Linux Audio

Check our new training course

Loading...
v4.10.11
  1/*
  2 * Simple synchronous userspace interface to SPI devices
  3 *
  4 * Copyright (C) 2006 SWAPP
  5 *	Andrea Paterniani <a.paterniani@swapp-eng.it>
  6 * Copyright (C) 2007 David Brownell (simplification, cleanup)
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License as published by
 10 * the Free Software Foundation; either version 2 of the License, or
 11 * (at your option) any later version.
 12 *
 13 * This program is distributed in the hope that it will be useful,
 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 16 * GNU General Public License for more details.
 
 
 
 
 17 */
 18
 19#include <linux/init.h>
 20#include <linux/module.h>
 21#include <linux/ioctl.h>
 22#include <linux/fs.h>
 23#include <linux/device.h>
 24#include <linux/err.h>
 25#include <linux/list.h>
 26#include <linux/errno.h>
 27#include <linux/mutex.h>
 28#include <linux/slab.h>
 29#include <linux/compat.h>
 30#include <linux/of.h>
 31#include <linux/of_device.h>
 32#include <linux/acpi.h>
 33
 34#include <linux/spi/spi.h>
 35#include <linux/spi/spidev.h>
 36
 37#include <linux/uaccess.h>
 38
 39
 40/*
 41 * This supports access to SPI devices using normal userspace I/O calls.
 42 * Note that while traditional UNIX/POSIX I/O semantics are half duplex,
 43 * and often mask message boundaries, full SPI support requires full duplex
 44 * transfers.  There are several kinds of internal message boundaries to
 45 * handle chipselect management and other protocol options.
 46 *
 47 * SPI has a character major number assigned.  We allocate minor numbers
 48 * dynamically using a bitmask.  You must use hotplug tools, such as udev
 49 * (or mdev with busybox) to create and destroy the /dev/spidevB.C device
 50 * nodes, since there is no fixed association of minor numbers with any
 51 * particular SPI bus or device.
 52 */
 53#define SPIDEV_MAJOR			153	/* assigned */
 54#define N_SPI_MINORS			32	/* ... up to 256 */
 55
 56static DECLARE_BITMAP(minors, N_SPI_MINORS);
 57
 58
 59/* Bit masks for spi_device.mode management.  Note that incorrect
 60 * settings for some settings can cause *lots* of trouble for other
 61 * devices on a shared bus:
 62 *
 63 *  - CS_HIGH ... this device will be active when it shouldn't be
 64 *  - 3WIRE ... when active, it won't behave as it should
 65 *  - NO_CS ... there will be no explicit message boundaries; this
 66 *	is completely incompatible with the shared bus model
 67 *  - READY ... transfers may proceed when they shouldn't.
 68 *
 69 * REVISIT should changing those flags be privileged?
 70 */
 71#define SPI_MODE_MASK		(SPI_CPHA | SPI_CPOL | SPI_CS_HIGH \
 72				| SPI_LSB_FIRST | SPI_3WIRE | SPI_LOOP \
 73				| SPI_NO_CS | SPI_READY | SPI_TX_DUAL \
 74				| SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)
 75
 76struct spidev_data {
 77	dev_t			devt;
 78	spinlock_t		spi_lock;
 79	struct spi_device	*spi;
 80	struct list_head	device_entry;
 81
 82	/* TX/RX buffers are NULL unless this device is open (users > 0) */
 83	struct mutex		buf_lock;
 84	unsigned		users;
 85	u8			*tx_buffer;
 86	u8			*rx_buffer;
 87	u32			speed_hz;
 88};
 89
 90static LIST_HEAD(device_list);
 91static DEFINE_MUTEX(device_list_lock);
 92
 93static unsigned bufsiz = 4096;
 94module_param(bufsiz, uint, S_IRUGO);
 95MODULE_PARM_DESC(bufsiz, "data bytes in biggest supported SPI message");
 96
 97/*-------------------------------------------------------------------------*/
 98
 
 
 
 
 
 
 
 
 
 99static ssize_t
100spidev_sync(struct spidev_data *spidev, struct spi_message *message)
101{
102	DECLARE_COMPLETION_ONSTACK(done);
103	int status;
104	struct spi_device *spi;
105
106	spin_lock_irq(&spidev->spi_lock);
107	spi = spidev->spi;
108	spin_unlock_irq(&spidev->spi_lock);
109
110	if (spi == NULL)
 
111		status = -ESHUTDOWN;
112	else
113		status = spi_sync(spi, message);
114
115	if (status == 0)
116		status = message->actual_length;
117
 
 
 
 
 
 
118	return status;
119}
120
121static inline ssize_t
122spidev_sync_write(struct spidev_data *spidev, size_t len)
123{
124	struct spi_transfer	t = {
125			.tx_buf		= spidev->tx_buffer,
126			.len		= len,
127			.speed_hz	= spidev->speed_hz,
128		};
129	struct spi_message	m;
130
131	spi_message_init(&m);
132	spi_message_add_tail(&t, &m);
133	return spidev_sync(spidev, &m);
134}
135
136static inline ssize_t
137spidev_sync_read(struct spidev_data *spidev, size_t len)
138{
139	struct spi_transfer	t = {
140			.rx_buf		= spidev->rx_buffer,
141			.len		= len,
142			.speed_hz	= spidev->speed_hz,
143		};
144	struct spi_message	m;
145
146	spi_message_init(&m);
147	spi_message_add_tail(&t, &m);
148	return spidev_sync(spidev, &m);
149}
150
151/*-------------------------------------------------------------------------*/
152
153/* Read-only message with current device setup */
154static ssize_t
155spidev_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
156{
157	struct spidev_data	*spidev;
158	ssize_t			status = 0;
159
160	/* chipselect only toggles at start or end of operation */
161	if (count > bufsiz)
162		return -EMSGSIZE;
163
164	spidev = filp->private_data;
165
166	mutex_lock(&spidev->buf_lock);
167	status = spidev_sync_read(spidev, count);
168	if (status > 0) {
169		unsigned long	missing;
170
171		missing = copy_to_user(buf, spidev->rx_buffer, status);
172		if (missing == status)
173			status = -EFAULT;
174		else
175			status = status - missing;
176	}
177	mutex_unlock(&spidev->buf_lock);
178
179	return status;
180}
181
182/* Write-only message with current device setup */
183static ssize_t
184spidev_write(struct file *filp, const char __user *buf,
185		size_t count, loff_t *f_pos)
186{
187	struct spidev_data	*spidev;
188	ssize_t			status = 0;
189	unsigned long		missing;
190
191	/* chipselect only toggles at start or end of operation */
192	if (count > bufsiz)
193		return -EMSGSIZE;
194
195	spidev = filp->private_data;
196
197	mutex_lock(&spidev->buf_lock);
198	missing = copy_from_user(spidev->tx_buffer, buf, count);
199	if (missing == 0)
200		status = spidev_sync_write(spidev, count);
201	else
202		status = -EFAULT;
203	mutex_unlock(&spidev->buf_lock);
204
205	return status;
206}
207
208static int spidev_message(struct spidev_data *spidev,
209		struct spi_ioc_transfer *u_xfers, unsigned n_xfers)
210{
211	struct spi_message	msg;
212	struct spi_transfer	*k_xfers;
213	struct spi_transfer	*k_tmp;
214	struct spi_ioc_transfer *u_tmp;
215	unsigned		n, total, tx_total, rx_total;
216	u8			*tx_buf, *rx_buf;
217	int			status = -EFAULT;
218
219	spi_message_init(&msg);
220	k_xfers = kcalloc(n_xfers, sizeof(*k_tmp), GFP_KERNEL);
221	if (k_xfers == NULL)
222		return -ENOMEM;
223
224	/* Construct spi_message, copying any tx data to bounce buffer.
225	 * We walk the array of user-provided transfers, using each one
226	 * to initialize a kernel version of the same transfer.
227	 */
228	tx_buf = spidev->tx_buffer;
229	rx_buf = spidev->rx_buffer;
230	total = 0;
231	tx_total = 0;
232	rx_total = 0;
233	for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;
234			n;
235			n--, k_tmp++, u_tmp++) {
236		k_tmp->len = u_tmp->len;
237
238		total += k_tmp->len;
239		/* Since the function returns the total length of transfers
240		 * on success, restrict the total to positive int values to
241		 * avoid the return value looking like an error.  Also check
242		 * each transfer length to avoid arithmetic overflow.
243		 */
244		if (total > INT_MAX || k_tmp->len > INT_MAX) {
245			status = -EMSGSIZE;
246			goto done;
247		}
248
249		if (u_tmp->rx_buf) {
250			/* this transfer needs space in RX bounce buffer */
251			rx_total += k_tmp->len;
252			if (rx_total > bufsiz) {
253				status = -EMSGSIZE;
254				goto done;
255			}
256			k_tmp->rx_buf = rx_buf;
257			if (!access_ok(VERIFY_WRITE, (u8 __user *)
258						(uintptr_t) u_tmp->rx_buf,
259						u_tmp->len))
260				goto done;
261			rx_buf += k_tmp->len;
262		}
263		if (u_tmp->tx_buf) {
264			/* this transfer needs space in TX bounce buffer */
265			tx_total += k_tmp->len;
266			if (tx_total > bufsiz) {
267				status = -EMSGSIZE;
268				goto done;
269			}
270			k_tmp->tx_buf = tx_buf;
271			if (copy_from_user(tx_buf, (const u8 __user *)
272						(uintptr_t) u_tmp->tx_buf,
273					u_tmp->len))
274				goto done;
275			tx_buf += k_tmp->len;
276		}
 
277
278		k_tmp->cs_change = !!u_tmp->cs_change;
279		k_tmp->tx_nbits = u_tmp->tx_nbits;
280		k_tmp->rx_nbits = u_tmp->rx_nbits;
281		k_tmp->bits_per_word = u_tmp->bits_per_word;
282		k_tmp->delay_usecs = u_tmp->delay_usecs;
283		k_tmp->speed_hz = u_tmp->speed_hz;
284		if (!k_tmp->speed_hz)
285			k_tmp->speed_hz = spidev->speed_hz;
286#ifdef VERBOSE
287		dev_dbg(&spidev->spi->dev,
288			"  xfer len %u %s%s%s%dbits %u usec %uHz\n",
289			u_tmp->len,
290			u_tmp->rx_buf ? "rx " : "",
291			u_tmp->tx_buf ? "tx " : "",
292			u_tmp->cs_change ? "cs " : "",
293			u_tmp->bits_per_word ? : spidev->spi->bits_per_word,
294			u_tmp->delay_usecs,
295			u_tmp->speed_hz ? : spidev->spi->max_speed_hz);
296#endif
297		spi_message_add_tail(k_tmp, &msg);
298	}
299
300	status = spidev_sync(spidev, &msg);
301	if (status < 0)
302		goto done;
303
304	/* copy any rx data out of bounce buffer */
305	rx_buf = spidev->rx_buffer;
306	for (n = n_xfers, u_tmp = u_xfers; n; n--, u_tmp++) {
307		if (u_tmp->rx_buf) {
308			if (__copy_to_user((u8 __user *)
309					(uintptr_t) u_tmp->rx_buf, rx_buf,
310					u_tmp->len)) {
311				status = -EFAULT;
312				goto done;
313			}
314			rx_buf += u_tmp->len;
315		}
 
316	}
317	status = total;
318
319done:
320	kfree(k_xfers);
321	return status;
322}
323
324static struct spi_ioc_transfer *
325spidev_get_ioc_message(unsigned int cmd, struct spi_ioc_transfer __user *u_ioc,
326		unsigned *n_ioc)
327{
328	struct spi_ioc_transfer	*ioc;
329	u32	tmp;
330
331	/* Check type, command number and direction */
332	if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC
333			|| _IOC_NR(cmd) != _IOC_NR(SPI_IOC_MESSAGE(0))
334			|| _IOC_DIR(cmd) != _IOC_WRITE)
335		return ERR_PTR(-ENOTTY);
336
337	tmp = _IOC_SIZE(cmd);
338	if ((tmp % sizeof(struct spi_ioc_transfer)) != 0)
339		return ERR_PTR(-EINVAL);
340	*n_ioc = tmp / sizeof(struct spi_ioc_transfer);
341	if (*n_ioc == 0)
342		return NULL;
343
344	/* copy into scratch area */
345	ioc = kmalloc(tmp, GFP_KERNEL);
346	if (!ioc)
347		return ERR_PTR(-ENOMEM);
348	if (__copy_from_user(ioc, u_ioc, tmp)) {
349		kfree(ioc);
350		return ERR_PTR(-EFAULT);
351	}
352	return ioc;
353}
354
355static long
356spidev_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
357{
358	int			err = 0;
359	int			retval = 0;
360	struct spidev_data	*spidev;
361	struct spi_device	*spi;
362	u32			tmp;
363	unsigned		n_ioc;
364	struct spi_ioc_transfer	*ioc;
365
366	/* Check type and command number */
367	if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC)
368		return -ENOTTY;
369
370	/* Check access direction once here; don't repeat below.
371	 * IOC_DIR is from the user perspective, while access_ok is
372	 * from the kernel perspective; so they look reversed.
373	 */
374	if (_IOC_DIR(cmd) & _IOC_READ)
375		err = !access_ok(VERIFY_WRITE,
376				(void __user *)arg, _IOC_SIZE(cmd));
377	if (err == 0 && _IOC_DIR(cmd) & _IOC_WRITE)
378		err = !access_ok(VERIFY_READ,
379				(void __user *)arg, _IOC_SIZE(cmd));
380	if (err)
381		return -EFAULT;
382
383	/* guard against device removal before, or while,
384	 * we issue this ioctl.
385	 */
386	spidev = filp->private_data;
387	spin_lock_irq(&spidev->spi_lock);
388	spi = spi_dev_get(spidev->spi);
389	spin_unlock_irq(&spidev->spi_lock);
390
391	if (spi == NULL)
392		return -ESHUTDOWN;
393
394	/* use the buffer lock here for triple duty:
395	 *  - prevent I/O (from us) so calling spi_setup() is safe;
396	 *  - prevent concurrent SPI_IOC_WR_* from morphing
397	 *    data fields while SPI_IOC_RD_* reads them;
398	 *  - SPI_IOC_MESSAGE needs the buffer locked "normally".
399	 */
400	mutex_lock(&spidev->buf_lock);
401
402	switch (cmd) {
403	/* read requests */
404	case SPI_IOC_RD_MODE:
405		retval = __put_user(spi->mode & SPI_MODE_MASK,
406					(__u8 __user *)arg);
407		break;
408	case SPI_IOC_RD_MODE32:
409		retval = __put_user(spi->mode & SPI_MODE_MASK,
410					(__u32 __user *)arg);
411		break;
412	case SPI_IOC_RD_LSB_FIRST:
413		retval = __put_user((spi->mode & SPI_LSB_FIRST) ?  1 : 0,
414					(__u8 __user *)arg);
415		break;
416	case SPI_IOC_RD_BITS_PER_WORD:
417		retval = __put_user(spi->bits_per_word, (__u8 __user *)arg);
418		break;
419	case SPI_IOC_RD_MAX_SPEED_HZ:
420		retval = __put_user(spidev->speed_hz, (__u32 __user *)arg);
421		break;
422
423	/* write requests */
424	case SPI_IOC_WR_MODE:
425	case SPI_IOC_WR_MODE32:
426		if (cmd == SPI_IOC_WR_MODE)
427			retval = __get_user(tmp, (u8 __user *)arg);
428		else
429			retval = __get_user(tmp, (u32 __user *)arg);
430		if (retval == 0) {
431			u32	save = spi->mode;
432
433			if (tmp & ~SPI_MODE_MASK) {
434				retval = -EINVAL;
435				break;
436			}
437
438			tmp |= spi->mode & ~SPI_MODE_MASK;
439			spi->mode = (u16)tmp;
440			retval = spi_setup(spi);
441			if (retval < 0)
442				spi->mode = save;
443			else
444				dev_dbg(&spi->dev, "spi mode %x\n", tmp);
445		}
446		break;
447	case SPI_IOC_WR_LSB_FIRST:
448		retval = __get_user(tmp, (__u8 __user *)arg);
449		if (retval == 0) {
450			u32	save = spi->mode;
451
452			if (tmp)
453				spi->mode |= SPI_LSB_FIRST;
454			else
455				spi->mode &= ~SPI_LSB_FIRST;
456			retval = spi_setup(spi);
457			if (retval < 0)
458				spi->mode = save;
459			else
460				dev_dbg(&spi->dev, "%csb first\n",
461						tmp ? 'l' : 'm');
462		}
463		break;
464	case SPI_IOC_WR_BITS_PER_WORD:
465		retval = __get_user(tmp, (__u8 __user *)arg);
466		if (retval == 0) {
467			u8	save = spi->bits_per_word;
468
469			spi->bits_per_word = tmp;
470			retval = spi_setup(spi);
471			if (retval < 0)
472				spi->bits_per_word = save;
473			else
474				dev_dbg(&spi->dev, "%d bits per word\n", tmp);
475		}
476		break;
477	case SPI_IOC_WR_MAX_SPEED_HZ:
478		retval = __get_user(tmp, (__u32 __user *)arg);
479		if (retval == 0) {
480			u32	save = spi->max_speed_hz;
481
482			spi->max_speed_hz = tmp;
483			retval = spi_setup(spi);
484			if (retval >= 0)
485				spidev->speed_hz = tmp;
486			else
487				dev_dbg(&spi->dev, "%d Hz (max)\n", tmp);
488			spi->max_speed_hz = save;
489		}
490		break;
491
492	default:
493		/* segmented and/or full-duplex I/O request */
494		/* Check message and copy into scratch area */
495		ioc = spidev_get_ioc_message(cmd,
496				(struct spi_ioc_transfer __user *)arg, &n_ioc);
497		if (IS_ERR(ioc)) {
498			retval = PTR_ERR(ioc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
499			break;
500		}
501		if (!ioc)
502			break;	/* n_ioc is also 0 */
503
504		/* translate to spi_message, execute */
505		retval = spidev_message(spidev, ioc, n_ioc);
506		kfree(ioc);
507		break;
508	}
509
510	mutex_unlock(&spidev->buf_lock);
511	spi_dev_put(spi);
512	return retval;
513}
514
515#ifdef CONFIG_COMPAT
516static long
517spidev_compat_ioc_message(struct file *filp, unsigned int cmd,
518		unsigned long arg)
519{
520	struct spi_ioc_transfer __user	*u_ioc;
521	int				retval = 0;
522	struct spidev_data		*spidev;
523	struct spi_device		*spi;
524	unsigned			n_ioc, n;
525	struct spi_ioc_transfer		*ioc;
526
527	u_ioc = (struct spi_ioc_transfer __user *) compat_ptr(arg);
528	if (!access_ok(VERIFY_READ, u_ioc, _IOC_SIZE(cmd)))
529		return -EFAULT;
530
531	/* guard against device removal before, or while,
532	 * we issue this ioctl.
533	 */
534	spidev = filp->private_data;
535	spin_lock_irq(&spidev->spi_lock);
536	spi = spi_dev_get(spidev->spi);
537	spin_unlock_irq(&spidev->spi_lock);
538
539	if (spi == NULL)
540		return -ESHUTDOWN;
541
542	/* SPI_IOC_MESSAGE needs the buffer locked "normally" */
543	mutex_lock(&spidev->buf_lock);
544
545	/* Check message and copy into scratch area */
546	ioc = spidev_get_ioc_message(cmd, u_ioc, &n_ioc);
547	if (IS_ERR(ioc)) {
548		retval = PTR_ERR(ioc);
549		goto done;
550	}
551	if (!ioc)
552		goto done;	/* n_ioc is also 0 */
553
554	/* Convert buffer pointers */
555	for (n = 0; n < n_ioc; n++) {
556		ioc[n].rx_buf = (uintptr_t) compat_ptr(ioc[n].rx_buf);
557		ioc[n].tx_buf = (uintptr_t) compat_ptr(ioc[n].tx_buf);
558	}
559
560	/* translate to spi_message, execute */
561	retval = spidev_message(spidev, ioc, n_ioc);
562	kfree(ioc);
563
564done:
565	mutex_unlock(&spidev->buf_lock);
566	spi_dev_put(spi);
567	return retval;
568}
569
570static long
571spidev_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
572{
573	if (_IOC_TYPE(cmd) == SPI_IOC_MAGIC
574			&& _IOC_NR(cmd) == _IOC_NR(SPI_IOC_MESSAGE(0))
575			&& _IOC_DIR(cmd) == _IOC_WRITE)
576		return spidev_compat_ioc_message(filp, cmd, arg);
577
578	return spidev_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
579}
580#else
581#define spidev_compat_ioctl NULL
582#endif /* CONFIG_COMPAT */
583
584static int spidev_open(struct inode *inode, struct file *filp)
585{
586	struct spidev_data	*spidev;
587	int			status = -ENXIO;
588
589	mutex_lock(&device_list_lock);
590
591	list_for_each_entry(spidev, &device_list, device_entry) {
592		if (spidev->devt == inode->i_rdev) {
593			status = 0;
594			break;
595		}
596	}
597
598	if (status) {
599		pr_debug("spidev: nothing for minor %d\n", iminor(inode));
600		goto err_find_dev;
601	}
602
603	if (!spidev->tx_buffer) {
604		spidev->tx_buffer = kmalloc(bufsiz, GFP_KERNEL);
605		if (!spidev->tx_buffer) {
606			dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
607			status = -ENOMEM;
608			goto err_find_dev;
609		}
610	}
611
612	if (!spidev->rx_buffer) {
613		spidev->rx_buffer = kmalloc(bufsiz, GFP_KERNEL);
614		if (!spidev->rx_buffer) {
615			dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
616			status = -ENOMEM;
617			goto err_alloc_rx_buf;
618		}
619	}
620
621	spidev->users++;
622	filp->private_data = spidev;
623	nonseekable_open(inode, filp);
624
625	mutex_unlock(&device_list_lock);
626	return 0;
627
628err_alloc_rx_buf:
629	kfree(spidev->tx_buffer);
630	spidev->tx_buffer = NULL;
631err_find_dev:
632	mutex_unlock(&device_list_lock);
633	return status;
634}
635
636static int spidev_release(struct inode *inode, struct file *filp)
637{
638	struct spidev_data	*spidev;
 
639
640	mutex_lock(&device_list_lock);
641	spidev = filp->private_data;
642	filp->private_data = NULL;
643
644	/* last close? */
645	spidev->users--;
646	if (!spidev->users) {
647		int		dofree;
648
649		kfree(spidev->tx_buffer);
650		spidev->tx_buffer = NULL;
651
652		kfree(spidev->rx_buffer);
653		spidev->rx_buffer = NULL;
654
655		spin_lock_irq(&spidev->spi_lock);
656		if (spidev->spi)
657			spidev->speed_hz = spidev->spi->max_speed_hz;
658
659		/* ... after we unbound from the underlying device? */
 
660		dofree = (spidev->spi == NULL);
661		spin_unlock_irq(&spidev->spi_lock);
662
663		if (dofree)
664			kfree(spidev);
665	}
666	mutex_unlock(&device_list_lock);
667
668	return 0;
669}
670
671static const struct file_operations spidev_fops = {
672	.owner =	THIS_MODULE,
673	/* REVISIT switch to aio primitives, so that userspace
674	 * gets more complete API coverage.  It'll simplify things
675	 * too, except for the locking.
676	 */
677	.write =	spidev_write,
678	.read =		spidev_read,
679	.unlocked_ioctl = spidev_ioctl,
680	.compat_ioctl = spidev_compat_ioctl,
681	.open =		spidev_open,
682	.release =	spidev_release,
683	.llseek =	no_llseek,
684};
685
686/*-------------------------------------------------------------------------*/
687
688/* The main reason to have this class is to make mdev/udev create the
689 * /dev/spidevB.C character device nodes exposing our userspace API.
690 * It also simplifies memory management.
691 */
692
693static struct class *spidev_class;
694
695#ifdef CONFIG_OF
696static const struct of_device_id spidev_dt_ids[] = {
697	{ .compatible = "rohm,dh2228fv" },
698	{ .compatible = "lineartechnology,ltc2488" },
699	{ .compatible = "ge,achc" },
700	{},
701};
702MODULE_DEVICE_TABLE(of, spidev_dt_ids);
703#endif
704
705#ifdef CONFIG_ACPI
706
707/* Dummy SPI devices not to be used in production systems */
708#define SPIDEV_ACPI_DUMMY	1
709
710static const struct acpi_device_id spidev_acpi_ids[] = {
711	/*
712	 * The ACPI SPT000* devices are only meant for development and
713	 * testing. Systems used in production should have a proper ACPI
714	 * description of the connected peripheral and they should also use
715	 * a proper driver instead of poking directly to the SPI bus.
716	 */
717	{ "SPT0001", SPIDEV_ACPI_DUMMY },
718	{ "SPT0002", SPIDEV_ACPI_DUMMY },
719	{ "SPT0003", SPIDEV_ACPI_DUMMY },
720	{},
721};
722MODULE_DEVICE_TABLE(acpi, spidev_acpi_ids);
723
724static void spidev_probe_acpi(struct spi_device *spi)
725{
726	const struct acpi_device_id *id;
727
728	if (!has_acpi_companion(&spi->dev))
729		return;
730
731	id = acpi_match_device(spidev_acpi_ids, &spi->dev);
732	if (WARN_ON(!id))
733		return;
734
735	if (id->driver_data == SPIDEV_ACPI_DUMMY)
736		dev_warn(&spi->dev, "do not use this driver in production systems!\n");
737}
738#else
739static inline void spidev_probe_acpi(struct spi_device *spi) {}
740#endif
741
742/*-------------------------------------------------------------------------*/
743
744static int spidev_probe(struct spi_device *spi)
745{
746	struct spidev_data	*spidev;
747	int			status;
748	unsigned long		minor;
749
750	/*
751	 * spidev should never be referenced in DT without a specific
752	 * compatible string, it is a Linux implementation thing
753	 * rather than a description of the hardware.
754	 */
755	if (spi->dev.of_node && !of_match_device(spidev_dt_ids, &spi->dev)) {
756		dev_err(&spi->dev, "buggy DT: spidev listed directly in DT\n");
757		WARN_ON(spi->dev.of_node &&
758			!of_match_device(spidev_dt_ids, &spi->dev));
759	}
760
761	spidev_probe_acpi(spi);
762
763	/* Allocate driver data */
764	spidev = kzalloc(sizeof(*spidev), GFP_KERNEL);
765	if (!spidev)
766		return -ENOMEM;
767
768	/* Initialize the driver data */
769	spidev->spi = spi;
770	spin_lock_init(&spidev->spi_lock);
771	mutex_init(&spidev->buf_lock);
772
773	INIT_LIST_HEAD(&spidev->device_entry);
774
775	/* If we can allocate a minor number, hook up this device.
776	 * Reusing minors is fine so long as udev or mdev is working.
777	 */
778	mutex_lock(&device_list_lock);
779	minor = find_first_zero_bit(minors, N_SPI_MINORS);
780	if (minor < N_SPI_MINORS) {
781		struct device *dev;
782
783		spidev->devt = MKDEV(SPIDEV_MAJOR, minor);
784		dev = device_create(spidev_class, &spi->dev, spidev->devt,
785				    spidev, "spidev%d.%d",
786				    spi->master->bus_num, spi->chip_select);
787		status = PTR_ERR_OR_ZERO(dev);
788	} else {
789		dev_dbg(&spi->dev, "no minor number available!\n");
790		status = -ENODEV;
791	}
792	if (status == 0) {
793		set_bit(minor, minors);
794		list_add(&spidev->device_entry, &device_list);
795	}
796	mutex_unlock(&device_list_lock);
797
798	spidev->speed_hz = spi->max_speed_hz;
799
800	if (status == 0)
801		spi_set_drvdata(spi, spidev);
802	else
803		kfree(spidev);
804
805	return status;
806}
807
808static int spidev_remove(struct spi_device *spi)
809{
810	struct spidev_data	*spidev = spi_get_drvdata(spi);
811
812	/* make sure ops on existing fds can abort cleanly */
813	spin_lock_irq(&spidev->spi_lock);
814	spidev->spi = NULL;
815	spin_unlock_irq(&spidev->spi_lock);
816
817	/* prevent new opens */
818	mutex_lock(&device_list_lock);
819	list_del(&spidev->device_entry);
820	device_destroy(spidev_class, spidev->devt);
821	clear_bit(MINOR(spidev->devt), minors);
822	if (spidev->users == 0)
823		kfree(spidev);
824	mutex_unlock(&device_list_lock);
825
826	return 0;
827}
828
 
 
 
 
 
 
 
829static struct spi_driver spidev_spi_driver = {
830	.driver = {
831		.name =		"spidev",
 
832		.of_match_table = of_match_ptr(spidev_dt_ids),
833		.acpi_match_table = ACPI_PTR(spidev_acpi_ids),
834	},
835	.probe =	spidev_probe,
836	.remove =	spidev_remove,
837
838	/* NOTE:  suspend/resume methods are not necessary here.
839	 * We don't do anything except pass the requests to/from
840	 * the underlying controller.  The refrigerator handles
841	 * most issues; the controller driver handles the rest.
842	 */
843};
844
845/*-------------------------------------------------------------------------*/
846
847static int __init spidev_init(void)
848{
849	int status;
850
851	/* Claim our 256 reserved device numbers.  Then register a class
852	 * that will key udev/mdev to add/remove /dev nodes.  Last, register
853	 * the driver which manages those device numbers.
854	 */
855	BUILD_BUG_ON(N_SPI_MINORS > 256);
856	status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops);
857	if (status < 0)
858		return status;
859
860	spidev_class = class_create(THIS_MODULE, "spidev");
861	if (IS_ERR(spidev_class)) {
862		unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
863		return PTR_ERR(spidev_class);
864	}
865
866	status = spi_register_driver(&spidev_spi_driver);
867	if (status < 0) {
868		class_destroy(spidev_class);
869		unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
870	}
871	return status;
872}
873module_init(spidev_init);
874
875static void __exit spidev_exit(void)
876{
877	spi_unregister_driver(&spidev_spi_driver);
878	class_destroy(spidev_class);
879	unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
880}
881module_exit(spidev_exit);
882
883MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>");
884MODULE_DESCRIPTION("User mode SPI device interface");
885MODULE_LICENSE("GPL");
886MODULE_ALIAS("spi:spidev");
v3.15
  1/*
  2 * Simple synchronous userspace interface to SPI devices
  3 *
  4 * Copyright (C) 2006 SWAPP
  5 *	Andrea Paterniani <a.paterniani@swapp-eng.it>
  6 * Copyright (C) 2007 David Brownell (simplification, cleanup)
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License as published by
 10 * the Free Software Foundation; either version 2 of the License, or
 11 * (at your option) any later version.
 12 *
 13 * This program is distributed in the hope that it will be useful,
 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 16 * GNU General Public License for more details.
 17 *
 18 * You should have received a copy of the GNU General Public License
 19 * along with this program; if not, write to the Free Software
 20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 21 */
 22
 23#include <linux/init.h>
 24#include <linux/module.h>
 25#include <linux/ioctl.h>
 26#include <linux/fs.h>
 27#include <linux/device.h>
 28#include <linux/err.h>
 29#include <linux/list.h>
 30#include <linux/errno.h>
 31#include <linux/mutex.h>
 32#include <linux/slab.h>
 33#include <linux/compat.h>
 34#include <linux/of.h>
 35#include <linux/of_device.h>
 
 36
 37#include <linux/spi/spi.h>
 38#include <linux/spi/spidev.h>
 39
 40#include <linux/uaccess.h>
 41
 42
 43/*
 44 * This supports access to SPI devices using normal userspace I/O calls.
 45 * Note that while traditional UNIX/POSIX I/O semantics are half duplex,
 46 * and often mask message boundaries, full SPI support requires full duplex
 47 * transfers.  There are several kinds of internal message boundaries to
 48 * handle chipselect management and other protocol options.
 49 *
 50 * SPI has a character major number assigned.  We allocate minor numbers
 51 * dynamically using a bitmask.  You must use hotplug tools, such as udev
 52 * (or mdev with busybox) to create and destroy the /dev/spidevB.C device
 53 * nodes, since there is no fixed association of minor numbers with any
 54 * particular SPI bus or device.
 55 */
 56#define SPIDEV_MAJOR			153	/* assigned */
 57#define N_SPI_MINORS			32	/* ... up to 256 */
 58
 59static DECLARE_BITMAP(minors, N_SPI_MINORS);
 60
 61
 62/* Bit masks for spi_device.mode management.  Note that incorrect
 63 * settings for some settings can cause *lots* of trouble for other
 64 * devices on a shared bus:
 65 *
 66 *  - CS_HIGH ... this device will be active when it shouldn't be
 67 *  - 3WIRE ... when active, it won't behave as it should
 68 *  - NO_CS ... there will be no explicit message boundaries; this
 69 *	is completely incompatible with the shared bus model
 70 *  - READY ... transfers may proceed when they shouldn't.
 71 *
 72 * REVISIT should changing those flags be privileged?
 73 */
 74#define SPI_MODE_MASK		(SPI_CPHA | SPI_CPOL | SPI_CS_HIGH \
 75				| SPI_LSB_FIRST | SPI_3WIRE | SPI_LOOP \
 76				| SPI_NO_CS | SPI_READY | SPI_TX_DUAL \
 77				| SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)
 78
 79struct spidev_data {
 80	dev_t			devt;
 81	spinlock_t		spi_lock;
 82	struct spi_device	*spi;
 83	struct list_head	device_entry;
 84
 85	/* buffer is NULL unless this device is open (users > 0) */
 86	struct mutex		buf_lock;
 87	unsigned		users;
 88	u8			*buffer;
 
 
 89};
 90
 91static LIST_HEAD(device_list);
 92static DEFINE_MUTEX(device_list_lock);
 93
 94static unsigned bufsiz = 4096;
 95module_param(bufsiz, uint, S_IRUGO);
 96MODULE_PARM_DESC(bufsiz, "data bytes in biggest supported SPI message");
 97
 98/*-------------------------------------------------------------------------*/
 99
100/*
101 * We can't use the standard synchronous wrappers for file I/O; we
102 * need to protect against async removal of the underlying spi_device.
103 */
104static void spidev_complete(void *arg)
105{
106	complete(arg);
107}
108
109static ssize_t
110spidev_sync(struct spidev_data *spidev, struct spi_message *message)
111{
112	DECLARE_COMPLETION_ONSTACK(done);
113	int status;
 
114
115	message->complete = spidev_complete;
116	message->context = &done;
 
117
118	spin_lock_irq(&spidev->spi_lock);
119	if (spidev->spi == NULL)
120		status = -ESHUTDOWN;
121	else
122		status = spi_async(spidev->spi, message);
123	spin_unlock_irq(&spidev->spi_lock);
 
 
124
125	if (status == 0) {
126		wait_for_completion(&done);
127		status = message->status;
128		if (status == 0)
129			status = message->actual_length;
130	}
131	return status;
132}
133
134static inline ssize_t
135spidev_sync_write(struct spidev_data *spidev, size_t len)
136{
137	struct spi_transfer	t = {
138			.tx_buf		= spidev->buffer,
139			.len		= len,
 
140		};
141	struct spi_message	m;
142
143	spi_message_init(&m);
144	spi_message_add_tail(&t, &m);
145	return spidev_sync(spidev, &m);
146}
147
148static inline ssize_t
149spidev_sync_read(struct spidev_data *spidev, size_t len)
150{
151	struct spi_transfer	t = {
152			.rx_buf		= spidev->buffer,
153			.len		= len,
 
154		};
155	struct spi_message	m;
156
157	spi_message_init(&m);
158	spi_message_add_tail(&t, &m);
159	return spidev_sync(spidev, &m);
160}
161
162/*-------------------------------------------------------------------------*/
163
164/* Read-only message with current device setup */
165static ssize_t
166spidev_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
167{
168	struct spidev_data	*spidev;
169	ssize_t			status = 0;
170
171	/* chipselect only toggles at start or end of operation */
172	if (count > bufsiz)
173		return -EMSGSIZE;
174
175	spidev = filp->private_data;
176
177	mutex_lock(&spidev->buf_lock);
178	status = spidev_sync_read(spidev, count);
179	if (status > 0) {
180		unsigned long	missing;
181
182		missing = copy_to_user(buf, spidev->buffer, status);
183		if (missing == status)
184			status = -EFAULT;
185		else
186			status = status - missing;
187	}
188	mutex_unlock(&spidev->buf_lock);
189
190	return status;
191}
192
193/* Write-only message with current device setup */
194static ssize_t
195spidev_write(struct file *filp, const char __user *buf,
196		size_t count, loff_t *f_pos)
197{
198	struct spidev_data	*spidev;
199	ssize_t			status = 0;
200	unsigned long		missing;
201
202	/* chipselect only toggles at start or end of operation */
203	if (count > bufsiz)
204		return -EMSGSIZE;
205
206	spidev = filp->private_data;
207
208	mutex_lock(&spidev->buf_lock);
209	missing = copy_from_user(spidev->buffer, buf, count);
210	if (missing == 0)
211		status = spidev_sync_write(spidev, count);
212	else
213		status = -EFAULT;
214	mutex_unlock(&spidev->buf_lock);
215
216	return status;
217}
218
219static int spidev_message(struct spidev_data *spidev,
220		struct spi_ioc_transfer *u_xfers, unsigned n_xfers)
221{
222	struct spi_message	msg;
223	struct spi_transfer	*k_xfers;
224	struct spi_transfer	*k_tmp;
225	struct spi_ioc_transfer *u_tmp;
226	unsigned		n, total;
227	u8			*buf;
228	int			status = -EFAULT;
229
230	spi_message_init(&msg);
231	k_xfers = kcalloc(n_xfers, sizeof(*k_tmp), GFP_KERNEL);
232	if (k_xfers == NULL)
233		return -ENOMEM;
234
235	/* Construct spi_message, copying any tx data to bounce buffer.
236	 * We walk the array of user-provided transfers, using each one
237	 * to initialize a kernel version of the same transfer.
238	 */
239	buf = spidev->buffer;
 
240	total = 0;
 
 
241	for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;
242			n;
243			n--, k_tmp++, u_tmp++) {
244		k_tmp->len = u_tmp->len;
245
246		total += k_tmp->len;
247		if (total > bufsiz) {
 
 
 
 
 
248			status = -EMSGSIZE;
249			goto done;
250		}
251
252		if (u_tmp->rx_buf) {
253			k_tmp->rx_buf = buf;
 
 
 
 
 
 
254			if (!access_ok(VERIFY_WRITE, (u8 __user *)
255						(uintptr_t) u_tmp->rx_buf,
256						u_tmp->len))
257				goto done;
 
258		}
259		if (u_tmp->tx_buf) {
260			k_tmp->tx_buf = buf;
261			if (copy_from_user(buf, (const u8 __user *)
 
 
 
 
 
 
262						(uintptr_t) u_tmp->tx_buf,
263					u_tmp->len))
264				goto done;
 
265		}
266		buf += k_tmp->len;
267
268		k_tmp->cs_change = !!u_tmp->cs_change;
269		k_tmp->tx_nbits = u_tmp->tx_nbits;
270		k_tmp->rx_nbits = u_tmp->rx_nbits;
271		k_tmp->bits_per_word = u_tmp->bits_per_word;
272		k_tmp->delay_usecs = u_tmp->delay_usecs;
273		k_tmp->speed_hz = u_tmp->speed_hz;
 
 
274#ifdef VERBOSE
275		dev_dbg(&spidev->spi->dev,
276			"  xfer len %zd %s%s%s%dbits %u usec %uHz\n",
277			u_tmp->len,
278			u_tmp->rx_buf ? "rx " : "",
279			u_tmp->tx_buf ? "tx " : "",
280			u_tmp->cs_change ? "cs " : "",
281			u_tmp->bits_per_word ? : spidev->spi->bits_per_word,
282			u_tmp->delay_usecs,
283			u_tmp->speed_hz ? : spidev->spi->max_speed_hz);
284#endif
285		spi_message_add_tail(k_tmp, &msg);
286	}
287
288	status = spidev_sync(spidev, &msg);
289	if (status < 0)
290		goto done;
291
292	/* copy any rx data out of bounce buffer */
293	buf = spidev->buffer;
294	for (n = n_xfers, u_tmp = u_xfers; n; n--, u_tmp++) {
295		if (u_tmp->rx_buf) {
296			if (__copy_to_user((u8 __user *)
297					(uintptr_t) u_tmp->rx_buf, buf,
298					u_tmp->len)) {
299				status = -EFAULT;
300				goto done;
301			}
 
302		}
303		buf += u_tmp->len;
304	}
305	status = total;
306
307done:
308	kfree(k_xfers);
309	return status;
310}
311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
312static long
313spidev_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
314{
315	int			err = 0;
316	int			retval = 0;
317	struct spidev_data	*spidev;
318	struct spi_device	*spi;
319	u32			tmp;
320	unsigned		n_ioc;
321	struct spi_ioc_transfer	*ioc;
322
323	/* Check type and command number */
324	if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC)
325		return -ENOTTY;
326
327	/* Check access direction once here; don't repeat below.
328	 * IOC_DIR is from the user perspective, while access_ok is
329	 * from the kernel perspective; so they look reversed.
330	 */
331	if (_IOC_DIR(cmd) & _IOC_READ)
332		err = !access_ok(VERIFY_WRITE,
333				(void __user *)arg, _IOC_SIZE(cmd));
334	if (err == 0 && _IOC_DIR(cmd) & _IOC_WRITE)
335		err = !access_ok(VERIFY_READ,
336				(void __user *)arg, _IOC_SIZE(cmd));
337	if (err)
338		return -EFAULT;
339
340	/* guard against device removal before, or while,
341	 * we issue this ioctl.
342	 */
343	spidev = filp->private_data;
344	spin_lock_irq(&spidev->spi_lock);
345	spi = spi_dev_get(spidev->spi);
346	spin_unlock_irq(&spidev->spi_lock);
347
348	if (spi == NULL)
349		return -ESHUTDOWN;
350
351	/* use the buffer lock here for triple duty:
352	 *  - prevent I/O (from us) so calling spi_setup() is safe;
353	 *  - prevent concurrent SPI_IOC_WR_* from morphing
354	 *    data fields while SPI_IOC_RD_* reads them;
355	 *  - SPI_IOC_MESSAGE needs the buffer locked "normally".
356	 */
357	mutex_lock(&spidev->buf_lock);
358
359	switch (cmd) {
360	/* read requests */
361	case SPI_IOC_RD_MODE:
362		retval = __put_user(spi->mode & SPI_MODE_MASK,
363					(__u8 __user *)arg);
364		break;
365	case SPI_IOC_RD_MODE32:
366		retval = __put_user(spi->mode & SPI_MODE_MASK,
367					(__u32 __user *)arg);
368		break;
369	case SPI_IOC_RD_LSB_FIRST:
370		retval = __put_user((spi->mode & SPI_LSB_FIRST) ?  1 : 0,
371					(__u8 __user *)arg);
372		break;
373	case SPI_IOC_RD_BITS_PER_WORD:
374		retval = __put_user(spi->bits_per_word, (__u8 __user *)arg);
375		break;
376	case SPI_IOC_RD_MAX_SPEED_HZ:
377		retval = __put_user(spi->max_speed_hz, (__u32 __user *)arg);
378		break;
379
380	/* write requests */
381	case SPI_IOC_WR_MODE:
382	case SPI_IOC_WR_MODE32:
383		if (cmd == SPI_IOC_WR_MODE)
384			retval = __get_user(tmp, (u8 __user *)arg);
385		else
386			retval = __get_user(tmp, (u32 __user *)arg);
387		if (retval == 0) {
388			u32	save = spi->mode;
389
390			if (tmp & ~SPI_MODE_MASK) {
391				retval = -EINVAL;
392				break;
393			}
394
395			tmp |= spi->mode & ~SPI_MODE_MASK;
396			spi->mode = (u16)tmp;
397			retval = spi_setup(spi);
398			if (retval < 0)
399				spi->mode = save;
400			else
401				dev_dbg(&spi->dev, "spi mode %x\n", tmp);
402		}
403		break;
404	case SPI_IOC_WR_LSB_FIRST:
405		retval = __get_user(tmp, (__u8 __user *)arg);
406		if (retval == 0) {
407			u32	save = spi->mode;
408
409			if (tmp)
410				spi->mode |= SPI_LSB_FIRST;
411			else
412				spi->mode &= ~SPI_LSB_FIRST;
413			retval = spi_setup(spi);
414			if (retval < 0)
415				spi->mode = save;
416			else
417				dev_dbg(&spi->dev, "%csb first\n",
418						tmp ? 'l' : 'm');
419		}
420		break;
421	case SPI_IOC_WR_BITS_PER_WORD:
422		retval = __get_user(tmp, (__u8 __user *)arg);
423		if (retval == 0) {
424			u8	save = spi->bits_per_word;
425
426			spi->bits_per_word = tmp;
427			retval = spi_setup(spi);
428			if (retval < 0)
429				spi->bits_per_word = save;
430			else
431				dev_dbg(&spi->dev, "%d bits per word\n", tmp);
432		}
433		break;
434	case SPI_IOC_WR_MAX_SPEED_HZ:
435		retval = __get_user(tmp, (__u32 __user *)arg);
436		if (retval == 0) {
437			u32	save = spi->max_speed_hz;
438
439			spi->max_speed_hz = tmp;
440			retval = spi_setup(spi);
441			if (retval < 0)
442				spi->max_speed_hz = save;
443			else
444				dev_dbg(&spi->dev, "%d Hz (max)\n", tmp);
 
445		}
446		break;
447
448	default:
449		/* segmented and/or full-duplex I/O request */
450		if (_IOC_NR(cmd) != _IOC_NR(SPI_IOC_MESSAGE(0))
451				|| _IOC_DIR(cmd) != _IOC_WRITE) {
452			retval = -ENOTTY;
453			break;
454		}
455
456		tmp = _IOC_SIZE(cmd);
457		if ((tmp % sizeof(struct spi_ioc_transfer)) != 0) {
458			retval = -EINVAL;
459			break;
460		}
461		n_ioc = tmp / sizeof(struct spi_ioc_transfer);
462		if (n_ioc == 0)
463			break;
464
465		/* copy into scratch area */
466		ioc = kmalloc(tmp, GFP_KERNEL);
467		if (!ioc) {
468			retval = -ENOMEM;
469			break;
470		}
471		if (__copy_from_user(ioc, (void __user *)arg, tmp)) {
472			kfree(ioc);
473			retval = -EFAULT;
474			break;
475		}
 
 
476
477		/* translate to spi_message, execute */
478		retval = spidev_message(spidev, ioc, n_ioc);
479		kfree(ioc);
480		break;
481	}
482
483	mutex_unlock(&spidev->buf_lock);
484	spi_dev_put(spi);
485	return retval;
486}
487
488#ifdef CONFIG_COMPAT
489static long
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
490spidev_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
491{
 
 
 
 
 
492	return spidev_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
493}
494#else
495#define spidev_compat_ioctl NULL
496#endif /* CONFIG_COMPAT */
497
498static int spidev_open(struct inode *inode, struct file *filp)
499{
500	struct spidev_data	*spidev;
501	int			status = -ENXIO;
502
503	mutex_lock(&device_list_lock);
504
505	list_for_each_entry(spidev, &device_list, device_entry) {
506		if (spidev->devt == inode->i_rdev) {
507			status = 0;
508			break;
509		}
510	}
511	if (status == 0) {
512		if (!spidev->buffer) {
513			spidev->buffer = kmalloc(bufsiz, GFP_KERNEL);
514			if (!spidev->buffer) {
515				dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
516				status = -ENOMEM;
517			}
 
 
 
 
 
518		}
519		if (status == 0) {
520			spidev->users++;
521			filp->private_data = spidev;
522			nonseekable_open(inode, filp);
 
 
 
 
523		}
524	} else
525		pr_debug("spidev: nothing for minor %d\n", iminor(inode));
 
 
 
 
 
 
526
 
 
 
 
527	mutex_unlock(&device_list_lock);
528	return status;
529}
530
531static int spidev_release(struct inode *inode, struct file *filp)
532{
533	struct spidev_data	*spidev;
534	int			status = 0;
535
536	mutex_lock(&device_list_lock);
537	spidev = filp->private_data;
538	filp->private_data = NULL;
539
540	/* last close? */
541	spidev->users--;
542	if (!spidev->users) {
543		int		dofree;
544
545		kfree(spidev->buffer);
546		spidev->buffer = NULL;
 
 
 
 
 
 
 
547
548		/* ... after we unbound from the underlying device? */
549		spin_lock_irq(&spidev->spi_lock);
550		dofree = (spidev->spi == NULL);
551		spin_unlock_irq(&spidev->spi_lock);
552
553		if (dofree)
554			kfree(spidev);
555	}
556	mutex_unlock(&device_list_lock);
557
558	return status;
559}
560
561static const struct file_operations spidev_fops = {
562	.owner =	THIS_MODULE,
563	/* REVISIT switch to aio primitives, so that userspace
564	 * gets more complete API coverage.  It'll simplify things
565	 * too, except for the locking.
566	 */
567	.write =	spidev_write,
568	.read =		spidev_read,
569	.unlocked_ioctl = spidev_ioctl,
570	.compat_ioctl = spidev_compat_ioctl,
571	.open =		spidev_open,
572	.release =	spidev_release,
573	.llseek =	no_llseek,
574};
575
576/*-------------------------------------------------------------------------*/
577
578/* The main reason to have this class is to make mdev/udev create the
579 * /dev/spidevB.C character device nodes exposing our userspace API.
580 * It also simplifies memory management.
581 */
582
583static struct class *spidev_class;
584
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
585/*-------------------------------------------------------------------------*/
586
587static int spidev_probe(struct spi_device *spi)
588{
589	struct spidev_data	*spidev;
590	int			status;
591	unsigned long		minor;
592
 
 
 
 
 
 
 
 
 
 
 
 
 
593	/* Allocate driver data */
594	spidev = kzalloc(sizeof(*spidev), GFP_KERNEL);
595	if (!spidev)
596		return -ENOMEM;
597
598	/* Initialize the driver data */
599	spidev->spi = spi;
600	spin_lock_init(&spidev->spi_lock);
601	mutex_init(&spidev->buf_lock);
602
603	INIT_LIST_HEAD(&spidev->device_entry);
604
605	/* If we can allocate a minor number, hook up this device.
606	 * Reusing minors is fine so long as udev or mdev is working.
607	 */
608	mutex_lock(&device_list_lock);
609	minor = find_first_zero_bit(minors, N_SPI_MINORS);
610	if (minor < N_SPI_MINORS) {
611		struct device *dev;
612
613		spidev->devt = MKDEV(SPIDEV_MAJOR, minor);
614		dev = device_create(spidev_class, &spi->dev, spidev->devt,
615				    spidev, "spidev%d.%d",
616				    spi->master->bus_num, spi->chip_select);
617		status = PTR_ERR_OR_ZERO(dev);
618	} else {
619		dev_dbg(&spi->dev, "no minor number available!\n");
620		status = -ENODEV;
621	}
622	if (status == 0) {
623		set_bit(minor, minors);
624		list_add(&spidev->device_entry, &device_list);
625	}
626	mutex_unlock(&device_list_lock);
627
 
 
628	if (status == 0)
629		spi_set_drvdata(spi, spidev);
630	else
631		kfree(spidev);
632
633	return status;
634}
635
636static int spidev_remove(struct spi_device *spi)
637{
638	struct spidev_data	*spidev = spi_get_drvdata(spi);
639
640	/* make sure ops on existing fds can abort cleanly */
641	spin_lock_irq(&spidev->spi_lock);
642	spidev->spi = NULL;
643	spin_unlock_irq(&spidev->spi_lock);
644
645	/* prevent new opens */
646	mutex_lock(&device_list_lock);
647	list_del(&spidev->device_entry);
648	device_destroy(spidev_class, spidev->devt);
649	clear_bit(MINOR(spidev->devt), minors);
650	if (spidev->users == 0)
651		kfree(spidev);
652	mutex_unlock(&device_list_lock);
653
654	return 0;
655}
656
657static const struct of_device_id spidev_dt_ids[] = {
658	{ .compatible = "rohm,dh2228fv" },
659	{},
660};
661
662MODULE_DEVICE_TABLE(of, spidev_dt_ids);
663
664static struct spi_driver spidev_spi_driver = {
665	.driver = {
666		.name =		"spidev",
667		.owner =	THIS_MODULE,
668		.of_match_table = of_match_ptr(spidev_dt_ids),
 
669	},
670	.probe =	spidev_probe,
671	.remove =	spidev_remove,
672
673	/* NOTE:  suspend/resume methods are not necessary here.
674	 * We don't do anything except pass the requests to/from
675	 * the underlying controller.  The refrigerator handles
676	 * most issues; the controller driver handles the rest.
677	 */
678};
679
680/*-------------------------------------------------------------------------*/
681
682static int __init spidev_init(void)
683{
684	int status;
685
686	/* Claim our 256 reserved device numbers.  Then register a class
687	 * that will key udev/mdev to add/remove /dev nodes.  Last, register
688	 * the driver which manages those device numbers.
689	 */
690	BUILD_BUG_ON(N_SPI_MINORS > 256);
691	status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops);
692	if (status < 0)
693		return status;
694
695	spidev_class = class_create(THIS_MODULE, "spidev");
696	if (IS_ERR(spidev_class)) {
697		unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
698		return PTR_ERR(spidev_class);
699	}
700
701	status = spi_register_driver(&spidev_spi_driver);
702	if (status < 0) {
703		class_destroy(spidev_class);
704		unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
705	}
706	return status;
707}
708module_init(spidev_init);
709
710static void __exit spidev_exit(void)
711{
712	spi_unregister_driver(&spidev_spi_driver);
713	class_destroy(spidev_class);
714	unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
715}
716module_exit(spidev_exit);
717
718MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>");
719MODULE_DESCRIPTION("User mode SPI device interface");
720MODULE_LICENSE("GPL");
721MODULE_ALIAS("spi:spidev");