Linux Audio

Check our new training course

Loading...
v4.10.11
  1/*
  2 * linux/kernel/capability.c
  3 *
  4 * Copyright (C) 1997  Andrew Main <zefram@fysh.org>
  5 *
  6 * Integrated into 2.1.97+,  Andrew G. Morgan <morgan@kernel.org>
  7 * 30 May 2002:	Cleanup, Robert M. Love <rml@tech9.net>
  8 */
  9
 10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 11
 12#include <linux/audit.h>
 13#include <linux/capability.h>
 14#include <linux/mm.h>
 15#include <linux/export.h>
 16#include <linux/security.h>
 17#include <linux/syscalls.h>
 18#include <linux/pid_namespace.h>
 19#include <linux/user_namespace.h>
 20#include <linux/uaccess.h>
 21
 22/*
 23 * Leveraged for setting/resetting capabilities
 24 */
 25
 26const kernel_cap_t __cap_empty_set = CAP_EMPTY_SET;
 
 27EXPORT_SYMBOL(__cap_empty_set);
 28
 29int file_caps_enabled = 1;
 30
 31static int __init file_caps_disable(char *str)
 32{
 33	file_caps_enabled = 0;
 34	return 1;
 35}
 36__setup("no_file_caps", file_caps_disable);
 37
 38#ifdef CONFIG_MULTIUSER
 39/*
 40 * More recent versions of libcap are available from:
 41 *
 42 *   http://www.kernel.org/pub/linux/libs/security/linux-privs/
 43 */
 44
 45static void warn_legacy_capability_use(void)
 46{
 47	char name[sizeof(current->comm)];
 48
 49	pr_info_once("warning: `%s' uses 32-bit capabilities (legacy support in use)\n",
 50		     get_task_comm(name, current));
 
 
 
 
 
 51}
 52
 53/*
 54 * Version 2 capabilities worked fine, but the linux/capability.h file
 55 * that accompanied their introduction encouraged their use without
 56 * the necessary user-space source code changes. As such, we have
 57 * created a version 3 with equivalent functionality to version 2, but
 58 * with a header change to protect legacy source code from using
 59 * version 2 when it wanted to use version 1. If your system has code
 60 * that trips the following warning, it is using version 2 specific
 61 * capabilities and may be doing so insecurely.
 62 *
 63 * The remedy is to either upgrade your version of libcap (to 2.10+,
 64 * if the application is linked against it), or recompile your
 65 * application with modern kernel headers and this warning will go
 66 * away.
 67 */
 68
 69static void warn_deprecated_v2(void)
 70{
 71	char name[sizeof(current->comm)];
 
 
 
 72
 73	pr_info_once("warning: `%s' uses deprecated v2 capabilities in a way that may be insecure\n",
 74		     get_task_comm(name, current));
 
 
 
 75}
 76
 77/*
 78 * Version check. Return the number of u32s in each capability flag
 79 * array, or a negative value on error.
 80 */
 81static int cap_validate_magic(cap_user_header_t header, unsigned *tocopy)
 82{
 83	__u32 version;
 84
 85	if (get_user(version, &header->version))
 86		return -EFAULT;
 87
 88	switch (version) {
 89	case _LINUX_CAPABILITY_VERSION_1:
 90		warn_legacy_capability_use();
 91		*tocopy = _LINUX_CAPABILITY_U32S_1;
 92		break;
 93	case _LINUX_CAPABILITY_VERSION_2:
 94		warn_deprecated_v2();
 95		/*
 96		 * fall through - v3 is otherwise equivalent to v2.
 97		 */
 98	case _LINUX_CAPABILITY_VERSION_3:
 99		*tocopy = _LINUX_CAPABILITY_U32S_3;
100		break;
101	default:
102		if (put_user((u32)_KERNEL_CAPABILITY_VERSION, &header->version))
103			return -EFAULT;
104		return -EINVAL;
105	}
106
107	return 0;
108}
109
110/*
111 * The only thing that can change the capabilities of the current
112 * process is the current process. As such, we can't be in this code
113 * at the same time as we are in the process of setting capabilities
114 * in this process. The net result is that we can limit our use of
115 * locks to when we are reading the caps of another process.
116 */
117static inline int cap_get_target_pid(pid_t pid, kernel_cap_t *pEp,
118				     kernel_cap_t *pIp, kernel_cap_t *pPp)
119{
120	int ret;
121
122	if (pid && (pid != task_pid_vnr(current))) {
123		struct task_struct *target;
124
125		rcu_read_lock();
126
127		target = find_task_by_vpid(pid);
128		if (!target)
129			ret = -ESRCH;
130		else
131			ret = security_capget(target, pEp, pIp, pPp);
132
133		rcu_read_unlock();
134	} else
135		ret = security_capget(current, pEp, pIp, pPp);
136
137	return ret;
138}
139
140/**
141 * sys_capget - get the capabilities of a given process.
142 * @header: pointer to struct that contains capability version and
143 *	target pid data
144 * @dataptr: pointer to struct that contains the effective, permitted,
145 *	and inheritable capabilities that are returned
146 *
147 * Returns 0 on success and < 0 on error.
148 */
149SYSCALL_DEFINE2(capget, cap_user_header_t, header, cap_user_data_t, dataptr)
150{
151	int ret = 0;
152	pid_t pid;
153	unsigned tocopy;
154	kernel_cap_t pE, pI, pP;
155
156	ret = cap_validate_magic(header, &tocopy);
157	if ((dataptr == NULL) || (ret != 0))
158		return ((dataptr == NULL) && (ret == -EINVAL)) ? 0 : ret;
159
160	if (get_user(pid, &header->pid))
161		return -EFAULT;
162
163	if (pid < 0)
164		return -EINVAL;
165
166	ret = cap_get_target_pid(pid, &pE, &pI, &pP);
167	if (!ret) {
168		struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S];
169		unsigned i;
170
171		for (i = 0; i < tocopy; i++) {
172			kdata[i].effective = pE.cap[i];
173			kdata[i].permitted = pP.cap[i];
174			kdata[i].inheritable = pI.cap[i];
175		}
176
177		/*
178		 * Note, in the case, tocopy < _KERNEL_CAPABILITY_U32S,
179		 * we silently drop the upper capabilities here. This
180		 * has the effect of making older libcap
181		 * implementations implicitly drop upper capability
182		 * bits when they perform a: capget/modify/capset
183		 * sequence.
184		 *
185		 * This behavior is considered fail-safe
186		 * behavior. Upgrading the application to a newer
187		 * version of libcap will enable access to the newer
188		 * capabilities.
189		 *
190		 * An alternative would be to return an error here
191		 * (-ERANGE), but that causes legacy applications to
192		 * unexpectedly fail; the capget/modify/capset aborts
193		 * before modification is attempted and the application
194		 * fails.
195		 */
196		if (copy_to_user(dataptr, kdata, tocopy
197				 * sizeof(struct __user_cap_data_struct))) {
198			return -EFAULT;
199		}
200	}
201
202	return ret;
203}
204
205/**
206 * sys_capset - set capabilities for a process or (*) a group of processes
207 * @header: pointer to struct that contains capability version and
208 *	target pid data
209 * @data: pointer to struct that contains the effective, permitted,
210 *	and inheritable capabilities
211 *
212 * Set capabilities for the current process only.  The ability to any other
213 * process(es) has been deprecated and removed.
214 *
215 * The restrictions on setting capabilities are specified as:
216 *
217 * I: any raised capabilities must be a subset of the old permitted
218 * P: any raised capabilities must be a subset of the old permitted
219 * E: must be set to a subset of new permitted
220 *
221 * Returns 0 on success and < 0 on error.
222 */
223SYSCALL_DEFINE2(capset, cap_user_header_t, header, const cap_user_data_t, data)
224{
225	struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S];
226	unsigned i, tocopy, copybytes;
227	kernel_cap_t inheritable, permitted, effective;
228	struct cred *new;
229	int ret;
230	pid_t pid;
231
232	ret = cap_validate_magic(header, &tocopy);
233	if (ret != 0)
234		return ret;
235
236	if (get_user(pid, &header->pid))
237		return -EFAULT;
238
239	/* may only affect current now */
240	if (pid != 0 && pid != task_pid_vnr(current))
241		return -EPERM;
242
243	copybytes = tocopy * sizeof(struct __user_cap_data_struct);
244	if (copybytes > sizeof(kdata))
245		return -EFAULT;
246
247	if (copy_from_user(&kdata, data, copybytes))
248		return -EFAULT;
249
250	for (i = 0; i < tocopy; i++) {
251		effective.cap[i] = kdata[i].effective;
252		permitted.cap[i] = kdata[i].permitted;
253		inheritable.cap[i] = kdata[i].inheritable;
254	}
255	while (i < _KERNEL_CAPABILITY_U32S) {
256		effective.cap[i] = 0;
257		permitted.cap[i] = 0;
258		inheritable.cap[i] = 0;
259		i++;
260	}
261
262	effective.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
263	permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
264	inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
265
266	new = prepare_creds();
267	if (!new)
268		return -ENOMEM;
269
270	ret = security_capset(new, current_cred(),
271			      &effective, &inheritable, &permitted);
272	if (ret < 0)
273		goto error;
274
275	audit_log_capset(new, current_cred());
276
277	return commit_creds(new);
278
279error:
280	abort_creds(new);
281	return ret;
282}
283
284/**
285 * has_ns_capability - Does a task have a capability in a specific user ns
286 * @t: The task in question
287 * @ns: target user namespace
288 * @cap: The capability to be tested for
289 *
290 * Return true if the specified task has the given superior capability
291 * currently in effect to the specified user namespace, false if not.
292 *
293 * Note that this does not set PF_SUPERPRIV on the task.
294 */
295bool has_ns_capability(struct task_struct *t,
296		       struct user_namespace *ns, int cap)
297{
298	int ret;
299
300	rcu_read_lock();
301	ret = security_capable(__task_cred(t), ns, cap);
302	rcu_read_unlock();
303
304	return (ret == 0);
305}
306
307/**
308 * has_capability - Does a task have a capability in init_user_ns
309 * @t: The task in question
310 * @cap: The capability to be tested for
311 *
312 * Return true if the specified task has the given superior capability
313 * currently in effect to the initial user namespace, false if not.
314 *
315 * Note that this does not set PF_SUPERPRIV on the task.
316 */
317bool has_capability(struct task_struct *t, int cap)
318{
319	return has_ns_capability(t, &init_user_ns, cap);
 
 
320}
321EXPORT_SYMBOL(has_capability);
322
323/**
324 * has_ns_capability_noaudit - Does a task have a capability (unaudited)
325 * in a specific user ns.
326 * @t: The task in question
327 * @ns: target user namespace
328 * @cap: The capability to be tested for
329 *
330 * Return true if the specified task has the given superior capability
331 * currently in effect to the specified user namespace, false if not.
332 * Do not write an audit message for the check.
333 *
334 * Note that this does not set PF_SUPERPRIV on the task.
335 */
336bool has_ns_capability_noaudit(struct task_struct *t,
337			       struct user_namespace *ns, int cap)
338{
339	int ret;
340
341	rcu_read_lock();
342	ret = security_capable_noaudit(__task_cred(t), ns, cap);
343	rcu_read_unlock();
344
345	return (ret == 0);
346}
347
348/**
349 * has_capability_noaudit - Does a task have a capability (unaudited) in the
350 * initial user ns
351 * @t: The task in question
352 * @cap: The capability to be tested for
353 *
354 * Return true if the specified task has the given superior capability
355 * currently in effect to init_user_ns, false if not.  Don't write an
356 * audit message for the check.
357 *
358 * Note that this does not set PF_SUPERPRIV on the task.
359 */
360bool has_capability_noaudit(struct task_struct *t, int cap)
361{
362	return has_ns_capability_noaudit(t, &init_user_ns, cap);
363}
364
365static bool ns_capable_common(struct user_namespace *ns, int cap, bool audit)
366{
367	int capable;
368
369	if (unlikely(!cap_valid(cap))) {
370		pr_crit("capable() called with invalid cap=%u\n", cap);
371		BUG();
372	}
373
374	capable = audit ? security_capable(current_cred(), ns, cap) :
375			  security_capable_noaudit(current_cred(), ns, cap);
376	if (capable == 0) {
377		current->flags |= PF_SUPERPRIV;
378		return true;
379	}
380	return false;
381}
382
383/**
384 * ns_capable - Determine if the current task has a superior capability in effect
385 * @ns:  The usernamespace we want the capability in
386 * @cap: The capability to be tested for
387 *
388 * Return true if the current task has the given superior capability currently
389 * available for use, false if not.
390 *
391 * This sets PF_SUPERPRIV on the task if the capability is available on the
392 * assumption that it's about to be used.
393 */
394bool ns_capable(struct user_namespace *ns, int cap)
395{
396	return ns_capable_common(ns, cap, true);
397}
398EXPORT_SYMBOL(ns_capable);
399
400/**
401 * ns_capable_noaudit - Determine if the current task has a superior capability
402 * (unaudited) in effect
403 * @ns:  The usernamespace we want the capability in
404 * @cap: The capability to be tested for
405 *
406 * Return true if the current task has the given superior capability currently
407 * available for use, false if not.
408 *
409 * This sets PF_SUPERPRIV on the task if the capability is available on the
410 * assumption that it's about to be used.
411 */
412bool ns_capable_noaudit(struct user_namespace *ns, int cap)
413{
414	return ns_capable_common(ns, cap, false);
415}
416EXPORT_SYMBOL(ns_capable_noaudit);
417
418/**
419 * capable - Determine if the current task has a superior capability in effect
420 * @cap: The capability to be tested for
421 *
422 * Return true if the current task has the given superior capability currently
423 * available for use, false if not.
424 *
425 * This sets PF_SUPERPRIV on the task if the capability is available on the
426 * assumption that it's about to be used.
427 */
428bool capable(int cap)
429{
430	return ns_capable(&init_user_ns, cap);
431}
432EXPORT_SYMBOL(capable);
433#endif /* CONFIG_MULTIUSER */
434
435/**
436 * file_ns_capable - Determine if the file's opener had a capability in effect
437 * @file:  The file we want to check
438 * @ns:  The usernamespace we want the capability in
439 * @cap: The capability to be tested for
440 *
441 * Return true if task that opened the file had a capability in effect
442 * when the file was opened.
443 *
444 * This does not set PF_SUPERPRIV because the caller may not
445 * actually be privileged.
446 */
447bool file_ns_capable(const struct file *file, struct user_namespace *ns,
448		     int cap)
449{
450	if (WARN_ON_ONCE(!cap_valid(cap)))
451		return false;
 
 
452
453	if (security_capable(file->f_cred, ns, cap) == 0)
 
454		return true;
455
456	return false;
457}
458EXPORT_SYMBOL(file_ns_capable);
459
460/**
461 * privileged_wrt_inode_uidgid - Do capabilities in the namespace work over the inode?
462 * @ns: The user namespace in question
463 * @inode: The inode in question
 
464 *
465 * Return true if the inode uid and gid are within the namespace.
466 */
467bool privileged_wrt_inode_uidgid(struct user_namespace *ns, const struct inode *inode)
468{
469	return kuid_has_mapping(ns, inode->i_uid) &&
470		kgid_has_mapping(ns, inode->i_gid);
471}
 
472
473/**
474 * capable_wrt_inode_uidgid - Check nsown_capable and uid and gid mapped
475 * @inode: The inode in question
476 * @cap: The capability in question
477 *
478 * Return true if the current task has the given capability targeted at
479 * its own user namespace and that the given inode's uid and gid are
480 * mapped into the current user namespace.
481 */
482bool capable_wrt_inode_uidgid(const struct inode *inode, int cap)
483{
484	struct user_namespace *ns = current_user_ns();
485
486	return ns_capable(ns, cap) && privileged_wrt_inode_uidgid(ns, inode);
487}
488EXPORT_SYMBOL(capable_wrt_inode_uidgid);
489
490/**
491 * ptracer_capable - Determine if the ptracer holds CAP_SYS_PTRACE in the namespace
492 * @tsk: The task that may be ptraced
493 * @ns: The user namespace to search for CAP_SYS_PTRACE in
494 *
495 * Return true if the task that is ptracing the current task had CAP_SYS_PTRACE
496 * in the specified user namespace.
497 */
498bool ptracer_capable(struct task_struct *tsk, struct user_namespace *ns)
499{
500	int ret = 0;  /* An absent tracer adds no restrictions */
501	const struct cred *cred;
502	rcu_read_lock();
503	cred = rcu_dereference(tsk->ptracer_cred);
504	if (cred)
505		ret = security_capable_noaudit(cred, ns, CAP_SYS_PTRACE);
506	rcu_read_unlock();
507	return (ret == 0);
508}
v3.1
  1/*
  2 * linux/kernel/capability.c
  3 *
  4 * Copyright (C) 1997  Andrew Main <zefram@fysh.org>
  5 *
  6 * Integrated into 2.1.97+,  Andrew G. Morgan <morgan@kernel.org>
  7 * 30 May 2002:	Cleanup, Robert M. Love <rml@tech9.net>
  8 */
  9
 
 
 10#include <linux/audit.h>
 11#include <linux/capability.h>
 12#include <linux/mm.h>
 13#include <linux/module.h>
 14#include <linux/security.h>
 15#include <linux/syscalls.h>
 16#include <linux/pid_namespace.h>
 17#include <linux/user_namespace.h>
 18#include <asm/uaccess.h>
 19
 20/*
 21 * Leveraged for setting/resetting capabilities
 22 */
 23
 24const kernel_cap_t __cap_empty_set = CAP_EMPTY_SET;
 25
 26EXPORT_SYMBOL(__cap_empty_set);
 27
 28int file_caps_enabled = 1;
 29
 30static int __init file_caps_disable(char *str)
 31{
 32	file_caps_enabled = 0;
 33	return 1;
 34}
 35__setup("no_file_caps", file_caps_disable);
 36
 
 37/*
 38 * More recent versions of libcap are available from:
 39 *
 40 *   http://www.kernel.org/pub/linux/libs/security/linux-privs/
 41 */
 42
 43static void warn_legacy_capability_use(void)
 44{
 45	static int warned;
 46	if (!warned) {
 47		char name[sizeof(current->comm)];
 48
 49		printk(KERN_INFO "warning: `%s' uses 32-bit capabilities"
 50		       " (legacy support in use)\n",
 51		       get_task_comm(name, current));
 52		warned = 1;
 53	}
 54}
 55
 56/*
 57 * Version 2 capabilities worked fine, but the linux/capability.h file
 58 * that accompanied their introduction encouraged their use without
 59 * the necessary user-space source code changes. As such, we have
 60 * created a version 3 with equivalent functionality to version 2, but
 61 * with a header change to protect legacy source code from using
 62 * version 2 when it wanted to use version 1. If your system has code
 63 * that trips the following warning, it is using version 2 specific
 64 * capabilities and may be doing so insecurely.
 65 *
 66 * The remedy is to either upgrade your version of libcap (to 2.10+,
 67 * if the application is linked against it), or recompile your
 68 * application with modern kernel headers and this warning will go
 69 * away.
 70 */
 71
 72static void warn_deprecated_v2(void)
 73{
 74	static int warned;
 75
 76	if (!warned) {
 77		char name[sizeof(current->comm)];
 78
 79		printk(KERN_INFO "warning: `%s' uses deprecated v2"
 80		       " capabilities in a way that may be insecure.\n",
 81		       get_task_comm(name, current));
 82		warned = 1;
 83	}
 84}
 85
 86/*
 87 * Version check. Return the number of u32s in each capability flag
 88 * array, or a negative value on error.
 89 */
 90static int cap_validate_magic(cap_user_header_t header, unsigned *tocopy)
 91{
 92	__u32 version;
 93
 94	if (get_user(version, &header->version))
 95		return -EFAULT;
 96
 97	switch (version) {
 98	case _LINUX_CAPABILITY_VERSION_1:
 99		warn_legacy_capability_use();
100		*tocopy = _LINUX_CAPABILITY_U32S_1;
101		break;
102	case _LINUX_CAPABILITY_VERSION_2:
103		warn_deprecated_v2();
104		/*
105		 * fall through - v3 is otherwise equivalent to v2.
106		 */
107	case _LINUX_CAPABILITY_VERSION_3:
108		*tocopy = _LINUX_CAPABILITY_U32S_3;
109		break;
110	default:
111		if (put_user((u32)_KERNEL_CAPABILITY_VERSION, &header->version))
112			return -EFAULT;
113		return -EINVAL;
114	}
115
116	return 0;
117}
118
119/*
120 * The only thing that can change the capabilities of the current
121 * process is the current process. As such, we can't be in this code
122 * at the same time as we are in the process of setting capabilities
123 * in this process. The net result is that we can limit our use of
124 * locks to when we are reading the caps of another process.
125 */
126static inline int cap_get_target_pid(pid_t pid, kernel_cap_t *pEp,
127				     kernel_cap_t *pIp, kernel_cap_t *pPp)
128{
129	int ret;
130
131	if (pid && (pid != task_pid_vnr(current))) {
132		struct task_struct *target;
133
134		rcu_read_lock();
135
136		target = find_task_by_vpid(pid);
137		if (!target)
138			ret = -ESRCH;
139		else
140			ret = security_capget(target, pEp, pIp, pPp);
141
142		rcu_read_unlock();
143	} else
144		ret = security_capget(current, pEp, pIp, pPp);
145
146	return ret;
147}
148
149/**
150 * sys_capget - get the capabilities of a given process.
151 * @header: pointer to struct that contains capability version and
152 *	target pid data
153 * @dataptr: pointer to struct that contains the effective, permitted,
154 *	and inheritable capabilities that are returned
155 *
156 * Returns 0 on success and < 0 on error.
157 */
158SYSCALL_DEFINE2(capget, cap_user_header_t, header, cap_user_data_t, dataptr)
159{
160	int ret = 0;
161	pid_t pid;
162	unsigned tocopy;
163	kernel_cap_t pE, pI, pP;
164
165	ret = cap_validate_magic(header, &tocopy);
166	if ((dataptr == NULL) || (ret != 0))
167		return ((dataptr == NULL) && (ret == -EINVAL)) ? 0 : ret;
168
169	if (get_user(pid, &header->pid))
170		return -EFAULT;
171
172	if (pid < 0)
173		return -EINVAL;
174
175	ret = cap_get_target_pid(pid, &pE, &pI, &pP);
176	if (!ret) {
177		struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S];
178		unsigned i;
179
180		for (i = 0; i < tocopy; i++) {
181			kdata[i].effective = pE.cap[i];
182			kdata[i].permitted = pP.cap[i];
183			kdata[i].inheritable = pI.cap[i];
184		}
185
186		/*
187		 * Note, in the case, tocopy < _KERNEL_CAPABILITY_U32S,
188		 * we silently drop the upper capabilities here. This
189		 * has the effect of making older libcap
190		 * implementations implicitly drop upper capability
191		 * bits when they perform a: capget/modify/capset
192		 * sequence.
193		 *
194		 * This behavior is considered fail-safe
195		 * behavior. Upgrading the application to a newer
196		 * version of libcap will enable access to the newer
197		 * capabilities.
198		 *
199		 * An alternative would be to return an error here
200		 * (-ERANGE), but that causes legacy applications to
201		 * unexpectidly fail; the capget/modify/capset aborts
202		 * before modification is attempted and the application
203		 * fails.
204		 */
205		if (copy_to_user(dataptr, kdata, tocopy
206				 * sizeof(struct __user_cap_data_struct))) {
207			return -EFAULT;
208		}
209	}
210
211	return ret;
212}
213
214/**
215 * sys_capset - set capabilities for a process or (*) a group of processes
216 * @header: pointer to struct that contains capability version and
217 *	target pid data
218 * @data: pointer to struct that contains the effective, permitted,
219 *	and inheritable capabilities
220 *
221 * Set capabilities for the current process only.  The ability to any other
222 * process(es) has been deprecated and removed.
223 *
224 * The restrictions on setting capabilities are specified as:
225 *
226 * I: any raised capabilities must be a subset of the old permitted
227 * P: any raised capabilities must be a subset of the old permitted
228 * E: must be set to a subset of new permitted
229 *
230 * Returns 0 on success and < 0 on error.
231 */
232SYSCALL_DEFINE2(capset, cap_user_header_t, header, const cap_user_data_t, data)
233{
234	struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S];
235	unsigned i, tocopy, copybytes;
236	kernel_cap_t inheritable, permitted, effective;
237	struct cred *new;
238	int ret;
239	pid_t pid;
240
241	ret = cap_validate_magic(header, &tocopy);
242	if (ret != 0)
243		return ret;
244
245	if (get_user(pid, &header->pid))
246		return -EFAULT;
247
248	/* may only affect current now */
249	if (pid != 0 && pid != task_pid_vnr(current))
250		return -EPERM;
251
252	copybytes = tocopy * sizeof(struct __user_cap_data_struct);
253	if (copybytes > sizeof(kdata))
254		return -EFAULT;
255
256	if (copy_from_user(&kdata, data, copybytes))
257		return -EFAULT;
258
259	for (i = 0; i < tocopy; i++) {
260		effective.cap[i] = kdata[i].effective;
261		permitted.cap[i] = kdata[i].permitted;
262		inheritable.cap[i] = kdata[i].inheritable;
263	}
264	while (i < _KERNEL_CAPABILITY_U32S) {
265		effective.cap[i] = 0;
266		permitted.cap[i] = 0;
267		inheritable.cap[i] = 0;
268		i++;
269	}
270
 
 
 
 
271	new = prepare_creds();
272	if (!new)
273		return -ENOMEM;
274
275	ret = security_capset(new, current_cred(),
276			      &effective, &inheritable, &permitted);
277	if (ret < 0)
278		goto error;
279
280	audit_log_capset(pid, new, current_cred());
281
282	return commit_creds(new);
283
284error:
285	abort_creds(new);
286	return ret;
287}
288
289/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
290 * has_capability - Does a task have a capability in init_user_ns
291 * @t: The task in question
292 * @cap: The capability to be tested for
293 *
294 * Return true if the specified task has the given superior capability
295 * currently in effect to the initial user namespace, false if not.
296 *
297 * Note that this does not set PF_SUPERPRIV on the task.
298 */
299bool has_capability(struct task_struct *t, int cap)
300{
301	int ret = security_real_capable(t, &init_user_ns, cap);
302
303	return (ret == 0);
304}
 
305
306/**
307 * has_capability - Does a task have a capability in a specific user ns
 
308 * @t: The task in question
309 * @ns: target user namespace
310 * @cap: The capability to be tested for
311 *
312 * Return true if the specified task has the given superior capability
313 * currently in effect to the specified user namespace, false if not.
 
314 *
315 * Note that this does not set PF_SUPERPRIV on the task.
316 */
317bool has_ns_capability(struct task_struct *t,
318		       struct user_namespace *ns, int cap)
319{
320	int ret = security_real_capable(t, ns, cap);
 
 
 
 
321
322	return (ret == 0);
323}
324
325/**
326 * has_capability_noaudit - Does a task have a capability (unaudited)
 
327 * @t: The task in question
328 * @cap: The capability to be tested for
329 *
330 * Return true if the specified task has the given superior capability
331 * currently in effect to init_user_ns, false if not.  Don't write an
332 * audit message for the check.
333 *
334 * Note that this does not set PF_SUPERPRIV on the task.
335 */
336bool has_capability_noaudit(struct task_struct *t, int cap)
337{
338	int ret = security_real_capable_noaudit(t, &init_user_ns, cap);
 
 
 
 
 
339
340	return (ret == 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
341}
 
342
343/**
344 * capable - Determine if the current task has a superior capability in effect
345 * @cap: The capability to be tested for
346 *
347 * Return true if the current task has the given superior capability currently
348 * available for use, false if not.
349 *
350 * This sets PF_SUPERPRIV on the task if the capability is available on the
351 * assumption that it's about to be used.
352 */
353bool capable(int cap)
354{
355	return ns_capable(&init_user_ns, cap);
356}
357EXPORT_SYMBOL(capable);
 
358
359/**
360 * ns_capable - Determine if the current task has a superior capability in effect
 
361 * @ns:  The usernamespace we want the capability in
362 * @cap: The capability to be tested for
363 *
364 * Return true if the current task has the given superior capability currently
365 * available for use, false if not.
366 *
367 * This sets PF_SUPERPRIV on the task if the capability is available on the
368 * assumption that it's about to be used.
369 */
370bool ns_capable(struct user_namespace *ns, int cap)
 
371{
372	if (unlikely(!cap_valid(cap))) {
373		printk(KERN_CRIT "capable() called with invalid cap=%u\n", cap);
374		BUG();
375	}
376
377	if (security_capable(ns, current_cred(), cap) == 0) {
378		current->flags |= PF_SUPERPRIV;
379		return true;
380	}
381	return false;
382}
383EXPORT_SYMBOL(ns_capable);
384
385/**
386 * task_ns_capable - Determine whether current task has a superior
387 * capability targeted at a specific task's user namespace.
388 * @t: The task whose user namespace is targeted.
389 * @cap: The capability in question.
390 *
391 *  Return true if it does, false otherwise.
392 */
393bool task_ns_capable(struct task_struct *t, int cap)
394{
395	return ns_capable(task_cred_xxx(t, user)->user_ns, cap);
 
396}
397EXPORT_SYMBOL(task_ns_capable);
398
399/**
400 * nsown_capable - Check superior capability to one's own user_ns
 
401 * @cap: The capability in question
402 *
403 * Return true if the current task has the given superior capability
404 * targeted at its own user namespace.
 
405 */
406bool nsown_capable(int cap)
407{
408	return ns_capable(current_user_ns(), cap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
409}