynos4_read_count_32();
205}
206
207static void exynos4_frc_resume(struct clocksource *cs)
208{
209 exynos4_mct_frc_start();
210}
211
212static struct clocksource mct_frc = {
213 .name = "mct-frc",
214 .rating = 400,
215 .read = exynos4_frc_read,
216 .mask = CLOCKSOURCE_MASK(32),
217 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
218 .resume = exynos4_frc_resume,
219};
220
221static u64 notrace exynos4_read_sched_clock(void)
222{
223 return exynos4_read_count_32();
224}
225
226#if defined(CONFIG_ARM)
227static struct delay_timer exynos4_delay_timer;
228
229static cycles_t exynos4_read_current_timer(void)
230{
231 BUILD_BUG_ON_MSG(sizeof(cycles_t) != sizeof(u32),
232 "cycles_t needs to move to 32-bit for ARM64 usage");
233 return exynos4_read_count_32();
234}
235#endif
236
237static int __init exynos4_clocksource_init(void)
238{
239 exynos4_mct_frc_start();
240
241#if defined(CONFIG_ARM)
242 exynos4_delay_timer.read_current_timer = &exynos4_read_current_timer;
243 exynos4_delay_timer.freq = clk_rate;
244 register_current_timer_delay(&exynos4_delay_timer);
245#endif
246
247 if (clocksource_register_hz(&mct_frc, clk_rate))
248 panic("%s: can't register clocksource\n", mct_frc.name);
249
250 sched_clock_register(exynos4_read_sched_clock, 32, clk_rate);
251
252 return 0;
253}
254
255static void exynos4_mct_comp0_stop(void)
256{
257 unsigned int tcon;
258
259 tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
260 tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
261
262 exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
263 exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
264}
265
266static void exynos4_mct_comp0_start(bool periodic, unsigned long cycles)
267{
268 unsigned int tcon;
269 u64 comp_cycle;
270
271 tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
272
273 if (periodic) {
274 tcon |= MCT_G_TCON_COMP0_AUTO_INC;
275 exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
276 }
277
278 comp_cycle = exynos4_read_count_64() + cycles;
279 exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
280 exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
281
282 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
283
284 tcon |= MCT_G_TCON_COMP0_ENABLE;
285 exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
286}
287
288static int exynos4_comp_set_next_event(unsigned long cycles,
289 struct clock_event_device *evt)
290{
291 exynos4_mct_comp0_start(false, cycles);
292
293 return 0;
294}
295
296static int mct_set_state_shutdown(struct clock_event_device *evt)
297{
298 exynos4_mct_comp0_stop();
299 return 0;
300}
301
302static int mct_set_state_periodic(struct clock_event_device *evt)
303{
304 unsigned long cycles_per_jiffy;
305
306 cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
307 >> evt->shift);
308 exynos4_mct_comp0_stop();
309 exynos4_mct_comp0_start(true, cycles_per_jiffy);
310 return 0;
311}
312
313static struct clock_event_device mct_comp_device = {
314 .name = "mct-comp",
315 .features = CLOCK_EVT_FEAT_PERIODIC |
316 CLOCK_EVT_FEAT_ONESHOT,
317 .rating = 250,
318 .set_next_event = exynos4_comp_set_next_event,
319 .set_state_periodic = mct_set_state_periodic,
320 .set_state_shutdown = mct_set_state_shutdown,
321 .set_state_oneshot = mct_set_state_shutdown,
322 .set_state_oneshot_stopped = mct_set_state_shutdown,
323 .tick_resume = mct_set_state_shutdown,
324};
325
326static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
327{
328 struct clock_event_device *evt = dev_id;
329
330 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
331
332 evt->event_handler(evt);
333
334 return IRQ_HANDLED;
335}
336
337static struct irqaction mct_comp_event_irq = {
338 .name = "mct_comp_irq",
339 .flags = IRQF_TIMER | IRQF_IRQPOLL,
340 .handler = exynos4_mct_comp_isr,
341 .dev_id = &mct_comp_device,
342};
343
344static int exynos4_clockevent_init(void)
345{
346 mct_comp_device.cpumask = cpumask_of(0);
347 clockevents_config_and_register(&mct_comp_device, clk_rate,
348 0xf, 0xffffffff);
349 setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq);
350
351 return 0;
352}
353
354static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
355
356/* Clock event handling */
357static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
358{
359 unsigned long tmp;
360 unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
361 unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
362
363 tmp = readl_relaxed(reg_base + offset);
364 if (tmp & mask) {
365 tmp &= ~mask;
366 exynos4_mct_write(tmp, offset);
367 }
368}
369
370static void exynos4_mct_tick_start(unsigned long cycles,
371 struct mct_clock_event_device *mevt)
372{
373 unsigned long tmp;
374
375 exynos4_mct_tick_stop(mevt);
376
377 tmp = (1 << 31) | cycles; /* MCT_L_UPDATE_ICNTB */
378
379 /* update interrupt count buffer */
380 exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
381
382 /* enable MCT tick interrupt */
383 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
384
385 tmp = readl_relaxed(reg_base + mevt->base + MCT_L_TCON_OFFSET);
386 tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
387 MCT_L_TCON_INTERVAL_MODE;
388 exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
389}
390
391static int exynos4_tick_set_next_event(unsigned long cycles,
392 struct clock_event_device *evt)
393{
394 struct mct_clock_event_device *mevt;
395
396 mevt = container_of(evt, struct mct_clock_event_device, evt);
397 exynos4_mct_tick_start(cycles, mevt);
398 return 0;
399}
400
401static int set_state_shutdown(struct clock_event_device *evt)
402{
403 struct mct_clock_event_device *mevt;
404
405 mevt = container_of(evt, struct mct_clock_event_device, evt);
406 exynos4_mct_tick_stop(mevt);
407 return 0;
408}
409
410static int set_state_periodic(struct clock_event_device *evt)
411{
412 struct mct_clock_event_device *mevt;
413 unsigned long cycles_per_jiffy;
414
415 mevt = container_of(evt, struct mct_clock_event_device, evt);
416 cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
417 >> evt->shift);
418 exynos4_mct_tick_stop(mevt);
419 exynos4_mct_tick_start(cycles_per_jiffy, mevt);
420 return 0;
421}
422
423static void exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
424{
425 /*
426 * This is for supporting oneshot mode.
427 * Mct would generate interrupt periodically
428 * without explicit stopping.
429 */
430 if (!clockevent_state_periodic(&mevt->evt))
431 exynos4_mct_tick_stop(mevt);
432
433 /* Clear the MCT tick interrupt */
434 if (readl_relaxed(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1)
435 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
436}
437
438static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
439{
440 struct mct_clock_event_device *mevt = dev_id;
441 struct clock_event_device *evt = &mevt->evt;
442
443 exynos4_mct_tick_clear(mevt);
444
445 evt->event_handler(evt);
446
447 return IRQ_HANDLED;
448}
449
450static int exynos4_mct_starting_cpu(unsigned int cpu)
451{
452 struct mct_clock_event_device *mevt =
453 per_cpu_ptr(&percpu_mct_tick, cpu);
454 struct clock_event_device *evt = &mevt->evt;
455
456 mevt->base = EXYNOS4_MCT_L_BASE(cpu);
457 snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);
458
459 evt->name = mevt->name;
460 evt->cpumask = cpumask_of(cpu);
461 evt->set_next_event = exynos4_tick_set_next_event;
462 evt->set_state_periodic = set_state_periodic;
463 evt->set_state_shutdown = set_state_shutdown;
464 evt->set_state_oneshot = set_state_shutdown;
465 evt->set_state_oneshot_stopped = set_state_shutdown;
466 evt->tick_resume = set_state_shutdown;
467 evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
468 evt->rating = 450;
469
470 exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
471
472 if (mct_int_type == MCT_INT_SPI) {
473
474 if (evt->irq == -1)
475 return -EIO;
476
477 irq_force_affinity(evt->irq, cpumask_of(cpu));
478 enable_irq(evt->irq);
479 } else {
480 enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
481 }
482 clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
483 0xf, 0x7fffffff);
484
485 return 0;
486}
487
488static int exynos4_mct_dying_cpu(unsigned int cpu)
489{
490 struct mct_clock_event_device *mevt =
491 per_cpu_ptr(&percpu_mct_tick, cpu);
492 struct clock_event_device *evt = &mevt->evt;
493
494 evt->set_state_shutdown(evt);
495 if (mct_int_type == MCT_INT_SPI) {
496 if (evt->irq != -1)
497 disable_irq_nosync(evt->irq);
498 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
499 } else {
500 disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
501 }
502 return 0;
503}
504
505static int __init exynos4_timer_resources(struct device_node *np, void __iomem *base)
506{
507 int err, cpu;
508 struct clk *mct_clk, *tick_clk;
509
510 tick_clk = np ? of_clk_get_by_name(np, "fin_pll") :
511 clk_get(NULL, "fin_pll");
512 if (IS_ERR(tick_clk))
513 panic("%s: unable to determine tick clock rate\n", __func__);
514 clk_rate = clk_get_rate(tick_clk);
515
516 mct_clk = np ? of_clk_get_by_name(np, "mct") : clk_get(NULL, "mct");
517 if (IS_ERR(mct_clk))
518 panic("%s: unable to retrieve mct clock instance\n", __func__);
519 clk_prepare_enable(mct_clk);
520
521 reg_base = base;
522 if (!reg_base)
523 panic("%s: unable to ioremap mct address space\n", __func__);
524
525 if (mct_int_type == MCT_INT_PPI) {
526
527 err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
528 exynos4_mct_tick_isr, "MCT",
529 &percpu_mct_tick);
530 WARN(err, "MCT: can't request IRQ %d (%d)\n",
531 mct_irqs[MCT_L0_IRQ], err);
532 } else {
533 for_each_possible_cpu(cpu) {
534 int mct_irq = mct_irqs[MCT_L0_IRQ + cpu];
535 struct mct_clock_event_device *pcpu_mevt =
536 per_cpu_ptr(&percpu_mct_tick, cpu);
537
538 pcpu_mevt->evt.irq = -1;
539
540 irq_set_status_flags(mct_irq, IRQ_NOAUTOEN);
541 if (request_irq(mct_irq,
542 exynos4_mct_tick_isr,
543 IRQF_TIMER | IRQF_NOBALANCING,
544 pcpu_mevt->name, pcpu_mevt)) {
545 pr_err("exynos-mct: cannot register IRQ (cpu%d)\n",
546 cpu);
547
548 continue;
549 }
550 pcpu_mevt->evt.irq = mct_irq;
551 }
552 }
553
554 /* Install hotplug callbacks which configure the timer on this CPU */
555 err = cpuhp_setup_state(CPUHP_AP_EXYNOS4_MCT_TIMER_STARTING,
556 "clockevents/exynos4/mct_timer:starting",
557 exynos4_mct_starting_cpu,
558 exynos4_mct_dying_cpu);
559 if (err)
560 goto out_irq;
561
562 return 0;
563
564out_irq:
565 free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
566 return err;
567}
568
569static int __init mct_init_dt(struct device_node *np, unsigned int int_type)
570{
571 u32 nr_irqs, i;
572 int ret;
573
574 mct_int_type = int_type;
575
576 /* This driver uses only one global timer interrupt */
577 mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
578
579 /*
580 * Find out the number of local irqs specified. The local
581 * timer irqs are specified after the four global timer
582 * irqs are specified.
583 */
584#ifdef CONFIG_OF
585 nr_irqs = of_irq_count(np);
586#else
587 nr_irqs = 0;
588#endif
589 for (i = MCT_L0_IRQ; i < nr_irqs; i++)
590 mct_irqs[i] = irq_of_parse_and_map(np, i);
591
592 ret = exynos4_timer_resources(np, of_iomap(np, 0));
593 if (ret)
594 return ret;
595
596 ret = exynos4_clocksource_init();
597 if (ret)
598 return ret;
599
600 return exynos4_clockevent_init();
601}
602
603
604static int __init mct_init_spi(struct device_node *np)
605{
606 return mct_init_dt(np, MCT_INT_SPI);
607}
608
609static int __init mct_init_ppi(struct device_node *np)
610{
611 return mct_init_dt(np, MCT_INT_PPI);
612}
613CLOCKSOURCE_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
614CLOCKSOURCE_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);
1/* linux/arch/arm/mach-exynos4/mct.c
2 *
3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
5 *
6 * EXYNOS4 MCT(Multi-Core Timer) support
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11*/
12
13#include <linux/sched.h>
14#include <linux/interrupt.h>
15#include <linux/irq.h>
16#include <linux/err.h>
17#include <linux/clk.h>
18#include <linux/clockchips.h>
19#include <linux/cpu.h>
20#include <linux/platform_device.h>
21#include <linux/delay.h>
22#include <linux/percpu.h>
23#include <linux/of.h>
24#include <linux/of_irq.h>
25#include <linux/of_address.h>
26#include <linux/clocksource.h>
27
28#define EXYNOS4_MCTREG(x) (x)
29#define EXYNOS4_MCT_G_CNT_L EXYNOS4_MCTREG(0x100)
30#define EXYNOS4_MCT_G_CNT_U EXYNOS4_MCTREG(0x104)
31#define EXYNOS4_MCT_G_CNT_WSTAT EXYNOS4_MCTREG(0x110)
32#define EXYNOS4_MCT_G_COMP0_L EXYNOS4_MCTREG(0x200)
33#define EXYNOS4_MCT_G_COMP0_U EXYNOS4_MCTREG(0x204)
34#define EXYNOS4_MCT_G_COMP0_ADD_INCR EXYNOS4_MCTREG(0x208)
35#define EXYNOS4_MCT_G_TCON EXYNOS4_MCTREG(0x240)
36#define EXYNOS4_MCT_G_INT_CSTAT EXYNOS4_MCTREG(0x244)
37#define EXYNOS4_MCT_G_INT_ENB EXYNOS4_MCTREG(0x248)
38#define EXYNOS4_MCT_G_WSTAT EXYNOS4_MCTREG(0x24C)
39#define _EXYNOS4_MCT_L_BASE EXYNOS4_MCTREG(0x300)
40#define EXYNOS4_MCT_L_BASE(x) (_EXYNOS4_MCT_L_BASE + (0x100 * x))
41#define EXYNOS4_MCT_L_MASK (0xffffff00)
42
43#define MCT_L_TCNTB_OFFSET (0x00)
44#define MCT_L_ICNTB_OFFSET (0x08)
45#define MCT_L_TCON_OFFSET (0x20)
46#define MCT_L_INT_CSTAT_OFFSET (0x30)
47#define MCT_L_INT_ENB_OFFSET (0x34)
48#define MCT_L_WSTAT_OFFSET (0x40)
49#define MCT_G_TCON_START (1 << 8)
50#define MCT_G_TCON_COMP0_AUTO_INC (1 << 1)
51#define MCT_G_TCON_COMP0_ENABLE (1 << 0)
52#define MCT_L_TCON_INTERVAL_MODE (1 << 2)
53#define MCT_L_TCON_INT_START (1 << 1)
54#define MCT_L_TCON_TIMER_START (1 << 0)
55
56#define TICK_BASE_CNT 1
57
58enum {
59 MCT_INT_SPI,
60 MCT_INT_PPI
61};
62
63enum {
64 MCT_G0_IRQ,
65 MCT_G1_IRQ,
66 MCT_G2_IRQ,
67 MCT_G3_IRQ,
68 MCT_L0_IRQ,
69 MCT_L1_IRQ,
70 MCT_L2_IRQ,
71 MCT_L3_IRQ,
72 MCT_L4_IRQ,
73 MCT_L5_IRQ,
74 MCT_L6_IRQ,
75 MCT_L7_IRQ,
76 MCT_NR_IRQS,
77};
78
79static void __iomem *reg_base;
80static unsigned long clk_rate;
81static unsigned int mct_int_type;
82static int mct_irqs[MCT_NR_IRQS];
83
84struct mct_clock_event_device {
85 struct clock_event_device evt;
86 unsigned long base;
87 char name[10];
88};
89
90static void exynos4_mct_write(unsigned int value, unsigned long offset)
91{
92 unsigned long stat_addr;
93 u32 mask;
94 u32 i;
95
96 __raw_writel(value, reg_base + offset);
97
98 if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
99 stat_addr = (offset & ~EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
100 switch (offset & EXYNOS4_MCT_L_MASK) {
101 case MCT_L_TCON_OFFSET:
102 mask = 1 << 3; /* L_TCON write status */
103 break;
104 case MCT_L_ICNTB_OFFSET:
105 mask = 1 << 1; /* L_ICNTB write status */
106 break;
107 case MCT_L_TCNTB_OFFSET:
108 mask = 1 << 0; /* L_TCNTB write status */
109 break;
110 default:
111 return;
112 }
113 } else {
114 switch (offset) {
115 case EXYNOS4_MCT_G_TCON:
116 stat_addr = EXYNOS4_MCT_G_WSTAT;
117 mask = 1 << 16; /* G_TCON write status */
118 break;
119 case EXYNOS4_MCT_G_COMP0_L:
120 stat_addr = EXYNOS4_MCT_G_WSTAT;
121 mask = 1 << 0; /* G_COMP0_L write status */
122 break;
123 case EXYNOS4_MCT_G_COMP0_U:
124 stat_addr = EXYNOS4_MCT_G_WSTAT;
125 mask = 1 << 1; /* G_COMP0_U write status */
126 break;
127 case EXYNOS4_MCT_G_COMP0_ADD_INCR:
128 stat_addr = EXYNOS4_MCT_G_WSTAT;
129 mask = 1 << 2; /* G_COMP0_ADD_INCR w status */
130 break;
131 case EXYNOS4_MCT_G_CNT_L:
132 stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
133 mask = 1 << 0; /* G_CNT_L write status */
134 break;
135 case EXYNOS4_MCT_G_CNT_U:
136 stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
137 mask = 1 << 1; /* G_CNT_U write status */
138 break;
139 default:
140 return;
141 }
142 }
143
144 /* Wait maximum 1 ms until written values are applied */
145 for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
146 if (__raw_readl(reg_base + stat_addr) & mask) {
147 __raw_writel(mask, reg_base + stat_addr);
148 return;
149 }
150
151 panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
152}
153
154/* Clocksource handling */
155static void exynos4_mct_frc_start(u32 hi, u32 lo)
156{
157 u32 reg;
158
159 exynos4_mct_write(lo, EXYNOS4_MCT_G_CNT_L);
160 exynos4_mct_write(hi, EXYNOS4_MCT_G_CNT_U);
161
162 reg = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
163 reg |= MCT_G_TCON_START;
164 exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
165}
166
167static cycle_t exynos4_frc_read(struct clocksource *cs)
168{
169 unsigned int lo, hi;
170 u32 hi2 = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_U);
171
172 do {
173 hi = hi2;
174 lo = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_L);
175 hi2 = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_U);
176 } while (hi != hi2);
177
178 return ((cycle_t)hi << 32) | lo;
179}
180
181static void exynos4_frc_resume(struct clocksource *cs)
182{
183 exynos4_mct_frc_start(0, 0);
184}
185
186struct clocksource mct_frc = {
187 .name = "mct-frc",
188 .rating = 400,
189 .read = exynos4_frc_read,
190 .mask = CLOCKSOURCE_MASK(64),
191 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
192 .resume = exynos4_frc_resume,
193};
194
195static void __init exynos4_clocksource_init(void)
196{
197 exynos4_mct_frc_start(0, 0);
198
199 if (clocksource_register_hz(&mct_frc, clk_rate))
200 panic("%s: can't register clocksource\n", mct_frc.name);
201}
202
203static void exynos4_mct_comp0_stop(void)
204{
205 unsigned int tcon;
206
207 tcon = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
208 tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
209
210 exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
211 exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
212}
213
214static void exynos4_mct_comp0_start(enum clock_event_mode mode,
215 unsigned long cycles)
216{
217 unsigned int tcon;
218 cycle_t comp_cycle;
219
220 tcon = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
221
222 if (mode == CLOCK_EVT_MODE_PERIODIC) {
223 tcon |= MCT_G_TCON_COMP0_AUTO_INC;
224 exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
225 }
226
227 comp_cycle = exynos4_frc_read(&mct_frc) + cycles;
228 exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
229 exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
230
231 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
232
233 tcon |= MCT_G_TCON_COMP0_ENABLE;
234 exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
235}
236
237static int exynos4_comp_set_next_event(unsigned long cycles,
238 struct clock_event_device *evt)
239{
240 exynos4_mct_comp0_start(evt->mode, cycles);
241
242 return 0;
243}
244
245static void exynos4_comp_set_mode(enum clock_event_mode mode,
246 struct clock_event_device *evt)
247{
248 unsigned long cycles_per_jiffy;
249 exynos4_mct_comp0_stop();
250
251 switch (mode) {
252 case CLOCK_EVT_MODE_PERIODIC:
253 cycles_per_jiffy =
254 (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
255 exynos4_mct_comp0_start(mode, cycles_per_jiffy);
256 break;
257
258 case CLOCK_EVT_MODE_ONESHOT:
259 case CLOCK_EVT_MODE_UNUSED:
260 case CLOCK_EVT_MODE_SHUTDOWN:
261 case CLOCK_EVT_MODE_RESUME:
262 break;
263 }
264}
265
266static struct clock_event_device mct_comp_device = {
267 .name = "mct-comp",
268 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
269 .rating = 250,
270 .set_next_event = exynos4_comp_set_next_event,
271 .set_mode = exynos4_comp_set_mode,
272};
273
274static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
275{
276 struct clock_event_device *evt = dev_id;
277
278 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
279
280 evt->event_handler(evt);
281
282 return IRQ_HANDLED;
283}
284
285static struct irqaction mct_comp_event_irq = {
286 .name = "mct_comp_irq",
287 .flags = IRQF_TIMER | IRQF_IRQPOLL,
288 .handler = exynos4_mct_comp_isr,
289 .dev_id = &mct_comp_device,
290};
291
292static void exynos4_clockevent_init(void)
293{
294 mct_comp_device.cpumask = cpumask_of(0);
295 clockevents_config_and_register(&mct_comp_device, clk_rate,
296 0xf, 0xffffffff);
297 setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq);
298}
299
300static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
301
302/* Clock event handling */
303static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
304{
305 unsigned long tmp;
306 unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
307 unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
308
309 tmp = __raw_readl(reg_base + offset);
310 if (tmp & mask) {
311 tmp &= ~mask;
312 exynos4_mct_write(tmp, offset);
313 }
314}
315
316static void exynos4_mct_tick_start(unsigned long cycles,
317 struct mct_clock_event_device *mevt)
318{
319 unsigned long tmp;
320
321 exynos4_mct_tick_stop(mevt);
322
323 tmp = (1 << 31) | cycles; /* MCT_L_UPDATE_ICNTB */
324
325 /* update interrupt count buffer */
326 exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
327
328 /* enable MCT tick interrupt */
329 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
330
331 tmp = __raw_readl(reg_base + mevt->base + MCT_L_TCON_OFFSET);
332 tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
333 MCT_L_TCON_INTERVAL_MODE;
334 exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
335}
336
337static int exynos4_tick_set_next_event(unsigned long cycles,
338 struct clock_event_device *evt)
339{
340 struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
341
342 exynos4_mct_tick_start(cycles, mevt);
343
344 return 0;
345}
346
347static inline void exynos4_tick_set_mode(enum clock_event_mode mode,
348 struct clock_event_device *evt)
349{
350 struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
351 unsigned long cycles_per_jiffy;
352
353 exynos4_mct_tick_stop(mevt);
354
355 switch (mode) {
356 case CLOCK_EVT_MODE_PERIODIC:
357 cycles_per_jiffy =
358 (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
359 exynos4_mct_tick_start(cycles_per_jiffy, mevt);
360 break;
361
362 case CLOCK_EVT_MODE_ONESHOT:
363 case CLOCK_EVT_MODE_UNUSED:
364 case CLOCK_EVT_MODE_SHUTDOWN:
365 case CLOCK_EVT_MODE_RESUME:
366 break;
367 }
368}
369
370static int exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
371{
372 struct clock_event_device *evt = &mevt->evt;
373
374 /*
375 * This is for supporting oneshot mode.
376 * Mct would generate interrupt periodically
377 * without explicit stopping.
378 */
379 if (evt->mode != CLOCK_EVT_MODE_PERIODIC)
380 exynos4_mct_tick_stop(mevt);
381
382 /* Clear the MCT tick interrupt */
383 if (__raw_readl(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1) {
384 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
385 return 1;
386 } else {
387 return 0;
388 }
389}
390
391static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
392{
393 struct mct_clock_event_device *mevt = dev_id;
394 struct clock_event_device *evt = &mevt->evt;
395
396 exynos4_mct_tick_clear(mevt);
397
398 evt->event_handler(evt);
399
400 return IRQ_HANDLED;
401}
402
403static int exynos4_local_timer_setup(struct clock_event_device *evt)
404{
405 struct mct_clock_event_device *mevt;
406 unsigned int cpu = smp_processor_id();
407
408 mevt = container_of(evt, struct mct_clock_event_device, evt);
409
410 mevt->base = EXYNOS4_MCT_L_BASE(cpu);
411 snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);
412
413 evt->name = mevt->name;
414 evt->cpumask = cpumask_of(cpu);
415 evt->set_next_event = exynos4_tick_set_next_event;
416 evt->set_mode = exynos4_tick_set_mode;
417 evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
418 evt->rating = 450;
419
420 exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
421
422 if (mct_int_type == MCT_INT_SPI) {
423 evt->irq = mct_irqs[MCT_L0_IRQ + cpu];
424 if (request_irq(evt->irq, exynos4_mct_tick_isr,
425 IRQF_TIMER | IRQF_NOBALANCING,
426 evt->name, mevt)) {
427 pr_err("exynos-mct: cannot register IRQ %d\n",
428 evt->irq);
429 return -EIO;
430 }
431 irq_force_affinity(mct_irqs[MCT_L0_IRQ + cpu], cpumask_of(cpu));
432 } else {
433 enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
434 }
435 clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
436 0xf, 0x7fffffff);
437
438 return 0;
439}
440
441static void exynos4_local_timer_stop(struct clock_event_device *evt)
442{
443 evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
444 if (mct_int_type == MCT_INT_SPI)
445 free_irq(evt->irq, this_cpu_ptr(&percpu_mct_tick));
446 else
447 disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
448}
449
450static int exynos4_mct_cpu_notify(struct notifier_block *self,
451 unsigned long action, void *hcpu)
452{
453 struct mct_clock_event_device *mevt;
454
455 /*
456 * Grab cpu pointer in each case to avoid spurious
457 * preemptible warnings
458 */
459 switch (action & ~CPU_TASKS_FROZEN) {
460 case CPU_STARTING:
461 mevt = this_cpu_ptr(&percpu_mct_tick);
462 exynos4_local_timer_setup(&mevt->evt);
463 break;
464 case CPU_DYING:
465 mevt = this_cpu_ptr(&percpu_mct_tick);
466 exynos4_local_timer_stop(&mevt->evt);
467 break;
468 }
469
470 return NOTIFY_OK;
471}
472
473static struct notifier_block exynos4_mct_cpu_nb = {
474 .notifier_call = exynos4_mct_cpu_notify,
475};
476
477static void __init exynos4_timer_resources(struct device_node *np, void __iomem *base)
478{
479 int err;
480 struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
481 struct clk *mct_clk, *tick_clk;
482
483 tick_clk = np ? of_clk_get_by_name(np, "fin_pll") :
484 clk_get(NULL, "fin_pll");
485 if (IS_ERR(tick_clk))
486 panic("%s: unable to determine tick clock rate\n", __func__);
487 clk_rate = clk_get_rate(tick_clk);
488
489 mct_clk = np ? of_clk_get_by_name(np, "mct") : clk_get(NULL, "mct");
490 if (IS_ERR(mct_clk))
491 panic("%s: unable to retrieve mct clock instance\n", __func__);
492 clk_prepare_enable(mct_clk);
493
494 reg_base = base;
495 if (!reg_base)
496 panic("%s: unable to ioremap mct address space\n", __func__);
497
498 if (mct_int_type == MCT_INT_PPI) {
499
500 err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
501 exynos4_mct_tick_isr, "MCT",
502 &percpu_mct_tick);
503 WARN(err, "MCT: can't request IRQ %d (%d)\n",
504 mct_irqs[MCT_L0_IRQ], err);
505 } else {
506 irq_set_affinity(mct_irqs[MCT_L0_IRQ], cpumask_of(0));
507 }
508
509 err = register_cpu_notifier(&exynos4_mct_cpu_nb);
510 if (err)
511 goto out_irq;
512
513 /* Immediately configure the timer on the boot CPU */
514 exynos4_local_timer_setup(&mevt->evt);
515 return;
516
517out_irq:
518 free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
519}
520
521void __init mct_init(void __iomem *base, int irq_g0, int irq_l0, int irq_l1)
522{
523 mct_irqs[MCT_G0_IRQ] = irq_g0;
524 mct_irqs[MCT_L0_IRQ] = irq_l0;
525 mct_irqs[MCT_L1_IRQ] = irq_l1;
526 mct_int_type = MCT_INT_SPI;
527
528 exynos4_timer_resources(NULL, base);
529 exynos4_clocksource_init();
530 exynos4_clockevent_init();
531}
532
533static void __init mct_init_dt(struct device_node *np, unsigned int int_type)
534{
535 u32 nr_irqs, i;
536
537 mct_int_type = int_type;
538
539 /* This driver uses only one global timer interrupt */
540 mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
541
542 /*
543 * Find out the number of local irqs specified. The local
544 * timer irqs are specified after the four global timer
545 * irqs are specified.
546 */
547#ifdef CONFIG_OF
548 nr_irqs = of_irq_count(np);
549#else
550 nr_irqs = 0;
551#endif
552 for (i = MCT_L0_IRQ; i < nr_irqs; i++)
553 mct_irqs[i] = irq_of_parse_and_map(np, i);
554
555 exynos4_timer_resources(np, of_iomap(np, 0));
556 exynos4_clocksource_init();
557 exynos4_clockevent_init();
558}
559
560
561static void __init mct_init_spi(struct device_node *np)
562{
563 return mct_init_dt(np, MCT_INT_SPI);
564}
565
566static void __init mct_init_ppi(struct device_node *np)
567{
568 return mct_init_dt(np, MCT_INT_PPI);
569}
570CLOCKSOURCE_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
571CLOCKSOURCE_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);