Linux Audio

Check our new training course

Loading...
v4.10.11
  1/*
  2 * Copyright 1995, Russell King.
  3 * Various bits and pieces copyrights include:
  4 *  Linus Torvalds (test_bit).
  5 * Big endian support: Copyright 2001, Nicolas Pitre
  6 *  reworked by rmk.
  7 *
  8 * bit 0 is the LSB of an "unsigned long" quantity.
  9 *
 10 * Please note that the code in this file should never be included
 11 * from user space.  Many of these are not implemented in assembler
 12 * since they would be too costly.  Also, they require privileged
 13 * instructions (which are not available from user mode) to ensure
 14 * that they are atomic.
 15 */
 16
 17#ifndef __ASM_ARM_BITOPS_H
 18#define __ASM_ARM_BITOPS_H
 19
 20#ifdef __KERNEL__
 21
 22#ifndef _LINUX_BITOPS_H
 23#error only <linux/bitops.h> can be included directly
 24#endif
 25
 26#include <linux/compiler.h>
 27#include <linux/irqflags.h>
 28#include <asm/barrier.h>
 
 
 29
 30/*
 31 * These functions are the basis of our bit ops.
 32 *
 33 * First, the atomic bitops. These use native endian.
 34 */
 35static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p)
 36{
 37	unsigned long flags;
 38	unsigned long mask = BIT_MASK(bit);
 39
 40	p += BIT_WORD(bit);
 41
 42	raw_local_irq_save(flags);
 43	*p |= mask;
 44	raw_local_irq_restore(flags);
 45}
 46
 47static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p)
 48{
 49	unsigned long flags;
 50	unsigned long mask = BIT_MASK(bit);
 51
 52	p += BIT_WORD(bit);
 53
 54	raw_local_irq_save(flags);
 55	*p &= ~mask;
 56	raw_local_irq_restore(flags);
 57}
 58
 59static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p)
 60{
 61	unsigned long flags;
 62	unsigned long mask = BIT_MASK(bit);
 63
 64	p += BIT_WORD(bit);
 65
 66	raw_local_irq_save(flags);
 67	*p ^= mask;
 68	raw_local_irq_restore(flags);
 69}
 70
 71static inline int
 72____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p)
 73{
 74	unsigned long flags;
 75	unsigned int res;
 76	unsigned long mask = BIT_MASK(bit);
 77
 78	p += BIT_WORD(bit);
 79
 80	raw_local_irq_save(flags);
 81	res = *p;
 82	*p = res | mask;
 83	raw_local_irq_restore(flags);
 84
 85	return (res & mask) != 0;
 86}
 87
 88static inline int
 89____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p)
 90{
 91	unsigned long flags;
 92	unsigned int res;
 93	unsigned long mask = BIT_MASK(bit);
 94
 95	p += BIT_WORD(bit);
 96
 97	raw_local_irq_save(flags);
 98	res = *p;
 99	*p = res & ~mask;
100	raw_local_irq_restore(flags);
101
102	return (res & mask) != 0;
103}
104
105static inline int
106____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p)
107{
108	unsigned long flags;
109	unsigned int res;
110	unsigned long mask = BIT_MASK(bit);
111
112	p += BIT_WORD(bit);
113
114	raw_local_irq_save(flags);
115	res = *p;
116	*p = res ^ mask;
117	raw_local_irq_restore(flags);
118
119	return (res & mask) != 0;
120}
121
122#include <asm-generic/bitops/non-atomic.h>
123
124/*
125 *  A note about Endian-ness.
126 *  -------------------------
127 *
128 * When the ARM is put into big endian mode via CR15, the processor
129 * merely swaps the order of bytes within words, thus:
130 *
131 *          ------------ physical data bus bits -----------
132 *          D31 ... D24  D23 ... D16  D15 ... D8  D7 ... D0
133 * little     byte 3       byte 2       byte 1      byte 0
134 * big        byte 0       byte 1       byte 2      byte 3
135 *
136 * This means that reading a 32-bit word at address 0 returns the same
137 * value irrespective of the endian mode bit.
138 *
139 * Peripheral devices should be connected with the data bus reversed in
140 * "Big Endian" mode.  ARM Application Note 61 is applicable, and is
141 * available from http://www.arm.com/.
142 *
143 * The following assumes that the data bus connectivity for big endian
144 * mode has been followed.
145 *
146 * Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0.
147 */
148
149/*
150 * Native endian assembly bitops.  nr = 0 -> word 0 bit 0.
151 */
152extern void _set_bit(int nr, volatile unsigned long * p);
153extern void _clear_bit(int nr, volatile unsigned long * p);
154extern void _change_bit(int nr, volatile unsigned long * p);
155extern int _test_and_set_bit(int nr, volatile unsigned long * p);
156extern int _test_and_clear_bit(int nr, volatile unsigned long * p);
157extern int _test_and_change_bit(int nr, volatile unsigned long * p);
158
159/*
160 * Little endian assembly bitops.  nr = 0 -> byte 0 bit 0.
161 */
162extern int _find_first_zero_bit_le(const void * p, unsigned size);
163extern int _find_next_zero_bit_le(const void * p, int size, int offset);
164extern int _find_first_bit_le(const unsigned long *p, unsigned size);
165extern int _find_next_bit_le(const unsigned long *p, int size, int offset);
166
167/*
168 * Big endian assembly bitops.  nr = 0 -> byte 3 bit 0.
169 */
170extern int _find_first_zero_bit_be(const void * p, unsigned size);
171extern int _find_next_zero_bit_be(const void * p, int size, int offset);
172extern int _find_first_bit_be(const unsigned long *p, unsigned size);
173extern int _find_next_bit_be(const unsigned long *p, int size, int offset);
174
175#ifndef CONFIG_SMP
176/*
177 * The __* form of bitops are non-atomic and may be reordered.
178 */
179#define ATOMIC_BITOP(name,nr,p)			\
180	(__builtin_constant_p(nr) ? ____atomic_##name(nr, p) : _##name(nr,p))
181#else
182#define ATOMIC_BITOP(name,nr,p)		_##name(nr,p)
183#endif
184
185/*
186 * Native endian atomic definitions.
187 */
188#define set_bit(nr,p)			ATOMIC_BITOP(set_bit,nr,p)
189#define clear_bit(nr,p)			ATOMIC_BITOP(clear_bit,nr,p)
190#define change_bit(nr,p)		ATOMIC_BITOP(change_bit,nr,p)
191#define test_and_set_bit(nr,p)		ATOMIC_BITOP(test_and_set_bit,nr,p)
192#define test_and_clear_bit(nr,p)	ATOMIC_BITOP(test_and_clear_bit,nr,p)
193#define test_and_change_bit(nr,p)	ATOMIC_BITOP(test_and_change_bit,nr,p)
194
195#ifndef __ARMEB__
196/*
197 * These are the little endian, atomic definitions.
198 */
199#define find_first_zero_bit(p,sz)	_find_first_zero_bit_le(p,sz)
200#define find_next_zero_bit(p,sz,off)	_find_next_zero_bit_le(p,sz,off)
201#define find_first_bit(p,sz)		_find_first_bit_le(p,sz)
202#define find_next_bit(p,sz,off)		_find_next_bit_le(p,sz,off)
203
204#else
205/*
206 * These are the big endian, atomic definitions.
207 */
208#define find_first_zero_bit(p,sz)	_find_first_zero_bit_be(p,sz)
209#define find_next_zero_bit(p,sz,off)	_find_next_zero_bit_be(p,sz,off)
210#define find_first_bit(p,sz)		_find_first_bit_be(p,sz)
211#define find_next_bit(p,sz,off)		_find_next_bit_be(p,sz,off)
212
213#endif
214
215#if __LINUX_ARM_ARCH__ < 5
216
217#include <asm-generic/bitops/ffz.h>
218#include <asm-generic/bitops/__fls.h>
219#include <asm-generic/bitops/__ffs.h>
220#include <asm-generic/bitops/fls.h>
221#include <asm-generic/bitops/ffs.h>
222
223#else
224
225static inline int constant_fls(int x)
226{
227	int r = 32;
228
229	if (!x)
230		return 0;
231	if (!(x & 0xffff0000u)) {
232		x <<= 16;
233		r -= 16;
234	}
235	if (!(x & 0xff000000u)) {
236		x <<= 8;
237		r -= 8;
238	}
239	if (!(x & 0xf0000000u)) {
240		x <<= 4;
241		r -= 4;
242	}
243	if (!(x & 0xc0000000u)) {
244		x <<= 2;
245		r -= 2;
246	}
247	if (!(x & 0x80000000u)) {
248		x <<= 1;
249		r -= 1;
250	}
251	return r;
252}
253
254/*
255 * On ARMv5 and above those functions can be implemented around the
256 * clz instruction for much better code efficiency.  __clz returns
257 * the number of leading zeros, zero input will return 32, and
258 * 0x80000000 will return 0.
259 */
260static inline unsigned int __clz(unsigned int x)
261{
262	unsigned int ret;
263
264	asm("clz\t%0, %1" : "=r" (ret) : "r" (x));
265
266	return ret;
267}
268
269/*
270 * fls() returns zero if the input is zero, otherwise returns the bit
271 * position of the last set bit, where the LSB is 1 and MSB is 32.
272 */
273static inline int fls(int x)
274{
275	if (__builtin_constant_p(x))
276	       return constant_fls(x);
277
278	return 32 - __clz(x);
279}
280
281/*
282 * __fls() returns the bit position of the last bit set, where the
283 * LSB is 0 and MSB is 31.  Zero input is undefined.
284 */
285static inline unsigned long __fls(unsigned long x)
286{
287	return fls(x) - 1;
288}
289
290/*
291 * ffs() returns zero if the input was zero, otherwise returns the bit
292 * position of the first set bit, where the LSB is 1 and MSB is 32.
293 */
294static inline int ffs(int x)
295{
296	return fls(x & -x);
297}
298
299/*
300 * __ffs() returns the bit position of the first bit set, where the
301 * LSB is 0 and MSB is 31.  Zero input is undefined.
302 */
303static inline unsigned long __ffs(unsigned long x)
304{
305	return ffs(x) - 1;
306}
307
308#define ffz(x) __ffs( ~(x) )
309
310#endif
311
312#include <asm-generic/bitops/fls64.h>
313
314#include <asm-generic/bitops/sched.h>
315#include <asm-generic/bitops/hweight.h>
316#include <asm-generic/bitops/lock.h>
317
318#ifdef __ARMEB__
319
320static inline int find_first_zero_bit_le(const void *p, unsigned size)
321{
322	return _find_first_zero_bit_le(p, size);
323}
324#define find_first_zero_bit_le find_first_zero_bit_le
325
326static inline int find_next_zero_bit_le(const void *p, int size, int offset)
327{
328	return _find_next_zero_bit_le(p, size, offset);
329}
330#define find_next_zero_bit_le find_next_zero_bit_le
331
332static inline int find_next_bit_le(const void *p, int size, int offset)
333{
334	return _find_next_bit_le(p, size, offset);
335}
336#define find_next_bit_le find_next_bit_le
337
338#endif
339
340#include <asm-generic/bitops/le.h>
341
342/*
343 * Ext2 is defined to use little-endian byte ordering.
344 */
345#include <asm-generic/bitops/ext2-atomic-setbit.h>
346
347#endif /* __KERNEL__ */
348
349#endif /* _ARM_BITOPS_H */
v3.15
  1/*
  2 * Copyright 1995, Russell King.
  3 * Various bits and pieces copyrights include:
  4 *  Linus Torvalds (test_bit).
  5 * Big endian support: Copyright 2001, Nicolas Pitre
  6 *  reworked by rmk.
  7 *
  8 * bit 0 is the LSB of an "unsigned long" quantity.
  9 *
 10 * Please note that the code in this file should never be included
 11 * from user space.  Many of these are not implemented in assembler
 12 * since they would be too costly.  Also, they require privileged
 13 * instructions (which are not available from user mode) to ensure
 14 * that they are atomic.
 15 */
 16
 17#ifndef __ASM_ARM_BITOPS_H
 18#define __ASM_ARM_BITOPS_H
 19
 20#ifdef __KERNEL__
 21
 22#ifndef _LINUX_BITOPS_H
 23#error only <linux/bitops.h> can be included directly
 24#endif
 25
 26#include <linux/compiler.h>
 27#include <linux/irqflags.h>
 28
 29#define smp_mb__before_clear_bit()	smp_mb()
 30#define smp_mb__after_clear_bit()	smp_mb()
 31
 32/*
 33 * These functions are the basis of our bit ops.
 34 *
 35 * First, the atomic bitops. These use native endian.
 36 */
 37static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p)
 38{
 39	unsigned long flags;
 40	unsigned long mask = 1UL << (bit & 31);
 41
 42	p += bit >> 5;
 43
 44	raw_local_irq_save(flags);
 45	*p |= mask;
 46	raw_local_irq_restore(flags);
 47}
 48
 49static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p)
 50{
 51	unsigned long flags;
 52	unsigned long mask = 1UL << (bit & 31);
 53
 54	p += bit >> 5;
 55
 56	raw_local_irq_save(flags);
 57	*p &= ~mask;
 58	raw_local_irq_restore(flags);
 59}
 60
 61static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p)
 62{
 63	unsigned long flags;
 64	unsigned long mask = 1UL << (bit & 31);
 65
 66	p += bit >> 5;
 67
 68	raw_local_irq_save(flags);
 69	*p ^= mask;
 70	raw_local_irq_restore(flags);
 71}
 72
 73static inline int
 74____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p)
 75{
 76	unsigned long flags;
 77	unsigned int res;
 78	unsigned long mask = 1UL << (bit & 31);
 79
 80	p += bit >> 5;
 81
 82	raw_local_irq_save(flags);
 83	res = *p;
 84	*p = res | mask;
 85	raw_local_irq_restore(flags);
 86
 87	return (res & mask) != 0;
 88}
 89
 90static inline int
 91____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p)
 92{
 93	unsigned long flags;
 94	unsigned int res;
 95	unsigned long mask = 1UL << (bit & 31);
 96
 97	p += bit >> 5;
 98
 99	raw_local_irq_save(flags);
100	res = *p;
101	*p = res & ~mask;
102	raw_local_irq_restore(flags);
103
104	return (res & mask) != 0;
105}
106
107static inline int
108____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p)
109{
110	unsigned long flags;
111	unsigned int res;
112	unsigned long mask = 1UL << (bit & 31);
113
114	p += bit >> 5;
115
116	raw_local_irq_save(flags);
117	res = *p;
118	*p = res ^ mask;
119	raw_local_irq_restore(flags);
120
121	return (res & mask) != 0;
122}
123
124#include <asm-generic/bitops/non-atomic.h>
125
126/*
127 *  A note about Endian-ness.
128 *  -------------------------
129 *
130 * When the ARM is put into big endian mode via CR15, the processor
131 * merely swaps the order of bytes within words, thus:
132 *
133 *          ------------ physical data bus bits -----------
134 *          D31 ... D24  D23 ... D16  D15 ... D8  D7 ... D0
135 * little     byte 3       byte 2       byte 1      byte 0
136 * big        byte 0       byte 1       byte 2      byte 3
137 *
138 * This means that reading a 32-bit word at address 0 returns the same
139 * value irrespective of the endian mode bit.
140 *
141 * Peripheral devices should be connected with the data bus reversed in
142 * "Big Endian" mode.  ARM Application Note 61 is applicable, and is
143 * available from http://www.arm.com/.
144 *
145 * The following assumes that the data bus connectivity for big endian
146 * mode has been followed.
147 *
148 * Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0.
149 */
150
151/*
152 * Native endian assembly bitops.  nr = 0 -> word 0 bit 0.
153 */
154extern void _set_bit(int nr, volatile unsigned long * p);
155extern void _clear_bit(int nr, volatile unsigned long * p);
156extern void _change_bit(int nr, volatile unsigned long * p);
157extern int _test_and_set_bit(int nr, volatile unsigned long * p);
158extern int _test_and_clear_bit(int nr, volatile unsigned long * p);
159extern int _test_and_change_bit(int nr, volatile unsigned long * p);
160
161/*
162 * Little endian assembly bitops.  nr = 0 -> byte 0 bit 0.
163 */
164extern int _find_first_zero_bit_le(const void * p, unsigned size);
165extern int _find_next_zero_bit_le(const void * p, int size, int offset);
166extern int _find_first_bit_le(const unsigned long *p, unsigned size);
167extern int _find_next_bit_le(const unsigned long *p, int size, int offset);
168
169/*
170 * Big endian assembly bitops.  nr = 0 -> byte 3 bit 0.
171 */
172extern int _find_first_zero_bit_be(const void * p, unsigned size);
173extern int _find_next_zero_bit_be(const void * p, int size, int offset);
174extern int _find_first_bit_be(const unsigned long *p, unsigned size);
175extern int _find_next_bit_be(const unsigned long *p, int size, int offset);
176
177#ifndef CONFIG_SMP
178/*
179 * The __* form of bitops are non-atomic and may be reordered.
180 */
181#define ATOMIC_BITOP(name,nr,p)			\
182	(__builtin_constant_p(nr) ? ____atomic_##name(nr, p) : _##name(nr,p))
183#else
184#define ATOMIC_BITOP(name,nr,p)		_##name(nr,p)
185#endif
186
187/*
188 * Native endian atomic definitions.
189 */
190#define set_bit(nr,p)			ATOMIC_BITOP(set_bit,nr,p)
191#define clear_bit(nr,p)			ATOMIC_BITOP(clear_bit,nr,p)
192#define change_bit(nr,p)		ATOMIC_BITOP(change_bit,nr,p)
193#define test_and_set_bit(nr,p)		ATOMIC_BITOP(test_and_set_bit,nr,p)
194#define test_and_clear_bit(nr,p)	ATOMIC_BITOP(test_and_clear_bit,nr,p)
195#define test_and_change_bit(nr,p)	ATOMIC_BITOP(test_and_change_bit,nr,p)
196
197#ifndef __ARMEB__
198/*
199 * These are the little endian, atomic definitions.
200 */
201#define find_first_zero_bit(p,sz)	_find_first_zero_bit_le(p,sz)
202#define find_next_zero_bit(p,sz,off)	_find_next_zero_bit_le(p,sz,off)
203#define find_first_bit(p,sz)		_find_first_bit_le(p,sz)
204#define find_next_bit(p,sz,off)		_find_next_bit_le(p,sz,off)
205
206#else
207/*
208 * These are the big endian, atomic definitions.
209 */
210#define find_first_zero_bit(p,sz)	_find_first_zero_bit_be(p,sz)
211#define find_next_zero_bit(p,sz,off)	_find_next_zero_bit_be(p,sz,off)
212#define find_first_bit(p,sz)		_find_first_bit_be(p,sz)
213#define find_next_bit(p,sz,off)		_find_next_bit_be(p,sz,off)
214
215#endif
216
217#if __LINUX_ARM_ARCH__ < 5
218
219#include <asm-generic/bitops/ffz.h>
220#include <asm-generic/bitops/__fls.h>
221#include <asm-generic/bitops/__ffs.h>
222#include <asm-generic/bitops/fls.h>
223#include <asm-generic/bitops/ffs.h>
224
225#else
226
227static inline int constant_fls(int x)
228{
229	int r = 32;
230
231	if (!x)
232		return 0;
233	if (!(x & 0xffff0000u)) {
234		x <<= 16;
235		r -= 16;
236	}
237	if (!(x & 0xff000000u)) {
238		x <<= 8;
239		r -= 8;
240	}
241	if (!(x & 0xf0000000u)) {
242		x <<= 4;
243		r -= 4;
244	}
245	if (!(x & 0xc0000000u)) {
246		x <<= 2;
247		r -= 2;
248	}
249	if (!(x & 0x80000000u)) {
250		x <<= 1;
251		r -= 1;
252	}
253	return r;
254}
255
256/*
257 * On ARMv5 and above those functions can be implemented around the
258 * clz instruction for much better code efficiency.  __clz returns
259 * the number of leading zeros, zero input will return 32, and
260 * 0x80000000 will return 0.
261 */
262static inline unsigned int __clz(unsigned int x)
263{
264	unsigned int ret;
265
266	asm("clz\t%0, %1" : "=r" (ret) : "r" (x));
267
268	return ret;
269}
270
271/*
272 * fls() returns zero if the input is zero, otherwise returns the bit
273 * position of the last set bit, where the LSB is 1 and MSB is 32.
274 */
275static inline int fls(int x)
276{
277	if (__builtin_constant_p(x))
278	       return constant_fls(x);
279
280	return 32 - __clz(x);
281}
282
283/*
284 * __fls() returns the bit position of the last bit set, where the
285 * LSB is 0 and MSB is 31.  Zero input is undefined.
286 */
287static inline unsigned long __fls(unsigned long x)
288{
289	return fls(x) - 1;
290}
291
292/*
293 * ffs() returns zero if the input was zero, otherwise returns the bit
294 * position of the first set bit, where the LSB is 1 and MSB is 32.
295 */
296static inline int ffs(int x)
297{
298	return fls(x & -x);
299}
300
301/*
302 * __ffs() returns the bit position of the first bit set, where the
303 * LSB is 0 and MSB is 31.  Zero input is undefined.
304 */
305static inline unsigned long __ffs(unsigned long x)
306{
307	return ffs(x) - 1;
308}
309
310#define ffz(x) __ffs( ~(x) )
311
312#endif
313
314#include <asm-generic/bitops/fls64.h>
315
316#include <asm-generic/bitops/sched.h>
317#include <asm-generic/bitops/hweight.h>
318#include <asm-generic/bitops/lock.h>
319
320#ifdef __ARMEB__
321
322static inline int find_first_zero_bit_le(const void *p, unsigned size)
323{
324	return _find_first_zero_bit_le(p, size);
325}
326#define find_first_zero_bit_le find_first_zero_bit_le
327
328static inline int find_next_zero_bit_le(const void *p, int size, int offset)
329{
330	return _find_next_zero_bit_le(p, size, offset);
331}
332#define find_next_zero_bit_le find_next_zero_bit_le
333
334static inline int find_next_bit_le(const void *p, int size, int offset)
335{
336	return _find_next_bit_le(p, size, offset);
337}
338#define find_next_bit_le find_next_bit_le
339
340#endif
341
342#include <asm-generic/bitops/le.h>
343
344/*
345 * Ext2 is defined to use little-endian byte ordering.
346 */
347#include <asm-generic/bitops/ext2-atomic-setbit.h>
348
349#endif /* __KERNEL__ */
350
351#endif /* _ARM_BITOPS_H */