Loading...
1/*
2 * Copyright 1995, Russell King.
3 * Various bits and pieces copyrights include:
4 * Linus Torvalds (test_bit).
5 * Big endian support: Copyright 2001, Nicolas Pitre
6 * reworked by rmk.
7 *
8 * bit 0 is the LSB of an "unsigned long" quantity.
9 *
10 * Please note that the code in this file should never be included
11 * from user space. Many of these are not implemented in assembler
12 * since they would be too costly. Also, they require privileged
13 * instructions (which are not available from user mode) to ensure
14 * that they are atomic.
15 */
16
17#ifndef __ASM_ARM_BITOPS_H
18#define __ASM_ARM_BITOPS_H
19
20#ifdef __KERNEL__
21
22#ifndef _LINUX_BITOPS_H
23#error only <linux/bitops.h> can be included directly
24#endif
25
26#include <linux/compiler.h>
27#include <linux/irqflags.h>
28#include <asm/barrier.h>
29
30/*
31 * These functions are the basis of our bit ops.
32 *
33 * First, the atomic bitops. These use native endian.
34 */
35static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p)
36{
37 unsigned long flags;
38 unsigned long mask = BIT_MASK(bit);
39
40 p += BIT_WORD(bit);
41
42 raw_local_irq_save(flags);
43 *p |= mask;
44 raw_local_irq_restore(flags);
45}
46
47static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p)
48{
49 unsigned long flags;
50 unsigned long mask = BIT_MASK(bit);
51
52 p += BIT_WORD(bit);
53
54 raw_local_irq_save(flags);
55 *p &= ~mask;
56 raw_local_irq_restore(flags);
57}
58
59static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p)
60{
61 unsigned long flags;
62 unsigned long mask = BIT_MASK(bit);
63
64 p += BIT_WORD(bit);
65
66 raw_local_irq_save(flags);
67 *p ^= mask;
68 raw_local_irq_restore(flags);
69}
70
71static inline int
72____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p)
73{
74 unsigned long flags;
75 unsigned int res;
76 unsigned long mask = BIT_MASK(bit);
77
78 p += BIT_WORD(bit);
79
80 raw_local_irq_save(flags);
81 res = *p;
82 *p = res | mask;
83 raw_local_irq_restore(flags);
84
85 return (res & mask) != 0;
86}
87
88static inline int
89____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p)
90{
91 unsigned long flags;
92 unsigned int res;
93 unsigned long mask = BIT_MASK(bit);
94
95 p += BIT_WORD(bit);
96
97 raw_local_irq_save(flags);
98 res = *p;
99 *p = res & ~mask;
100 raw_local_irq_restore(flags);
101
102 return (res & mask) != 0;
103}
104
105static inline int
106____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p)
107{
108 unsigned long flags;
109 unsigned int res;
110 unsigned long mask = BIT_MASK(bit);
111
112 p += BIT_WORD(bit);
113
114 raw_local_irq_save(flags);
115 res = *p;
116 *p = res ^ mask;
117 raw_local_irq_restore(flags);
118
119 return (res & mask) != 0;
120}
121
122#include <asm-generic/bitops/non-atomic.h>
123
124/*
125 * A note about Endian-ness.
126 * -------------------------
127 *
128 * When the ARM is put into big endian mode via CR15, the processor
129 * merely swaps the order of bytes within words, thus:
130 *
131 * ------------ physical data bus bits -----------
132 * D31 ... D24 D23 ... D16 D15 ... D8 D7 ... D0
133 * little byte 3 byte 2 byte 1 byte 0
134 * big byte 0 byte 1 byte 2 byte 3
135 *
136 * This means that reading a 32-bit word at address 0 returns the same
137 * value irrespective of the endian mode bit.
138 *
139 * Peripheral devices should be connected with the data bus reversed in
140 * "Big Endian" mode. ARM Application Note 61 is applicable, and is
141 * available from http://www.arm.com/.
142 *
143 * The following assumes that the data bus connectivity for big endian
144 * mode has been followed.
145 *
146 * Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0.
147 */
148
149/*
150 * Native endian assembly bitops. nr = 0 -> word 0 bit 0.
151 */
152extern void _set_bit(int nr, volatile unsigned long * p);
153extern void _clear_bit(int nr, volatile unsigned long * p);
154extern void _change_bit(int nr, volatile unsigned long * p);
155extern int _test_and_set_bit(int nr, volatile unsigned long * p);
156extern int _test_and_clear_bit(int nr, volatile unsigned long * p);
157extern int _test_and_change_bit(int nr, volatile unsigned long * p);
158
159/*
160 * Little endian assembly bitops. nr = 0 -> byte 0 bit 0.
161 */
162extern int _find_first_zero_bit_le(const void * p, unsigned size);
163extern int _find_next_zero_bit_le(const void * p, int size, int offset);
164extern int _find_first_bit_le(const unsigned long *p, unsigned size);
165extern int _find_next_bit_le(const unsigned long *p, int size, int offset);
166
167/*
168 * Big endian assembly bitops. nr = 0 -> byte 3 bit 0.
169 */
170extern int _find_first_zero_bit_be(const void * p, unsigned size);
171extern int _find_next_zero_bit_be(const void * p, int size, int offset);
172extern int _find_first_bit_be(const unsigned long *p, unsigned size);
173extern int _find_next_bit_be(const unsigned long *p, int size, int offset);
174
175#ifndef CONFIG_SMP
176/*
177 * The __* form of bitops are non-atomic and may be reordered.
178 */
179#define ATOMIC_BITOP(name,nr,p) \
180 (__builtin_constant_p(nr) ? ____atomic_##name(nr, p) : _##name(nr,p))
181#else
182#define ATOMIC_BITOP(name,nr,p) _##name(nr,p)
183#endif
184
185/*
186 * Native endian atomic definitions.
187 */
188#define set_bit(nr,p) ATOMIC_BITOP(set_bit,nr,p)
189#define clear_bit(nr,p) ATOMIC_BITOP(clear_bit,nr,p)
190#define change_bit(nr,p) ATOMIC_BITOP(change_bit,nr,p)
191#define test_and_set_bit(nr,p) ATOMIC_BITOP(test_and_set_bit,nr,p)
192#define test_and_clear_bit(nr,p) ATOMIC_BITOP(test_and_clear_bit,nr,p)
193#define test_and_change_bit(nr,p) ATOMIC_BITOP(test_and_change_bit,nr,p)
194
195#ifndef __ARMEB__
196/*
197 * These are the little endian, atomic definitions.
198 */
199#define find_first_zero_bit(p,sz) _find_first_zero_bit_le(p,sz)
200#define find_next_zero_bit(p,sz,off) _find_next_zero_bit_le(p,sz,off)
201#define find_first_bit(p,sz) _find_first_bit_le(p,sz)
202#define find_next_bit(p,sz,off) _find_next_bit_le(p,sz,off)
203
204#else
205/*
206 * These are the big endian, atomic definitions.
207 */
208#define find_first_zero_bit(p,sz) _find_first_zero_bit_be(p,sz)
209#define find_next_zero_bit(p,sz,off) _find_next_zero_bit_be(p,sz,off)
210#define find_first_bit(p,sz) _find_first_bit_be(p,sz)
211#define find_next_bit(p,sz,off) _find_next_bit_be(p,sz,off)
212
213#endif
214
215#if __LINUX_ARM_ARCH__ < 5
216
217#include <asm-generic/bitops/ffz.h>
218#include <asm-generic/bitops/__fls.h>
219#include <asm-generic/bitops/__ffs.h>
220#include <asm-generic/bitops/fls.h>
221#include <asm-generic/bitops/ffs.h>
222
223#else
224
225static inline int constant_fls(int x)
226{
227 int r = 32;
228
229 if (!x)
230 return 0;
231 if (!(x & 0xffff0000u)) {
232 x <<= 16;
233 r -= 16;
234 }
235 if (!(x & 0xff000000u)) {
236 x <<= 8;
237 r -= 8;
238 }
239 if (!(x & 0xf0000000u)) {
240 x <<= 4;
241 r -= 4;
242 }
243 if (!(x & 0xc0000000u)) {
244 x <<= 2;
245 r -= 2;
246 }
247 if (!(x & 0x80000000u)) {
248 x <<= 1;
249 r -= 1;
250 }
251 return r;
252}
253
254/*
255 * On ARMv5 and above those functions can be implemented around the
256 * clz instruction for much better code efficiency. __clz returns
257 * the number of leading zeros, zero input will return 32, and
258 * 0x80000000 will return 0.
259 */
260static inline unsigned int __clz(unsigned int x)
261{
262 unsigned int ret;
263
264 asm("clz\t%0, %1" : "=r" (ret) : "r" (x));
265
266 return ret;
267}
268
269/*
270 * fls() returns zero if the input is zero, otherwise returns the bit
271 * position of the last set bit, where the LSB is 1 and MSB is 32.
272 */
273static inline int fls(int x)
274{
275 if (__builtin_constant_p(x))
276 return constant_fls(x);
277
278 return 32 - __clz(x);
279}
280
281/*
282 * __fls() returns the bit position of the last bit set, where the
283 * LSB is 0 and MSB is 31. Zero input is undefined.
284 */
285static inline unsigned long __fls(unsigned long x)
286{
287 return fls(x) - 1;
288}
289
290/*
291 * ffs() returns zero if the input was zero, otherwise returns the bit
292 * position of the first set bit, where the LSB is 1 and MSB is 32.
293 */
294static inline int ffs(int x)
295{
296 return fls(x & -x);
297}
298
299/*
300 * __ffs() returns the bit position of the first bit set, where the
301 * LSB is 0 and MSB is 31. Zero input is undefined.
302 */
303static inline unsigned long __ffs(unsigned long x)
304{
305 return ffs(x) - 1;
306}
307
308#define ffz(x) __ffs( ~(x) )
309
310#endif
311
312#include <asm-generic/bitops/fls64.h>
313
314#include <asm-generic/bitops/sched.h>
315#include <asm-generic/bitops/hweight.h>
316#include <asm-generic/bitops/lock.h>
317
318#ifdef __ARMEB__
319
320static inline int find_first_zero_bit_le(const void *p, unsigned size)
321{
322 return _find_first_zero_bit_le(p, size);
323}
324#define find_first_zero_bit_le find_first_zero_bit_le
325
326static inline int find_next_zero_bit_le(const void *p, int size, int offset)
327{
328 return _find_next_zero_bit_le(p, size, offset);
329}
330#define find_next_zero_bit_le find_next_zero_bit_le
331
332static inline int find_next_bit_le(const void *p, int size, int offset)
333{
334 return _find_next_bit_le(p, size, offset);
335}
336#define find_next_bit_le find_next_bit_le
337
338#endif
339
340#include <asm-generic/bitops/le.h>
341
342/*
343 * Ext2 is defined to use little-endian byte ordering.
344 */
345#include <asm-generic/bitops/ext2-atomic-setbit.h>
346
347#endif /* __KERNEL__ */
348
349#endif /* _ARM_BITOPS_H */
1/*
2 * Copyright 1995, Russell King.
3 * Various bits and pieces copyrights include:
4 * Linus Torvalds (test_bit).
5 * Big endian support: Copyright 2001, Nicolas Pitre
6 * reworked by rmk.
7 *
8 * bit 0 is the LSB of an "unsigned long" quantity.
9 *
10 * Please note that the code in this file should never be included
11 * from user space. Many of these are not implemented in assembler
12 * since they would be too costly. Also, they require privileged
13 * instructions (which are not available from user mode) to ensure
14 * that they are atomic.
15 */
16
17#ifndef __ASM_ARM_BITOPS_H
18#define __ASM_ARM_BITOPS_H
19
20#ifdef __KERNEL__
21
22#ifndef _LINUX_BITOPS_H
23#error only <linux/bitops.h> can be included directly
24#endif
25
26#include <linux/compiler.h>
27#include <linux/irqflags.h>
28
29#define smp_mb__before_clear_bit() smp_mb()
30#define smp_mb__after_clear_bit() smp_mb()
31
32/*
33 * These functions are the basis of our bit ops.
34 *
35 * First, the atomic bitops. These use native endian.
36 */
37static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p)
38{
39 unsigned long flags;
40 unsigned long mask = 1UL << (bit & 31);
41
42 p += bit >> 5;
43
44 raw_local_irq_save(flags);
45 *p |= mask;
46 raw_local_irq_restore(flags);
47}
48
49static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p)
50{
51 unsigned long flags;
52 unsigned long mask = 1UL << (bit & 31);
53
54 p += bit >> 5;
55
56 raw_local_irq_save(flags);
57 *p &= ~mask;
58 raw_local_irq_restore(flags);
59}
60
61static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p)
62{
63 unsigned long flags;
64 unsigned long mask = 1UL << (bit & 31);
65
66 p += bit >> 5;
67
68 raw_local_irq_save(flags);
69 *p ^= mask;
70 raw_local_irq_restore(flags);
71}
72
73static inline int
74____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p)
75{
76 unsigned long flags;
77 unsigned int res;
78 unsigned long mask = 1UL << (bit & 31);
79
80 p += bit >> 5;
81
82 raw_local_irq_save(flags);
83 res = *p;
84 *p = res | mask;
85 raw_local_irq_restore(flags);
86
87 return (res & mask) != 0;
88}
89
90static inline int
91____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p)
92{
93 unsigned long flags;
94 unsigned int res;
95 unsigned long mask = 1UL << (bit & 31);
96
97 p += bit >> 5;
98
99 raw_local_irq_save(flags);
100 res = *p;
101 *p = res & ~mask;
102 raw_local_irq_restore(flags);
103
104 return (res & mask) != 0;
105}
106
107static inline int
108____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p)
109{
110 unsigned long flags;
111 unsigned int res;
112 unsigned long mask = 1UL << (bit & 31);
113
114 p += bit >> 5;
115
116 raw_local_irq_save(flags);
117 res = *p;
118 *p = res ^ mask;
119 raw_local_irq_restore(flags);
120
121 return (res & mask) != 0;
122}
123
124#include <asm-generic/bitops/non-atomic.h>
125
126/*
127 * A note about Endian-ness.
128 * -------------------------
129 *
130 * When the ARM is put into big endian mode via CR15, the processor
131 * merely swaps the order of bytes within words, thus:
132 *
133 * ------------ physical data bus bits -----------
134 * D31 ... D24 D23 ... D16 D15 ... D8 D7 ... D0
135 * little byte 3 byte 2 byte 1 byte 0
136 * big byte 0 byte 1 byte 2 byte 3
137 *
138 * This means that reading a 32-bit word at address 0 returns the same
139 * value irrespective of the endian mode bit.
140 *
141 * Peripheral devices should be connected with the data bus reversed in
142 * "Big Endian" mode. ARM Application Note 61 is applicable, and is
143 * available from http://www.arm.com/.
144 *
145 * The following assumes that the data bus connectivity for big endian
146 * mode has been followed.
147 *
148 * Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0.
149 */
150
151/*
152 * Native endian assembly bitops. nr = 0 -> word 0 bit 0.
153 */
154extern void _set_bit(int nr, volatile unsigned long * p);
155extern void _clear_bit(int nr, volatile unsigned long * p);
156extern void _change_bit(int nr, volatile unsigned long * p);
157extern int _test_and_set_bit(int nr, volatile unsigned long * p);
158extern int _test_and_clear_bit(int nr, volatile unsigned long * p);
159extern int _test_and_change_bit(int nr, volatile unsigned long * p);
160
161/*
162 * Little endian assembly bitops. nr = 0 -> byte 0 bit 0.
163 */
164extern int _find_first_zero_bit_le(const void * p, unsigned size);
165extern int _find_next_zero_bit_le(const void * p, int size, int offset);
166extern int _find_first_bit_le(const unsigned long *p, unsigned size);
167extern int _find_next_bit_le(const unsigned long *p, int size, int offset);
168
169/*
170 * Big endian assembly bitops. nr = 0 -> byte 3 bit 0.
171 */
172extern int _find_first_zero_bit_be(const void * p, unsigned size);
173extern int _find_next_zero_bit_be(const void * p, int size, int offset);
174extern int _find_first_bit_be(const unsigned long *p, unsigned size);
175extern int _find_next_bit_be(const unsigned long *p, int size, int offset);
176
177#ifndef CONFIG_SMP
178/*
179 * The __* form of bitops are non-atomic and may be reordered.
180 */
181#define ATOMIC_BITOP(name,nr,p) \
182 (__builtin_constant_p(nr) ? ____atomic_##name(nr, p) : _##name(nr,p))
183#else
184#define ATOMIC_BITOP(name,nr,p) _##name(nr,p)
185#endif
186
187/*
188 * Native endian atomic definitions.
189 */
190#define set_bit(nr,p) ATOMIC_BITOP(set_bit,nr,p)
191#define clear_bit(nr,p) ATOMIC_BITOP(clear_bit,nr,p)
192#define change_bit(nr,p) ATOMIC_BITOP(change_bit,nr,p)
193#define test_and_set_bit(nr,p) ATOMIC_BITOP(test_and_set_bit,nr,p)
194#define test_and_clear_bit(nr,p) ATOMIC_BITOP(test_and_clear_bit,nr,p)
195#define test_and_change_bit(nr,p) ATOMIC_BITOP(test_and_change_bit,nr,p)
196
197#ifndef __ARMEB__
198/*
199 * These are the little endian, atomic definitions.
200 */
201#define find_first_zero_bit(p,sz) _find_first_zero_bit_le(p,sz)
202#define find_next_zero_bit(p,sz,off) _find_next_zero_bit_le(p,sz,off)
203#define find_first_bit(p,sz) _find_first_bit_le(p,sz)
204#define find_next_bit(p,sz,off) _find_next_bit_le(p,sz,off)
205
206#else
207/*
208 * These are the big endian, atomic definitions.
209 */
210#define find_first_zero_bit(p,sz) _find_first_zero_bit_be(p,sz)
211#define find_next_zero_bit(p,sz,off) _find_next_zero_bit_be(p,sz,off)
212#define find_first_bit(p,sz) _find_first_bit_be(p,sz)
213#define find_next_bit(p,sz,off) _find_next_bit_be(p,sz,off)
214
215#endif
216
217#if __LINUX_ARM_ARCH__ < 5
218
219#include <asm-generic/bitops/ffz.h>
220#include <asm-generic/bitops/__fls.h>
221#include <asm-generic/bitops/__ffs.h>
222#include <asm-generic/bitops/fls.h>
223#include <asm-generic/bitops/ffs.h>
224
225#else
226
227static inline int constant_fls(int x)
228{
229 int r = 32;
230
231 if (!x)
232 return 0;
233 if (!(x & 0xffff0000u)) {
234 x <<= 16;
235 r -= 16;
236 }
237 if (!(x & 0xff000000u)) {
238 x <<= 8;
239 r -= 8;
240 }
241 if (!(x & 0xf0000000u)) {
242 x <<= 4;
243 r -= 4;
244 }
245 if (!(x & 0xc0000000u)) {
246 x <<= 2;
247 r -= 2;
248 }
249 if (!(x & 0x80000000u)) {
250 x <<= 1;
251 r -= 1;
252 }
253 return r;
254}
255
256/*
257 * On ARMv5 and above those functions can be implemented around the
258 * clz instruction for much better code efficiency. __clz returns
259 * the number of leading zeros, zero input will return 32, and
260 * 0x80000000 will return 0.
261 */
262static inline unsigned int __clz(unsigned int x)
263{
264 unsigned int ret;
265
266 asm("clz\t%0, %1" : "=r" (ret) : "r" (x));
267
268 return ret;
269}
270
271/*
272 * fls() returns zero if the input is zero, otherwise returns the bit
273 * position of the last set bit, where the LSB is 1 and MSB is 32.
274 */
275static inline int fls(int x)
276{
277 if (__builtin_constant_p(x))
278 return constant_fls(x);
279
280 return 32 - __clz(x);
281}
282
283/*
284 * __fls() returns the bit position of the last bit set, where the
285 * LSB is 0 and MSB is 31. Zero input is undefined.
286 */
287static inline unsigned long __fls(unsigned long x)
288{
289 return fls(x) - 1;
290}
291
292/*
293 * ffs() returns zero if the input was zero, otherwise returns the bit
294 * position of the first set bit, where the LSB is 1 and MSB is 32.
295 */
296static inline int ffs(int x)
297{
298 return fls(x & -x);
299}
300
301/*
302 * __ffs() returns the bit position of the first bit set, where the
303 * LSB is 0 and MSB is 31. Zero input is undefined.
304 */
305static inline unsigned long __ffs(unsigned long x)
306{
307 return ffs(x) - 1;
308}
309
310#define ffz(x) __ffs( ~(x) )
311
312#endif
313
314#include <asm-generic/bitops/fls64.h>
315
316#include <asm-generic/bitops/sched.h>
317#include <asm-generic/bitops/hweight.h>
318#include <asm-generic/bitops/lock.h>
319
320#ifdef __ARMEB__
321
322static inline int find_first_zero_bit_le(const void *p, unsigned size)
323{
324 return _find_first_zero_bit_le(p, size);
325}
326#define find_first_zero_bit_le find_first_zero_bit_le
327
328static inline int find_next_zero_bit_le(const void *p, int size, int offset)
329{
330 return _find_next_zero_bit_le(p, size, offset);
331}
332#define find_next_zero_bit_le find_next_zero_bit_le
333
334static inline int find_next_bit_le(const void *p, int size, int offset)
335{
336 return _find_next_bit_le(p, size, offset);
337}
338#define find_next_bit_le find_next_bit_le
339
340#endif
341
342#include <asm-generic/bitops/le.h>
343
344/*
345 * Ext2 is defined to use little-endian byte ordering.
346 */
347#include <asm-generic/bitops/ext2-atomic-setbit.h>
348
349#endif /* __KERNEL__ */
350
351#endif /* _ARM_BITOPS_H */