Linux Audio

Check our new training course

Loading...
v4.10.11
  1#include <linux/gfp.h>
  2#include <linux/initrd.h>
  3#include <linux/ioport.h>
  4#include <linux/swap.h>
  5#include <linux/memblock.h>
  6#include <linux/bootmem.h>	/* for max_low_pfn */
  7
  8#include <asm/cacheflush.h>
  9#include <asm/e820.h>
 10#include <asm/init.h>
 11#include <asm/page.h>
 12#include <asm/page_types.h>
 13#include <asm/sections.h>
 14#include <asm/setup.h>
 15#include <asm/tlbflush.h>
 16#include <asm/tlb.h>
 17#include <asm/proto.h>
 18#include <asm/dma.h>		/* for MAX_DMA_PFN */
 19#include <asm/microcode.h>
 20#include <asm/kaslr.h>
 21
 22/*
 23 * We need to define the tracepoints somewhere, and tlb.c
 24 * is only compied when SMP=y.
 25 */
 26#define CREATE_TRACE_POINTS
 27#include <trace/events/tlb.h>
 28
 29#include "mm_internal.h"
 30
 31/*
 32 * Tables translating between page_cache_type_t and pte encoding.
 33 *
 34 * The default values are defined statically as minimal supported mode;
 35 * WC and WT fall back to UC-.  pat_init() updates these values to support
 36 * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
 37 * for the details.  Note, __early_ioremap() used during early boot-time
 38 * takes pgprot_t (pte encoding) and does not use these tables.
 39 *
 40 *   Index into __cachemode2pte_tbl[] is the cachemode.
 41 *
 42 *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
 43 *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
 44 */
 45uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
 46	[_PAGE_CACHE_MODE_WB      ]	= 0         | 0        ,
 47	[_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD,
 48	[_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD,
 49	[_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD,
 50	[_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD,
 51	[_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD,
 52};
 53EXPORT_SYMBOL(__cachemode2pte_tbl);
 54
 55uint8_t __pte2cachemode_tbl[8] = {
 56	[__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
 57	[__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
 58	[__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
 59	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
 60	[__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
 61	[__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
 62	[__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
 63	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
 64};
 65EXPORT_SYMBOL(__pte2cachemode_tbl);
 66
 67static unsigned long __initdata pgt_buf_start;
 68static unsigned long __initdata pgt_buf_end;
 69static unsigned long __initdata pgt_buf_top;
 70
 71static unsigned long min_pfn_mapped;
 72
 73static bool __initdata can_use_brk_pgt = true;
 74
 75/*
 76 * Pages returned are already directly mapped.
 77 *
 78 * Changing that is likely to break Xen, see commit:
 79 *
 80 *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
 81 *
 82 * for detailed information.
 83 */
 84__ref void *alloc_low_pages(unsigned int num)
 85{
 86	unsigned long pfn;
 87	int i;
 88
 89	if (after_bootmem) {
 90		unsigned int order;
 91
 92		order = get_order((unsigned long)num << PAGE_SHIFT);
 93		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
 94						__GFP_ZERO, order);
 95	}
 96
 97	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
 98		unsigned long ret;
 99		if (min_pfn_mapped >= max_pfn_mapped)
100			panic("alloc_low_pages: ran out of memory");
101		ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
102					max_pfn_mapped << PAGE_SHIFT,
103					PAGE_SIZE * num , PAGE_SIZE);
104		if (!ret)
105			panic("alloc_low_pages: can not alloc memory");
106		memblock_reserve(ret, PAGE_SIZE * num);
107		pfn = ret >> PAGE_SHIFT;
108	} else {
109		pfn = pgt_buf_end;
110		pgt_buf_end += num;
111		printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
112			pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
113	}
114
115	for (i = 0; i < num; i++) {
116		void *adr;
117
118		adr = __va((pfn + i) << PAGE_SHIFT);
119		clear_page(adr);
120	}
121
122	return __va(pfn << PAGE_SHIFT);
123}
124
125/*
126 * By default need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS.
127 * With KASLR memory randomization, depending on the machine e820 memory
128 * and the PUD alignment. We may need twice more pages when KASLR memory
129 * randomization is enabled.
130 */
131#ifndef CONFIG_RANDOMIZE_MEMORY
132#define INIT_PGD_PAGE_COUNT      6
133#else
134#define INIT_PGD_PAGE_COUNT      12
135#endif
136#define INIT_PGT_BUF_SIZE	(INIT_PGD_PAGE_COUNT * PAGE_SIZE)
137RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
138void  __init early_alloc_pgt_buf(void)
139{
140	unsigned long tables = INIT_PGT_BUF_SIZE;
141	phys_addr_t base;
142
143	base = __pa(extend_brk(tables, PAGE_SIZE));
144
145	pgt_buf_start = base >> PAGE_SHIFT;
146	pgt_buf_end = pgt_buf_start;
147	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
148}
149
150int after_bootmem;
151
152early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153
154struct map_range {
155	unsigned long start;
156	unsigned long end;
157	unsigned page_size_mask;
158};
159
160static int page_size_mask;
161
162static void __init probe_page_size_mask(void)
163{
164#if !defined(CONFIG_KMEMCHECK)
 
 
165	/*
166	 * For CONFIG_KMEMCHECK or pagealloc debugging, identity mapping will
167	 * use small pages.
168	 * This will simplify cpa(), which otherwise needs to support splitting
169	 * large pages into small in interrupt context, etc.
170	 */
171	if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
 
 
172		page_size_mask |= 1 << PG_LEVEL_2M;
173#endif
174
175	/* Enable PSE if available */
176	if (boot_cpu_has(X86_FEATURE_PSE))
177		cr4_set_bits_and_update_boot(X86_CR4_PSE);
178
179	/* Enable PGE if available */
180	if (boot_cpu_has(X86_FEATURE_PGE)) {
181		cr4_set_bits_and_update_boot(X86_CR4_PGE);
182		__supported_pte_mask |= _PAGE_GLOBAL;
183	} else
184		__supported_pte_mask &= ~_PAGE_GLOBAL;
185
186	/* Enable 1 GB linear kernel mappings if available: */
187	if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
188		printk(KERN_INFO "Using GB pages for direct mapping\n");
189		page_size_mask |= 1 << PG_LEVEL_1G;
190	} else {
191		direct_gbpages = 0;
192	}
193}
194
195#ifdef CONFIG_X86_32
196#define NR_RANGE_MR 3
197#else /* CONFIG_X86_64 */
198#define NR_RANGE_MR 5
199#endif
200
201static int __meminit save_mr(struct map_range *mr, int nr_range,
202			     unsigned long start_pfn, unsigned long end_pfn,
203			     unsigned long page_size_mask)
204{
205	if (start_pfn < end_pfn) {
206		if (nr_range >= NR_RANGE_MR)
207			panic("run out of range for init_memory_mapping\n");
208		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
209		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
210		mr[nr_range].page_size_mask = page_size_mask;
211		nr_range++;
212	}
213
214	return nr_range;
215}
216
217/*
218 * adjust the page_size_mask for small range to go with
219 *	big page size instead small one if nearby are ram too.
220 */
221static void __ref adjust_range_page_size_mask(struct map_range *mr,
222							 int nr_range)
223{
224	int i;
225
226	for (i = 0; i < nr_range; i++) {
227		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
228		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
229			unsigned long start = round_down(mr[i].start, PMD_SIZE);
230			unsigned long end = round_up(mr[i].end, PMD_SIZE);
231
232#ifdef CONFIG_X86_32
233			if ((end >> PAGE_SHIFT) > max_low_pfn)
234				continue;
235#endif
236
237			if (memblock_is_region_memory(start, end - start))
238				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
239		}
240		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
241		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
242			unsigned long start = round_down(mr[i].start, PUD_SIZE);
243			unsigned long end = round_up(mr[i].end, PUD_SIZE);
244
245			if (memblock_is_region_memory(start, end - start))
246				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
247		}
248	}
249}
250
251static const char *page_size_string(struct map_range *mr)
252{
253	static const char str_1g[] = "1G";
254	static const char str_2m[] = "2M";
255	static const char str_4m[] = "4M";
256	static const char str_4k[] = "4k";
257
258	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
259		return str_1g;
260	/*
261	 * 32-bit without PAE has a 4M large page size.
262	 * PG_LEVEL_2M is misnamed, but we can at least
263	 * print out the right size in the string.
264	 */
265	if (IS_ENABLED(CONFIG_X86_32) &&
266	    !IS_ENABLED(CONFIG_X86_PAE) &&
267	    mr->page_size_mask & (1<<PG_LEVEL_2M))
268		return str_4m;
269
270	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
271		return str_2m;
272
273	return str_4k;
274}
275
276static int __meminit split_mem_range(struct map_range *mr, int nr_range,
277				     unsigned long start,
278				     unsigned long end)
279{
280	unsigned long start_pfn, end_pfn, limit_pfn;
281	unsigned long pfn;
282	int i;
283
284	limit_pfn = PFN_DOWN(end);
285
286	/* head if not big page alignment ? */
287	pfn = start_pfn = PFN_DOWN(start);
288#ifdef CONFIG_X86_32
289	/*
290	 * Don't use a large page for the first 2/4MB of memory
291	 * because there are often fixed size MTRRs in there
292	 * and overlapping MTRRs into large pages can cause
293	 * slowdowns.
294	 */
295	if (pfn == 0)
296		end_pfn = PFN_DOWN(PMD_SIZE);
297	else
298		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
299#else /* CONFIG_X86_64 */
300	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
301#endif
302	if (end_pfn > limit_pfn)
303		end_pfn = limit_pfn;
304	if (start_pfn < end_pfn) {
305		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
306		pfn = end_pfn;
307	}
308
309	/* big page (2M) range */
310	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
311#ifdef CONFIG_X86_32
312	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
313#else /* CONFIG_X86_64 */
314	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
315	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
316		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
317#endif
318
319	if (start_pfn < end_pfn) {
320		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
321				page_size_mask & (1<<PG_LEVEL_2M));
322		pfn = end_pfn;
323	}
324
325#ifdef CONFIG_X86_64
326	/* big page (1G) range */
327	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
328	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
329	if (start_pfn < end_pfn) {
330		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
331				page_size_mask &
332				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
333		pfn = end_pfn;
334	}
335
336	/* tail is not big page (1G) alignment */
337	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
338	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
339	if (start_pfn < end_pfn) {
340		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
341				page_size_mask & (1<<PG_LEVEL_2M));
342		pfn = end_pfn;
343	}
344#endif
345
346	/* tail is not big page (2M) alignment */
347	start_pfn = pfn;
348	end_pfn = limit_pfn;
349	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
350
351	if (!after_bootmem)
352		adjust_range_page_size_mask(mr, nr_range);
353
354	/* try to merge same page size and continuous */
355	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
356		unsigned long old_start;
357		if (mr[i].end != mr[i+1].start ||
358		    mr[i].page_size_mask != mr[i+1].page_size_mask)
359			continue;
360		/* move it */
361		old_start = mr[i].start;
362		memmove(&mr[i], &mr[i+1],
363			(nr_range - 1 - i) * sizeof(struct map_range));
364		mr[i--].start = old_start;
365		nr_range--;
366	}
367
368	for (i = 0; i < nr_range; i++)
369		pr_debug(" [mem %#010lx-%#010lx] page %s\n",
370				mr[i].start, mr[i].end - 1,
371				page_size_string(&mr[i]));
 
372
373	return nr_range;
374}
375
376struct range pfn_mapped[E820_X_MAX];
377int nr_pfn_mapped;
378
379static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
380{
381	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX,
382					     nr_pfn_mapped, start_pfn, end_pfn);
383	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX);
384
385	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
386
387	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
388		max_low_pfn_mapped = max(max_low_pfn_mapped,
389					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
390}
391
392bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
393{
394	int i;
395
396	for (i = 0; i < nr_pfn_mapped; i++)
397		if ((start_pfn >= pfn_mapped[i].start) &&
398		    (end_pfn <= pfn_mapped[i].end))
399			return true;
400
401	return false;
402}
403
404/*
405 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
406 * This runs before bootmem is initialized and gets pages directly from
407 * the physical memory. To access them they are temporarily mapped.
408 */
409unsigned long __ref init_memory_mapping(unsigned long start,
410					       unsigned long end)
411{
412	struct map_range mr[NR_RANGE_MR];
413	unsigned long ret = 0;
414	int nr_range, i;
415
416	pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
417	       start, end - 1);
418
419	memset(mr, 0, sizeof(mr));
420	nr_range = split_mem_range(mr, 0, start, end);
421
422	for (i = 0; i < nr_range; i++)
423		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
424						   mr[i].page_size_mask);
425
426	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
427
428	return ret >> PAGE_SHIFT;
429}
430
431/*
432 * We need to iterate through the E820 memory map and create direct mappings
433 * for only E820_RAM and E820_KERN_RESERVED regions. We cannot simply
434 * create direct mappings for all pfns from [0 to max_low_pfn) and
435 * [4GB to max_pfn) because of possible memory holes in high addresses
436 * that cannot be marked as UC by fixed/variable range MTRRs.
437 * Depending on the alignment of E820 ranges, this may possibly result
438 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
439 *
440 * init_mem_mapping() calls init_range_memory_mapping() with big range.
441 * That range would have hole in the middle or ends, and only ram parts
442 * will be mapped in init_range_memory_mapping().
443 */
444static unsigned long __init init_range_memory_mapping(
445					   unsigned long r_start,
446					   unsigned long r_end)
447{
448	unsigned long start_pfn, end_pfn;
449	unsigned long mapped_ram_size = 0;
450	int i;
451
452	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
453		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
454		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
455		if (start >= end)
456			continue;
457
458		/*
459		 * if it is overlapping with brk pgt, we need to
460		 * alloc pgt buf from memblock instead.
461		 */
462		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
463				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
464		init_memory_mapping(start, end);
465		mapped_ram_size += end - start;
466		can_use_brk_pgt = true;
467	}
468
469	return mapped_ram_size;
470}
471
472static unsigned long __init get_new_step_size(unsigned long step_size)
473{
474	/*
475	 * Initial mapped size is PMD_SIZE (2M).
 
 
 
476	 * We can not set step_size to be PUD_SIZE (1G) yet.
477	 * In worse case, when we cross the 1G boundary, and
478	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
479	 * to map 1G range with PTE. Hence we use one less than the
480	 * difference of page table level shifts.
481	 *
482	 * Don't need to worry about overflow in the top-down case, on 32bit,
483	 * when step_size is 0, round_down() returns 0 for start, and that
484	 * turns it into 0x100000000ULL.
485	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
486	 * needs to be taken into consideration by the code below.
487	 */
488	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
489}
490
491/**
492 * memory_map_top_down - Map [map_start, map_end) top down
493 * @map_start: start address of the target memory range
494 * @map_end: end address of the target memory range
495 *
496 * This function will setup direct mapping for memory range
497 * [map_start, map_end) in top-down. That said, the page tables
498 * will be allocated at the end of the memory, and we map the
499 * memory in top-down.
500 */
501static void __init memory_map_top_down(unsigned long map_start,
502				       unsigned long map_end)
503{
504	unsigned long real_end, start, last_start;
505	unsigned long step_size;
506	unsigned long addr;
507	unsigned long mapped_ram_size = 0;
 
508
509	/* xen has big range in reserved near end of ram, skip it at first.*/
510	addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
511	real_end = addr + PMD_SIZE;
512
513	/* step_size need to be small so pgt_buf from BRK could cover it */
514	step_size = PMD_SIZE;
515	max_pfn_mapped = 0; /* will get exact value next */
516	min_pfn_mapped = real_end >> PAGE_SHIFT;
517	last_start = start = real_end;
518
519	/*
520	 * We start from the top (end of memory) and go to the bottom.
521	 * The memblock_find_in_range() gets us a block of RAM from the
522	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
523	 * for page table.
524	 */
525	while (last_start > map_start) {
526		if (last_start > step_size) {
527			start = round_down(last_start - 1, step_size);
528			if (start < map_start)
529				start = map_start;
530		} else
531			start = map_start;
532		mapped_ram_size += init_range_memory_mapping(start,
533							last_start);
534		last_start = start;
535		min_pfn_mapped = last_start >> PAGE_SHIFT;
536		if (mapped_ram_size >= step_size)
 
537			step_size = get_new_step_size(step_size);
 
538	}
539
540	if (real_end < map_end)
541		init_range_memory_mapping(real_end, map_end);
542}
543
544/**
545 * memory_map_bottom_up - Map [map_start, map_end) bottom up
546 * @map_start: start address of the target memory range
547 * @map_end: end address of the target memory range
548 *
549 * This function will setup direct mapping for memory range
550 * [map_start, map_end) in bottom-up. Since we have limited the
551 * bottom-up allocation above the kernel, the page tables will
552 * be allocated just above the kernel and we map the memory
553 * in [map_start, map_end) in bottom-up.
554 */
555static void __init memory_map_bottom_up(unsigned long map_start,
556					unsigned long map_end)
557{
558	unsigned long next, start;
559	unsigned long mapped_ram_size = 0;
560	/* step_size need to be small so pgt_buf from BRK could cover it */
561	unsigned long step_size = PMD_SIZE;
562
563	start = map_start;
564	min_pfn_mapped = start >> PAGE_SHIFT;
565
566	/*
567	 * We start from the bottom (@map_start) and go to the top (@map_end).
568	 * The memblock_find_in_range() gets us a block of RAM from the
569	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
570	 * for page table.
571	 */
572	while (start < map_end) {
573		if (step_size && map_end - start > step_size) {
574			next = round_up(start + 1, step_size);
575			if (next > map_end)
576				next = map_end;
577		} else {
578			next = map_end;
579		}
580
581		mapped_ram_size += init_range_memory_mapping(start, next);
582		start = next;
583
584		if (mapped_ram_size >= step_size)
585			step_size = get_new_step_size(step_size);
 
586	}
587}
588
589void __init init_mem_mapping(void)
590{
591	unsigned long end;
592
593	probe_page_size_mask();
594
595#ifdef CONFIG_X86_64
596	end = max_pfn << PAGE_SHIFT;
597#else
598	end = max_low_pfn << PAGE_SHIFT;
599#endif
600
601	/* the ISA range is always mapped regardless of memory holes */
602	init_memory_mapping(0, ISA_END_ADDRESS);
603
604	/* Init the trampoline, possibly with KASLR memory offset */
605	init_trampoline();
606
607	/*
608	 * If the allocation is in bottom-up direction, we setup direct mapping
609	 * in bottom-up, otherwise we setup direct mapping in top-down.
610	 */
611	if (memblock_bottom_up()) {
612		unsigned long kernel_end = __pa_symbol(_end);
613
614		/*
615		 * we need two separate calls here. This is because we want to
616		 * allocate page tables above the kernel. So we first map
617		 * [kernel_end, end) to make memory above the kernel be mapped
618		 * as soon as possible. And then use page tables allocated above
619		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
620		 */
621		memory_map_bottom_up(kernel_end, end);
622		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
623	} else {
624		memory_map_top_down(ISA_END_ADDRESS, end);
625	}
626
627#ifdef CONFIG_X86_64
628	if (max_pfn > max_low_pfn) {
629		/* can we preseve max_low_pfn ?*/
630		max_low_pfn = max_pfn;
631	}
632#else
633	early_ioremap_page_table_range_init();
634#endif
635
636	load_cr3(swapper_pg_dir);
637	__flush_tlb_all();
638
639	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
640}
641
642/*
643 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
644 * is valid. The argument is a physical page number.
645 *
646 *
647 * On x86, access has to be given to the first megabyte of ram because that area
648 * contains BIOS code and data regions used by X and dosemu and similar apps.
649 * Access has to be given to non-kernel-ram areas as well, these contain the PCI
650 * mmio resources as well as potential bios/acpi data regions.
651 */
652int devmem_is_allowed(unsigned long pagenr)
653{
654	if (pagenr < 256)
655		return 1;
656	if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
657		return 0;
658	if (!page_is_ram(pagenr))
659		return 1;
660	return 0;
661}
662
663void free_init_pages(char *what, unsigned long begin, unsigned long end)
664{
665	unsigned long begin_aligned, end_aligned;
666
667	/* Make sure boundaries are page aligned */
668	begin_aligned = PAGE_ALIGN(begin);
669	end_aligned   = end & PAGE_MASK;
670
671	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
672		begin = begin_aligned;
673		end   = end_aligned;
674	}
675
676	if (begin >= end)
677		return;
678
679	/*
680	 * If debugging page accesses then do not free this memory but
681	 * mark them not present - any buggy init-section access will
682	 * create a kernel page fault:
683	 */
684	if (debug_pagealloc_enabled()) {
685		pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
686			begin, end - 1);
687		set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
688	} else {
689		/*
690		 * We just marked the kernel text read only above, now that
691		 * we are going to free part of that, we need to make that
692		 * writeable and non-executable first.
693		 */
694		set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
695		set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
696
697		free_reserved_area((void *)begin, (void *)end,
698				   POISON_FREE_INITMEM, what);
699	}
700}
701
702void __ref free_initmem(void)
703{
704	e820_reallocate_tables();
705
706	free_init_pages("unused kernel",
707			(unsigned long)(&__init_begin),
708			(unsigned long)(&__init_end));
709}
710
711#ifdef CONFIG_BLK_DEV_INITRD
712void __init free_initrd_mem(unsigned long start, unsigned long end)
713{
 
 
 
 
 
 
 
 
 
714	/*
715	 * end could be not aligned, and We can not align that,
716	 * decompresser could be confused by aligned initrd_end
717	 * We already reserve the end partial page before in
718	 *   - i386_start_kernel()
719	 *   - x86_64_start_kernel()
720	 *   - relocate_initrd()
721	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
722	 */
723	free_init_pages("initrd", start, PAGE_ALIGN(end));
724}
725#endif
726
727void __init zone_sizes_init(void)
728{
729	unsigned long max_zone_pfns[MAX_NR_ZONES];
730
731	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
732
733#ifdef CONFIG_ZONE_DMA
734	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
735#endif
736#ifdef CONFIG_ZONE_DMA32
737	max_zone_pfns[ZONE_DMA32]	= min(MAX_DMA32_PFN, max_low_pfn);
738#endif
739	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
740#ifdef CONFIG_HIGHMEM
741	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
742#endif
743
744	free_area_init_nodes(max_zone_pfns);
745}
746
747DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
748#ifdef CONFIG_SMP
749	.active_mm = &init_mm,
750	.state = 0,
751#endif
752	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
753};
754EXPORT_SYMBOL_GPL(cpu_tlbstate);
755
756void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
757{
758	/* entry 0 MUST be WB (hardwired to speed up translations) */
759	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
760
761	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
762	__pte2cachemode_tbl[entry] = cache;
763}
v3.15
  1#include <linux/gfp.h>
  2#include <linux/initrd.h>
  3#include <linux/ioport.h>
  4#include <linux/swap.h>
  5#include <linux/memblock.h>
  6#include <linux/bootmem.h>	/* for max_low_pfn */
  7
  8#include <asm/cacheflush.h>
  9#include <asm/e820.h>
 10#include <asm/init.h>
 11#include <asm/page.h>
 12#include <asm/page_types.h>
 13#include <asm/sections.h>
 14#include <asm/setup.h>
 15#include <asm/tlbflush.h>
 16#include <asm/tlb.h>
 17#include <asm/proto.h>
 18#include <asm/dma.h>		/* for MAX_DMA_PFN */
 19#include <asm/microcode.h>
 
 
 
 
 
 
 
 
 20
 21#include "mm_internal.h"
 22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 23static unsigned long __initdata pgt_buf_start;
 24static unsigned long __initdata pgt_buf_end;
 25static unsigned long __initdata pgt_buf_top;
 26
 27static unsigned long min_pfn_mapped;
 28
 29static bool __initdata can_use_brk_pgt = true;
 30
 31/*
 32 * Pages returned are already directly mapped.
 33 *
 34 * Changing that is likely to break Xen, see commit:
 35 *
 36 *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
 37 *
 38 * for detailed information.
 39 */
 40__ref void *alloc_low_pages(unsigned int num)
 41{
 42	unsigned long pfn;
 43	int i;
 44
 45	if (after_bootmem) {
 46		unsigned int order;
 47
 48		order = get_order((unsigned long)num << PAGE_SHIFT);
 49		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
 50						__GFP_ZERO, order);
 51	}
 52
 53	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
 54		unsigned long ret;
 55		if (min_pfn_mapped >= max_pfn_mapped)
 56			panic("alloc_low_pages: ran out of memory");
 57		ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
 58					max_pfn_mapped << PAGE_SHIFT,
 59					PAGE_SIZE * num , PAGE_SIZE);
 60		if (!ret)
 61			panic("alloc_low_pages: can not alloc memory");
 62		memblock_reserve(ret, PAGE_SIZE * num);
 63		pfn = ret >> PAGE_SHIFT;
 64	} else {
 65		pfn = pgt_buf_end;
 66		pgt_buf_end += num;
 67		printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
 68			pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
 69	}
 70
 71	for (i = 0; i < num; i++) {
 72		void *adr;
 73
 74		adr = __va((pfn + i) << PAGE_SHIFT);
 75		clear_page(adr);
 76	}
 77
 78	return __va(pfn << PAGE_SHIFT);
 79}
 80
 81/* need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS */
 82#define INIT_PGT_BUF_SIZE	(6 * PAGE_SIZE)
 
 
 
 
 
 
 
 
 
 
 83RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
 84void  __init early_alloc_pgt_buf(void)
 85{
 86	unsigned long tables = INIT_PGT_BUF_SIZE;
 87	phys_addr_t base;
 88
 89	base = __pa(extend_brk(tables, PAGE_SIZE));
 90
 91	pgt_buf_start = base >> PAGE_SHIFT;
 92	pgt_buf_end = pgt_buf_start;
 93	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
 94}
 95
 96int after_bootmem;
 97
 98int direct_gbpages
 99#ifdef CONFIG_DIRECT_GBPAGES
100				= 1
101#endif
102;
103
104static void __init init_gbpages(void)
105{
106#ifdef CONFIG_X86_64
107	if (direct_gbpages && cpu_has_gbpages)
108		printk(KERN_INFO "Using GB pages for direct mapping\n");
109	else
110		direct_gbpages = 0;
111#endif
112}
113
114struct map_range {
115	unsigned long start;
116	unsigned long end;
117	unsigned page_size_mask;
118};
119
120static int page_size_mask;
121
122static void __init probe_page_size_mask(void)
123{
124	init_gbpages();
125
126#if !defined(CONFIG_DEBUG_PAGEALLOC) && !defined(CONFIG_KMEMCHECK)
127	/*
128	 * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
 
129	 * This will simplify cpa(), which otherwise needs to support splitting
130	 * large pages into small in interrupt context, etc.
131	 */
132	if (direct_gbpages)
133		page_size_mask |= 1 << PG_LEVEL_1G;
134	if (cpu_has_pse)
135		page_size_mask |= 1 << PG_LEVEL_2M;
136#endif
137
138	/* Enable PSE if available */
139	if (cpu_has_pse)
140		set_in_cr4(X86_CR4_PSE);
141
142	/* Enable PGE if available */
143	if (cpu_has_pge) {
144		set_in_cr4(X86_CR4_PGE);
145		__supported_pte_mask |= _PAGE_GLOBAL;
 
 
 
 
 
 
 
 
 
146	}
147}
148
149#ifdef CONFIG_X86_32
150#define NR_RANGE_MR 3
151#else /* CONFIG_X86_64 */
152#define NR_RANGE_MR 5
153#endif
154
155static int __meminit save_mr(struct map_range *mr, int nr_range,
156			     unsigned long start_pfn, unsigned long end_pfn,
157			     unsigned long page_size_mask)
158{
159	if (start_pfn < end_pfn) {
160		if (nr_range >= NR_RANGE_MR)
161			panic("run out of range for init_memory_mapping\n");
162		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
163		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
164		mr[nr_range].page_size_mask = page_size_mask;
165		nr_range++;
166	}
167
168	return nr_range;
169}
170
171/*
172 * adjust the page_size_mask for small range to go with
173 *	big page size instead small one if nearby are ram too.
174 */
175static void __init_refok adjust_range_page_size_mask(struct map_range *mr,
176							 int nr_range)
177{
178	int i;
179
180	for (i = 0; i < nr_range; i++) {
181		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
182		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
183			unsigned long start = round_down(mr[i].start, PMD_SIZE);
184			unsigned long end = round_up(mr[i].end, PMD_SIZE);
185
186#ifdef CONFIG_X86_32
187			if ((end >> PAGE_SHIFT) > max_low_pfn)
188				continue;
189#endif
190
191			if (memblock_is_region_memory(start, end - start))
192				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
193		}
194		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
195		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
196			unsigned long start = round_down(mr[i].start, PUD_SIZE);
197			unsigned long end = round_up(mr[i].end, PUD_SIZE);
198
199			if (memblock_is_region_memory(start, end - start))
200				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
201		}
202	}
203}
204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
205static int __meminit split_mem_range(struct map_range *mr, int nr_range,
206				     unsigned long start,
207				     unsigned long end)
208{
209	unsigned long start_pfn, end_pfn, limit_pfn;
210	unsigned long pfn;
211	int i;
212
213	limit_pfn = PFN_DOWN(end);
214
215	/* head if not big page alignment ? */
216	pfn = start_pfn = PFN_DOWN(start);
217#ifdef CONFIG_X86_32
218	/*
219	 * Don't use a large page for the first 2/4MB of memory
220	 * because there are often fixed size MTRRs in there
221	 * and overlapping MTRRs into large pages can cause
222	 * slowdowns.
223	 */
224	if (pfn == 0)
225		end_pfn = PFN_DOWN(PMD_SIZE);
226	else
227		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
228#else /* CONFIG_X86_64 */
229	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
230#endif
231	if (end_pfn > limit_pfn)
232		end_pfn = limit_pfn;
233	if (start_pfn < end_pfn) {
234		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
235		pfn = end_pfn;
236	}
237
238	/* big page (2M) range */
239	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
240#ifdef CONFIG_X86_32
241	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
242#else /* CONFIG_X86_64 */
243	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
244	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
245		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
246#endif
247
248	if (start_pfn < end_pfn) {
249		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
250				page_size_mask & (1<<PG_LEVEL_2M));
251		pfn = end_pfn;
252	}
253
254#ifdef CONFIG_X86_64
255	/* big page (1G) range */
256	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
257	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
258	if (start_pfn < end_pfn) {
259		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
260				page_size_mask &
261				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
262		pfn = end_pfn;
263	}
264
265	/* tail is not big page (1G) alignment */
266	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
267	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
268	if (start_pfn < end_pfn) {
269		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
270				page_size_mask & (1<<PG_LEVEL_2M));
271		pfn = end_pfn;
272	}
273#endif
274
275	/* tail is not big page (2M) alignment */
276	start_pfn = pfn;
277	end_pfn = limit_pfn;
278	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
279
280	if (!after_bootmem)
281		adjust_range_page_size_mask(mr, nr_range);
282
283	/* try to merge same page size and continuous */
284	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
285		unsigned long old_start;
286		if (mr[i].end != mr[i+1].start ||
287		    mr[i].page_size_mask != mr[i+1].page_size_mask)
288			continue;
289		/* move it */
290		old_start = mr[i].start;
291		memmove(&mr[i], &mr[i+1],
292			(nr_range - 1 - i) * sizeof(struct map_range));
293		mr[i--].start = old_start;
294		nr_range--;
295	}
296
297	for (i = 0; i < nr_range; i++)
298		printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n",
299				mr[i].start, mr[i].end - 1,
300			(mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
301			 (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
302
303	return nr_range;
304}
305
306struct range pfn_mapped[E820_X_MAX];
307int nr_pfn_mapped;
308
309static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
310{
311	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX,
312					     nr_pfn_mapped, start_pfn, end_pfn);
313	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX);
314
315	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
316
317	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
318		max_low_pfn_mapped = max(max_low_pfn_mapped,
319					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
320}
321
322bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
323{
324	int i;
325
326	for (i = 0; i < nr_pfn_mapped; i++)
327		if ((start_pfn >= pfn_mapped[i].start) &&
328		    (end_pfn <= pfn_mapped[i].end))
329			return true;
330
331	return false;
332}
333
334/*
335 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
336 * This runs before bootmem is initialized and gets pages directly from
337 * the physical memory. To access them they are temporarily mapped.
338 */
339unsigned long __init_refok init_memory_mapping(unsigned long start,
340					       unsigned long end)
341{
342	struct map_range mr[NR_RANGE_MR];
343	unsigned long ret = 0;
344	int nr_range, i;
345
346	pr_info("init_memory_mapping: [mem %#010lx-%#010lx]\n",
347	       start, end - 1);
348
349	memset(mr, 0, sizeof(mr));
350	nr_range = split_mem_range(mr, 0, start, end);
351
352	for (i = 0; i < nr_range; i++)
353		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
354						   mr[i].page_size_mask);
355
356	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
357
358	return ret >> PAGE_SHIFT;
359}
360
361/*
362 * We need to iterate through the E820 memory map and create direct mappings
363 * for only E820_RAM and E820_KERN_RESERVED regions. We cannot simply
364 * create direct mappings for all pfns from [0 to max_low_pfn) and
365 * [4GB to max_pfn) because of possible memory holes in high addresses
366 * that cannot be marked as UC by fixed/variable range MTRRs.
367 * Depending on the alignment of E820 ranges, this may possibly result
368 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
369 *
370 * init_mem_mapping() calls init_range_memory_mapping() with big range.
371 * That range would have hole in the middle or ends, and only ram parts
372 * will be mapped in init_range_memory_mapping().
373 */
374static unsigned long __init init_range_memory_mapping(
375					   unsigned long r_start,
376					   unsigned long r_end)
377{
378	unsigned long start_pfn, end_pfn;
379	unsigned long mapped_ram_size = 0;
380	int i;
381
382	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
383		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
384		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
385		if (start >= end)
386			continue;
387
388		/*
389		 * if it is overlapping with brk pgt, we need to
390		 * alloc pgt buf from memblock instead.
391		 */
392		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
393				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
394		init_memory_mapping(start, end);
395		mapped_ram_size += end - start;
396		can_use_brk_pgt = true;
397	}
398
399	return mapped_ram_size;
400}
401
402static unsigned long __init get_new_step_size(unsigned long step_size)
403{
404	/*
405	 * Explain why we shift by 5 and why we don't have to worry about
406	 * 'step_size << 5' overflowing:
407	 *
408	 * initial mapped size is PMD_SIZE (2M).
409	 * We can not set step_size to be PUD_SIZE (1G) yet.
410	 * In worse case, when we cross the 1G boundary, and
411	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
412	 * to map 1G range with PTE. Use 5 as shift for now.
 
413	 *
414	 * Don't need to worry about overflow, on 32bit, when step_size
415	 * is 0, round_down() returns 0 for start, and that turns it
416	 * into 0x100000000ULL.
 
 
417	 */
418	return step_size << 5;
419}
420
421/**
422 * memory_map_top_down - Map [map_start, map_end) top down
423 * @map_start: start address of the target memory range
424 * @map_end: end address of the target memory range
425 *
426 * This function will setup direct mapping for memory range
427 * [map_start, map_end) in top-down. That said, the page tables
428 * will be allocated at the end of the memory, and we map the
429 * memory in top-down.
430 */
431static void __init memory_map_top_down(unsigned long map_start,
432				       unsigned long map_end)
433{
434	unsigned long real_end, start, last_start;
435	unsigned long step_size;
436	unsigned long addr;
437	unsigned long mapped_ram_size = 0;
438	unsigned long new_mapped_ram_size;
439
440	/* xen has big range in reserved near end of ram, skip it at first.*/
441	addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
442	real_end = addr + PMD_SIZE;
443
444	/* step_size need to be small so pgt_buf from BRK could cover it */
445	step_size = PMD_SIZE;
446	max_pfn_mapped = 0; /* will get exact value next */
447	min_pfn_mapped = real_end >> PAGE_SHIFT;
448	last_start = start = real_end;
449
450	/*
451	 * We start from the top (end of memory) and go to the bottom.
452	 * The memblock_find_in_range() gets us a block of RAM from the
453	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
454	 * for page table.
455	 */
456	while (last_start > map_start) {
457		if (last_start > step_size) {
458			start = round_down(last_start - 1, step_size);
459			if (start < map_start)
460				start = map_start;
461		} else
462			start = map_start;
463		new_mapped_ram_size = init_range_memory_mapping(start,
464							last_start);
465		last_start = start;
466		min_pfn_mapped = last_start >> PAGE_SHIFT;
467		/* only increase step_size after big range get mapped */
468		if (new_mapped_ram_size > mapped_ram_size)
469			step_size = get_new_step_size(step_size);
470		mapped_ram_size += new_mapped_ram_size;
471	}
472
473	if (real_end < map_end)
474		init_range_memory_mapping(real_end, map_end);
475}
476
477/**
478 * memory_map_bottom_up - Map [map_start, map_end) bottom up
479 * @map_start: start address of the target memory range
480 * @map_end: end address of the target memory range
481 *
482 * This function will setup direct mapping for memory range
483 * [map_start, map_end) in bottom-up. Since we have limited the
484 * bottom-up allocation above the kernel, the page tables will
485 * be allocated just above the kernel and we map the memory
486 * in [map_start, map_end) in bottom-up.
487 */
488static void __init memory_map_bottom_up(unsigned long map_start,
489					unsigned long map_end)
490{
491	unsigned long next, new_mapped_ram_size, start;
492	unsigned long mapped_ram_size = 0;
493	/* step_size need to be small so pgt_buf from BRK could cover it */
494	unsigned long step_size = PMD_SIZE;
495
496	start = map_start;
497	min_pfn_mapped = start >> PAGE_SHIFT;
498
499	/*
500	 * We start from the bottom (@map_start) and go to the top (@map_end).
501	 * The memblock_find_in_range() gets us a block of RAM from the
502	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
503	 * for page table.
504	 */
505	while (start < map_end) {
506		if (map_end - start > step_size) {
507			next = round_up(start + 1, step_size);
508			if (next > map_end)
509				next = map_end;
510		} else
511			next = map_end;
 
512
513		new_mapped_ram_size = init_range_memory_mapping(start, next);
514		start = next;
515
516		if (new_mapped_ram_size > mapped_ram_size)
517			step_size = get_new_step_size(step_size);
518		mapped_ram_size += new_mapped_ram_size;
519	}
520}
521
522void __init init_mem_mapping(void)
523{
524	unsigned long end;
525
526	probe_page_size_mask();
527
528#ifdef CONFIG_X86_64
529	end = max_pfn << PAGE_SHIFT;
530#else
531	end = max_low_pfn << PAGE_SHIFT;
532#endif
533
534	/* the ISA range is always mapped regardless of memory holes */
535	init_memory_mapping(0, ISA_END_ADDRESS);
536
 
 
 
537	/*
538	 * If the allocation is in bottom-up direction, we setup direct mapping
539	 * in bottom-up, otherwise we setup direct mapping in top-down.
540	 */
541	if (memblock_bottom_up()) {
542		unsigned long kernel_end = __pa_symbol(_end);
543
544		/*
545		 * we need two separate calls here. This is because we want to
546		 * allocate page tables above the kernel. So we first map
547		 * [kernel_end, end) to make memory above the kernel be mapped
548		 * as soon as possible. And then use page tables allocated above
549		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
550		 */
551		memory_map_bottom_up(kernel_end, end);
552		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
553	} else {
554		memory_map_top_down(ISA_END_ADDRESS, end);
555	}
556
557#ifdef CONFIG_X86_64
558	if (max_pfn > max_low_pfn) {
559		/* can we preseve max_low_pfn ?*/
560		max_low_pfn = max_pfn;
561	}
562#else
563	early_ioremap_page_table_range_init();
564#endif
565
566	load_cr3(swapper_pg_dir);
567	__flush_tlb_all();
568
569	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
570}
571
572/*
573 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
574 * is valid. The argument is a physical page number.
575 *
576 *
577 * On x86, access has to be given to the first megabyte of ram because that area
578 * contains bios code and data regions used by X and dosemu and similar apps.
579 * Access has to be given to non-kernel-ram areas as well, these contain the PCI
580 * mmio resources as well as potential bios/acpi data regions.
581 */
582int devmem_is_allowed(unsigned long pagenr)
583{
584	if (pagenr < 256)
585		return 1;
586	if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
587		return 0;
588	if (!page_is_ram(pagenr))
589		return 1;
590	return 0;
591}
592
593void free_init_pages(char *what, unsigned long begin, unsigned long end)
594{
595	unsigned long begin_aligned, end_aligned;
596
597	/* Make sure boundaries are page aligned */
598	begin_aligned = PAGE_ALIGN(begin);
599	end_aligned   = end & PAGE_MASK;
600
601	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
602		begin = begin_aligned;
603		end   = end_aligned;
604	}
605
606	if (begin >= end)
607		return;
608
609	/*
610	 * If debugging page accesses then do not free this memory but
611	 * mark them not present - any buggy init-section access will
612	 * create a kernel page fault:
613	 */
614#ifdef CONFIG_DEBUG_PAGEALLOC
615	printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n",
616		begin, end - 1);
617	set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
618#else
619	/*
620	 * We just marked the kernel text read only above, now that
621	 * we are going to free part of that, we need to make that
622	 * writeable and non-executable first.
623	 */
624	set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
625	set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
626
627	free_reserved_area((void *)begin, (void *)end, POISON_FREE_INITMEM, what);
628#endif
 
629}
630
631void free_initmem(void)
632{
 
 
633	free_init_pages("unused kernel",
634			(unsigned long)(&__init_begin),
635			(unsigned long)(&__init_end));
636}
637
638#ifdef CONFIG_BLK_DEV_INITRD
639void __init free_initrd_mem(unsigned long start, unsigned long end)
640{
641#ifdef CONFIG_MICROCODE_EARLY
642	/*
643	 * Remember, initrd memory may contain microcode or other useful things.
644	 * Before we lose initrd mem, we need to find a place to hold them
645	 * now that normal virtual memory is enabled.
646	 */
647	save_microcode_in_initrd();
648#endif
649
650	/*
651	 * end could be not aligned, and We can not align that,
652	 * decompresser could be confused by aligned initrd_end
653	 * We already reserve the end partial page before in
654	 *   - i386_start_kernel()
655	 *   - x86_64_start_kernel()
656	 *   - relocate_initrd()
657	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
658	 */
659	free_init_pages("initrd", start, PAGE_ALIGN(end));
660}
661#endif
662
663void __init zone_sizes_init(void)
664{
665	unsigned long max_zone_pfns[MAX_NR_ZONES];
666
667	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
668
669#ifdef CONFIG_ZONE_DMA
670	max_zone_pfns[ZONE_DMA]		= MAX_DMA_PFN;
671#endif
672#ifdef CONFIG_ZONE_DMA32
673	max_zone_pfns[ZONE_DMA32]	= MAX_DMA32_PFN;
674#endif
675	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
676#ifdef CONFIG_HIGHMEM
677	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
678#endif
679
680	free_area_init_nodes(max_zone_pfns);
681}
682