Loading...
1/* bpf_jit_comp.c : BPF JIT compiler
2 *
3 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
4 * Internal BPF Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; version 2
9 * of the License.
10 */
11#include <linux/netdevice.h>
12#include <linux/filter.h>
13#include <linux/if_vlan.h>
14#include <asm/cacheflush.h>
15#include <linux/bpf.h>
16
17int bpf_jit_enable __read_mostly;
18
19/*
20 * assembly code in arch/x86/net/bpf_jit.S
21 */
22extern u8 sk_load_word[], sk_load_half[], sk_load_byte[];
23extern u8 sk_load_word_positive_offset[], sk_load_half_positive_offset[];
24extern u8 sk_load_byte_positive_offset[];
25extern u8 sk_load_word_negative_offset[], sk_load_half_negative_offset[];
26extern u8 sk_load_byte_negative_offset[];
27
28static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
29{
30 if (len == 1)
31 *ptr = bytes;
32 else if (len == 2)
33 *(u16 *)ptr = bytes;
34 else {
35 *(u32 *)ptr = bytes;
36 barrier();
37 }
38 return ptr + len;
39}
40
41#define EMIT(bytes, len) \
42 do { prog = emit_code(prog, bytes, len); cnt += len; } while (0)
43
44#define EMIT1(b1) EMIT(b1, 1)
45#define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
46#define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
47#define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
48#define EMIT1_off32(b1, off) \
49 do {EMIT1(b1); EMIT(off, 4); } while (0)
50#define EMIT2_off32(b1, b2, off) \
51 do {EMIT2(b1, b2); EMIT(off, 4); } while (0)
52#define EMIT3_off32(b1, b2, b3, off) \
53 do {EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
54#define EMIT4_off32(b1, b2, b3, b4, off) \
55 do {EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
56
57static bool is_imm8(int value)
58{
59 return value <= 127 && value >= -128;
60}
61
62static bool is_simm32(s64 value)
63{
64 return value == (s64) (s32) value;
65}
66
67/* mov dst, src */
68#define EMIT_mov(DST, SRC) \
69 do {if (DST != SRC) \
70 EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
71 } while (0)
72
73static int bpf_size_to_x86_bytes(int bpf_size)
74{
75 if (bpf_size == BPF_W)
76 return 4;
77 else if (bpf_size == BPF_H)
78 return 2;
79 else if (bpf_size == BPF_B)
80 return 1;
81 else if (bpf_size == BPF_DW)
82 return 4; /* imm32 */
83 else
84 return 0;
85}
86
87/* list of x86 cond jumps opcodes (. + s8)
88 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
89 */
90#define X86_JB 0x72
91#define X86_JAE 0x73
92#define X86_JE 0x74
93#define X86_JNE 0x75
94#define X86_JBE 0x76
95#define X86_JA 0x77
96#define X86_JGE 0x7D
97#define X86_JG 0x7F
98
99static void bpf_flush_icache(void *start, void *end)
100{
101 mm_segment_t old_fs = get_fs();
102
103 set_fs(KERNEL_DS);
104 smp_wmb();
105 flush_icache_range((unsigned long)start, (unsigned long)end);
106 set_fs(old_fs);
107}
108
109#define CHOOSE_LOAD_FUNC(K, func) \
110 ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
111
112/* pick a register outside of BPF range for JIT internal work */
113#define AUX_REG (MAX_BPF_JIT_REG + 1)
114
115/* The following table maps BPF registers to x64 registers.
116 *
117 * x64 register r12 is unused, since if used as base address
118 * register in load/store instructions, it always needs an
119 * extra byte of encoding and is callee saved.
120 *
121 * r9 caches skb->len - skb->data_len
122 * r10 caches skb->data, and used for blinding (if enabled)
123 */
124static const int reg2hex[] = {
125 [BPF_REG_0] = 0, /* rax */
126 [BPF_REG_1] = 7, /* rdi */
127 [BPF_REG_2] = 6, /* rsi */
128 [BPF_REG_3] = 2, /* rdx */
129 [BPF_REG_4] = 1, /* rcx */
130 [BPF_REG_5] = 0, /* r8 */
131 [BPF_REG_6] = 3, /* rbx callee saved */
132 [BPF_REG_7] = 5, /* r13 callee saved */
133 [BPF_REG_8] = 6, /* r14 callee saved */
134 [BPF_REG_9] = 7, /* r15 callee saved */
135 [BPF_REG_FP] = 5, /* rbp readonly */
136 [BPF_REG_AX] = 2, /* r10 temp register */
137 [AUX_REG] = 3, /* r11 temp register */
138};
139
140/* is_ereg() == true if BPF register 'reg' maps to x64 r8..r15
141 * which need extra byte of encoding.
142 * rax,rcx,...,rbp have simpler encoding
143 */
144static bool is_ereg(u32 reg)
145{
146 return (1 << reg) & (BIT(BPF_REG_5) |
147 BIT(AUX_REG) |
148 BIT(BPF_REG_7) |
149 BIT(BPF_REG_8) |
150 BIT(BPF_REG_9) |
151 BIT(BPF_REG_AX));
152}
153
154/* add modifiers if 'reg' maps to x64 registers r8..r15 */
155static u8 add_1mod(u8 byte, u32 reg)
156{
157 if (is_ereg(reg))
158 byte |= 1;
159 return byte;
160}
161
162static u8 add_2mod(u8 byte, u32 r1, u32 r2)
163{
164 if (is_ereg(r1))
165 byte |= 1;
166 if (is_ereg(r2))
167 byte |= 4;
168 return byte;
169}
170
171/* encode 'dst_reg' register into x64 opcode 'byte' */
172static u8 add_1reg(u8 byte, u32 dst_reg)
173{
174 return byte + reg2hex[dst_reg];
175}
176
177/* encode 'dst_reg' and 'src_reg' registers into x64 opcode 'byte' */
178static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
179{
180 return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
181}
182
183static void jit_fill_hole(void *area, unsigned int size)
184{
185 /* fill whole space with int3 instructions */
186 memset(area, 0xcc, size);
187}
188
189struct jit_context {
190 int cleanup_addr; /* epilogue code offset */
191 bool seen_ld_abs;
192 bool seen_ax_reg;
193};
194
195/* maximum number of bytes emitted while JITing one eBPF insn */
196#define BPF_MAX_INSN_SIZE 128
197#define BPF_INSN_SAFETY 64
198
199#define STACKSIZE \
200 (MAX_BPF_STACK + \
201 32 /* space for rbx, r13, r14, r15 */ + \
202 8 /* space for skb_copy_bits() buffer */)
203
204#define PROLOGUE_SIZE 48
205
206/* emit x64 prologue code for BPF program and check it's size.
207 * bpf_tail_call helper will skip it while jumping into another program
208 */
209static void emit_prologue(u8 **pprog)
210{
211 u8 *prog = *pprog;
212 int cnt = 0;
213
214 EMIT1(0x55); /* push rbp */
215 EMIT3(0x48, 0x89, 0xE5); /* mov rbp,rsp */
216
217 /* sub rsp, STACKSIZE */
218 EMIT3_off32(0x48, 0x81, 0xEC, STACKSIZE);
219
220 /* all classic BPF filters use R6(rbx) save it */
221
222 /* mov qword ptr [rbp-X],rbx */
223 EMIT3_off32(0x48, 0x89, 0x9D, -STACKSIZE);
224
225 /* bpf_convert_filter() maps classic BPF register X to R7 and uses R8
226 * as temporary, so all tcpdump filters need to spill/fill R7(r13) and
227 * R8(r14). R9(r15) spill could be made conditional, but there is only
228 * one 'bpf_error' return path out of helper functions inside bpf_jit.S
229 * The overhead of extra spill is negligible for any filter other
230 * than synthetic ones. Therefore not worth adding complexity.
231 */
232
233 /* mov qword ptr [rbp-X],r13 */
234 EMIT3_off32(0x4C, 0x89, 0xAD, -STACKSIZE + 8);
235 /* mov qword ptr [rbp-X],r14 */
236 EMIT3_off32(0x4C, 0x89, 0xB5, -STACKSIZE + 16);
237 /* mov qword ptr [rbp-X],r15 */
238 EMIT3_off32(0x4C, 0x89, 0xBD, -STACKSIZE + 24);
239
240 /* Clear the tail call counter (tail_call_cnt): for eBPF tail calls
241 * we need to reset the counter to 0. It's done in two instructions,
242 * resetting rax register to 0 (xor on eax gets 0 extended), and
243 * moving it to the counter location.
244 */
245
246 /* xor eax, eax */
247 EMIT2(0x31, 0xc0);
248 /* mov qword ptr [rbp-X], rax */
249 EMIT3_off32(0x48, 0x89, 0x85, -STACKSIZE + 32);
250
251 BUILD_BUG_ON(cnt != PROLOGUE_SIZE);
252 *pprog = prog;
253}
254
255/* generate the following code:
256 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
257 * if (index >= array->map.max_entries)
258 * goto out;
259 * if (++tail_call_cnt > MAX_TAIL_CALL_CNT)
260 * goto out;
261 * prog = array->ptrs[index];
262 * if (prog == NULL)
263 * goto out;
264 * goto *(prog->bpf_func + prologue_size);
265 * out:
266 */
267static void emit_bpf_tail_call(u8 **pprog)
268{
269 u8 *prog = *pprog;
270 int label1, label2, label3;
271 int cnt = 0;
272
273 /* rdi - pointer to ctx
274 * rsi - pointer to bpf_array
275 * rdx - index in bpf_array
276 */
277
278 /* if (index >= array->map.max_entries)
279 * goto out;
280 */
281 EMIT4(0x48, 0x8B, 0x46, /* mov rax, qword ptr [rsi + 16] */
282 offsetof(struct bpf_array, map.max_entries));
283 EMIT3(0x48, 0x39, 0xD0); /* cmp rax, rdx */
284#define OFFSET1 47 /* number of bytes to jump */
285 EMIT2(X86_JBE, OFFSET1); /* jbe out */
286 label1 = cnt;
287
288 /* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
289 * goto out;
290 */
291 EMIT2_off32(0x8B, 0x85, -STACKSIZE + 36); /* mov eax, dword ptr [rbp - 516] */
292 EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */
293#define OFFSET2 36
294 EMIT2(X86_JA, OFFSET2); /* ja out */
295 label2 = cnt;
296 EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */
297 EMIT2_off32(0x89, 0x85, -STACKSIZE + 36); /* mov dword ptr [rbp - 516], eax */
298
299 /* prog = array->ptrs[index]; */
300 EMIT4_off32(0x48, 0x8D, 0x84, 0xD6, /* lea rax, [rsi + rdx * 8 + offsetof(...)] */
301 offsetof(struct bpf_array, ptrs));
302 EMIT3(0x48, 0x8B, 0x00); /* mov rax, qword ptr [rax] */
303
304 /* if (prog == NULL)
305 * goto out;
306 */
307 EMIT4(0x48, 0x83, 0xF8, 0x00); /* cmp rax, 0 */
308#define OFFSET3 10
309 EMIT2(X86_JE, OFFSET3); /* je out */
310 label3 = cnt;
311
312 /* goto *(prog->bpf_func + prologue_size); */
313 EMIT4(0x48, 0x8B, 0x40, /* mov rax, qword ptr [rax + 32] */
314 offsetof(struct bpf_prog, bpf_func));
315 EMIT4(0x48, 0x83, 0xC0, PROLOGUE_SIZE); /* add rax, prologue_size */
316
317 /* now we're ready to jump into next BPF program
318 * rdi == ctx (1st arg)
319 * rax == prog->bpf_func + prologue_size
320 */
321 EMIT2(0xFF, 0xE0); /* jmp rax */
322
323 /* out: */
324 BUILD_BUG_ON(cnt - label1 != OFFSET1);
325 BUILD_BUG_ON(cnt - label2 != OFFSET2);
326 BUILD_BUG_ON(cnt - label3 != OFFSET3);
327 *pprog = prog;
328}
329
330
331static void emit_load_skb_data_hlen(u8 **pprog)
332{
333 u8 *prog = *pprog;
334 int cnt = 0;
335
336 /* r9d = skb->len - skb->data_len (headlen)
337 * r10 = skb->data
338 */
339 /* mov %r9d, off32(%rdi) */
340 EMIT3_off32(0x44, 0x8b, 0x8f, offsetof(struct sk_buff, len));
341
342 /* sub %r9d, off32(%rdi) */
343 EMIT3_off32(0x44, 0x2b, 0x8f, offsetof(struct sk_buff, data_len));
344
345 /* mov %r10, off32(%rdi) */
346 EMIT3_off32(0x4c, 0x8b, 0x97, offsetof(struct sk_buff, data));
347 *pprog = prog;
348}
349
350static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
351 int oldproglen, struct jit_context *ctx)
352{
353 struct bpf_insn *insn = bpf_prog->insnsi;
354 int insn_cnt = bpf_prog->len;
355 bool seen_ld_abs = ctx->seen_ld_abs | (oldproglen == 0);
356 bool seen_ax_reg = ctx->seen_ax_reg | (oldproglen == 0);
357 bool seen_exit = false;
358 u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
359 int i, cnt = 0;
360 int proglen = 0;
361 u8 *prog = temp;
362
363 emit_prologue(&prog);
364
365 if (seen_ld_abs)
366 emit_load_skb_data_hlen(&prog);
367
368 for (i = 0; i < insn_cnt; i++, insn++) {
369 const s32 imm32 = insn->imm;
370 u32 dst_reg = insn->dst_reg;
371 u32 src_reg = insn->src_reg;
372 u8 b1 = 0, b2 = 0, b3 = 0;
373 s64 jmp_offset;
374 u8 jmp_cond;
375 bool reload_skb_data;
376 int ilen;
377 u8 *func;
378
379 if (dst_reg == BPF_REG_AX || src_reg == BPF_REG_AX)
380 ctx->seen_ax_reg = seen_ax_reg = true;
381
382 switch (insn->code) {
383 /* ALU */
384 case BPF_ALU | BPF_ADD | BPF_X:
385 case BPF_ALU | BPF_SUB | BPF_X:
386 case BPF_ALU | BPF_AND | BPF_X:
387 case BPF_ALU | BPF_OR | BPF_X:
388 case BPF_ALU | BPF_XOR | BPF_X:
389 case BPF_ALU64 | BPF_ADD | BPF_X:
390 case BPF_ALU64 | BPF_SUB | BPF_X:
391 case BPF_ALU64 | BPF_AND | BPF_X:
392 case BPF_ALU64 | BPF_OR | BPF_X:
393 case BPF_ALU64 | BPF_XOR | BPF_X:
394 switch (BPF_OP(insn->code)) {
395 case BPF_ADD: b2 = 0x01; break;
396 case BPF_SUB: b2 = 0x29; break;
397 case BPF_AND: b2 = 0x21; break;
398 case BPF_OR: b2 = 0x09; break;
399 case BPF_XOR: b2 = 0x31; break;
400 }
401 if (BPF_CLASS(insn->code) == BPF_ALU64)
402 EMIT1(add_2mod(0x48, dst_reg, src_reg));
403 else if (is_ereg(dst_reg) || is_ereg(src_reg))
404 EMIT1(add_2mod(0x40, dst_reg, src_reg));
405 EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
406 break;
407
408 /* mov dst, src */
409 case BPF_ALU64 | BPF_MOV | BPF_X:
410 EMIT_mov(dst_reg, src_reg);
411 break;
412
413 /* mov32 dst, src */
414 case BPF_ALU | BPF_MOV | BPF_X:
415 if (is_ereg(dst_reg) || is_ereg(src_reg))
416 EMIT1(add_2mod(0x40, dst_reg, src_reg));
417 EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
418 break;
419
420 /* neg dst */
421 case BPF_ALU | BPF_NEG:
422 case BPF_ALU64 | BPF_NEG:
423 if (BPF_CLASS(insn->code) == BPF_ALU64)
424 EMIT1(add_1mod(0x48, dst_reg));
425 else if (is_ereg(dst_reg))
426 EMIT1(add_1mod(0x40, dst_reg));
427 EMIT2(0xF7, add_1reg(0xD8, dst_reg));
428 break;
429
430 case BPF_ALU | BPF_ADD | BPF_K:
431 case BPF_ALU | BPF_SUB | BPF_K:
432 case BPF_ALU | BPF_AND | BPF_K:
433 case BPF_ALU | BPF_OR | BPF_K:
434 case BPF_ALU | BPF_XOR | BPF_K:
435 case BPF_ALU64 | BPF_ADD | BPF_K:
436 case BPF_ALU64 | BPF_SUB | BPF_K:
437 case BPF_ALU64 | BPF_AND | BPF_K:
438 case BPF_ALU64 | BPF_OR | BPF_K:
439 case BPF_ALU64 | BPF_XOR | BPF_K:
440 if (BPF_CLASS(insn->code) == BPF_ALU64)
441 EMIT1(add_1mod(0x48, dst_reg));
442 else if (is_ereg(dst_reg))
443 EMIT1(add_1mod(0x40, dst_reg));
444
445 switch (BPF_OP(insn->code)) {
446 case BPF_ADD: b3 = 0xC0; break;
447 case BPF_SUB: b3 = 0xE8; break;
448 case BPF_AND: b3 = 0xE0; break;
449 case BPF_OR: b3 = 0xC8; break;
450 case BPF_XOR: b3 = 0xF0; break;
451 }
452
453 if (is_imm8(imm32))
454 EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
455 else
456 EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
457 break;
458
459 case BPF_ALU64 | BPF_MOV | BPF_K:
460 /* optimization: if imm32 is positive,
461 * use 'mov eax, imm32' (which zero-extends imm32)
462 * to save 2 bytes
463 */
464 if (imm32 < 0) {
465 /* 'mov rax, imm32' sign extends imm32 */
466 b1 = add_1mod(0x48, dst_reg);
467 b2 = 0xC7;
468 b3 = 0xC0;
469 EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
470 break;
471 }
472
473 case BPF_ALU | BPF_MOV | BPF_K:
474 /* optimization: if imm32 is zero, use 'xor <dst>,<dst>'
475 * to save 3 bytes.
476 */
477 if (imm32 == 0) {
478 if (is_ereg(dst_reg))
479 EMIT1(add_2mod(0x40, dst_reg, dst_reg));
480 b2 = 0x31; /* xor */
481 b3 = 0xC0;
482 EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
483 break;
484 }
485
486 /* mov %eax, imm32 */
487 if (is_ereg(dst_reg))
488 EMIT1(add_1mod(0x40, dst_reg));
489 EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
490 break;
491
492 case BPF_LD | BPF_IMM | BPF_DW:
493 if (insn[1].code != 0 || insn[1].src_reg != 0 ||
494 insn[1].dst_reg != 0 || insn[1].off != 0) {
495 /* verifier must catch invalid insns */
496 pr_err("invalid BPF_LD_IMM64 insn\n");
497 return -EINVAL;
498 }
499
500 /* optimization: if imm64 is zero, use 'xor <dst>,<dst>'
501 * to save 7 bytes.
502 */
503 if (insn[0].imm == 0 && insn[1].imm == 0) {
504 b1 = add_2mod(0x48, dst_reg, dst_reg);
505 b2 = 0x31; /* xor */
506 b3 = 0xC0;
507 EMIT3(b1, b2, add_2reg(b3, dst_reg, dst_reg));
508
509 insn++;
510 i++;
511 break;
512 }
513
514 /* movabsq %rax, imm64 */
515 EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
516 EMIT(insn[0].imm, 4);
517 EMIT(insn[1].imm, 4);
518
519 insn++;
520 i++;
521 break;
522
523 /* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
524 case BPF_ALU | BPF_MOD | BPF_X:
525 case BPF_ALU | BPF_DIV | BPF_X:
526 case BPF_ALU | BPF_MOD | BPF_K:
527 case BPF_ALU | BPF_DIV | BPF_K:
528 case BPF_ALU64 | BPF_MOD | BPF_X:
529 case BPF_ALU64 | BPF_DIV | BPF_X:
530 case BPF_ALU64 | BPF_MOD | BPF_K:
531 case BPF_ALU64 | BPF_DIV | BPF_K:
532 EMIT1(0x50); /* push rax */
533 EMIT1(0x52); /* push rdx */
534
535 if (BPF_SRC(insn->code) == BPF_X)
536 /* mov r11, src_reg */
537 EMIT_mov(AUX_REG, src_reg);
538 else
539 /* mov r11, imm32 */
540 EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
541
542 /* mov rax, dst_reg */
543 EMIT_mov(BPF_REG_0, dst_reg);
544
545 /* xor edx, edx
546 * equivalent to 'xor rdx, rdx', but one byte less
547 */
548 EMIT2(0x31, 0xd2);
549
550 if (BPF_SRC(insn->code) == BPF_X) {
551 /* if (src_reg == 0) return 0 */
552
553 /* cmp r11, 0 */
554 EMIT4(0x49, 0x83, 0xFB, 0x00);
555
556 /* jne .+9 (skip over pop, pop, xor and jmp) */
557 EMIT2(X86_JNE, 1 + 1 + 2 + 5);
558 EMIT1(0x5A); /* pop rdx */
559 EMIT1(0x58); /* pop rax */
560 EMIT2(0x31, 0xc0); /* xor eax, eax */
561
562 /* jmp cleanup_addr
563 * addrs[i] - 11, because there are 11 bytes
564 * after this insn: div, mov, pop, pop, mov
565 */
566 jmp_offset = ctx->cleanup_addr - (addrs[i] - 11);
567 EMIT1_off32(0xE9, jmp_offset);
568 }
569
570 if (BPF_CLASS(insn->code) == BPF_ALU64)
571 /* div r11 */
572 EMIT3(0x49, 0xF7, 0xF3);
573 else
574 /* div r11d */
575 EMIT3(0x41, 0xF7, 0xF3);
576
577 if (BPF_OP(insn->code) == BPF_MOD)
578 /* mov r11, rdx */
579 EMIT3(0x49, 0x89, 0xD3);
580 else
581 /* mov r11, rax */
582 EMIT3(0x49, 0x89, 0xC3);
583
584 EMIT1(0x5A); /* pop rdx */
585 EMIT1(0x58); /* pop rax */
586
587 /* mov dst_reg, r11 */
588 EMIT_mov(dst_reg, AUX_REG);
589 break;
590
591 case BPF_ALU | BPF_MUL | BPF_K:
592 case BPF_ALU | BPF_MUL | BPF_X:
593 case BPF_ALU64 | BPF_MUL | BPF_K:
594 case BPF_ALU64 | BPF_MUL | BPF_X:
595 EMIT1(0x50); /* push rax */
596 EMIT1(0x52); /* push rdx */
597
598 /* mov r11, dst_reg */
599 EMIT_mov(AUX_REG, dst_reg);
600
601 if (BPF_SRC(insn->code) == BPF_X)
602 /* mov rax, src_reg */
603 EMIT_mov(BPF_REG_0, src_reg);
604 else
605 /* mov rax, imm32 */
606 EMIT3_off32(0x48, 0xC7, 0xC0, imm32);
607
608 if (BPF_CLASS(insn->code) == BPF_ALU64)
609 EMIT1(add_1mod(0x48, AUX_REG));
610 else if (is_ereg(AUX_REG))
611 EMIT1(add_1mod(0x40, AUX_REG));
612 /* mul(q) r11 */
613 EMIT2(0xF7, add_1reg(0xE0, AUX_REG));
614
615 /* mov r11, rax */
616 EMIT_mov(AUX_REG, BPF_REG_0);
617
618 EMIT1(0x5A); /* pop rdx */
619 EMIT1(0x58); /* pop rax */
620
621 /* mov dst_reg, r11 */
622 EMIT_mov(dst_reg, AUX_REG);
623 break;
624
625 /* shifts */
626 case BPF_ALU | BPF_LSH | BPF_K:
627 case BPF_ALU | BPF_RSH | BPF_K:
628 case BPF_ALU | BPF_ARSH | BPF_K:
629 case BPF_ALU64 | BPF_LSH | BPF_K:
630 case BPF_ALU64 | BPF_RSH | BPF_K:
631 case BPF_ALU64 | BPF_ARSH | BPF_K:
632 if (BPF_CLASS(insn->code) == BPF_ALU64)
633 EMIT1(add_1mod(0x48, dst_reg));
634 else if (is_ereg(dst_reg))
635 EMIT1(add_1mod(0x40, dst_reg));
636
637 switch (BPF_OP(insn->code)) {
638 case BPF_LSH: b3 = 0xE0; break;
639 case BPF_RSH: b3 = 0xE8; break;
640 case BPF_ARSH: b3 = 0xF8; break;
641 }
642 EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
643 break;
644
645 case BPF_ALU | BPF_LSH | BPF_X:
646 case BPF_ALU | BPF_RSH | BPF_X:
647 case BPF_ALU | BPF_ARSH | BPF_X:
648 case BPF_ALU64 | BPF_LSH | BPF_X:
649 case BPF_ALU64 | BPF_RSH | BPF_X:
650 case BPF_ALU64 | BPF_ARSH | BPF_X:
651
652 /* check for bad case when dst_reg == rcx */
653 if (dst_reg == BPF_REG_4) {
654 /* mov r11, dst_reg */
655 EMIT_mov(AUX_REG, dst_reg);
656 dst_reg = AUX_REG;
657 }
658
659 if (src_reg != BPF_REG_4) { /* common case */
660 EMIT1(0x51); /* push rcx */
661
662 /* mov rcx, src_reg */
663 EMIT_mov(BPF_REG_4, src_reg);
664 }
665
666 /* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
667 if (BPF_CLASS(insn->code) == BPF_ALU64)
668 EMIT1(add_1mod(0x48, dst_reg));
669 else if (is_ereg(dst_reg))
670 EMIT1(add_1mod(0x40, dst_reg));
671
672 switch (BPF_OP(insn->code)) {
673 case BPF_LSH: b3 = 0xE0; break;
674 case BPF_RSH: b3 = 0xE8; break;
675 case BPF_ARSH: b3 = 0xF8; break;
676 }
677 EMIT2(0xD3, add_1reg(b3, dst_reg));
678
679 if (src_reg != BPF_REG_4)
680 EMIT1(0x59); /* pop rcx */
681
682 if (insn->dst_reg == BPF_REG_4)
683 /* mov dst_reg, r11 */
684 EMIT_mov(insn->dst_reg, AUX_REG);
685 break;
686
687 case BPF_ALU | BPF_END | BPF_FROM_BE:
688 switch (imm32) {
689 case 16:
690 /* emit 'ror %ax, 8' to swap lower 2 bytes */
691 EMIT1(0x66);
692 if (is_ereg(dst_reg))
693 EMIT1(0x41);
694 EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
695
696 /* emit 'movzwl eax, ax' */
697 if (is_ereg(dst_reg))
698 EMIT3(0x45, 0x0F, 0xB7);
699 else
700 EMIT2(0x0F, 0xB7);
701 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
702 break;
703 case 32:
704 /* emit 'bswap eax' to swap lower 4 bytes */
705 if (is_ereg(dst_reg))
706 EMIT2(0x41, 0x0F);
707 else
708 EMIT1(0x0F);
709 EMIT1(add_1reg(0xC8, dst_reg));
710 break;
711 case 64:
712 /* emit 'bswap rax' to swap 8 bytes */
713 EMIT3(add_1mod(0x48, dst_reg), 0x0F,
714 add_1reg(0xC8, dst_reg));
715 break;
716 }
717 break;
718
719 case BPF_ALU | BPF_END | BPF_FROM_LE:
720 switch (imm32) {
721 case 16:
722 /* emit 'movzwl eax, ax' to zero extend 16-bit
723 * into 64 bit
724 */
725 if (is_ereg(dst_reg))
726 EMIT3(0x45, 0x0F, 0xB7);
727 else
728 EMIT2(0x0F, 0xB7);
729 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
730 break;
731 case 32:
732 /* emit 'mov eax, eax' to clear upper 32-bits */
733 if (is_ereg(dst_reg))
734 EMIT1(0x45);
735 EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
736 break;
737 case 64:
738 /* nop */
739 break;
740 }
741 break;
742
743 /* ST: *(u8*)(dst_reg + off) = imm */
744 case BPF_ST | BPF_MEM | BPF_B:
745 if (is_ereg(dst_reg))
746 EMIT2(0x41, 0xC6);
747 else
748 EMIT1(0xC6);
749 goto st;
750 case BPF_ST | BPF_MEM | BPF_H:
751 if (is_ereg(dst_reg))
752 EMIT3(0x66, 0x41, 0xC7);
753 else
754 EMIT2(0x66, 0xC7);
755 goto st;
756 case BPF_ST | BPF_MEM | BPF_W:
757 if (is_ereg(dst_reg))
758 EMIT2(0x41, 0xC7);
759 else
760 EMIT1(0xC7);
761 goto st;
762 case BPF_ST | BPF_MEM | BPF_DW:
763 EMIT2(add_1mod(0x48, dst_reg), 0xC7);
764
765st: if (is_imm8(insn->off))
766 EMIT2(add_1reg(0x40, dst_reg), insn->off);
767 else
768 EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
769
770 EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
771 break;
772
773 /* STX: *(u8*)(dst_reg + off) = src_reg */
774 case BPF_STX | BPF_MEM | BPF_B:
775 /* emit 'mov byte ptr [rax + off], al' */
776 if (is_ereg(dst_reg) || is_ereg(src_reg) ||
777 /* have to add extra byte for x86 SIL, DIL regs */
778 src_reg == BPF_REG_1 || src_reg == BPF_REG_2)
779 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
780 else
781 EMIT1(0x88);
782 goto stx;
783 case BPF_STX | BPF_MEM | BPF_H:
784 if (is_ereg(dst_reg) || is_ereg(src_reg))
785 EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
786 else
787 EMIT2(0x66, 0x89);
788 goto stx;
789 case BPF_STX | BPF_MEM | BPF_W:
790 if (is_ereg(dst_reg) || is_ereg(src_reg))
791 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
792 else
793 EMIT1(0x89);
794 goto stx;
795 case BPF_STX | BPF_MEM | BPF_DW:
796 EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
797stx: if (is_imm8(insn->off))
798 EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
799 else
800 EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
801 insn->off);
802 break;
803
804 /* LDX: dst_reg = *(u8*)(src_reg + off) */
805 case BPF_LDX | BPF_MEM | BPF_B:
806 /* emit 'movzx rax, byte ptr [rax + off]' */
807 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
808 goto ldx;
809 case BPF_LDX | BPF_MEM | BPF_H:
810 /* emit 'movzx rax, word ptr [rax + off]' */
811 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
812 goto ldx;
813 case BPF_LDX | BPF_MEM | BPF_W:
814 /* emit 'mov eax, dword ptr [rax+0x14]' */
815 if (is_ereg(dst_reg) || is_ereg(src_reg))
816 EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
817 else
818 EMIT1(0x8B);
819 goto ldx;
820 case BPF_LDX | BPF_MEM | BPF_DW:
821 /* emit 'mov rax, qword ptr [rax+0x14]' */
822 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
823ldx: /* if insn->off == 0 we can save one extra byte, but
824 * special case of x86 r13 which always needs an offset
825 * is not worth the hassle
826 */
827 if (is_imm8(insn->off))
828 EMIT2(add_2reg(0x40, src_reg, dst_reg), insn->off);
829 else
830 EMIT1_off32(add_2reg(0x80, src_reg, dst_reg),
831 insn->off);
832 break;
833
834 /* STX XADD: lock *(u32*)(dst_reg + off) += src_reg */
835 case BPF_STX | BPF_XADD | BPF_W:
836 /* emit 'lock add dword ptr [rax + off], eax' */
837 if (is_ereg(dst_reg) || is_ereg(src_reg))
838 EMIT3(0xF0, add_2mod(0x40, dst_reg, src_reg), 0x01);
839 else
840 EMIT2(0xF0, 0x01);
841 goto xadd;
842 case BPF_STX | BPF_XADD | BPF_DW:
843 EMIT3(0xF0, add_2mod(0x48, dst_reg, src_reg), 0x01);
844xadd: if (is_imm8(insn->off))
845 EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
846 else
847 EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
848 insn->off);
849 break;
850
851 /* call */
852 case BPF_JMP | BPF_CALL:
853 func = (u8 *) __bpf_call_base + imm32;
854 jmp_offset = func - (image + addrs[i]);
855 if (seen_ld_abs) {
856 reload_skb_data = bpf_helper_changes_pkt_data(func);
857 if (reload_skb_data) {
858 EMIT1(0x57); /* push %rdi */
859 jmp_offset += 22; /* pop, mov, sub, mov */
860 } else {
861 EMIT2(0x41, 0x52); /* push %r10 */
862 EMIT2(0x41, 0x51); /* push %r9 */
863 /* need to adjust jmp offset, since
864 * pop %r9, pop %r10 take 4 bytes after call insn
865 */
866 jmp_offset += 4;
867 }
868 }
869 if (!imm32 || !is_simm32(jmp_offset)) {
870 pr_err("unsupported bpf func %d addr %p image %p\n",
871 imm32, func, image);
872 return -EINVAL;
873 }
874 EMIT1_off32(0xE8, jmp_offset);
875 if (seen_ld_abs) {
876 if (reload_skb_data) {
877 EMIT1(0x5F); /* pop %rdi */
878 emit_load_skb_data_hlen(&prog);
879 } else {
880 EMIT2(0x41, 0x59); /* pop %r9 */
881 EMIT2(0x41, 0x5A); /* pop %r10 */
882 }
883 }
884 break;
885
886 case BPF_JMP | BPF_CALL | BPF_X:
887 emit_bpf_tail_call(&prog);
888 break;
889
890 /* cond jump */
891 case BPF_JMP | BPF_JEQ | BPF_X:
892 case BPF_JMP | BPF_JNE | BPF_X:
893 case BPF_JMP | BPF_JGT | BPF_X:
894 case BPF_JMP | BPF_JGE | BPF_X:
895 case BPF_JMP | BPF_JSGT | BPF_X:
896 case BPF_JMP | BPF_JSGE | BPF_X:
897 /* cmp dst_reg, src_reg */
898 EMIT3(add_2mod(0x48, dst_reg, src_reg), 0x39,
899 add_2reg(0xC0, dst_reg, src_reg));
900 goto emit_cond_jmp;
901
902 case BPF_JMP | BPF_JSET | BPF_X:
903 /* test dst_reg, src_reg */
904 EMIT3(add_2mod(0x48, dst_reg, src_reg), 0x85,
905 add_2reg(0xC0, dst_reg, src_reg));
906 goto emit_cond_jmp;
907
908 case BPF_JMP | BPF_JSET | BPF_K:
909 /* test dst_reg, imm32 */
910 EMIT1(add_1mod(0x48, dst_reg));
911 EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
912 goto emit_cond_jmp;
913
914 case BPF_JMP | BPF_JEQ | BPF_K:
915 case BPF_JMP | BPF_JNE | BPF_K:
916 case BPF_JMP | BPF_JGT | BPF_K:
917 case BPF_JMP | BPF_JGE | BPF_K:
918 case BPF_JMP | BPF_JSGT | BPF_K:
919 case BPF_JMP | BPF_JSGE | BPF_K:
920 /* cmp dst_reg, imm8/32 */
921 EMIT1(add_1mod(0x48, dst_reg));
922
923 if (is_imm8(imm32))
924 EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
925 else
926 EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
927
928emit_cond_jmp: /* convert BPF opcode to x86 */
929 switch (BPF_OP(insn->code)) {
930 case BPF_JEQ:
931 jmp_cond = X86_JE;
932 break;
933 case BPF_JSET:
934 case BPF_JNE:
935 jmp_cond = X86_JNE;
936 break;
937 case BPF_JGT:
938 /* GT is unsigned '>', JA in x86 */
939 jmp_cond = X86_JA;
940 break;
941 case BPF_JGE:
942 /* GE is unsigned '>=', JAE in x86 */
943 jmp_cond = X86_JAE;
944 break;
945 case BPF_JSGT:
946 /* signed '>', GT in x86 */
947 jmp_cond = X86_JG;
948 break;
949 case BPF_JSGE:
950 /* signed '>=', GE in x86 */
951 jmp_cond = X86_JGE;
952 break;
953 default: /* to silence gcc warning */
954 return -EFAULT;
955 }
956 jmp_offset = addrs[i + insn->off] - addrs[i];
957 if (is_imm8(jmp_offset)) {
958 EMIT2(jmp_cond, jmp_offset);
959 } else if (is_simm32(jmp_offset)) {
960 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
961 } else {
962 pr_err("cond_jmp gen bug %llx\n", jmp_offset);
963 return -EFAULT;
964 }
965
966 break;
967
968 case BPF_JMP | BPF_JA:
969 jmp_offset = addrs[i + insn->off] - addrs[i];
970 if (!jmp_offset)
971 /* optimize out nop jumps */
972 break;
973emit_jmp:
974 if (is_imm8(jmp_offset)) {
975 EMIT2(0xEB, jmp_offset);
976 } else if (is_simm32(jmp_offset)) {
977 EMIT1_off32(0xE9, jmp_offset);
978 } else {
979 pr_err("jmp gen bug %llx\n", jmp_offset);
980 return -EFAULT;
981 }
982 break;
983
984 case BPF_LD | BPF_IND | BPF_W:
985 func = sk_load_word;
986 goto common_load;
987 case BPF_LD | BPF_ABS | BPF_W:
988 func = CHOOSE_LOAD_FUNC(imm32, sk_load_word);
989common_load:
990 ctx->seen_ld_abs = seen_ld_abs = true;
991 jmp_offset = func - (image + addrs[i]);
992 if (!func || !is_simm32(jmp_offset)) {
993 pr_err("unsupported bpf func %d addr %p image %p\n",
994 imm32, func, image);
995 return -EINVAL;
996 }
997 if (BPF_MODE(insn->code) == BPF_ABS) {
998 /* mov %esi, imm32 */
999 EMIT1_off32(0xBE, imm32);
1000 } else {
1001 /* mov %rsi, src_reg */
1002 EMIT_mov(BPF_REG_2, src_reg);
1003 if (imm32) {
1004 if (is_imm8(imm32))
1005 /* add %esi, imm8 */
1006 EMIT3(0x83, 0xC6, imm32);
1007 else
1008 /* add %esi, imm32 */
1009 EMIT2_off32(0x81, 0xC6, imm32);
1010 }
1011 }
1012 /* skb pointer is in R6 (%rbx), it will be copied into
1013 * %rdi if skb_copy_bits() call is necessary.
1014 * sk_load_* helpers also use %r10 and %r9d.
1015 * See bpf_jit.S
1016 */
1017 if (seen_ax_reg)
1018 /* r10 = skb->data, mov %r10, off32(%rbx) */
1019 EMIT3_off32(0x4c, 0x8b, 0x93,
1020 offsetof(struct sk_buff, data));
1021 EMIT1_off32(0xE8, jmp_offset); /* call */
1022 break;
1023
1024 case BPF_LD | BPF_IND | BPF_H:
1025 func = sk_load_half;
1026 goto common_load;
1027 case BPF_LD | BPF_ABS | BPF_H:
1028 func = CHOOSE_LOAD_FUNC(imm32, sk_load_half);
1029 goto common_load;
1030 case BPF_LD | BPF_IND | BPF_B:
1031 func = sk_load_byte;
1032 goto common_load;
1033 case BPF_LD | BPF_ABS | BPF_B:
1034 func = CHOOSE_LOAD_FUNC(imm32, sk_load_byte);
1035 goto common_load;
1036
1037 case BPF_JMP | BPF_EXIT:
1038 if (seen_exit) {
1039 jmp_offset = ctx->cleanup_addr - addrs[i];
1040 goto emit_jmp;
1041 }
1042 seen_exit = true;
1043 /* update cleanup_addr */
1044 ctx->cleanup_addr = proglen;
1045 /* mov rbx, qword ptr [rbp-X] */
1046 EMIT3_off32(0x48, 0x8B, 0x9D, -STACKSIZE);
1047 /* mov r13, qword ptr [rbp-X] */
1048 EMIT3_off32(0x4C, 0x8B, 0xAD, -STACKSIZE + 8);
1049 /* mov r14, qword ptr [rbp-X] */
1050 EMIT3_off32(0x4C, 0x8B, 0xB5, -STACKSIZE + 16);
1051 /* mov r15, qword ptr [rbp-X] */
1052 EMIT3_off32(0x4C, 0x8B, 0xBD, -STACKSIZE + 24);
1053
1054 EMIT1(0xC9); /* leave */
1055 EMIT1(0xC3); /* ret */
1056 break;
1057
1058 default:
1059 /* By design x64 JIT should support all BPF instructions
1060 * This error will be seen if new instruction was added
1061 * to interpreter, but not to JIT
1062 * or if there is junk in bpf_prog
1063 */
1064 pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1065 return -EINVAL;
1066 }
1067
1068 ilen = prog - temp;
1069 if (ilen > BPF_MAX_INSN_SIZE) {
1070 pr_err("bpf_jit_compile fatal insn size error\n");
1071 return -EFAULT;
1072 }
1073
1074 if (image) {
1075 if (unlikely(proglen + ilen > oldproglen)) {
1076 pr_err("bpf_jit_compile fatal error\n");
1077 return -EFAULT;
1078 }
1079 memcpy(image + proglen, temp, ilen);
1080 }
1081 proglen += ilen;
1082 addrs[i] = proglen;
1083 prog = temp;
1084 }
1085 return proglen;
1086}
1087
1088void bpf_jit_compile(struct bpf_prog *prog)
1089{
1090}
1091
1092struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1093{
1094 struct bpf_binary_header *header = NULL;
1095 struct bpf_prog *tmp, *orig_prog = prog;
1096 int proglen, oldproglen = 0;
1097 struct jit_context ctx = {};
1098 bool tmp_blinded = false;
1099 u8 *image = NULL;
1100 int *addrs;
1101 int pass;
1102 int i;
1103
1104 if (!bpf_jit_enable)
1105 return orig_prog;
1106
1107 tmp = bpf_jit_blind_constants(prog);
1108 /* If blinding was requested and we failed during blinding,
1109 * we must fall back to the interpreter.
1110 */
1111 if (IS_ERR(tmp))
1112 return orig_prog;
1113 if (tmp != prog) {
1114 tmp_blinded = true;
1115 prog = tmp;
1116 }
1117
1118 addrs = kmalloc(prog->len * sizeof(*addrs), GFP_KERNEL);
1119 if (!addrs) {
1120 prog = orig_prog;
1121 goto out;
1122 }
1123
1124 /* Before first pass, make a rough estimation of addrs[]
1125 * each bpf instruction is translated to less than 64 bytes
1126 */
1127 for (proglen = 0, i = 0; i < prog->len; i++) {
1128 proglen += 64;
1129 addrs[i] = proglen;
1130 }
1131 ctx.cleanup_addr = proglen;
1132
1133 /* JITed image shrinks with every pass and the loop iterates
1134 * until the image stops shrinking. Very large bpf programs
1135 * may converge on the last pass. In such case do one more
1136 * pass to emit the final image
1137 */
1138 for (pass = 0; pass < 10 || image; pass++) {
1139 proglen = do_jit(prog, addrs, image, oldproglen, &ctx);
1140 if (proglen <= 0) {
1141 image = NULL;
1142 if (header)
1143 bpf_jit_binary_free(header);
1144 prog = orig_prog;
1145 goto out_addrs;
1146 }
1147 if (image) {
1148 if (proglen != oldproglen) {
1149 pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
1150 proglen, oldproglen);
1151 prog = orig_prog;
1152 goto out_addrs;
1153 }
1154 break;
1155 }
1156 if (proglen == oldproglen) {
1157 header = bpf_jit_binary_alloc(proglen, &image,
1158 1, jit_fill_hole);
1159 if (!header) {
1160 prog = orig_prog;
1161 goto out_addrs;
1162 }
1163 }
1164 oldproglen = proglen;
1165 }
1166
1167 if (bpf_jit_enable > 1)
1168 bpf_jit_dump(prog->len, proglen, pass + 1, image);
1169
1170 if (image) {
1171 bpf_flush_icache(header, image + proglen);
1172 set_memory_ro((unsigned long)header, header->pages);
1173 prog->bpf_func = (void *)image;
1174 prog->jited = 1;
1175 } else {
1176 prog = orig_prog;
1177 }
1178
1179out_addrs:
1180 kfree(addrs);
1181out:
1182 if (tmp_blinded)
1183 bpf_jit_prog_release_other(prog, prog == orig_prog ?
1184 tmp : orig_prog);
1185 return prog;
1186}
1187
1188void bpf_jit_free(struct bpf_prog *fp)
1189{
1190 unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
1191 struct bpf_binary_header *header = (void *)addr;
1192
1193 if (!fp->jited)
1194 goto free_filter;
1195
1196 set_memory_rw(addr, header->pages);
1197 bpf_jit_binary_free(header);
1198
1199free_filter:
1200 bpf_prog_unlock_free(fp);
1201}
1/* bpf_jit_comp.c : BPF JIT compiler
2 *
3 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; version 2
8 * of the License.
9 */
10#include <linux/moduleloader.h>
11#include <asm/cacheflush.h>
12#include <linux/netdevice.h>
13#include <linux/filter.h>
14#include <linux/if_vlan.h>
15#include <linux/random.h>
16
17/*
18 * Conventions :
19 * EAX : BPF A accumulator
20 * EBX : BPF X accumulator
21 * RDI : pointer to skb (first argument given to JIT function)
22 * RBP : frame pointer (even if CONFIG_FRAME_POINTER=n)
23 * ECX,EDX,ESI : scratch registers
24 * r9d : skb->len - skb->data_len (headlen)
25 * r8 : skb->data
26 * -8(RBP) : saved RBX value
27 * -16(RBP)..-80(RBP) : BPF_MEMWORDS values
28 */
29int bpf_jit_enable __read_mostly;
30
31/*
32 * assembly code in arch/x86/net/bpf_jit.S
33 */
34extern u8 sk_load_word[], sk_load_half[], sk_load_byte[], sk_load_byte_msh[];
35extern u8 sk_load_word_positive_offset[], sk_load_half_positive_offset[];
36extern u8 sk_load_byte_positive_offset[], sk_load_byte_msh_positive_offset[];
37extern u8 sk_load_word_negative_offset[], sk_load_half_negative_offset[];
38extern u8 sk_load_byte_negative_offset[], sk_load_byte_msh_negative_offset[];
39
40static inline u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
41{
42 if (len == 1)
43 *ptr = bytes;
44 else if (len == 2)
45 *(u16 *)ptr = bytes;
46 else {
47 *(u32 *)ptr = bytes;
48 barrier();
49 }
50 return ptr + len;
51}
52
53#define EMIT(bytes, len) do { prog = emit_code(prog, bytes, len); } while (0)
54
55#define EMIT1(b1) EMIT(b1, 1)
56#define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
57#define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
58#define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
59#define EMIT1_off32(b1, off) do { EMIT1(b1); EMIT(off, 4);} while (0)
60
61#define CLEAR_A() EMIT2(0x31, 0xc0) /* xor %eax,%eax */
62#define CLEAR_X() EMIT2(0x31, 0xdb) /* xor %ebx,%ebx */
63
64static inline bool is_imm8(int value)
65{
66 return value <= 127 && value >= -128;
67}
68
69static inline bool is_near(int offset)
70{
71 return offset <= 127 && offset >= -128;
72}
73
74#define EMIT_JMP(offset) \
75do { \
76 if (offset) { \
77 if (is_near(offset)) \
78 EMIT2(0xeb, offset); /* jmp .+off8 */ \
79 else \
80 EMIT1_off32(0xe9, offset); /* jmp .+off32 */ \
81 } \
82} while (0)
83
84/* list of x86 cond jumps opcodes (. + s8)
85 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
86 */
87#define X86_JB 0x72
88#define X86_JAE 0x73
89#define X86_JE 0x74
90#define X86_JNE 0x75
91#define X86_JBE 0x76
92#define X86_JA 0x77
93
94#define EMIT_COND_JMP(op, offset) \
95do { \
96 if (is_near(offset)) \
97 EMIT2(op, offset); /* jxx .+off8 */ \
98 else { \
99 EMIT2(0x0f, op + 0x10); \
100 EMIT(offset, 4); /* jxx .+off32 */ \
101 } \
102} while (0)
103
104#define COND_SEL(CODE, TOP, FOP) \
105 case CODE: \
106 t_op = TOP; \
107 f_op = FOP; \
108 goto cond_branch
109
110
111#define SEEN_DATAREF 1 /* might call external helpers */
112#define SEEN_XREG 2 /* ebx is used */
113#define SEEN_MEM 4 /* use mem[] for temporary storage */
114
115static inline void bpf_flush_icache(void *start, void *end)
116{
117 mm_segment_t old_fs = get_fs();
118
119 set_fs(KERNEL_DS);
120 smp_wmb();
121 flush_icache_range((unsigned long)start, (unsigned long)end);
122 set_fs(old_fs);
123}
124
125#define CHOOSE_LOAD_FUNC(K, func) \
126 ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
127
128/* Helper to find the offset of pkt_type in sk_buff
129 * We want to make sure its still a 3bit field starting at a byte boundary.
130 */
131#define PKT_TYPE_MAX 7
132static int pkt_type_offset(void)
133{
134 struct sk_buff skb_probe = {
135 .pkt_type = ~0,
136 };
137 char *ct = (char *)&skb_probe;
138 unsigned int off;
139
140 for (off = 0; off < sizeof(struct sk_buff); off++) {
141 if (ct[off] == PKT_TYPE_MAX)
142 return off;
143 }
144 pr_err_once("Please fix pkt_type_offset(), as pkt_type couldn't be found\n");
145 return -1;
146}
147
148struct bpf_binary_header {
149 unsigned int pages;
150 /* Note : for security reasons, bpf code will follow a randomly
151 * sized amount of int3 instructions
152 */
153 u8 image[];
154};
155
156static struct bpf_binary_header *bpf_alloc_binary(unsigned int proglen,
157 u8 **image_ptr)
158{
159 unsigned int sz, hole;
160 struct bpf_binary_header *header;
161
162 /* Most of BPF filters are really small,
163 * but if some of them fill a page, allow at least
164 * 128 extra bytes to insert a random section of int3
165 */
166 sz = round_up(proglen + sizeof(*header) + 128, PAGE_SIZE);
167 header = module_alloc(sz);
168 if (!header)
169 return NULL;
170
171 memset(header, 0xcc, sz); /* fill whole space with int3 instructions */
172
173 header->pages = sz / PAGE_SIZE;
174 hole = min(sz - (proglen + sizeof(*header)), PAGE_SIZE - sizeof(*header));
175
176 /* insert a random number of int3 instructions before BPF code */
177 *image_ptr = &header->image[prandom_u32() % hole];
178 return header;
179}
180
181void bpf_jit_compile(struct sk_filter *fp)
182{
183 u8 temp[64];
184 u8 *prog;
185 unsigned int proglen, oldproglen = 0;
186 int ilen, i;
187 int t_offset, f_offset;
188 u8 t_op, f_op, seen = 0, pass;
189 u8 *image = NULL;
190 struct bpf_binary_header *header = NULL;
191 u8 *func;
192 int pc_ret0 = -1; /* bpf index of first RET #0 instruction (if any) */
193 unsigned int cleanup_addr; /* epilogue code offset */
194 unsigned int *addrs;
195 const struct sock_filter *filter = fp->insns;
196 int flen = fp->len;
197
198 if (!bpf_jit_enable)
199 return;
200
201 addrs = kmalloc(flen * sizeof(*addrs), GFP_KERNEL);
202 if (addrs == NULL)
203 return;
204
205 /* Before first pass, make a rough estimation of addrs[]
206 * each bpf instruction is translated to less than 64 bytes
207 */
208 for (proglen = 0, i = 0; i < flen; i++) {
209 proglen += 64;
210 addrs[i] = proglen;
211 }
212 cleanup_addr = proglen; /* epilogue address */
213
214 for (pass = 0; pass < 10; pass++) {
215 u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen;
216 /* no prologue/epilogue for trivial filters (RET something) */
217 proglen = 0;
218 prog = temp;
219
220 if (seen_or_pass0) {
221 EMIT4(0x55, 0x48, 0x89, 0xe5); /* push %rbp; mov %rsp,%rbp */
222 EMIT4(0x48, 0x83, 0xec, 96); /* subq $96,%rsp */
223 /* note : must save %rbx in case bpf_error is hit */
224 if (seen_or_pass0 & (SEEN_XREG | SEEN_DATAREF))
225 EMIT4(0x48, 0x89, 0x5d, 0xf8); /* mov %rbx, -8(%rbp) */
226 if (seen_or_pass0 & SEEN_XREG)
227 CLEAR_X(); /* make sure we dont leek kernel memory */
228
229 /*
230 * If this filter needs to access skb data,
231 * loads r9 and r8 with :
232 * r9 = skb->len - skb->data_len
233 * r8 = skb->data
234 */
235 if (seen_or_pass0 & SEEN_DATAREF) {
236 if (offsetof(struct sk_buff, len) <= 127)
237 /* mov off8(%rdi),%r9d */
238 EMIT4(0x44, 0x8b, 0x4f, offsetof(struct sk_buff, len));
239 else {
240 /* mov off32(%rdi),%r9d */
241 EMIT3(0x44, 0x8b, 0x8f);
242 EMIT(offsetof(struct sk_buff, len), 4);
243 }
244 if (is_imm8(offsetof(struct sk_buff, data_len)))
245 /* sub off8(%rdi),%r9d */
246 EMIT4(0x44, 0x2b, 0x4f, offsetof(struct sk_buff, data_len));
247 else {
248 EMIT3(0x44, 0x2b, 0x8f);
249 EMIT(offsetof(struct sk_buff, data_len), 4);
250 }
251
252 if (is_imm8(offsetof(struct sk_buff, data)))
253 /* mov off8(%rdi),%r8 */
254 EMIT4(0x4c, 0x8b, 0x47, offsetof(struct sk_buff, data));
255 else {
256 /* mov off32(%rdi),%r8 */
257 EMIT3(0x4c, 0x8b, 0x87);
258 EMIT(offsetof(struct sk_buff, data), 4);
259 }
260 }
261 }
262
263 switch (filter[0].code) {
264 case BPF_S_RET_K:
265 case BPF_S_LD_W_LEN:
266 case BPF_S_ANC_PROTOCOL:
267 case BPF_S_ANC_IFINDEX:
268 case BPF_S_ANC_MARK:
269 case BPF_S_ANC_RXHASH:
270 case BPF_S_ANC_CPU:
271 case BPF_S_ANC_VLAN_TAG:
272 case BPF_S_ANC_VLAN_TAG_PRESENT:
273 case BPF_S_ANC_QUEUE:
274 case BPF_S_ANC_PKTTYPE:
275 case BPF_S_LD_W_ABS:
276 case BPF_S_LD_H_ABS:
277 case BPF_S_LD_B_ABS:
278 /* first instruction sets A register (or is RET 'constant') */
279 break;
280 default:
281 /* make sure we dont leak kernel information to user */
282 CLEAR_A(); /* A = 0 */
283 }
284
285 for (i = 0; i < flen; i++) {
286 unsigned int K = filter[i].k;
287
288 switch (filter[i].code) {
289 case BPF_S_ALU_ADD_X: /* A += X; */
290 seen |= SEEN_XREG;
291 EMIT2(0x01, 0xd8); /* add %ebx,%eax */
292 break;
293 case BPF_S_ALU_ADD_K: /* A += K; */
294 if (!K)
295 break;
296 if (is_imm8(K))
297 EMIT3(0x83, 0xc0, K); /* add imm8,%eax */
298 else
299 EMIT1_off32(0x05, K); /* add imm32,%eax */
300 break;
301 case BPF_S_ALU_SUB_X: /* A -= X; */
302 seen |= SEEN_XREG;
303 EMIT2(0x29, 0xd8); /* sub %ebx,%eax */
304 break;
305 case BPF_S_ALU_SUB_K: /* A -= K */
306 if (!K)
307 break;
308 if (is_imm8(K))
309 EMIT3(0x83, 0xe8, K); /* sub imm8,%eax */
310 else
311 EMIT1_off32(0x2d, K); /* sub imm32,%eax */
312 break;
313 case BPF_S_ALU_MUL_X: /* A *= X; */
314 seen |= SEEN_XREG;
315 EMIT3(0x0f, 0xaf, 0xc3); /* imul %ebx,%eax */
316 break;
317 case BPF_S_ALU_MUL_K: /* A *= K */
318 if (is_imm8(K))
319 EMIT3(0x6b, 0xc0, K); /* imul imm8,%eax,%eax */
320 else {
321 EMIT2(0x69, 0xc0); /* imul imm32,%eax */
322 EMIT(K, 4);
323 }
324 break;
325 case BPF_S_ALU_DIV_X: /* A /= X; */
326 seen |= SEEN_XREG;
327 EMIT2(0x85, 0xdb); /* test %ebx,%ebx */
328 if (pc_ret0 > 0) {
329 /* addrs[pc_ret0 - 1] is start address of target
330 * (addrs[i] - 4) is the address following this jmp
331 * ("xor %edx,%edx; div %ebx" being 4 bytes long)
332 */
333 EMIT_COND_JMP(X86_JE, addrs[pc_ret0 - 1] -
334 (addrs[i] - 4));
335 } else {
336 EMIT_COND_JMP(X86_JNE, 2 + 5);
337 CLEAR_A();
338 EMIT1_off32(0xe9, cleanup_addr - (addrs[i] - 4)); /* jmp .+off32 */
339 }
340 EMIT4(0x31, 0xd2, 0xf7, 0xf3); /* xor %edx,%edx; div %ebx */
341 break;
342 case BPF_S_ALU_MOD_X: /* A %= X; */
343 seen |= SEEN_XREG;
344 EMIT2(0x85, 0xdb); /* test %ebx,%ebx */
345 if (pc_ret0 > 0) {
346 /* addrs[pc_ret0 - 1] is start address of target
347 * (addrs[i] - 6) is the address following this jmp
348 * ("xor %edx,%edx; div %ebx;mov %edx,%eax" being 6 bytes long)
349 */
350 EMIT_COND_JMP(X86_JE, addrs[pc_ret0 - 1] -
351 (addrs[i] - 6));
352 } else {
353 EMIT_COND_JMP(X86_JNE, 2 + 5);
354 CLEAR_A();
355 EMIT1_off32(0xe9, cleanup_addr - (addrs[i] - 6)); /* jmp .+off32 */
356 }
357 EMIT2(0x31, 0xd2); /* xor %edx,%edx */
358 EMIT2(0xf7, 0xf3); /* div %ebx */
359 EMIT2(0x89, 0xd0); /* mov %edx,%eax */
360 break;
361 case BPF_S_ALU_MOD_K: /* A %= K; */
362 if (K == 1) {
363 CLEAR_A();
364 break;
365 }
366 EMIT2(0x31, 0xd2); /* xor %edx,%edx */
367 EMIT1(0xb9);EMIT(K, 4); /* mov imm32,%ecx */
368 EMIT2(0xf7, 0xf1); /* div %ecx */
369 EMIT2(0x89, 0xd0); /* mov %edx,%eax */
370 break;
371 case BPF_S_ALU_DIV_K: /* A /= K */
372 if (K == 1)
373 break;
374 EMIT2(0x31, 0xd2); /* xor %edx,%edx */
375 EMIT1(0xb9);EMIT(K, 4); /* mov imm32,%ecx */
376 EMIT2(0xf7, 0xf1); /* div %ecx */
377 break;
378 case BPF_S_ALU_AND_X:
379 seen |= SEEN_XREG;
380 EMIT2(0x21, 0xd8); /* and %ebx,%eax */
381 break;
382 case BPF_S_ALU_AND_K:
383 if (K >= 0xFFFFFF00) {
384 EMIT2(0x24, K & 0xFF); /* and imm8,%al */
385 } else if (K >= 0xFFFF0000) {
386 EMIT2(0x66, 0x25); /* and imm16,%ax */
387 EMIT(K, 2);
388 } else {
389 EMIT1_off32(0x25, K); /* and imm32,%eax */
390 }
391 break;
392 case BPF_S_ALU_OR_X:
393 seen |= SEEN_XREG;
394 EMIT2(0x09, 0xd8); /* or %ebx,%eax */
395 break;
396 case BPF_S_ALU_OR_K:
397 if (is_imm8(K))
398 EMIT3(0x83, 0xc8, K); /* or imm8,%eax */
399 else
400 EMIT1_off32(0x0d, K); /* or imm32,%eax */
401 break;
402 case BPF_S_ANC_ALU_XOR_X: /* A ^= X; */
403 case BPF_S_ALU_XOR_X:
404 seen |= SEEN_XREG;
405 EMIT2(0x31, 0xd8); /* xor %ebx,%eax */
406 break;
407 case BPF_S_ALU_XOR_K: /* A ^= K; */
408 if (K == 0)
409 break;
410 if (is_imm8(K))
411 EMIT3(0x83, 0xf0, K); /* xor imm8,%eax */
412 else
413 EMIT1_off32(0x35, K); /* xor imm32,%eax */
414 break;
415 case BPF_S_ALU_LSH_X: /* A <<= X; */
416 seen |= SEEN_XREG;
417 EMIT4(0x89, 0xd9, 0xd3, 0xe0); /* mov %ebx,%ecx; shl %cl,%eax */
418 break;
419 case BPF_S_ALU_LSH_K:
420 if (K == 0)
421 break;
422 else if (K == 1)
423 EMIT2(0xd1, 0xe0); /* shl %eax */
424 else
425 EMIT3(0xc1, 0xe0, K);
426 break;
427 case BPF_S_ALU_RSH_X: /* A >>= X; */
428 seen |= SEEN_XREG;
429 EMIT4(0x89, 0xd9, 0xd3, 0xe8); /* mov %ebx,%ecx; shr %cl,%eax */
430 break;
431 case BPF_S_ALU_RSH_K: /* A >>= K; */
432 if (K == 0)
433 break;
434 else if (K == 1)
435 EMIT2(0xd1, 0xe8); /* shr %eax */
436 else
437 EMIT3(0xc1, 0xe8, K);
438 break;
439 case BPF_S_ALU_NEG:
440 EMIT2(0xf7, 0xd8); /* neg %eax */
441 break;
442 case BPF_S_RET_K:
443 if (!K) {
444 if (pc_ret0 == -1)
445 pc_ret0 = i;
446 CLEAR_A();
447 } else {
448 EMIT1_off32(0xb8, K); /* mov $imm32,%eax */
449 }
450 /* fallinto */
451 case BPF_S_RET_A:
452 if (seen_or_pass0) {
453 if (i != flen - 1) {
454 EMIT_JMP(cleanup_addr - addrs[i]);
455 break;
456 }
457 if (seen_or_pass0 & SEEN_XREG)
458 EMIT4(0x48, 0x8b, 0x5d, 0xf8); /* mov -8(%rbp),%rbx */
459 EMIT1(0xc9); /* leaveq */
460 }
461 EMIT1(0xc3); /* ret */
462 break;
463 case BPF_S_MISC_TAX: /* X = A */
464 seen |= SEEN_XREG;
465 EMIT2(0x89, 0xc3); /* mov %eax,%ebx */
466 break;
467 case BPF_S_MISC_TXA: /* A = X */
468 seen |= SEEN_XREG;
469 EMIT2(0x89, 0xd8); /* mov %ebx,%eax */
470 break;
471 case BPF_S_LD_IMM: /* A = K */
472 if (!K)
473 CLEAR_A();
474 else
475 EMIT1_off32(0xb8, K); /* mov $imm32,%eax */
476 break;
477 case BPF_S_LDX_IMM: /* X = K */
478 seen |= SEEN_XREG;
479 if (!K)
480 CLEAR_X();
481 else
482 EMIT1_off32(0xbb, K); /* mov $imm32,%ebx */
483 break;
484 case BPF_S_LD_MEM: /* A = mem[K] : mov off8(%rbp),%eax */
485 seen |= SEEN_MEM;
486 EMIT3(0x8b, 0x45, 0xf0 - K*4);
487 break;
488 case BPF_S_LDX_MEM: /* X = mem[K] : mov off8(%rbp),%ebx */
489 seen |= SEEN_XREG | SEEN_MEM;
490 EMIT3(0x8b, 0x5d, 0xf0 - K*4);
491 break;
492 case BPF_S_ST: /* mem[K] = A : mov %eax,off8(%rbp) */
493 seen |= SEEN_MEM;
494 EMIT3(0x89, 0x45, 0xf0 - K*4);
495 break;
496 case BPF_S_STX: /* mem[K] = X : mov %ebx,off8(%rbp) */
497 seen |= SEEN_XREG | SEEN_MEM;
498 EMIT3(0x89, 0x5d, 0xf0 - K*4);
499 break;
500 case BPF_S_LD_W_LEN: /* A = skb->len; */
501 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
502 if (is_imm8(offsetof(struct sk_buff, len)))
503 /* mov off8(%rdi),%eax */
504 EMIT3(0x8b, 0x47, offsetof(struct sk_buff, len));
505 else {
506 EMIT2(0x8b, 0x87);
507 EMIT(offsetof(struct sk_buff, len), 4);
508 }
509 break;
510 case BPF_S_LDX_W_LEN: /* X = skb->len; */
511 seen |= SEEN_XREG;
512 if (is_imm8(offsetof(struct sk_buff, len)))
513 /* mov off8(%rdi),%ebx */
514 EMIT3(0x8b, 0x5f, offsetof(struct sk_buff, len));
515 else {
516 EMIT2(0x8b, 0x9f);
517 EMIT(offsetof(struct sk_buff, len), 4);
518 }
519 break;
520 case BPF_S_ANC_PROTOCOL: /* A = ntohs(skb->protocol); */
521 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
522 if (is_imm8(offsetof(struct sk_buff, protocol))) {
523 /* movzwl off8(%rdi),%eax */
524 EMIT4(0x0f, 0xb7, 0x47, offsetof(struct sk_buff, protocol));
525 } else {
526 EMIT3(0x0f, 0xb7, 0x87); /* movzwl off32(%rdi),%eax */
527 EMIT(offsetof(struct sk_buff, protocol), 4);
528 }
529 EMIT2(0x86, 0xc4); /* ntohs() : xchg %al,%ah */
530 break;
531 case BPF_S_ANC_IFINDEX:
532 if (is_imm8(offsetof(struct sk_buff, dev))) {
533 /* movq off8(%rdi),%rax */
534 EMIT4(0x48, 0x8b, 0x47, offsetof(struct sk_buff, dev));
535 } else {
536 EMIT3(0x48, 0x8b, 0x87); /* movq off32(%rdi),%rax */
537 EMIT(offsetof(struct sk_buff, dev), 4);
538 }
539 EMIT3(0x48, 0x85, 0xc0); /* test %rax,%rax */
540 EMIT_COND_JMP(X86_JE, cleanup_addr - (addrs[i] - 6));
541 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
542 EMIT2(0x8b, 0x80); /* mov off32(%rax),%eax */
543 EMIT(offsetof(struct net_device, ifindex), 4);
544 break;
545 case BPF_S_ANC_MARK:
546 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
547 if (is_imm8(offsetof(struct sk_buff, mark))) {
548 /* mov off8(%rdi),%eax */
549 EMIT3(0x8b, 0x47, offsetof(struct sk_buff, mark));
550 } else {
551 EMIT2(0x8b, 0x87);
552 EMIT(offsetof(struct sk_buff, mark), 4);
553 }
554 break;
555 case BPF_S_ANC_RXHASH:
556 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
557 if (is_imm8(offsetof(struct sk_buff, hash))) {
558 /* mov off8(%rdi),%eax */
559 EMIT3(0x8b, 0x47, offsetof(struct sk_buff, hash));
560 } else {
561 EMIT2(0x8b, 0x87);
562 EMIT(offsetof(struct sk_buff, hash), 4);
563 }
564 break;
565 case BPF_S_ANC_QUEUE:
566 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
567 if (is_imm8(offsetof(struct sk_buff, queue_mapping))) {
568 /* movzwl off8(%rdi),%eax */
569 EMIT4(0x0f, 0xb7, 0x47, offsetof(struct sk_buff, queue_mapping));
570 } else {
571 EMIT3(0x0f, 0xb7, 0x87); /* movzwl off32(%rdi),%eax */
572 EMIT(offsetof(struct sk_buff, queue_mapping), 4);
573 }
574 break;
575 case BPF_S_ANC_CPU:
576#ifdef CONFIG_SMP
577 EMIT4(0x65, 0x8b, 0x04, 0x25); /* mov %gs:off32,%eax */
578 EMIT((u32)(unsigned long)&cpu_number, 4); /* A = smp_processor_id(); */
579#else
580 CLEAR_A();
581#endif
582 break;
583 case BPF_S_ANC_VLAN_TAG:
584 case BPF_S_ANC_VLAN_TAG_PRESENT:
585 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
586 if (is_imm8(offsetof(struct sk_buff, vlan_tci))) {
587 /* movzwl off8(%rdi),%eax */
588 EMIT4(0x0f, 0xb7, 0x47, offsetof(struct sk_buff, vlan_tci));
589 } else {
590 EMIT3(0x0f, 0xb7, 0x87); /* movzwl off32(%rdi),%eax */
591 EMIT(offsetof(struct sk_buff, vlan_tci), 4);
592 }
593 BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
594 if (filter[i].code == BPF_S_ANC_VLAN_TAG) {
595 EMIT3(0x80, 0xe4, 0xef); /* and $0xef,%ah */
596 } else {
597 EMIT3(0xc1, 0xe8, 0x0c); /* shr $0xc,%eax */
598 EMIT3(0x83, 0xe0, 0x01); /* and $0x1,%eax */
599 }
600 break;
601 case BPF_S_ANC_PKTTYPE:
602 {
603 int off = pkt_type_offset();
604
605 if (off < 0)
606 goto out;
607 if (is_imm8(off)) {
608 /* movzbl off8(%rdi),%eax */
609 EMIT4(0x0f, 0xb6, 0x47, off);
610 } else {
611 /* movbl off32(%rdi),%eax */
612 EMIT3(0x0f, 0xb6, 0x87);
613 EMIT(off, 4);
614 }
615 EMIT3(0x83, 0xe0, PKT_TYPE_MAX); /* and $0x7,%eax */
616 break;
617 }
618 case BPF_S_LD_W_ABS:
619 func = CHOOSE_LOAD_FUNC(K, sk_load_word);
620common_load: seen |= SEEN_DATAREF;
621 t_offset = func - (image + addrs[i]);
622 EMIT1_off32(0xbe, K); /* mov imm32,%esi */
623 EMIT1_off32(0xe8, t_offset); /* call */
624 break;
625 case BPF_S_LD_H_ABS:
626 func = CHOOSE_LOAD_FUNC(K, sk_load_half);
627 goto common_load;
628 case BPF_S_LD_B_ABS:
629 func = CHOOSE_LOAD_FUNC(K, sk_load_byte);
630 goto common_load;
631 case BPF_S_LDX_B_MSH:
632 func = CHOOSE_LOAD_FUNC(K, sk_load_byte_msh);
633 seen |= SEEN_DATAREF | SEEN_XREG;
634 t_offset = func - (image + addrs[i]);
635 EMIT1_off32(0xbe, K); /* mov imm32,%esi */
636 EMIT1_off32(0xe8, t_offset); /* call sk_load_byte_msh */
637 break;
638 case BPF_S_LD_W_IND:
639 func = sk_load_word;
640common_load_ind: seen |= SEEN_DATAREF | SEEN_XREG;
641 t_offset = func - (image + addrs[i]);
642 if (K) {
643 if (is_imm8(K)) {
644 EMIT3(0x8d, 0x73, K); /* lea imm8(%rbx), %esi */
645 } else {
646 EMIT2(0x8d, 0xb3); /* lea imm32(%rbx),%esi */
647 EMIT(K, 4);
648 }
649 } else {
650 EMIT2(0x89,0xde); /* mov %ebx,%esi */
651 }
652 EMIT1_off32(0xe8, t_offset); /* call sk_load_xxx_ind */
653 break;
654 case BPF_S_LD_H_IND:
655 func = sk_load_half;
656 goto common_load_ind;
657 case BPF_S_LD_B_IND:
658 func = sk_load_byte;
659 goto common_load_ind;
660 case BPF_S_JMP_JA:
661 t_offset = addrs[i + K] - addrs[i];
662 EMIT_JMP(t_offset);
663 break;
664 COND_SEL(BPF_S_JMP_JGT_K, X86_JA, X86_JBE);
665 COND_SEL(BPF_S_JMP_JGE_K, X86_JAE, X86_JB);
666 COND_SEL(BPF_S_JMP_JEQ_K, X86_JE, X86_JNE);
667 COND_SEL(BPF_S_JMP_JSET_K,X86_JNE, X86_JE);
668 COND_SEL(BPF_S_JMP_JGT_X, X86_JA, X86_JBE);
669 COND_SEL(BPF_S_JMP_JGE_X, X86_JAE, X86_JB);
670 COND_SEL(BPF_S_JMP_JEQ_X, X86_JE, X86_JNE);
671 COND_SEL(BPF_S_JMP_JSET_X,X86_JNE, X86_JE);
672
673cond_branch: f_offset = addrs[i + filter[i].jf] - addrs[i];
674 t_offset = addrs[i + filter[i].jt] - addrs[i];
675
676 /* same targets, can avoid doing the test :) */
677 if (filter[i].jt == filter[i].jf) {
678 EMIT_JMP(t_offset);
679 break;
680 }
681
682 switch (filter[i].code) {
683 case BPF_S_JMP_JGT_X:
684 case BPF_S_JMP_JGE_X:
685 case BPF_S_JMP_JEQ_X:
686 seen |= SEEN_XREG;
687 EMIT2(0x39, 0xd8); /* cmp %ebx,%eax */
688 break;
689 case BPF_S_JMP_JSET_X:
690 seen |= SEEN_XREG;
691 EMIT2(0x85, 0xd8); /* test %ebx,%eax */
692 break;
693 case BPF_S_JMP_JEQ_K:
694 if (K == 0) {
695 EMIT2(0x85, 0xc0); /* test %eax,%eax */
696 break;
697 }
698 case BPF_S_JMP_JGT_K:
699 case BPF_S_JMP_JGE_K:
700 if (K <= 127)
701 EMIT3(0x83, 0xf8, K); /* cmp imm8,%eax */
702 else
703 EMIT1_off32(0x3d, K); /* cmp imm32,%eax */
704 break;
705 case BPF_S_JMP_JSET_K:
706 if (K <= 0xFF)
707 EMIT2(0xa8, K); /* test imm8,%al */
708 else if (!(K & 0xFFFF00FF))
709 EMIT3(0xf6, 0xc4, K >> 8); /* test imm8,%ah */
710 else if (K <= 0xFFFF) {
711 EMIT2(0x66, 0xa9); /* test imm16,%ax */
712 EMIT(K, 2);
713 } else {
714 EMIT1_off32(0xa9, K); /* test imm32,%eax */
715 }
716 break;
717 }
718 if (filter[i].jt != 0) {
719 if (filter[i].jf && f_offset)
720 t_offset += is_near(f_offset) ? 2 : 5;
721 EMIT_COND_JMP(t_op, t_offset);
722 if (filter[i].jf)
723 EMIT_JMP(f_offset);
724 break;
725 }
726 EMIT_COND_JMP(f_op, f_offset);
727 break;
728 default:
729 /* hmm, too complex filter, give up with jit compiler */
730 goto out;
731 }
732 ilen = prog - temp;
733 if (image) {
734 if (unlikely(proglen + ilen > oldproglen)) {
735 pr_err("bpb_jit_compile fatal error\n");
736 kfree(addrs);
737 module_free(NULL, header);
738 return;
739 }
740 memcpy(image + proglen, temp, ilen);
741 }
742 proglen += ilen;
743 addrs[i] = proglen;
744 prog = temp;
745 }
746 /* last bpf instruction is always a RET :
747 * use it to give the cleanup instruction(s) addr
748 */
749 cleanup_addr = proglen - 1; /* ret */
750 if (seen_or_pass0)
751 cleanup_addr -= 1; /* leaveq */
752 if (seen_or_pass0 & SEEN_XREG)
753 cleanup_addr -= 4; /* mov -8(%rbp),%rbx */
754
755 if (image) {
756 if (proglen != oldproglen)
757 pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n", proglen, oldproglen);
758 break;
759 }
760 if (proglen == oldproglen) {
761 header = bpf_alloc_binary(proglen, &image);
762 if (!header)
763 goto out;
764 }
765 oldproglen = proglen;
766 }
767
768 if (bpf_jit_enable > 1)
769 bpf_jit_dump(flen, proglen, pass, image);
770
771 if (image) {
772 bpf_flush_icache(header, image + proglen);
773 set_memory_ro((unsigned long)header, header->pages);
774 fp->bpf_func = (void *)image;
775 fp->jited = 1;
776 }
777out:
778 kfree(addrs);
779 return;
780}
781
782static void bpf_jit_free_deferred(struct work_struct *work)
783{
784 struct sk_filter *fp = container_of(work, struct sk_filter, work);
785 unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
786 struct bpf_binary_header *header = (void *)addr;
787
788 set_memory_rw(addr, header->pages);
789 module_free(NULL, header);
790 kfree(fp);
791}
792
793void bpf_jit_free(struct sk_filter *fp)
794{
795 if (fp->jited) {
796 INIT_WORK(&fp->work, bpf_jit_free_deferred);
797 schedule_work(&fp->work);
798 } else {
799 kfree(fp);
800 }
801}