Linux Audio

Check our new training course

Loading...
v4.10.11
  1/*
  2 *  linux/kernel/panic.c
  3 *
  4 *  Copyright (C) 1991, 1992  Linus Torvalds
  5 */
  6
  7/*
  8 * This function is used through-out the kernel (including mm and fs)
  9 * to indicate a major problem.
 10 */
 11#include <linux/debug_locks.h>
 12#include <linux/interrupt.h>
 13#include <linux/kmsg_dump.h>
 14#include <linux/kallsyms.h>
 15#include <linux/notifier.h>
 16#include <linux/module.h>
 17#include <linux/random.h>
 18#include <linux/ftrace.h>
 19#include <linux/reboot.h>
 20#include <linux/delay.h>
 21#include <linux/kexec.h>
 22#include <linux/sched.h>
 23#include <linux/sysrq.h>
 24#include <linux/init.h>
 25#include <linux/nmi.h>
 26#include <linux/console.h>
 27#include <linux/bug.h>
 28
 29#define PANIC_TIMER_STEP 100
 30#define PANIC_BLINK_SPD 18
 31
 32int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE;
 33static unsigned long tainted_mask;
 34static int pause_on_oops;
 35static int pause_on_oops_flag;
 36static DEFINE_SPINLOCK(pause_on_oops_lock);
 37bool crash_kexec_post_notifiers;
 38int panic_on_warn __read_mostly;
 39
 40int panic_timeout = CONFIG_PANIC_TIMEOUT;
 41EXPORT_SYMBOL_GPL(panic_timeout);
 42
 43ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
 44
 45EXPORT_SYMBOL(panic_notifier_list);
 46
 47static long no_blink(int state)
 48{
 49	return 0;
 50}
 51
 52/* Returns how long it waited in ms */
 53long (*panic_blink)(int state);
 54EXPORT_SYMBOL(panic_blink);
 55
 56/*
 57 * Stop ourself in panic -- architecture code may override this
 58 */
 59void __weak panic_smp_self_stop(void)
 60{
 61	while (1)
 62		cpu_relax();
 63}
 64
 65/*
 66 * Stop ourselves in NMI context if another CPU has already panicked. Arch code
 67 * may override this to prepare for crash dumping, e.g. save regs info.
 68 */
 69void __weak nmi_panic_self_stop(struct pt_regs *regs)
 70{
 71	panic_smp_self_stop();
 72}
 73
 74/*
 75 * Stop other CPUs in panic.  Architecture dependent code may override this
 76 * with more suitable version.  For example, if the architecture supports
 77 * crash dump, it should save registers of each stopped CPU and disable
 78 * per-CPU features such as virtualization extensions.
 79 */
 80void __weak crash_smp_send_stop(void)
 81{
 82	static int cpus_stopped;
 83
 84	/*
 85	 * This function can be called twice in panic path, but obviously
 86	 * we execute this only once.
 87	 */
 88	if (cpus_stopped)
 89		return;
 90
 91	/*
 92	 * Note smp_send_stop is the usual smp shutdown function, which
 93	 * unfortunately means it may not be hardened to work in a panic
 94	 * situation.
 95	 */
 96	smp_send_stop();
 97	cpus_stopped = 1;
 98}
 99
100atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID);
101
102/*
103 * A variant of panic() called from NMI context. We return if we've already
104 * panicked on this CPU. If another CPU already panicked, loop in
105 * nmi_panic_self_stop() which can provide architecture dependent code such
106 * as saving register state for crash dump.
107 */
108void nmi_panic(struct pt_regs *regs, const char *msg)
109{
110	int old_cpu, cpu;
111
112	cpu = raw_smp_processor_id();
113	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, cpu);
114
115	if (old_cpu == PANIC_CPU_INVALID)
116		panic("%s", msg);
117	else if (old_cpu != cpu)
118		nmi_panic_self_stop(regs);
119}
120EXPORT_SYMBOL(nmi_panic);
121
122/**
123 *	panic - halt the system
124 *	@fmt: The text string to print
125 *
126 *	Display a message, then perform cleanups.
127 *
128 *	This function never returns.
129 */
130void panic(const char *fmt, ...)
131{
132	static char buf[1024];
133	va_list args;
134	long i, i_next = 0;
135	int state = 0;
136	int old_cpu, this_cpu;
137	bool _crash_kexec_post_notifiers = crash_kexec_post_notifiers;
138
139	/*
140	 * Disable local interrupts. This will prevent panic_smp_self_stop
141	 * from deadlocking the first cpu that invokes the panic, since
142	 * there is nothing to prevent an interrupt handler (that runs
143	 * after setting panic_cpu) from invoking panic() again.
144	 */
145	local_irq_disable();
146
147	/*
148	 * It's possible to come here directly from a panic-assertion and
149	 * not have preempt disabled. Some functions called from here want
150	 * preempt to be disabled. No point enabling it later though...
151	 *
152	 * Only one CPU is allowed to execute the panic code from here. For
153	 * multiple parallel invocations of panic, all other CPUs either
154	 * stop themself or will wait until they are stopped by the 1st CPU
155	 * with smp_send_stop().
156	 *
157	 * `old_cpu == PANIC_CPU_INVALID' means this is the 1st CPU which
158	 * comes here, so go ahead.
159	 * `old_cpu == this_cpu' means we came from nmi_panic() which sets
160	 * panic_cpu to this CPU.  In this case, this is also the 1st CPU.
161	 */
162	this_cpu = raw_smp_processor_id();
163	old_cpu  = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
164
165	if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu)
166		panic_smp_self_stop();
167
168	console_verbose();
169	bust_spinlocks(1);
170	va_start(args, fmt);
171	vsnprintf(buf, sizeof(buf), fmt, args);
172	va_end(args);
173	pr_emerg("Kernel panic - not syncing: %s\n", buf);
174#ifdef CONFIG_DEBUG_BUGVERBOSE
175	/*
176	 * Avoid nested stack-dumping if a panic occurs during oops processing
177	 */
178	if (!test_taint(TAINT_DIE) && oops_in_progress <= 1)
179		dump_stack();
180#endif
181
182	/*
183	 * If we have crashed and we have a crash kernel loaded let it handle
184	 * everything else.
185	 * If we want to run this after calling panic_notifiers, pass
186	 * the "crash_kexec_post_notifiers" option to the kernel.
187	 *
188	 * Bypass the panic_cpu check and call __crash_kexec directly.
189	 */
190	if (!_crash_kexec_post_notifiers) {
191		printk_nmi_flush_on_panic();
192		__crash_kexec(NULL);
193
194		/*
195		 * Note smp_send_stop is the usual smp shutdown function, which
196		 * unfortunately means it may not be hardened to work in a
197		 * panic situation.
198		 */
199		smp_send_stop();
200	} else {
201		/*
202		 * If we want to do crash dump after notifier calls and
203		 * kmsg_dump, we will need architecture dependent extra
204		 * works in addition to stopping other CPUs.
205		 */
206		crash_smp_send_stop();
207	}
208
209	/*
210	 * Run any panic handlers, including those that might need to
211	 * add information to the kmsg dump output.
212	 */
213	atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
214
215	/* Call flush even twice. It tries harder with a single online CPU */
216	printk_nmi_flush_on_panic();
217	kmsg_dump(KMSG_DUMP_PANIC);
218
219	/*
220	 * If you doubt kdump always works fine in any situation,
221	 * "crash_kexec_post_notifiers" offers you a chance to run
222	 * panic_notifiers and dumping kmsg before kdump.
223	 * Note: since some panic_notifiers can make crashed kernel
224	 * more unstable, it can increase risks of the kdump failure too.
225	 *
226	 * Bypass the panic_cpu check and call __crash_kexec directly.
227	 */
228	if (_crash_kexec_post_notifiers)
229		__crash_kexec(NULL);
230
231	bust_spinlocks(0);
232
233	/*
234	 * We may have ended up stopping the CPU holding the lock (in
235	 * smp_send_stop()) while still having some valuable data in the console
236	 * buffer.  Try to acquire the lock then release it regardless of the
237	 * result.  The release will also print the buffers out.  Locks debug
238	 * should be disabled to avoid reporting bad unlock balance when
239	 * panic() is not being callled from OOPS.
240	 */
241	debug_locks_off();
242	console_flush_on_panic();
243
244	if (!panic_blink)
245		panic_blink = no_blink;
246
247	if (panic_timeout > 0) {
248		/*
249		 * Delay timeout seconds before rebooting the machine.
250		 * We can't use the "normal" timers since we just panicked.
251		 */
252		pr_emerg("Rebooting in %d seconds..\n", panic_timeout);
253
254		for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
255			touch_nmi_watchdog();
256			if (i >= i_next) {
257				i += panic_blink(state ^= 1);
258				i_next = i + 3600 / PANIC_BLINK_SPD;
259			}
260			mdelay(PANIC_TIMER_STEP);
261		}
262	}
263	if (panic_timeout != 0) {
264		/*
265		 * This will not be a clean reboot, with everything
266		 * shutting down.  But if there is a chance of
267		 * rebooting the system it will be rebooted.
268		 */
269		emergency_restart();
270	}
271#ifdef __sparc__
272	{
273		extern int stop_a_enabled;
274		/* Make sure the user can actually press Stop-A (L1-A) */
275		stop_a_enabled = 1;
276		pr_emerg("Press Stop-A (L1-A) to return to the boot prom\n");
277	}
278#endif
279#if defined(CONFIG_S390)
280	{
281		unsigned long caller;
282
283		caller = (unsigned long)__builtin_return_address(0);
284		disabled_wait(caller);
285	}
286#endif
287	pr_emerg("---[ end Kernel panic - not syncing: %s\n", buf);
288	local_irq_enable();
289	for (i = 0; ; i += PANIC_TIMER_STEP) {
290		touch_softlockup_watchdog();
291		if (i >= i_next) {
292			i += panic_blink(state ^= 1);
293			i_next = i + 3600 / PANIC_BLINK_SPD;
294		}
295		mdelay(PANIC_TIMER_STEP);
296	}
297}
298
299EXPORT_SYMBOL(panic);
300
301/*
302 * TAINT_FORCED_RMMOD could be a per-module flag but the module
303 * is being removed anyway.
304 */
305const struct taint_flag taint_flags[TAINT_FLAGS_COUNT] = {
306	{ 'P', 'G', true },	/* TAINT_PROPRIETARY_MODULE */
307	{ 'F', ' ', true },	/* TAINT_FORCED_MODULE */
308	{ 'S', ' ', false },	/* TAINT_CPU_OUT_OF_SPEC */
309	{ 'R', ' ', false },	/* TAINT_FORCED_RMMOD */
310	{ 'M', ' ', false },	/* TAINT_MACHINE_CHECK */
311	{ 'B', ' ', false },	/* TAINT_BAD_PAGE */
312	{ 'U', ' ', false },	/* TAINT_USER */
313	{ 'D', ' ', false },	/* TAINT_DIE */
314	{ 'A', ' ', false },	/* TAINT_OVERRIDDEN_ACPI_TABLE */
315	{ 'W', ' ', false },	/* TAINT_WARN */
316	{ 'C', ' ', true },	/* TAINT_CRAP */
317	{ 'I', ' ', false },	/* TAINT_FIRMWARE_WORKAROUND */
318	{ 'O', ' ', true },	/* TAINT_OOT_MODULE */
319	{ 'E', ' ', true },	/* TAINT_UNSIGNED_MODULE */
320	{ 'L', ' ', false },	/* TAINT_SOFTLOCKUP */
321	{ 'K', ' ', true },	/* TAINT_LIVEPATCH */
322};
323
324/**
325 *	print_tainted - return a string to represent the kernel taint state.
326 *
327 *  'P' - Proprietary module has been loaded.
328 *  'F' - Module has been forcibly loaded.
329 *  'S' - SMP with CPUs not designed for SMP.
330 *  'R' - User forced a module unload.
331 *  'M' - System experienced a machine check exception.
332 *  'B' - System has hit bad_page.
333 *  'U' - Userspace-defined naughtiness.
334 *  'D' - Kernel has oopsed before
335 *  'A' - ACPI table overridden.
336 *  'W' - Taint on warning.
337 *  'C' - modules from drivers/staging are loaded.
338 *  'I' - Working around severe firmware bug.
339 *  'O' - Out-of-tree module has been loaded.
340 *  'E' - Unsigned module has been loaded.
341 *  'L' - A soft lockup has previously occurred.
342 *  'K' - Kernel has been live patched.
343 *
344 *	The string is overwritten by the next call to print_tainted().
345 */
346const char *print_tainted(void)
347{
348	static char buf[TAINT_FLAGS_COUNT + sizeof("Tainted: ")];
349
350	if (tainted_mask) {
351		char *s;
352		int i;
353
354		s = buf + sprintf(buf, "Tainted: ");
355		for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
356			const struct taint_flag *t = &taint_flags[i];
357			*s++ = test_bit(i, &tainted_mask) ?
358					t->c_true : t->c_false;
359		}
360		*s = 0;
361	} else
362		snprintf(buf, sizeof(buf), "Not tainted");
363
364	return buf;
365}
366
367int test_taint(unsigned flag)
368{
369	return test_bit(flag, &tainted_mask);
370}
371EXPORT_SYMBOL(test_taint);
372
373unsigned long get_taint(void)
374{
375	return tainted_mask;
376}
377
378/**
379 * add_taint: add a taint flag if not already set.
380 * @flag: one of the TAINT_* constants.
381 * @lockdep_ok: whether lock debugging is still OK.
382 *
383 * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for
384 * some notewortht-but-not-corrupting cases, it can be set to true.
385 */
386void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)
387{
388	if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off())
389		pr_warn("Disabling lock debugging due to kernel taint\n");
 
 
 
 
 
 
 
390
391	set_bit(flag, &tainted_mask);
392}
393EXPORT_SYMBOL(add_taint);
394
395static void spin_msec(int msecs)
396{
397	int i;
398
399	for (i = 0; i < msecs; i++) {
400		touch_nmi_watchdog();
401		mdelay(1);
402	}
403}
404
405/*
406 * It just happens that oops_enter() and oops_exit() are identically
407 * implemented...
408 */
409static void do_oops_enter_exit(void)
410{
411	unsigned long flags;
412	static int spin_counter;
413
414	if (!pause_on_oops)
415		return;
416
417	spin_lock_irqsave(&pause_on_oops_lock, flags);
418	if (pause_on_oops_flag == 0) {
419		/* This CPU may now print the oops message */
420		pause_on_oops_flag = 1;
421	} else {
422		/* We need to stall this CPU */
423		if (!spin_counter) {
424			/* This CPU gets to do the counting */
425			spin_counter = pause_on_oops;
426			do {
427				spin_unlock(&pause_on_oops_lock);
428				spin_msec(MSEC_PER_SEC);
429				spin_lock(&pause_on_oops_lock);
430			} while (--spin_counter);
431			pause_on_oops_flag = 0;
432		} else {
433			/* This CPU waits for a different one */
434			while (spin_counter) {
435				spin_unlock(&pause_on_oops_lock);
436				spin_msec(1);
437				spin_lock(&pause_on_oops_lock);
438			}
439		}
440	}
441	spin_unlock_irqrestore(&pause_on_oops_lock, flags);
442}
443
444/*
445 * Return true if the calling CPU is allowed to print oops-related info.
446 * This is a bit racy..
447 */
448int oops_may_print(void)
449{
450	return pause_on_oops_flag == 0;
451}
452
453/*
454 * Called when the architecture enters its oops handler, before it prints
455 * anything.  If this is the first CPU to oops, and it's oopsing the first
456 * time then let it proceed.
457 *
458 * This is all enabled by the pause_on_oops kernel boot option.  We do all
459 * this to ensure that oopses don't scroll off the screen.  It has the
460 * side-effect of preventing later-oopsing CPUs from mucking up the display,
461 * too.
462 *
463 * It turns out that the CPU which is allowed to print ends up pausing for
464 * the right duration, whereas all the other CPUs pause for twice as long:
465 * once in oops_enter(), once in oops_exit().
466 */
467void oops_enter(void)
468{
469	tracing_off();
470	/* can't trust the integrity of the kernel anymore: */
471	debug_locks_off();
472	do_oops_enter_exit();
473}
474
475/*
476 * 64-bit random ID for oopses:
477 */
478static u64 oops_id;
479
480static int init_oops_id(void)
481{
482	if (!oops_id)
483		get_random_bytes(&oops_id, sizeof(oops_id));
484	else
485		oops_id++;
486
487	return 0;
488}
489late_initcall(init_oops_id);
490
491void print_oops_end_marker(void)
492{
493	init_oops_id();
494	pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id);
 
495}
496
497/*
498 * Called when the architecture exits its oops handler, after printing
499 * everything.
500 */
501void oops_exit(void)
502{
503	do_oops_enter_exit();
504	print_oops_end_marker();
505	kmsg_dump(KMSG_DUMP_OOPS);
506}
507
508struct warn_args {
 
509	const char *fmt;
510	va_list args;
511};
512
513void __warn(const char *file, int line, void *caller, unsigned taint,
514	    struct pt_regs *regs, struct warn_args *args)
515{
516	disable_trace_on_warning();
517
518	pr_warn("------------[ cut here ]------------\n");
519
520	if (file)
521		pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n",
522			raw_smp_processor_id(), current->pid, file, line,
523			caller);
524	else
525		pr_warn("WARNING: CPU: %d PID: %d at %pS\n",
526			raw_smp_processor_id(), current->pid, caller);
527
528	if (args)
529		vprintk(args->fmt, args->args);
530
531	if (panic_on_warn) {
532		/*
533		 * This thread may hit another WARN() in the panic path.
534		 * Resetting this prevents additional WARN() from panicking the
535		 * system on this thread.  Other threads are blocked by the
536		 * panic_mutex in panic().
537		 */
538		panic_on_warn = 0;
539		panic("panic_on_warn set ...\n");
540	}
541
542	print_modules();
543
544	if (regs)
545		show_regs(regs);
546	else
547		dump_stack();
548
549	print_oops_end_marker();
550
551	/* Just a warning, don't kill lockdep. */
552	add_taint(taint, LOCKDEP_STILL_OK);
553}
554
555#ifdef WANT_WARN_ON_SLOWPATH
556void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...)
557{
558	struct warn_args args;
559
560	args.fmt = fmt;
561	va_start(args.args, fmt);
562	__warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL,
563	       &args);
564	va_end(args.args);
565}
566EXPORT_SYMBOL(warn_slowpath_fmt);
567
568void warn_slowpath_fmt_taint(const char *file, int line,
569			     unsigned taint, const char *fmt, ...)
570{
571	struct warn_args args;
572
573	args.fmt = fmt;
574	va_start(args.args, fmt);
575	__warn(file, line, __builtin_return_address(0), taint, NULL, &args);
 
576	va_end(args.args);
577}
578EXPORT_SYMBOL(warn_slowpath_fmt_taint);
579
580void warn_slowpath_null(const char *file, int line)
581{
582	__warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL, NULL);
 
583}
584EXPORT_SYMBOL(warn_slowpath_null);
585#endif
586
587#ifdef CONFIG_CC_STACKPROTECTOR
588
589/*
590 * Called when gcc's -fstack-protector feature is used, and
591 * gcc detects corruption of the on-stack canary value
592 */
593__visible void __stack_chk_fail(void)
594{
595	panic("stack-protector: Kernel stack is corrupted in: %p\n",
596		__builtin_return_address(0));
597}
598EXPORT_SYMBOL(__stack_chk_fail);
599
600#endif
601
602core_param(panic, panic_timeout, int, 0644);
603core_param(pause_on_oops, pause_on_oops, int, 0644);
604core_param(panic_on_warn, panic_on_warn, int, 0644);
605core_param(crash_kexec_post_notifiers, crash_kexec_post_notifiers, bool, 0644);
606
607static int __init oops_setup(char *s)
608{
609	if (!s)
610		return -EINVAL;
611	if (!strcmp(s, "panic"))
612		panic_on_oops = 1;
613	return 0;
614}
615early_param("oops", oops_setup);
v3.1
  1/*
  2 *  linux/kernel/panic.c
  3 *
  4 *  Copyright (C) 1991, 1992  Linus Torvalds
  5 */
  6
  7/*
  8 * This function is used through-out the kernel (including mm and fs)
  9 * to indicate a major problem.
 10 */
 11#include <linux/debug_locks.h>
 12#include <linux/interrupt.h>
 13#include <linux/kmsg_dump.h>
 14#include <linux/kallsyms.h>
 15#include <linux/notifier.h>
 16#include <linux/module.h>
 17#include <linux/random.h>
 
 18#include <linux/reboot.h>
 19#include <linux/delay.h>
 20#include <linux/kexec.h>
 21#include <linux/sched.h>
 22#include <linux/sysrq.h>
 23#include <linux/init.h>
 24#include <linux/nmi.h>
 25#include <linux/dmi.h>
 
 26
 27#define PANIC_TIMER_STEP 100
 28#define PANIC_BLINK_SPD 18
 29
 30int panic_on_oops;
 31static unsigned long tainted_mask;
 32static int pause_on_oops;
 33static int pause_on_oops_flag;
 34static DEFINE_SPINLOCK(pause_on_oops_lock);
 
 
 35
 36int panic_timeout;
 37EXPORT_SYMBOL_GPL(panic_timeout);
 38
 39ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
 40
 41EXPORT_SYMBOL(panic_notifier_list);
 42
 43static long no_blink(int state)
 44{
 45	return 0;
 46}
 47
 48/* Returns how long it waited in ms */
 49long (*panic_blink)(int state);
 50EXPORT_SYMBOL(panic_blink);
 51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 52/**
 53 *	panic - halt the system
 54 *	@fmt: The text string to print
 55 *
 56 *	Display a message, then perform cleanups.
 57 *
 58 *	This function never returns.
 59 */
 60NORET_TYPE void panic(const char * fmt, ...)
 61{
 62	static char buf[1024];
 63	va_list args;
 64	long i, i_next = 0;
 65	int state = 0;
 
 
 
 
 
 
 
 
 
 
 66
 67	/*
 68	 * It's possible to come here directly from a panic-assertion and
 69	 * not have preempt disabled. Some functions called from here want
 70	 * preempt to be disabled. No point enabling it later though...
 
 
 
 
 
 
 
 
 
 
 71	 */
 72	preempt_disable();
 
 
 
 
 73
 74	console_verbose();
 75	bust_spinlocks(1);
 76	va_start(args, fmt);
 77	vsnprintf(buf, sizeof(buf), fmt, args);
 78	va_end(args);
 79	printk(KERN_EMERG "Kernel panic - not syncing: %s\n",buf);
 80#ifdef CONFIG_DEBUG_BUGVERBOSE
 81	dump_stack();
 
 
 
 
 82#endif
 83
 84	/*
 85	 * If we have crashed and we have a crash kernel loaded let it handle
 86	 * everything else.
 87	 * Do we want to call this before we try to display a message?
 
 
 
 88	 */
 89	crash_kexec(NULL);
 
 
 90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 91	kmsg_dump(KMSG_DUMP_PANIC);
 92
 93	/*
 94	 * Note smp_send_stop is the usual smp shutdown function, which
 95	 * unfortunately means it may not be hardened to work in a panic
 96	 * situation.
 
 
 
 
 97	 */
 98	smp_send_stop();
 
 99
100	atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
101
102	bust_spinlocks(0);
 
 
 
 
 
 
 
 
 
103
104	if (!panic_blink)
105		panic_blink = no_blink;
106
107	if (panic_timeout > 0) {
108		/*
109		 * Delay timeout seconds before rebooting the machine.
110		 * We can't use the "normal" timers since we just panicked.
111		 */
112		printk(KERN_EMERG "Rebooting in %d seconds..", panic_timeout);
113
114		for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
115			touch_nmi_watchdog();
116			if (i >= i_next) {
117				i += panic_blink(state ^= 1);
118				i_next = i + 3600 / PANIC_BLINK_SPD;
119			}
120			mdelay(PANIC_TIMER_STEP);
121		}
122	}
123	if (panic_timeout != 0) {
124		/*
125		 * This will not be a clean reboot, with everything
126		 * shutting down.  But if there is a chance of
127		 * rebooting the system it will be rebooted.
128		 */
129		emergency_restart();
130	}
131#ifdef __sparc__
132	{
133		extern int stop_a_enabled;
134		/* Make sure the user can actually press Stop-A (L1-A) */
135		stop_a_enabled = 1;
136		printk(KERN_EMERG "Press Stop-A (L1-A) to return to the boot prom\n");
137	}
138#endif
139#if defined(CONFIG_S390)
140	{
141		unsigned long caller;
142
143		caller = (unsigned long)__builtin_return_address(0);
144		disabled_wait(caller);
145	}
146#endif
 
147	local_irq_enable();
148	for (i = 0; ; i += PANIC_TIMER_STEP) {
149		touch_softlockup_watchdog();
150		if (i >= i_next) {
151			i += panic_blink(state ^= 1);
152			i_next = i + 3600 / PANIC_BLINK_SPD;
153		}
154		mdelay(PANIC_TIMER_STEP);
155	}
156}
157
158EXPORT_SYMBOL(panic);
159
160
161struct tnt {
162	u8	bit;
163	char	true;
164	char	false;
165};
166
167static const struct tnt tnts[] = {
168	{ TAINT_PROPRIETARY_MODULE,	'P', 'G' },
169	{ TAINT_FORCED_MODULE,		'F', ' ' },
170	{ TAINT_UNSAFE_SMP,		'S', ' ' },
171	{ TAINT_FORCED_RMMOD,		'R', ' ' },
172	{ TAINT_MACHINE_CHECK,		'M', ' ' },
173	{ TAINT_BAD_PAGE,		'B', ' ' },
174	{ TAINT_USER,			'U', ' ' },
175	{ TAINT_DIE,			'D', ' ' },
176	{ TAINT_OVERRIDDEN_ACPI_TABLE,	'A', ' ' },
177	{ TAINT_WARN,			'W', ' ' },
178	{ TAINT_CRAP,			'C', ' ' },
179	{ TAINT_FIRMWARE_WORKAROUND,	'I', ' ' },
 
180};
181
182/**
183 *	print_tainted - return a string to represent the kernel taint state.
184 *
185 *  'P' - Proprietary module has been loaded.
186 *  'F' - Module has been forcibly loaded.
187 *  'S' - SMP with CPUs not designed for SMP.
188 *  'R' - User forced a module unload.
189 *  'M' - System experienced a machine check exception.
190 *  'B' - System has hit bad_page.
191 *  'U' - Userspace-defined naughtiness.
192 *  'D' - Kernel has oopsed before
193 *  'A' - ACPI table overridden.
194 *  'W' - Taint on warning.
195 *  'C' - modules from drivers/staging are loaded.
196 *  'I' - Working around severe firmware bug.
 
 
 
 
197 *
198 *	The string is overwritten by the next call to print_tainted().
199 */
200const char *print_tainted(void)
201{
202	static char buf[ARRAY_SIZE(tnts) + sizeof("Tainted: ") + 1];
203
204	if (tainted_mask) {
205		char *s;
206		int i;
207
208		s = buf + sprintf(buf, "Tainted: ");
209		for (i = 0; i < ARRAY_SIZE(tnts); i++) {
210			const struct tnt *t = &tnts[i];
211			*s++ = test_bit(t->bit, &tainted_mask) ?
212					t->true : t->false;
213		}
214		*s = 0;
215	} else
216		snprintf(buf, sizeof(buf), "Not tainted");
217
218	return buf;
219}
220
221int test_taint(unsigned flag)
222{
223	return test_bit(flag, &tainted_mask);
224}
225EXPORT_SYMBOL(test_taint);
226
227unsigned long get_taint(void)
228{
229	return tainted_mask;
230}
231
232void add_taint(unsigned flag)
 
 
 
 
 
 
 
 
233{
234	/*
235	 * Can't trust the integrity of the kernel anymore.
236	 * We don't call directly debug_locks_off() because the issue
237	 * is not necessarily serious enough to set oops_in_progress to 1
238	 * Also we want to keep up lockdep for staging development and
239	 * post-warning case.
240	 */
241	if (flag != TAINT_CRAP && flag != TAINT_WARN && __debug_locks_off())
242		printk(KERN_WARNING "Disabling lock debugging due to kernel taint\n");
243
244	set_bit(flag, &tainted_mask);
245}
246EXPORT_SYMBOL(add_taint);
247
248static void spin_msec(int msecs)
249{
250	int i;
251
252	for (i = 0; i < msecs; i++) {
253		touch_nmi_watchdog();
254		mdelay(1);
255	}
256}
257
258/*
259 * It just happens that oops_enter() and oops_exit() are identically
260 * implemented...
261 */
262static void do_oops_enter_exit(void)
263{
264	unsigned long flags;
265	static int spin_counter;
266
267	if (!pause_on_oops)
268		return;
269
270	spin_lock_irqsave(&pause_on_oops_lock, flags);
271	if (pause_on_oops_flag == 0) {
272		/* This CPU may now print the oops message */
273		pause_on_oops_flag = 1;
274	} else {
275		/* We need to stall this CPU */
276		if (!spin_counter) {
277			/* This CPU gets to do the counting */
278			spin_counter = pause_on_oops;
279			do {
280				spin_unlock(&pause_on_oops_lock);
281				spin_msec(MSEC_PER_SEC);
282				spin_lock(&pause_on_oops_lock);
283			} while (--spin_counter);
284			pause_on_oops_flag = 0;
285		} else {
286			/* This CPU waits for a different one */
287			while (spin_counter) {
288				spin_unlock(&pause_on_oops_lock);
289				spin_msec(1);
290				spin_lock(&pause_on_oops_lock);
291			}
292		}
293	}
294	spin_unlock_irqrestore(&pause_on_oops_lock, flags);
295}
296
297/*
298 * Return true if the calling CPU is allowed to print oops-related info.
299 * This is a bit racy..
300 */
301int oops_may_print(void)
302{
303	return pause_on_oops_flag == 0;
304}
305
306/*
307 * Called when the architecture enters its oops handler, before it prints
308 * anything.  If this is the first CPU to oops, and it's oopsing the first
309 * time then let it proceed.
310 *
311 * This is all enabled by the pause_on_oops kernel boot option.  We do all
312 * this to ensure that oopses don't scroll off the screen.  It has the
313 * side-effect of preventing later-oopsing CPUs from mucking up the display,
314 * too.
315 *
316 * It turns out that the CPU which is allowed to print ends up pausing for
317 * the right duration, whereas all the other CPUs pause for twice as long:
318 * once in oops_enter(), once in oops_exit().
319 */
320void oops_enter(void)
321{
322	tracing_off();
323	/* can't trust the integrity of the kernel anymore: */
324	debug_locks_off();
325	do_oops_enter_exit();
326}
327
328/*
329 * 64-bit random ID for oopses:
330 */
331static u64 oops_id;
332
333static int init_oops_id(void)
334{
335	if (!oops_id)
336		get_random_bytes(&oops_id, sizeof(oops_id));
337	else
338		oops_id++;
339
340	return 0;
341}
342late_initcall(init_oops_id);
343
344void print_oops_end_marker(void)
345{
346	init_oops_id();
347	printk(KERN_WARNING "---[ end trace %016llx ]---\n",
348		(unsigned long long)oops_id);
349}
350
351/*
352 * Called when the architecture exits its oops handler, after printing
353 * everything.
354 */
355void oops_exit(void)
356{
357	do_oops_enter_exit();
358	print_oops_end_marker();
359	kmsg_dump(KMSG_DUMP_OOPS);
360}
361
362#ifdef WANT_WARN_ON_SLOWPATH
363struct slowpath_args {
364	const char *fmt;
365	va_list args;
366};
367
368static void warn_slowpath_common(const char *file, int line, void *caller,
369				 unsigned taint, struct slowpath_args *args)
370{
371	const char *board;
 
 
372
373	printk(KERN_WARNING "------------[ cut here ]------------\n");
374	printk(KERN_WARNING "WARNING: at %s:%d %pS()\n", file, line, caller);
375	board = dmi_get_system_info(DMI_PRODUCT_NAME);
376	if (board)
377		printk(KERN_WARNING "Hardware name: %s\n", board);
 
 
378
379	if (args)
380		vprintk(args->fmt, args->args);
381
 
 
 
 
 
 
 
 
 
 
 
382	print_modules();
383	dump_stack();
 
 
 
 
 
384	print_oops_end_marker();
385	add_taint(taint);
 
 
386}
387
 
388void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...)
389{
390	struct slowpath_args args;
391
392	args.fmt = fmt;
393	va_start(args.args, fmt);
394	warn_slowpath_common(file, line, __builtin_return_address(0),
395			     TAINT_WARN, &args);
396	va_end(args.args);
397}
398EXPORT_SYMBOL(warn_slowpath_fmt);
399
400void warn_slowpath_fmt_taint(const char *file, int line,
401			     unsigned taint, const char *fmt, ...)
402{
403	struct slowpath_args args;
404
405	args.fmt = fmt;
406	va_start(args.args, fmt);
407	warn_slowpath_common(file, line, __builtin_return_address(0),
408			     taint, &args);
409	va_end(args.args);
410}
411EXPORT_SYMBOL(warn_slowpath_fmt_taint);
412
413void warn_slowpath_null(const char *file, int line)
414{
415	warn_slowpath_common(file, line, __builtin_return_address(0),
416			     TAINT_WARN, NULL);
417}
418EXPORT_SYMBOL(warn_slowpath_null);
419#endif
420
421#ifdef CONFIG_CC_STACKPROTECTOR
422
423/*
424 * Called when gcc's -fstack-protector feature is used, and
425 * gcc detects corruption of the on-stack canary value
426 */
427void __stack_chk_fail(void)
428{
429	panic("stack-protector: Kernel stack is corrupted in: %p\n",
430		__builtin_return_address(0));
431}
432EXPORT_SYMBOL(__stack_chk_fail);
433
434#endif
435
436core_param(panic, panic_timeout, int, 0644);
437core_param(pause_on_oops, pause_on_oops, int, 0644);
 
 
438
439static int __init oops_setup(char *s)
440{
441	if (!s)
442		return -EINVAL;
443	if (!strcmp(s, "panic"))
444		panic_on_oops = 1;
445	return 0;
446}
447early_param("oops", oops_setup);