Loading...
1/*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20#include <linux/module.h>
21#include <linux/time.h>
22#include <linux/errno.h>
23#include <linux/stat.h>
24#include <linux/fcntl.h>
25#include <linux/string.h>
26#include <linux/kernel.h>
27#include <linux/slab.h>
28#include <linux/mm.h>
29#include <linux/sunrpc/clnt.h>
30#include <linux/nfs_fs.h>
31#include <linux/nfs_mount.h>
32#include <linux/pagemap.h>
33#include <linux/pagevec.h>
34#include <linux/namei.h>
35#include <linux/mount.h>
36#include <linux/swap.h>
37#include <linux/sched.h>
38#include <linux/kmemleak.h>
39#include <linux/xattr.h>
40
41#include "delegation.h"
42#include "iostat.h"
43#include "internal.h"
44#include "fscache.h"
45
46#include "nfstrace.h"
47
48/* #define NFS_DEBUG_VERBOSE 1 */
49
50static int nfs_opendir(struct inode *, struct file *);
51static int nfs_closedir(struct inode *, struct file *);
52static int nfs_readdir(struct file *, struct dir_context *);
53static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55static void nfs_readdir_clear_array(struct page*);
56
57const struct file_operations nfs_dir_operations = {
58 .llseek = nfs_llseek_dir,
59 .read = generic_read_dir,
60 .iterate_shared = nfs_readdir,
61 .open = nfs_opendir,
62 .release = nfs_closedir,
63 .fsync = nfs_fsync_dir,
64};
65
66const struct address_space_operations nfs_dir_aops = {
67 .freepage = nfs_readdir_clear_array,
68};
69
70static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
71{
72 struct nfs_inode *nfsi = NFS_I(dir);
73 struct nfs_open_dir_context *ctx;
74 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75 if (ctx != NULL) {
76 ctx->duped = 0;
77 ctx->attr_gencount = nfsi->attr_gencount;
78 ctx->dir_cookie = 0;
79 ctx->dup_cookie = 0;
80 ctx->cred = get_rpccred(cred);
81 spin_lock(&dir->i_lock);
82 list_add(&ctx->list, &nfsi->open_files);
83 spin_unlock(&dir->i_lock);
84 return ctx;
85 }
86 return ERR_PTR(-ENOMEM);
87}
88
89static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
90{
91 spin_lock(&dir->i_lock);
92 list_del(&ctx->list);
93 spin_unlock(&dir->i_lock);
94 put_rpccred(ctx->cred);
95 kfree(ctx);
96}
97
98/*
99 * Open file
100 */
101static int
102nfs_opendir(struct inode *inode, struct file *filp)
103{
104 int res = 0;
105 struct nfs_open_dir_context *ctx;
106 struct rpc_cred *cred;
107
108 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
109
110 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
111
112 cred = rpc_lookup_cred();
113 if (IS_ERR(cred))
114 return PTR_ERR(cred);
115 ctx = alloc_nfs_open_dir_context(inode, cred);
116 if (IS_ERR(ctx)) {
117 res = PTR_ERR(ctx);
118 goto out;
119 }
120 filp->private_data = ctx;
121 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
122 /* This is a mountpoint, so d_revalidate will never
123 * have been called, so we need to refresh the
124 * inode (for close-open consistency) ourselves.
125 */
126 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
127 }
128out:
129 put_rpccred(cred);
130 return res;
131}
132
133static int
134nfs_closedir(struct inode *inode, struct file *filp)
135{
136 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
137 return 0;
138}
139
140struct nfs_cache_array_entry {
141 u64 cookie;
142 u64 ino;
143 struct qstr string;
144 unsigned char d_type;
145};
146
147struct nfs_cache_array {
148 atomic_t refcount;
149 int size;
150 int eof_index;
151 u64 last_cookie;
152 struct nfs_cache_array_entry array[0];
153};
154
155typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
156typedef struct {
157 struct file *file;
158 struct page *page;
159 struct dir_context *ctx;
160 unsigned long page_index;
161 u64 *dir_cookie;
162 u64 last_cookie;
163 loff_t current_index;
164 decode_dirent_t decode;
165
166 unsigned long timestamp;
167 unsigned long gencount;
168 unsigned int cache_entry_index;
169 unsigned int plus:1;
170 unsigned int eof:1;
171} nfs_readdir_descriptor_t;
172
173/*
174 * The caller is responsible for calling nfs_readdir_release_array(page)
175 */
176static
177struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
178{
179 void *ptr;
180 if (page == NULL)
181 return ERR_PTR(-EIO);
182 ptr = kmap(page);
183 if (ptr == NULL)
184 return ERR_PTR(-ENOMEM);
185 return ptr;
186}
187
188static
189void nfs_readdir_release_array(struct page *page)
190{
191 kunmap(page);
192}
193
194/*
195 * we are freeing strings created by nfs_add_to_readdir_array()
196 */
197static
198void nfs_readdir_clear_array(struct page *page)
199{
200 struct nfs_cache_array *array;
201 int i;
202
203 array = kmap_atomic(page);
204 if (atomic_dec_and_test(&array->refcount))
205 for (i = 0; i < array->size; i++)
206 kfree(array->array[i].string.name);
207 kunmap_atomic(array);
208}
209
210static bool grab_page(struct page *page)
211{
212 struct nfs_cache_array *array = kmap_atomic(page);
213 bool res = atomic_inc_not_zero(&array->refcount);
214 kunmap_atomic(array);
215 return res;
216}
217
218/*
219 * the caller is responsible for freeing qstr.name
220 * when called by nfs_readdir_add_to_array, the strings will be freed in
221 * nfs_clear_readdir_array()
222 */
223static
224int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
225{
226 string->len = len;
227 string->name = kmemdup(name, len, GFP_KERNEL);
228 if (string->name == NULL)
229 return -ENOMEM;
230 /*
231 * Avoid a kmemleak false positive. The pointer to the name is stored
232 * in a page cache page which kmemleak does not scan.
233 */
234 kmemleak_not_leak(string->name);
235 string->hash = full_name_hash(NULL, name, len);
236 return 0;
237}
238
239static
240int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
241{
242 struct nfs_cache_array *array = nfs_readdir_get_array(page);
243 struct nfs_cache_array_entry *cache_entry;
244 int ret;
245
246 if (IS_ERR(array))
247 return PTR_ERR(array);
248
249 cache_entry = &array->array[array->size];
250
251 /* Check that this entry lies within the page bounds */
252 ret = -ENOSPC;
253 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
254 goto out;
255
256 cache_entry->cookie = entry->prev_cookie;
257 cache_entry->ino = entry->ino;
258 cache_entry->d_type = entry->d_type;
259 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
260 if (ret)
261 goto out;
262 array->last_cookie = entry->cookie;
263 array->size++;
264 if (entry->eof != 0)
265 array->eof_index = array->size;
266out:
267 nfs_readdir_release_array(page);
268 return ret;
269}
270
271static
272int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
273{
274 loff_t diff = desc->ctx->pos - desc->current_index;
275 unsigned int index;
276
277 if (diff < 0)
278 goto out_eof;
279 if (diff >= array->size) {
280 if (array->eof_index >= 0)
281 goto out_eof;
282 return -EAGAIN;
283 }
284
285 index = (unsigned int)diff;
286 *desc->dir_cookie = array->array[index].cookie;
287 desc->cache_entry_index = index;
288 return 0;
289out_eof:
290 desc->eof = 1;
291 return -EBADCOOKIE;
292}
293
294static bool
295nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
296{
297 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
298 return false;
299 smp_rmb();
300 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
301}
302
303static
304int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
305{
306 int i;
307 loff_t new_pos;
308 int status = -EAGAIN;
309
310 for (i = 0; i < array->size; i++) {
311 if (array->array[i].cookie == *desc->dir_cookie) {
312 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
313 struct nfs_open_dir_context *ctx = desc->file->private_data;
314
315 new_pos = desc->current_index + i;
316 if (ctx->attr_gencount != nfsi->attr_gencount ||
317 !nfs_readdir_inode_mapping_valid(nfsi)) {
318 ctx->duped = 0;
319 ctx->attr_gencount = nfsi->attr_gencount;
320 } else if (new_pos < desc->ctx->pos) {
321 if (ctx->duped > 0
322 && ctx->dup_cookie == *desc->dir_cookie) {
323 if (printk_ratelimit()) {
324 pr_notice("NFS: directory %pD2 contains a readdir loop."
325 "Please contact your server vendor. "
326 "The file: %.*s has duplicate cookie %llu\n",
327 desc->file, array->array[i].string.len,
328 array->array[i].string.name, *desc->dir_cookie);
329 }
330 status = -ELOOP;
331 goto out;
332 }
333 ctx->dup_cookie = *desc->dir_cookie;
334 ctx->duped = -1;
335 }
336 desc->ctx->pos = new_pos;
337 desc->cache_entry_index = i;
338 return 0;
339 }
340 }
341 if (array->eof_index >= 0) {
342 status = -EBADCOOKIE;
343 if (*desc->dir_cookie == array->last_cookie)
344 desc->eof = 1;
345 }
346out:
347 return status;
348}
349
350static
351int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
352{
353 struct nfs_cache_array *array;
354 int status;
355
356 array = nfs_readdir_get_array(desc->page);
357 if (IS_ERR(array)) {
358 status = PTR_ERR(array);
359 goto out;
360 }
361
362 if (*desc->dir_cookie == 0)
363 status = nfs_readdir_search_for_pos(array, desc);
364 else
365 status = nfs_readdir_search_for_cookie(array, desc);
366
367 if (status == -EAGAIN) {
368 desc->last_cookie = array->last_cookie;
369 desc->current_index += array->size;
370 desc->page_index++;
371 }
372 nfs_readdir_release_array(desc->page);
373out:
374 return status;
375}
376
377/* Fill a page with xdr information before transferring to the cache page */
378static
379int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
380 struct nfs_entry *entry, struct file *file, struct inode *inode)
381{
382 struct nfs_open_dir_context *ctx = file->private_data;
383 struct rpc_cred *cred = ctx->cred;
384 unsigned long timestamp, gencount;
385 int error;
386
387 again:
388 timestamp = jiffies;
389 gencount = nfs_inc_attr_generation_counter();
390 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
391 NFS_SERVER(inode)->dtsize, desc->plus);
392 if (error < 0) {
393 /* We requested READDIRPLUS, but the server doesn't grok it */
394 if (error == -ENOTSUPP && desc->plus) {
395 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
396 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
397 desc->plus = 0;
398 goto again;
399 }
400 goto error;
401 }
402 desc->timestamp = timestamp;
403 desc->gencount = gencount;
404error:
405 return error;
406}
407
408static int xdr_decode(nfs_readdir_descriptor_t *desc,
409 struct nfs_entry *entry, struct xdr_stream *xdr)
410{
411 int error;
412
413 error = desc->decode(xdr, entry, desc->plus);
414 if (error)
415 return error;
416 entry->fattr->time_start = desc->timestamp;
417 entry->fattr->gencount = desc->gencount;
418 return 0;
419}
420
421/* Match file and dirent using either filehandle or fileid
422 * Note: caller is responsible for checking the fsid
423 */
424static
425int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
426{
427 struct inode *inode;
428 struct nfs_inode *nfsi;
429
430 if (d_really_is_negative(dentry))
431 return 0;
432
433 inode = d_inode(dentry);
434 if (is_bad_inode(inode) || NFS_STALE(inode))
435 return 0;
436
437 nfsi = NFS_I(inode);
438 if (entry->fattr->fileid != nfsi->fileid)
439 return 0;
440 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
441 return 0;
442 return 1;
443}
444
445static
446bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
447{
448 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
449 return false;
450 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
451 return true;
452 if (ctx->pos == 0)
453 return true;
454 return false;
455}
456
457/*
458 * This function is called by the lookup and getattr code to request the
459 * use of readdirplus to accelerate any future lookups in the same
460 * directory.
461 */
462void nfs_advise_use_readdirplus(struct inode *dir)
463{
464 struct nfs_inode *nfsi = NFS_I(dir);
465
466 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
467 !list_empty(&nfsi->open_files))
468 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
469}
470
471/*
472 * This function is mainly for use by nfs_getattr().
473 *
474 * If this is an 'ls -l', we want to force use of readdirplus.
475 * Do this by checking if there is an active file descriptor
476 * and calling nfs_advise_use_readdirplus, then forcing a
477 * cache flush.
478 */
479void nfs_force_use_readdirplus(struct inode *dir)
480{
481 struct nfs_inode *nfsi = NFS_I(dir);
482
483 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
484 !list_empty(&nfsi->open_files)) {
485 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
486 invalidate_mapping_pages(dir->i_mapping, 0, -1);
487 }
488}
489
490static
491void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
492{
493 struct qstr filename = QSTR_INIT(entry->name, entry->len);
494 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
495 struct dentry *dentry;
496 struct dentry *alias;
497 struct inode *dir = d_inode(parent);
498 struct inode *inode;
499 int status;
500
501 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
502 return;
503 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
504 return;
505 if (filename.len == 0)
506 return;
507 /* Validate that the name doesn't contain any illegal '\0' */
508 if (strnlen(filename.name, filename.len) != filename.len)
509 return;
510 /* ...or '/' */
511 if (strnchr(filename.name, filename.len, '/'))
512 return;
513 if (filename.name[0] == '.') {
514 if (filename.len == 1)
515 return;
516 if (filename.len == 2 && filename.name[1] == '.')
517 return;
518 }
519 filename.hash = full_name_hash(parent, filename.name, filename.len);
520
521 dentry = d_lookup(parent, &filename);
522again:
523 if (!dentry) {
524 dentry = d_alloc_parallel(parent, &filename, &wq);
525 if (IS_ERR(dentry))
526 return;
527 }
528 if (!d_in_lookup(dentry)) {
529 /* Is there a mountpoint here? If so, just exit */
530 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
531 &entry->fattr->fsid))
532 goto out;
533 if (nfs_same_file(dentry, entry)) {
534 if (!entry->fh->size)
535 goto out;
536 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
537 status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
538 if (!status)
539 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
540 goto out;
541 } else {
542 d_invalidate(dentry);
543 dput(dentry);
544 dentry = NULL;
545 goto again;
546 }
547 }
548 if (!entry->fh->size) {
549 d_lookup_done(dentry);
550 goto out;
551 }
552
553 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
554 alias = d_splice_alias(inode, dentry);
555 d_lookup_done(dentry);
556 if (alias) {
557 if (IS_ERR(alias))
558 goto out;
559 dput(dentry);
560 dentry = alias;
561 }
562 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
563out:
564 dput(dentry);
565}
566
567/* Perform conversion from xdr to cache array */
568static
569int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
570 struct page **xdr_pages, struct page *page, unsigned int buflen)
571{
572 struct xdr_stream stream;
573 struct xdr_buf buf;
574 struct page *scratch;
575 struct nfs_cache_array *array;
576 unsigned int count = 0;
577 int status;
578
579 scratch = alloc_page(GFP_KERNEL);
580 if (scratch == NULL)
581 return -ENOMEM;
582
583 if (buflen == 0)
584 goto out_nopages;
585
586 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
587 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
588
589 do {
590 status = xdr_decode(desc, entry, &stream);
591 if (status != 0) {
592 if (status == -EAGAIN)
593 status = 0;
594 break;
595 }
596
597 count++;
598
599 if (desc->plus != 0)
600 nfs_prime_dcache(file_dentry(desc->file), entry);
601
602 status = nfs_readdir_add_to_array(entry, page);
603 if (status != 0)
604 break;
605 } while (!entry->eof);
606
607out_nopages:
608 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
609 array = nfs_readdir_get_array(page);
610 if (!IS_ERR(array)) {
611 array->eof_index = array->size;
612 status = 0;
613 nfs_readdir_release_array(page);
614 } else
615 status = PTR_ERR(array);
616 }
617
618 put_page(scratch);
619 return status;
620}
621
622static
623void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
624{
625 unsigned int i;
626 for (i = 0; i < npages; i++)
627 put_page(pages[i]);
628}
629
630/*
631 * nfs_readdir_large_page will allocate pages that must be freed with a call
632 * to nfs_readdir_free_pagearray
633 */
634static
635int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
636{
637 unsigned int i;
638
639 for (i = 0; i < npages; i++) {
640 struct page *page = alloc_page(GFP_KERNEL);
641 if (page == NULL)
642 goto out_freepages;
643 pages[i] = page;
644 }
645 return 0;
646
647out_freepages:
648 nfs_readdir_free_pages(pages, i);
649 return -ENOMEM;
650}
651
652static
653int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
654{
655 struct page *pages[NFS_MAX_READDIR_PAGES];
656 struct nfs_entry entry;
657 struct file *file = desc->file;
658 struct nfs_cache_array *array;
659 int status = -ENOMEM;
660 unsigned int array_size = ARRAY_SIZE(pages);
661
662 entry.prev_cookie = 0;
663 entry.cookie = desc->last_cookie;
664 entry.eof = 0;
665 entry.fh = nfs_alloc_fhandle();
666 entry.fattr = nfs_alloc_fattr();
667 entry.server = NFS_SERVER(inode);
668 if (entry.fh == NULL || entry.fattr == NULL)
669 goto out;
670
671 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
672 if (IS_ERR(entry.label)) {
673 status = PTR_ERR(entry.label);
674 goto out;
675 }
676
677 array = nfs_readdir_get_array(page);
678 if (IS_ERR(array)) {
679 status = PTR_ERR(array);
680 goto out_label_free;
681 }
682 memset(array, 0, sizeof(struct nfs_cache_array));
683 atomic_set(&array->refcount, 1);
684 array->eof_index = -1;
685
686 status = nfs_readdir_alloc_pages(pages, array_size);
687 if (status < 0)
688 goto out_release_array;
689 do {
690 unsigned int pglen;
691 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
692
693 if (status < 0)
694 break;
695 pglen = status;
696 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
697 if (status < 0) {
698 if (status == -ENOSPC)
699 status = 0;
700 break;
701 }
702 } while (array->eof_index < 0);
703
704 nfs_readdir_free_pages(pages, array_size);
705out_release_array:
706 nfs_readdir_release_array(page);
707out_label_free:
708 nfs4_label_free(entry.label);
709out:
710 nfs_free_fattr(entry.fattr);
711 nfs_free_fhandle(entry.fh);
712 return status;
713}
714
715/*
716 * Now we cache directories properly, by converting xdr information
717 * to an array that can be used for lookups later. This results in
718 * fewer cache pages, since we can store more information on each page.
719 * We only need to convert from xdr once so future lookups are much simpler
720 */
721static
722int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
723{
724 struct inode *inode = file_inode(desc->file);
725 int ret;
726
727 ret = nfs_readdir_xdr_to_array(desc, page, inode);
728 if (ret < 0)
729 goto error;
730 SetPageUptodate(page);
731
732 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
733 /* Should never happen */
734 nfs_zap_mapping(inode, inode->i_mapping);
735 }
736 unlock_page(page);
737 return 0;
738 error:
739 unlock_page(page);
740 return ret;
741}
742
743static
744void cache_page_release(nfs_readdir_descriptor_t *desc)
745{
746 nfs_readdir_clear_array(desc->page);
747 put_page(desc->page);
748 desc->page = NULL;
749}
750
751static
752struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
753{
754 struct page *page;
755
756 for (;;) {
757 page = read_cache_page(desc->file->f_mapping,
758 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
759 if (IS_ERR(page) || grab_page(page))
760 break;
761 put_page(page);
762 }
763 return page;
764}
765
766/*
767 * Returns 0 if desc->dir_cookie was found on page desc->page_index
768 */
769static
770int find_cache_page(nfs_readdir_descriptor_t *desc)
771{
772 int res;
773
774 desc->page = get_cache_page(desc);
775 if (IS_ERR(desc->page))
776 return PTR_ERR(desc->page);
777
778 res = nfs_readdir_search_array(desc);
779 if (res != 0)
780 cache_page_release(desc);
781 return res;
782}
783
784/* Search for desc->dir_cookie from the beginning of the page cache */
785static inline
786int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
787{
788 int res;
789
790 if (desc->page_index == 0) {
791 desc->current_index = 0;
792 desc->last_cookie = 0;
793 }
794 do {
795 res = find_cache_page(desc);
796 } while (res == -EAGAIN);
797 return res;
798}
799
800/*
801 * Once we've found the start of the dirent within a page: fill 'er up...
802 */
803static
804int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
805{
806 struct file *file = desc->file;
807 int i = 0;
808 int res = 0;
809 struct nfs_cache_array *array = NULL;
810 struct nfs_open_dir_context *ctx = file->private_data;
811
812 array = nfs_readdir_get_array(desc->page);
813 if (IS_ERR(array)) {
814 res = PTR_ERR(array);
815 goto out;
816 }
817
818 for (i = desc->cache_entry_index; i < array->size; i++) {
819 struct nfs_cache_array_entry *ent;
820
821 ent = &array->array[i];
822 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
823 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
824 desc->eof = 1;
825 break;
826 }
827 desc->ctx->pos++;
828 if (i < (array->size-1))
829 *desc->dir_cookie = array->array[i+1].cookie;
830 else
831 *desc->dir_cookie = array->last_cookie;
832 if (ctx->duped != 0)
833 ctx->duped = 1;
834 }
835 if (array->eof_index >= 0)
836 desc->eof = 1;
837
838 nfs_readdir_release_array(desc->page);
839out:
840 cache_page_release(desc);
841 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
842 (unsigned long long)*desc->dir_cookie, res);
843 return res;
844}
845
846/*
847 * If we cannot find a cookie in our cache, we suspect that this is
848 * because it points to a deleted file, so we ask the server to return
849 * whatever it thinks is the next entry. We then feed this to filldir.
850 * If all goes well, we should then be able to find our way round the
851 * cache on the next call to readdir_search_pagecache();
852 *
853 * NOTE: we cannot add the anonymous page to the pagecache because
854 * the data it contains might not be page aligned. Besides,
855 * we should already have a complete representation of the
856 * directory in the page cache by the time we get here.
857 */
858static inline
859int uncached_readdir(nfs_readdir_descriptor_t *desc)
860{
861 struct page *page = NULL;
862 int status;
863 struct inode *inode = file_inode(desc->file);
864 struct nfs_open_dir_context *ctx = desc->file->private_data;
865
866 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
867 (unsigned long long)*desc->dir_cookie);
868
869 page = alloc_page(GFP_HIGHUSER);
870 if (!page) {
871 status = -ENOMEM;
872 goto out;
873 }
874
875 desc->page_index = 0;
876 desc->last_cookie = *desc->dir_cookie;
877 desc->page = page;
878 ctx->duped = 0;
879
880 status = nfs_readdir_xdr_to_array(desc, page, inode);
881 if (status < 0)
882 goto out_release;
883
884 status = nfs_do_filldir(desc);
885
886 out:
887 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
888 __func__, status);
889 return status;
890 out_release:
891 cache_page_release(desc);
892 goto out;
893}
894
895/* The file offset position represents the dirent entry number. A
896 last cookie cache takes care of the common case of reading the
897 whole directory.
898 */
899static int nfs_readdir(struct file *file, struct dir_context *ctx)
900{
901 struct dentry *dentry = file_dentry(file);
902 struct inode *inode = d_inode(dentry);
903 nfs_readdir_descriptor_t my_desc,
904 *desc = &my_desc;
905 struct nfs_open_dir_context *dir_ctx = file->private_data;
906 int res = 0;
907
908 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
909 file, (long long)ctx->pos);
910 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
911
912 /*
913 * ctx->pos points to the dirent entry number.
914 * *desc->dir_cookie has the cookie for the next entry. We have
915 * to either find the entry with the appropriate number or
916 * revalidate the cookie.
917 */
918 memset(desc, 0, sizeof(*desc));
919
920 desc->file = file;
921 desc->ctx = ctx;
922 desc->dir_cookie = &dir_ctx->dir_cookie;
923 desc->decode = NFS_PROTO(inode)->decode_dirent;
924 desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0;
925
926 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
927 res = nfs_revalidate_mapping(inode, file->f_mapping);
928 if (res < 0)
929 goto out;
930
931 do {
932 res = readdir_search_pagecache(desc);
933
934 if (res == -EBADCOOKIE) {
935 res = 0;
936 /* This means either end of directory */
937 if (*desc->dir_cookie && desc->eof == 0) {
938 /* Or that the server has 'lost' a cookie */
939 res = uncached_readdir(desc);
940 if (res == 0)
941 continue;
942 }
943 break;
944 }
945 if (res == -ETOOSMALL && desc->plus) {
946 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
947 nfs_zap_caches(inode);
948 desc->page_index = 0;
949 desc->plus = 0;
950 desc->eof = 0;
951 continue;
952 }
953 if (res < 0)
954 break;
955
956 res = nfs_do_filldir(desc);
957 if (res < 0)
958 break;
959 } while (!desc->eof);
960out:
961 if (res > 0)
962 res = 0;
963 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
964 return res;
965}
966
967static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
968{
969 struct nfs_open_dir_context *dir_ctx = filp->private_data;
970
971 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
972 filp, offset, whence);
973
974 switch (whence) {
975 case 1:
976 offset += filp->f_pos;
977 case 0:
978 if (offset >= 0)
979 break;
980 default:
981 return -EINVAL;
982 }
983 if (offset != filp->f_pos) {
984 filp->f_pos = offset;
985 dir_ctx->dir_cookie = 0;
986 dir_ctx->duped = 0;
987 }
988 return offset;
989}
990
991/*
992 * All directory operations under NFS are synchronous, so fsync()
993 * is a dummy operation.
994 */
995static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
996 int datasync)
997{
998 struct inode *inode = file_inode(filp);
999
1000 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1001
1002 inode_lock(inode);
1003 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
1004 inode_unlock(inode);
1005 return 0;
1006}
1007
1008/**
1009 * nfs_force_lookup_revalidate - Mark the directory as having changed
1010 * @dir - pointer to directory inode
1011 *
1012 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1013 * full lookup on all child dentries of 'dir' whenever a change occurs
1014 * on the server that might have invalidated our dcache.
1015 *
1016 * The caller should be holding dir->i_lock
1017 */
1018void nfs_force_lookup_revalidate(struct inode *dir)
1019{
1020 NFS_I(dir)->cache_change_attribute++;
1021}
1022EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1023
1024/*
1025 * A check for whether or not the parent directory has changed.
1026 * In the case it has, we assume that the dentries are untrustworthy
1027 * and may need to be looked up again.
1028 * If rcu_walk prevents us from performing a full check, return 0.
1029 */
1030static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1031 int rcu_walk)
1032{
1033 if (IS_ROOT(dentry))
1034 return 1;
1035 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1036 return 0;
1037 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1038 return 0;
1039 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1040 if (nfs_mapping_need_revalidate_inode(dir)) {
1041 if (rcu_walk)
1042 return 0;
1043 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1044 return 0;
1045 }
1046 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1047 return 0;
1048 return 1;
1049}
1050
1051/*
1052 * Use intent information to check whether or not we're going to do
1053 * an O_EXCL create using this path component.
1054 */
1055static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1056{
1057 if (NFS_PROTO(dir)->version == 2)
1058 return 0;
1059 return flags & LOOKUP_EXCL;
1060}
1061
1062/*
1063 * Inode and filehandle revalidation for lookups.
1064 *
1065 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1066 * or if the intent information indicates that we're about to open this
1067 * particular file and the "nocto" mount flag is not set.
1068 *
1069 */
1070static
1071int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1072{
1073 struct nfs_server *server = NFS_SERVER(inode);
1074 int ret;
1075
1076 if (IS_AUTOMOUNT(inode))
1077 return 0;
1078 /* VFS wants an on-the-wire revalidation */
1079 if (flags & LOOKUP_REVAL)
1080 goto out_force;
1081 /* This is an open(2) */
1082 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1083 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1084 goto out_force;
1085out:
1086 return (inode->i_nlink == 0) ? -ENOENT : 0;
1087out_force:
1088 if (flags & LOOKUP_RCU)
1089 return -ECHILD;
1090 ret = __nfs_revalidate_inode(server, inode);
1091 if (ret != 0)
1092 return ret;
1093 goto out;
1094}
1095
1096/*
1097 * We judge how long we want to trust negative
1098 * dentries by looking at the parent inode mtime.
1099 *
1100 * If parent mtime has changed, we revalidate, else we wait for a
1101 * period corresponding to the parent's attribute cache timeout value.
1102 *
1103 * If LOOKUP_RCU prevents us from performing a full check, return 1
1104 * suggesting a reval is needed.
1105 */
1106static inline
1107int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1108 unsigned int flags)
1109{
1110 /* Don't revalidate a negative dentry if we're creating a new file */
1111 if (flags & LOOKUP_CREATE)
1112 return 0;
1113 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1114 return 1;
1115 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1116}
1117
1118/*
1119 * This is called every time the dcache has a lookup hit,
1120 * and we should check whether we can really trust that
1121 * lookup.
1122 *
1123 * NOTE! The hit can be a negative hit too, don't assume
1124 * we have an inode!
1125 *
1126 * If the parent directory is seen to have changed, we throw out the
1127 * cached dentry and do a new lookup.
1128 */
1129static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1130{
1131 struct inode *dir;
1132 struct inode *inode;
1133 struct dentry *parent;
1134 struct nfs_fh *fhandle = NULL;
1135 struct nfs_fattr *fattr = NULL;
1136 struct nfs4_label *label = NULL;
1137 int error;
1138
1139 if (flags & LOOKUP_RCU) {
1140 parent = ACCESS_ONCE(dentry->d_parent);
1141 dir = d_inode_rcu(parent);
1142 if (!dir)
1143 return -ECHILD;
1144 } else {
1145 parent = dget_parent(dentry);
1146 dir = d_inode(parent);
1147 }
1148 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1149 inode = d_inode(dentry);
1150
1151 if (!inode) {
1152 if (nfs_neg_need_reval(dir, dentry, flags)) {
1153 if (flags & LOOKUP_RCU)
1154 return -ECHILD;
1155 goto out_bad;
1156 }
1157 goto out_valid;
1158 }
1159
1160 if (is_bad_inode(inode)) {
1161 if (flags & LOOKUP_RCU)
1162 return -ECHILD;
1163 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1164 __func__, dentry);
1165 goto out_bad;
1166 }
1167
1168 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1169 goto out_set_verifier;
1170
1171 /* Force a full look up iff the parent directory has changed */
1172 if (!nfs_is_exclusive_create(dir, flags) &&
1173 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1174
1175 if (nfs_lookup_verify_inode(inode, flags)) {
1176 if (flags & LOOKUP_RCU)
1177 return -ECHILD;
1178 goto out_zap_parent;
1179 }
1180 nfs_advise_use_readdirplus(dir);
1181 goto out_valid;
1182 }
1183
1184 if (flags & LOOKUP_RCU)
1185 return -ECHILD;
1186
1187 if (NFS_STALE(inode))
1188 goto out_bad;
1189
1190 error = -ENOMEM;
1191 fhandle = nfs_alloc_fhandle();
1192 fattr = nfs_alloc_fattr();
1193 if (fhandle == NULL || fattr == NULL)
1194 goto out_error;
1195
1196 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1197 if (IS_ERR(label))
1198 goto out_error;
1199
1200 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1201 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1202 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1203 if (error)
1204 goto out_bad;
1205 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1206 goto out_bad;
1207 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1208 goto out_bad;
1209
1210 nfs_setsecurity(inode, fattr, label);
1211
1212 nfs_free_fattr(fattr);
1213 nfs_free_fhandle(fhandle);
1214 nfs4_label_free(label);
1215
1216 /* set a readdirplus hint that we had a cache miss */
1217 nfs_force_use_readdirplus(dir);
1218
1219out_set_verifier:
1220 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1221 out_valid:
1222 if (flags & LOOKUP_RCU) {
1223 if (parent != ACCESS_ONCE(dentry->d_parent))
1224 return -ECHILD;
1225 } else
1226 dput(parent);
1227 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1228 __func__, dentry);
1229 return 1;
1230out_zap_parent:
1231 nfs_zap_caches(dir);
1232 out_bad:
1233 WARN_ON(flags & LOOKUP_RCU);
1234 nfs_free_fattr(fattr);
1235 nfs_free_fhandle(fhandle);
1236 nfs4_label_free(label);
1237 nfs_mark_for_revalidate(dir);
1238 if (inode && S_ISDIR(inode->i_mode)) {
1239 /* Purge readdir caches. */
1240 nfs_zap_caches(inode);
1241 /*
1242 * We can't d_drop the root of a disconnected tree:
1243 * its d_hash is on the s_anon list and d_drop() would hide
1244 * it from shrink_dcache_for_unmount(), leading to busy
1245 * inodes on unmount and further oopses.
1246 */
1247 if (IS_ROOT(dentry))
1248 goto out_valid;
1249 }
1250 dput(parent);
1251 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1252 __func__, dentry);
1253 return 0;
1254out_error:
1255 WARN_ON(flags & LOOKUP_RCU);
1256 nfs_free_fattr(fattr);
1257 nfs_free_fhandle(fhandle);
1258 nfs4_label_free(label);
1259 dput(parent);
1260 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1261 __func__, dentry, error);
1262 return error;
1263}
1264
1265/*
1266 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1267 * when we don't really care about the dentry name. This is called when a
1268 * pathwalk ends on a dentry that was not found via a normal lookup in the
1269 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1270 *
1271 * In this situation, we just want to verify that the inode itself is OK
1272 * since the dentry might have changed on the server.
1273 */
1274static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1275{
1276 struct inode *inode = d_inode(dentry);
1277 int error = 0;
1278
1279 /*
1280 * I believe we can only get a negative dentry here in the case of a
1281 * procfs-style symlink. Just assume it's correct for now, but we may
1282 * eventually need to do something more here.
1283 */
1284 if (!inode) {
1285 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1286 __func__, dentry);
1287 return 1;
1288 }
1289
1290 if (is_bad_inode(inode)) {
1291 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1292 __func__, dentry);
1293 return 0;
1294 }
1295
1296 if (nfs_mapping_need_revalidate_inode(inode))
1297 error = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
1298 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1299 __func__, inode->i_ino, error ? "invalid" : "valid");
1300 return !error;
1301}
1302
1303/*
1304 * This is called from dput() when d_count is going to 0.
1305 */
1306static int nfs_dentry_delete(const struct dentry *dentry)
1307{
1308 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1309 dentry, dentry->d_flags);
1310
1311 /* Unhash any dentry with a stale inode */
1312 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1313 return 1;
1314
1315 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1316 /* Unhash it, so that ->d_iput() would be called */
1317 return 1;
1318 }
1319 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1320 /* Unhash it, so that ancestors of killed async unlink
1321 * files will be cleaned up during umount */
1322 return 1;
1323 }
1324 return 0;
1325
1326}
1327
1328/* Ensure that we revalidate inode->i_nlink */
1329static void nfs_drop_nlink(struct inode *inode)
1330{
1331 spin_lock(&inode->i_lock);
1332 /* drop the inode if we're reasonably sure this is the last link */
1333 if (inode->i_nlink == 1)
1334 clear_nlink(inode);
1335 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1336 spin_unlock(&inode->i_lock);
1337}
1338
1339/*
1340 * Called when the dentry loses inode.
1341 * We use it to clean up silly-renamed files.
1342 */
1343static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1344{
1345 if (S_ISDIR(inode->i_mode))
1346 /* drop any readdir cache as it could easily be old */
1347 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1348
1349 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1350 nfs_complete_unlink(dentry, inode);
1351 nfs_drop_nlink(inode);
1352 }
1353 iput(inode);
1354}
1355
1356static void nfs_d_release(struct dentry *dentry)
1357{
1358 /* free cached devname value, if it survived that far */
1359 if (unlikely(dentry->d_fsdata)) {
1360 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1361 WARN_ON(1);
1362 else
1363 kfree(dentry->d_fsdata);
1364 }
1365}
1366
1367const struct dentry_operations nfs_dentry_operations = {
1368 .d_revalidate = nfs_lookup_revalidate,
1369 .d_weak_revalidate = nfs_weak_revalidate,
1370 .d_delete = nfs_dentry_delete,
1371 .d_iput = nfs_dentry_iput,
1372 .d_automount = nfs_d_automount,
1373 .d_release = nfs_d_release,
1374};
1375EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1376
1377struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1378{
1379 struct dentry *res;
1380 struct inode *inode = NULL;
1381 struct nfs_fh *fhandle = NULL;
1382 struct nfs_fattr *fattr = NULL;
1383 struct nfs4_label *label = NULL;
1384 int error;
1385
1386 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1387 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1388
1389 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1390 return ERR_PTR(-ENAMETOOLONG);
1391
1392 /*
1393 * If we're doing an exclusive create, optimize away the lookup
1394 * but don't hash the dentry.
1395 */
1396 if (nfs_is_exclusive_create(dir, flags))
1397 return NULL;
1398
1399 res = ERR_PTR(-ENOMEM);
1400 fhandle = nfs_alloc_fhandle();
1401 fattr = nfs_alloc_fattr();
1402 if (fhandle == NULL || fattr == NULL)
1403 goto out;
1404
1405 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1406 if (IS_ERR(label))
1407 goto out;
1408
1409 trace_nfs_lookup_enter(dir, dentry, flags);
1410 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1411 if (error == -ENOENT)
1412 goto no_entry;
1413 if (error < 0) {
1414 res = ERR_PTR(error);
1415 goto out_label;
1416 }
1417 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1418 res = ERR_CAST(inode);
1419 if (IS_ERR(res))
1420 goto out_label;
1421
1422 /* Notify readdir to use READDIRPLUS */
1423 nfs_force_use_readdirplus(dir);
1424
1425no_entry:
1426 res = d_splice_alias(inode, dentry);
1427 if (res != NULL) {
1428 if (IS_ERR(res))
1429 goto out_label;
1430 dentry = res;
1431 }
1432 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1433out_label:
1434 trace_nfs_lookup_exit(dir, dentry, flags, error);
1435 nfs4_label_free(label);
1436out:
1437 nfs_free_fattr(fattr);
1438 nfs_free_fhandle(fhandle);
1439 return res;
1440}
1441EXPORT_SYMBOL_GPL(nfs_lookup);
1442
1443#if IS_ENABLED(CONFIG_NFS_V4)
1444static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1445
1446const struct dentry_operations nfs4_dentry_operations = {
1447 .d_revalidate = nfs4_lookup_revalidate,
1448 .d_delete = nfs_dentry_delete,
1449 .d_iput = nfs_dentry_iput,
1450 .d_automount = nfs_d_automount,
1451 .d_release = nfs_d_release,
1452};
1453EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1454
1455static fmode_t flags_to_mode(int flags)
1456{
1457 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1458 if ((flags & O_ACCMODE) != O_WRONLY)
1459 res |= FMODE_READ;
1460 if ((flags & O_ACCMODE) != O_RDONLY)
1461 res |= FMODE_WRITE;
1462 return res;
1463}
1464
1465static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1466{
1467 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1468}
1469
1470static int do_open(struct inode *inode, struct file *filp)
1471{
1472 nfs_fscache_open_file(inode, filp);
1473 return 0;
1474}
1475
1476static int nfs_finish_open(struct nfs_open_context *ctx,
1477 struct dentry *dentry,
1478 struct file *file, unsigned open_flags,
1479 int *opened)
1480{
1481 int err;
1482
1483 err = finish_open(file, dentry, do_open, opened);
1484 if (err)
1485 goto out;
1486 nfs_file_set_open_context(file, ctx);
1487
1488out:
1489 return err;
1490}
1491
1492int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1493 struct file *file, unsigned open_flags,
1494 umode_t mode, int *opened)
1495{
1496 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1497 struct nfs_open_context *ctx;
1498 struct dentry *res;
1499 struct iattr attr = { .ia_valid = ATTR_OPEN };
1500 struct inode *inode;
1501 unsigned int lookup_flags = 0;
1502 bool switched = false;
1503 int err;
1504
1505 /* Expect a negative dentry */
1506 BUG_ON(d_inode(dentry));
1507
1508 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1509 dir->i_sb->s_id, dir->i_ino, dentry);
1510
1511 err = nfs_check_flags(open_flags);
1512 if (err)
1513 return err;
1514
1515 /* NFS only supports OPEN on regular files */
1516 if ((open_flags & O_DIRECTORY)) {
1517 if (!d_in_lookup(dentry)) {
1518 /*
1519 * Hashed negative dentry with O_DIRECTORY: dentry was
1520 * revalidated and is fine, no need to perform lookup
1521 * again
1522 */
1523 return -ENOENT;
1524 }
1525 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1526 goto no_open;
1527 }
1528
1529 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1530 return -ENAMETOOLONG;
1531
1532 if (open_flags & O_CREAT) {
1533 struct nfs_server *server = NFS_SERVER(dir);
1534
1535 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1536 mode &= ~current_umask();
1537
1538 attr.ia_valid |= ATTR_MODE;
1539 attr.ia_mode = mode;
1540 }
1541 if (open_flags & O_TRUNC) {
1542 attr.ia_valid |= ATTR_SIZE;
1543 attr.ia_size = 0;
1544 }
1545
1546 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1547 d_drop(dentry);
1548 switched = true;
1549 dentry = d_alloc_parallel(dentry->d_parent,
1550 &dentry->d_name, &wq);
1551 if (IS_ERR(dentry))
1552 return PTR_ERR(dentry);
1553 if (unlikely(!d_in_lookup(dentry)))
1554 return finish_no_open(file, dentry);
1555 }
1556
1557 ctx = create_nfs_open_context(dentry, open_flags, file);
1558 err = PTR_ERR(ctx);
1559 if (IS_ERR(ctx))
1560 goto out;
1561
1562 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1563 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
1564 if (IS_ERR(inode)) {
1565 err = PTR_ERR(inode);
1566 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1567 put_nfs_open_context(ctx);
1568 d_drop(dentry);
1569 switch (err) {
1570 case -ENOENT:
1571 d_add(dentry, NULL);
1572 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1573 break;
1574 case -EISDIR:
1575 case -ENOTDIR:
1576 goto no_open;
1577 case -ELOOP:
1578 if (!(open_flags & O_NOFOLLOW))
1579 goto no_open;
1580 break;
1581 /* case -EINVAL: */
1582 default:
1583 break;
1584 }
1585 goto out;
1586 }
1587
1588 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1589 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1590 put_nfs_open_context(ctx);
1591out:
1592 if (unlikely(switched)) {
1593 d_lookup_done(dentry);
1594 dput(dentry);
1595 }
1596 return err;
1597
1598no_open:
1599 res = nfs_lookup(dir, dentry, lookup_flags);
1600 if (switched) {
1601 d_lookup_done(dentry);
1602 if (!res)
1603 res = dentry;
1604 else
1605 dput(dentry);
1606 }
1607 if (IS_ERR(res))
1608 return PTR_ERR(res);
1609 return finish_no_open(file, res);
1610}
1611EXPORT_SYMBOL_GPL(nfs_atomic_open);
1612
1613static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1614{
1615 struct inode *inode;
1616 int ret = 0;
1617
1618 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1619 goto no_open;
1620 if (d_mountpoint(dentry))
1621 goto no_open;
1622 if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1623 goto no_open;
1624
1625 inode = d_inode(dentry);
1626
1627 /* We can't create new files in nfs_open_revalidate(), so we
1628 * optimize away revalidation of negative dentries.
1629 */
1630 if (inode == NULL) {
1631 struct dentry *parent;
1632 struct inode *dir;
1633
1634 if (flags & LOOKUP_RCU) {
1635 parent = ACCESS_ONCE(dentry->d_parent);
1636 dir = d_inode_rcu(parent);
1637 if (!dir)
1638 return -ECHILD;
1639 } else {
1640 parent = dget_parent(dentry);
1641 dir = d_inode(parent);
1642 }
1643 if (!nfs_neg_need_reval(dir, dentry, flags))
1644 ret = 1;
1645 else if (flags & LOOKUP_RCU)
1646 ret = -ECHILD;
1647 if (!(flags & LOOKUP_RCU))
1648 dput(parent);
1649 else if (parent != ACCESS_ONCE(dentry->d_parent))
1650 return -ECHILD;
1651 goto out;
1652 }
1653
1654 /* NFS only supports OPEN on regular files */
1655 if (!S_ISREG(inode->i_mode))
1656 goto no_open;
1657 /* We cannot do exclusive creation on a positive dentry */
1658 if (flags & LOOKUP_EXCL)
1659 goto no_open;
1660
1661 /* Let f_op->open() actually open (and revalidate) the file */
1662 ret = 1;
1663
1664out:
1665 return ret;
1666
1667no_open:
1668 return nfs_lookup_revalidate(dentry, flags);
1669}
1670
1671#endif /* CONFIG_NFSV4 */
1672
1673/*
1674 * Code common to create, mkdir, and mknod.
1675 */
1676int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1677 struct nfs_fattr *fattr,
1678 struct nfs4_label *label)
1679{
1680 struct dentry *parent = dget_parent(dentry);
1681 struct inode *dir = d_inode(parent);
1682 struct inode *inode;
1683 int error = -EACCES;
1684
1685 d_drop(dentry);
1686
1687 /* We may have been initialized further down */
1688 if (d_really_is_positive(dentry))
1689 goto out;
1690 if (fhandle->size == 0) {
1691 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1692 if (error)
1693 goto out_error;
1694 }
1695 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1696 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1697 struct nfs_server *server = NFS_SB(dentry->d_sb);
1698 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1699 if (error < 0)
1700 goto out_error;
1701 }
1702 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1703 error = PTR_ERR(inode);
1704 if (IS_ERR(inode))
1705 goto out_error;
1706 d_add(dentry, inode);
1707out:
1708 dput(parent);
1709 return 0;
1710out_error:
1711 nfs_mark_for_revalidate(dir);
1712 dput(parent);
1713 return error;
1714}
1715EXPORT_SYMBOL_GPL(nfs_instantiate);
1716
1717/*
1718 * Following a failed create operation, we drop the dentry rather
1719 * than retain a negative dentry. This avoids a problem in the event
1720 * that the operation succeeded on the server, but an error in the
1721 * reply path made it appear to have failed.
1722 */
1723int nfs_create(struct inode *dir, struct dentry *dentry,
1724 umode_t mode, bool excl)
1725{
1726 struct iattr attr;
1727 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1728 int error;
1729
1730 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1731 dir->i_sb->s_id, dir->i_ino, dentry);
1732
1733 attr.ia_mode = mode;
1734 attr.ia_valid = ATTR_MODE;
1735
1736 trace_nfs_create_enter(dir, dentry, open_flags);
1737 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1738 trace_nfs_create_exit(dir, dentry, open_flags, error);
1739 if (error != 0)
1740 goto out_err;
1741 return 0;
1742out_err:
1743 d_drop(dentry);
1744 return error;
1745}
1746EXPORT_SYMBOL_GPL(nfs_create);
1747
1748/*
1749 * See comments for nfs_proc_create regarding failed operations.
1750 */
1751int
1752nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1753{
1754 struct iattr attr;
1755 int status;
1756
1757 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1758 dir->i_sb->s_id, dir->i_ino, dentry);
1759
1760 attr.ia_mode = mode;
1761 attr.ia_valid = ATTR_MODE;
1762
1763 trace_nfs_mknod_enter(dir, dentry);
1764 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1765 trace_nfs_mknod_exit(dir, dentry, status);
1766 if (status != 0)
1767 goto out_err;
1768 return 0;
1769out_err:
1770 d_drop(dentry);
1771 return status;
1772}
1773EXPORT_SYMBOL_GPL(nfs_mknod);
1774
1775/*
1776 * See comments for nfs_proc_create regarding failed operations.
1777 */
1778int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1779{
1780 struct iattr attr;
1781 int error;
1782
1783 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1784 dir->i_sb->s_id, dir->i_ino, dentry);
1785
1786 attr.ia_valid = ATTR_MODE;
1787 attr.ia_mode = mode | S_IFDIR;
1788
1789 trace_nfs_mkdir_enter(dir, dentry);
1790 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1791 trace_nfs_mkdir_exit(dir, dentry, error);
1792 if (error != 0)
1793 goto out_err;
1794 return 0;
1795out_err:
1796 d_drop(dentry);
1797 return error;
1798}
1799EXPORT_SYMBOL_GPL(nfs_mkdir);
1800
1801static void nfs_dentry_handle_enoent(struct dentry *dentry)
1802{
1803 if (simple_positive(dentry))
1804 d_delete(dentry);
1805}
1806
1807int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1808{
1809 int error;
1810
1811 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1812 dir->i_sb->s_id, dir->i_ino, dentry);
1813
1814 trace_nfs_rmdir_enter(dir, dentry);
1815 if (d_really_is_positive(dentry)) {
1816 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1817 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1818 /* Ensure the VFS deletes this inode */
1819 switch (error) {
1820 case 0:
1821 clear_nlink(d_inode(dentry));
1822 break;
1823 case -ENOENT:
1824 nfs_dentry_handle_enoent(dentry);
1825 }
1826 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1827 } else
1828 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1829 trace_nfs_rmdir_exit(dir, dentry, error);
1830
1831 return error;
1832}
1833EXPORT_SYMBOL_GPL(nfs_rmdir);
1834
1835/*
1836 * Remove a file after making sure there are no pending writes,
1837 * and after checking that the file has only one user.
1838 *
1839 * We invalidate the attribute cache and free the inode prior to the operation
1840 * to avoid possible races if the server reuses the inode.
1841 */
1842static int nfs_safe_remove(struct dentry *dentry)
1843{
1844 struct inode *dir = d_inode(dentry->d_parent);
1845 struct inode *inode = d_inode(dentry);
1846 int error = -EBUSY;
1847
1848 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1849
1850 /* If the dentry was sillyrenamed, we simply call d_delete() */
1851 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1852 error = 0;
1853 goto out;
1854 }
1855
1856 trace_nfs_remove_enter(dir, dentry);
1857 if (inode != NULL) {
1858 NFS_PROTO(inode)->return_delegation(inode);
1859 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1860 if (error == 0)
1861 nfs_drop_nlink(inode);
1862 } else
1863 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1864 if (error == -ENOENT)
1865 nfs_dentry_handle_enoent(dentry);
1866 trace_nfs_remove_exit(dir, dentry, error);
1867out:
1868 return error;
1869}
1870
1871/* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1872 * belongs to an active ".nfs..." file and we return -EBUSY.
1873 *
1874 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1875 */
1876int nfs_unlink(struct inode *dir, struct dentry *dentry)
1877{
1878 int error;
1879 int need_rehash = 0;
1880
1881 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1882 dir->i_ino, dentry);
1883
1884 trace_nfs_unlink_enter(dir, dentry);
1885 spin_lock(&dentry->d_lock);
1886 if (d_count(dentry) > 1) {
1887 spin_unlock(&dentry->d_lock);
1888 /* Start asynchronous writeout of the inode */
1889 write_inode_now(d_inode(dentry), 0);
1890 error = nfs_sillyrename(dir, dentry);
1891 goto out;
1892 }
1893 if (!d_unhashed(dentry)) {
1894 __d_drop(dentry);
1895 need_rehash = 1;
1896 }
1897 spin_unlock(&dentry->d_lock);
1898 error = nfs_safe_remove(dentry);
1899 if (!error || error == -ENOENT) {
1900 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1901 } else if (need_rehash)
1902 d_rehash(dentry);
1903out:
1904 trace_nfs_unlink_exit(dir, dentry, error);
1905 return error;
1906}
1907EXPORT_SYMBOL_GPL(nfs_unlink);
1908
1909/*
1910 * To create a symbolic link, most file systems instantiate a new inode,
1911 * add a page to it containing the path, then write it out to the disk
1912 * using prepare_write/commit_write.
1913 *
1914 * Unfortunately the NFS client can't create the in-core inode first
1915 * because it needs a file handle to create an in-core inode (see
1916 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1917 * symlink request has completed on the server.
1918 *
1919 * So instead we allocate a raw page, copy the symname into it, then do
1920 * the SYMLINK request with the page as the buffer. If it succeeds, we
1921 * now have a new file handle and can instantiate an in-core NFS inode
1922 * and move the raw page into its mapping.
1923 */
1924int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1925{
1926 struct page *page;
1927 char *kaddr;
1928 struct iattr attr;
1929 unsigned int pathlen = strlen(symname);
1930 int error;
1931
1932 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1933 dir->i_ino, dentry, symname);
1934
1935 if (pathlen > PAGE_SIZE)
1936 return -ENAMETOOLONG;
1937
1938 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1939 attr.ia_valid = ATTR_MODE;
1940
1941 page = alloc_page(GFP_USER);
1942 if (!page)
1943 return -ENOMEM;
1944
1945 kaddr = page_address(page);
1946 memcpy(kaddr, symname, pathlen);
1947 if (pathlen < PAGE_SIZE)
1948 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1949
1950 trace_nfs_symlink_enter(dir, dentry);
1951 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1952 trace_nfs_symlink_exit(dir, dentry, error);
1953 if (error != 0) {
1954 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1955 dir->i_sb->s_id, dir->i_ino,
1956 dentry, symname, error);
1957 d_drop(dentry);
1958 __free_page(page);
1959 return error;
1960 }
1961
1962 /*
1963 * No big deal if we can't add this page to the page cache here.
1964 * READLINK will get the missing page from the server if needed.
1965 */
1966 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
1967 GFP_KERNEL)) {
1968 SetPageUptodate(page);
1969 unlock_page(page);
1970 /*
1971 * add_to_page_cache_lru() grabs an extra page refcount.
1972 * Drop it here to avoid leaking this page later.
1973 */
1974 put_page(page);
1975 } else
1976 __free_page(page);
1977
1978 return 0;
1979}
1980EXPORT_SYMBOL_GPL(nfs_symlink);
1981
1982int
1983nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1984{
1985 struct inode *inode = d_inode(old_dentry);
1986 int error;
1987
1988 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1989 old_dentry, dentry);
1990
1991 trace_nfs_link_enter(inode, dir, dentry);
1992 NFS_PROTO(inode)->return_delegation(inode);
1993
1994 d_drop(dentry);
1995 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1996 if (error == 0) {
1997 ihold(inode);
1998 d_add(dentry, inode);
1999 }
2000 trace_nfs_link_exit(inode, dir, dentry, error);
2001 return error;
2002}
2003EXPORT_SYMBOL_GPL(nfs_link);
2004
2005/*
2006 * RENAME
2007 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2008 * different file handle for the same inode after a rename (e.g. when
2009 * moving to a different directory). A fail-safe method to do so would
2010 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2011 * rename the old file using the sillyrename stuff. This way, the original
2012 * file in old_dir will go away when the last process iput()s the inode.
2013 *
2014 * FIXED.
2015 *
2016 * It actually works quite well. One needs to have the possibility for
2017 * at least one ".nfs..." file in each directory the file ever gets
2018 * moved or linked to which happens automagically with the new
2019 * implementation that only depends on the dcache stuff instead of
2020 * using the inode layer
2021 *
2022 * Unfortunately, things are a little more complicated than indicated
2023 * above. For a cross-directory move, we want to make sure we can get
2024 * rid of the old inode after the operation. This means there must be
2025 * no pending writes (if it's a file), and the use count must be 1.
2026 * If these conditions are met, we can drop the dentries before doing
2027 * the rename.
2028 */
2029int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2030 struct inode *new_dir, struct dentry *new_dentry,
2031 unsigned int flags)
2032{
2033 struct inode *old_inode = d_inode(old_dentry);
2034 struct inode *new_inode = d_inode(new_dentry);
2035 struct dentry *dentry = NULL, *rehash = NULL;
2036 struct rpc_task *task;
2037 int error = -EBUSY;
2038
2039 if (flags)
2040 return -EINVAL;
2041
2042 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2043 old_dentry, new_dentry,
2044 d_count(new_dentry));
2045
2046 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2047 /*
2048 * For non-directories, check whether the target is busy and if so,
2049 * make a copy of the dentry and then do a silly-rename. If the
2050 * silly-rename succeeds, the copied dentry is hashed and becomes
2051 * the new target.
2052 */
2053 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2054 /*
2055 * To prevent any new references to the target during the
2056 * rename, we unhash the dentry in advance.
2057 */
2058 if (!d_unhashed(new_dentry)) {
2059 d_drop(new_dentry);
2060 rehash = new_dentry;
2061 }
2062
2063 if (d_count(new_dentry) > 2) {
2064 int err;
2065
2066 /* copy the target dentry's name */
2067 dentry = d_alloc(new_dentry->d_parent,
2068 &new_dentry->d_name);
2069 if (!dentry)
2070 goto out;
2071
2072 /* silly-rename the existing target ... */
2073 err = nfs_sillyrename(new_dir, new_dentry);
2074 if (err)
2075 goto out;
2076
2077 new_dentry = dentry;
2078 rehash = NULL;
2079 new_inode = NULL;
2080 }
2081 }
2082
2083 NFS_PROTO(old_inode)->return_delegation(old_inode);
2084 if (new_inode != NULL)
2085 NFS_PROTO(new_inode)->return_delegation(new_inode);
2086
2087 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2088 if (IS_ERR(task)) {
2089 error = PTR_ERR(task);
2090 goto out;
2091 }
2092
2093 error = rpc_wait_for_completion_task(task);
2094 if (error == 0)
2095 error = task->tk_status;
2096 rpc_put_task(task);
2097 nfs_mark_for_revalidate(old_inode);
2098out:
2099 if (rehash)
2100 d_rehash(rehash);
2101 trace_nfs_rename_exit(old_dir, old_dentry,
2102 new_dir, new_dentry, error);
2103 if (!error) {
2104 if (new_inode != NULL)
2105 nfs_drop_nlink(new_inode);
2106 d_move(old_dentry, new_dentry);
2107 nfs_set_verifier(new_dentry,
2108 nfs_save_change_attribute(new_dir));
2109 } else if (error == -ENOENT)
2110 nfs_dentry_handle_enoent(old_dentry);
2111
2112 /* new dentry created? */
2113 if (dentry)
2114 dput(dentry);
2115 return error;
2116}
2117EXPORT_SYMBOL_GPL(nfs_rename);
2118
2119static DEFINE_SPINLOCK(nfs_access_lru_lock);
2120static LIST_HEAD(nfs_access_lru_list);
2121static atomic_long_t nfs_access_nr_entries;
2122
2123static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2124module_param(nfs_access_max_cachesize, ulong, 0644);
2125MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2126
2127static void nfs_access_free_entry(struct nfs_access_entry *entry)
2128{
2129 put_rpccred(entry->cred);
2130 kfree_rcu(entry, rcu_head);
2131 smp_mb__before_atomic();
2132 atomic_long_dec(&nfs_access_nr_entries);
2133 smp_mb__after_atomic();
2134}
2135
2136static void nfs_access_free_list(struct list_head *head)
2137{
2138 struct nfs_access_entry *cache;
2139
2140 while (!list_empty(head)) {
2141 cache = list_entry(head->next, struct nfs_access_entry, lru);
2142 list_del(&cache->lru);
2143 nfs_access_free_entry(cache);
2144 }
2145}
2146
2147static unsigned long
2148nfs_do_access_cache_scan(unsigned int nr_to_scan)
2149{
2150 LIST_HEAD(head);
2151 struct nfs_inode *nfsi, *next;
2152 struct nfs_access_entry *cache;
2153 long freed = 0;
2154
2155 spin_lock(&nfs_access_lru_lock);
2156 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2157 struct inode *inode;
2158
2159 if (nr_to_scan-- == 0)
2160 break;
2161 inode = &nfsi->vfs_inode;
2162 spin_lock(&inode->i_lock);
2163 if (list_empty(&nfsi->access_cache_entry_lru))
2164 goto remove_lru_entry;
2165 cache = list_entry(nfsi->access_cache_entry_lru.next,
2166 struct nfs_access_entry, lru);
2167 list_move(&cache->lru, &head);
2168 rb_erase(&cache->rb_node, &nfsi->access_cache);
2169 freed++;
2170 if (!list_empty(&nfsi->access_cache_entry_lru))
2171 list_move_tail(&nfsi->access_cache_inode_lru,
2172 &nfs_access_lru_list);
2173 else {
2174remove_lru_entry:
2175 list_del_init(&nfsi->access_cache_inode_lru);
2176 smp_mb__before_atomic();
2177 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2178 smp_mb__after_atomic();
2179 }
2180 spin_unlock(&inode->i_lock);
2181 }
2182 spin_unlock(&nfs_access_lru_lock);
2183 nfs_access_free_list(&head);
2184 return freed;
2185}
2186
2187unsigned long
2188nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2189{
2190 int nr_to_scan = sc->nr_to_scan;
2191 gfp_t gfp_mask = sc->gfp_mask;
2192
2193 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2194 return SHRINK_STOP;
2195 return nfs_do_access_cache_scan(nr_to_scan);
2196}
2197
2198
2199unsigned long
2200nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2201{
2202 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2203}
2204
2205static void
2206nfs_access_cache_enforce_limit(void)
2207{
2208 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2209 unsigned long diff;
2210 unsigned int nr_to_scan;
2211
2212 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2213 return;
2214 nr_to_scan = 100;
2215 diff = nr_entries - nfs_access_max_cachesize;
2216 if (diff < nr_to_scan)
2217 nr_to_scan = diff;
2218 nfs_do_access_cache_scan(nr_to_scan);
2219}
2220
2221static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2222{
2223 struct rb_root *root_node = &nfsi->access_cache;
2224 struct rb_node *n;
2225 struct nfs_access_entry *entry;
2226
2227 /* Unhook entries from the cache */
2228 while ((n = rb_first(root_node)) != NULL) {
2229 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2230 rb_erase(n, root_node);
2231 list_move(&entry->lru, head);
2232 }
2233 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2234}
2235
2236void nfs_access_zap_cache(struct inode *inode)
2237{
2238 LIST_HEAD(head);
2239
2240 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2241 return;
2242 /* Remove from global LRU init */
2243 spin_lock(&nfs_access_lru_lock);
2244 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2245 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2246
2247 spin_lock(&inode->i_lock);
2248 __nfs_access_zap_cache(NFS_I(inode), &head);
2249 spin_unlock(&inode->i_lock);
2250 spin_unlock(&nfs_access_lru_lock);
2251 nfs_access_free_list(&head);
2252}
2253EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2254
2255static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2256{
2257 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2258 struct nfs_access_entry *entry;
2259
2260 while (n != NULL) {
2261 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2262
2263 if (cred < entry->cred)
2264 n = n->rb_left;
2265 else if (cred > entry->cred)
2266 n = n->rb_right;
2267 else
2268 return entry;
2269 }
2270 return NULL;
2271}
2272
2273static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res, bool may_block)
2274{
2275 struct nfs_inode *nfsi = NFS_I(inode);
2276 struct nfs_access_entry *cache;
2277 bool retry = true;
2278 int err;
2279
2280 spin_lock(&inode->i_lock);
2281 for(;;) {
2282 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2283 goto out_zap;
2284 cache = nfs_access_search_rbtree(inode, cred);
2285 err = -ENOENT;
2286 if (cache == NULL)
2287 goto out;
2288 /* Found an entry, is our attribute cache valid? */
2289 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2290 break;
2291 err = -ECHILD;
2292 if (!may_block)
2293 goto out;
2294 if (!retry)
2295 goto out_zap;
2296 spin_unlock(&inode->i_lock);
2297 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2298 if (err)
2299 return err;
2300 spin_lock(&inode->i_lock);
2301 retry = false;
2302 }
2303 res->jiffies = cache->jiffies;
2304 res->cred = cache->cred;
2305 res->mask = cache->mask;
2306 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2307 err = 0;
2308out:
2309 spin_unlock(&inode->i_lock);
2310 return err;
2311out_zap:
2312 spin_unlock(&inode->i_lock);
2313 nfs_access_zap_cache(inode);
2314 return -ENOENT;
2315}
2316
2317static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2318{
2319 /* Only check the most recently returned cache entry,
2320 * but do it without locking.
2321 */
2322 struct nfs_inode *nfsi = NFS_I(inode);
2323 struct nfs_access_entry *cache;
2324 int err = -ECHILD;
2325 struct list_head *lh;
2326
2327 rcu_read_lock();
2328 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2329 goto out;
2330 lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2331 cache = list_entry(lh, struct nfs_access_entry, lru);
2332 if (lh == &nfsi->access_cache_entry_lru ||
2333 cred != cache->cred)
2334 cache = NULL;
2335 if (cache == NULL)
2336 goto out;
2337 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2338 goto out;
2339 res->jiffies = cache->jiffies;
2340 res->cred = cache->cred;
2341 res->mask = cache->mask;
2342 err = 0;
2343out:
2344 rcu_read_unlock();
2345 return err;
2346}
2347
2348static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2349{
2350 struct nfs_inode *nfsi = NFS_I(inode);
2351 struct rb_root *root_node = &nfsi->access_cache;
2352 struct rb_node **p = &root_node->rb_node;
2353 struct rb_node *parent = NULL;
2354 struct nfs_access_entry *entry;
2355
2356 spin_lock(&inode->i_lock);
2357 while (*p != NULL) {
2358 parent = *p;
2359 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2360
2361 if (set->cred < entry->cred)
2362 p = &parent->rb_left;
2363 else if (set->cred > entry->cred)
2364 p = &parent->rb_right;
2365 else
2366 goto found;
2367 }
2368 rb_link_node(&set->rb_node, parent, p);
2369 rb_insert_color(&set->rb_node, root_node);
2370 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2371 spin_unlock(&inode->i_lock);
2372 return;
2373found:
2374 rb_replace_node(parent, &set->rb_node, root_node);
2375 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2376 list_del(&entry->lru);
2377 spin_unlock(&inode->i_lock);
2378 nfs_access_free_entry(entry);
2379}
2380
2381void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2382{
2383 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2384 if (cache == NULL)
2385 return;
2386 RB_CLEAR_NODE(&cache->rb_node);
2387 cache->jiffies = set->jiffies;
2388 cache->cred = get_rpccred(set->cred);
2389 cache->mask = set->mask;
2390
2391 /* The above field assignments must be visible
2392 * before this item appears on the lru. We cannot easily
2393 * use rcu_assign_pointer, so just force the memory barrier.
2394 */
2395 smp_wmb();
2396 nfs_access_add_rbtree(inode, cache);
2397
2398 /* Update accounting */
2399 smp_mb__before_atomic();
2400 atomic_long_inc(&nfs_access_nr_entries);
2401 smp_mb__after_atomic();
2402
2403 /* Add inode to global LRU list */
2404 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2405 spin_lock(&nfs_access_lru_lock);
2406 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2407 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2408 &nfs_access_lru_list);
2409 spin_unlock(&nfs_access_lru_lock);
2410 }
2411 nfs_access_cache_enforce_limit();
2412}
2413EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2414
2415void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2416{
2417 entry->mask = 0;
2418 if (access_result & NFS4_ACCESS_READ)
2419 entry->mask |= MAY_READ;
2420 if (access_result &
2421 (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2422 entry->mask |= MAY_WRITE;
2423 if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2424 entry->mask |= MAY_EXEC;
2425}
2426EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2427
2428static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2429{
2430 struct nfs_access_entry cache;
2431 bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2432 int status;
2433
2434 trace_nfs_access_enter(inode);
2435
2436 status = nfs_access_get_cached_rcu(inode, cred, &cache);
2437 if (status != 0)
2438 status = nfs_access_get_cached(inode, cred, &cache, may_block);
2439 if (status == 0)
2440 goto out_cached;
2441
2442 status = -ECHILD;
2443 if (!may_block)
2444 goto out;
2445
2446 /* Be clever: ask server to check for all possible rights */
2447 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2448 cache.cred = cred;
2449 cache.jiffies = jiffies;
2450 status = NFS_PROTO(inode)->access(inode, &cache);
2451 if (status != 0) {
2452 if (status == -ESTALE) {
2453 nfs_zap_caches(inode);
2454 if (!S_ISDIR(inode->i_mode))
2455 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2456 }
2457 goto out;
2458 }
2459 nfs_access_add_cache(inode, &cache);
2460out_cached:
2461 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2462 status = -EACCES;
2463out:
2464 trace_nfs_access_exit(inode, status);
2465 return status;
2466}
2467
2468static int nfs_open_permission_mask(int openflags)
2469{
2470 int mask = 0;
2471
2472 if (openflags & __FMODE_EXEC) {
2473 /* ONLY check exec rights */
2474 mask = MAY_EXEC;
2475 } else {
2476 if ((openflags & O_ACCMODE) != O_WRONLY)
2477 mask |= MAY_READ;
2478 if ((openflags & O_ACCMODE) != O_RDONLY)
2479 mask |= MAY_WRITE;
2480 }
2481
2482 return mask;
2483}
2484
2485int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2486{
2487 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2488}
2489EXPORT_SYMBOL_GPL(nfs_may_open);
2490
2491static int nfs_execute_ok(struct inode *inode, int mask)
2492{
2493 struct nfs_server *server = NFS_SERVER(inode);
2494 int ret = 0;
2495
2496 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) {
2497 if (mask & MAY_NOT_BLOCK)
2498 return -ECHILD;
2499 ret = __nfs_revalidate_inode(server, inode);
2500 }
2501 if (ret == 0 && !execute_ok(inode))
2502 ret = -EACCES;
2503 return ret;
2504}
2505
2506int nfs_permission(struct inode *inode, int mask)
2507{
2508 struct rpc_cred *cred;
2509 int res = 0;
2510
2511 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2512
2513 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2514 goto out;
2515 /* Is this sys_access() ? */
2516 if (mask & (MAY_ACCESS | MAY_CHDIR))
2517 goto force_lookup;
2518
2519 switch (inode->i_mode & S_IFMT) {
2520 case S_IFLNK:
2521 goto out;
2522 case S_IFREG:
2523 if ((mask & MAY_OPEN) &&
2524 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2525 return 0;
2526 break;
2527 case S_IFDIR:
2528 /*
2529 * Optimize away all write operations, since the server
2530 * will check permissions when we perform the op.
2531 */
2532 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2533 goto out;
2534 }
2535
2536force_lookup:
2537 if (!NFS_PROTO(inode)->access)
2538 goto out_notsup;
2539
2540 /* Always try fast lookups first */
2541 rcu_read_lock();
2542 cred = rpc_lookup_cred_nonblock();
2543 if (!IS_ERR(cred))
2544 res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2545 else
2546 res = PTR_ERR(cred);
2547 rcu_read_unlock();
2548 if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2549 /* Fast lookup failed, try the slow way */
2550 cred = rpc_lookup_cred();
2551 if (!IS_ERR(cred)) {
2552 res = nfs_do_access(inode, cred, mask);
2553 put_rpccred(cred);
2554 } else
2555 res = PTR_ERR(cred);
2556 }
2557out:
2558 if (!res && (mask & MAY_EXEC))
2559 res = nfs_execute_ok(inode, mask);
2560
2561 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2562 inode->i_sb->s_id, inode->i_ino, mask, res);
2563 return res;
2564out_notsup:
2565 if (mask & MAY_NOT_BLOCK)
2566 return -ECHILD;
2567
2568 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2569 if (res == 0)
2570 res = generic_permission(inode, mask);
2571 goto out;
2572}
2573EXPORT_SYMBOL_GPL(nfs_permission);
2574
2575/*
2576 * Local variables:
2577 * version-control: t
2578 * kept-new-versions: 5
2579 * End:
2580 */
1/*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20#include <linux/time.h>
21#include <linux/errno.h>
22#include <linux/stat.h>
23#include <linux/fcntl.h>
24#include <linux/string.h>
25#include <linux/kernel.h>
26#include <linux/slab.h>
27#include <linux/mm.h>
28#include <linux/sunrpc/clnt.h>
29#include <linux/nfs_fs.h>
30#include <linux/nfs_mount.h>
31#include <linux/pagemap.h>
32#include <linux/pagevec.h>
33#include <linux/namei.h>
34#include <linux/mount.h>
35#include <linux/sched.h>
36#include <linux/kmemleak.h>
37#include <linux/xattr.h>
38
39#include "delegation.h"
40#include "iostat.h"
41#include "internal.h"
42#include "fscache.h"
43
44/* #define NFS_DEBUG_VERBOSE 1 */
45
46static int nfs_opendir(struct inode *, struct file *);
47static int nfs_closedir(struct inode *, struct file *);
48static int nfs_readdir(struct file *, void *, filldir_t);
49static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
50static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
51static int nfs_mkdir(struct inode *, struct dentry *, int);
52static int nfs_rmdir(struct inode *, struct dentry *);
53static int nfs_unlink(struct inode *, struct dentry *);
54static int nfs_symlink(struct inode *, struct dentry *, const char *);
55static int nfs_link(struct dentry *, struct inode *, struct dentry *);
56static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
57static int nfs_rename(struct inode *, struct dentry *,
58 struct inode *, struct dentry *);
59static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
60static loff_t nfs_llseek_dir(struct file *, loff_t, int);
61static void nfs_readdir_clear_array(struct page*);
62
63const struct file_operations nfs_dir_operations = {
64 .llseek = nfs_llseek_dir,
65 .read = generic_read_dir,
66 .readdir = nfs_readdir,
67 .open = nfs_opendir,
68 .release = nfs_closedir,
69 .fsync = nfs_fsync_dir,
70};
71
72const struct inode_operations nfs_dir_inode_operations = {
73 .create = nfs_create,
74 .lookup = nfs_lookup,
75 .link = nfs_link,
76 .unlink = nfs_unlink,
77 .symlink = nfs_symlink,
78 .mkdir = nfs_mkdir,
79 .rmdir = nfs_rmdir,
80 .mknod = nfs_mknod,
81 .rename = nfs_rename,
82 .permission = nfs_permission,
83 .getattr = nfs_getattr,
84 .setattr = nfs_setattr,
85};
86
87const struct address_space_operations nfs_dir_aops = {
88 .freepage = nfs_readdir_clear_array,
89};
90
91#ifdef CONFIG_NFS_V3
92const struct inode_operations nfs3_dir_inode_operations = {
93 .create = nfs_create,
94 .lookup = nfs_lookup,
95 .link = nfs_link,
96 .unlink = nfs_unlink,
97 .symlink = nfs_symlink,
98 .mkdir = nfs_mkdir,
99 .rmdir = nfs_rmdir,
100 .mknod = nfs_mknod,
101 .rename = nfs_rename,
102 .permission = nfs_permission,
103 .getattr = nfs_getattr,
104 .setattr = nfs_setattr,
105 .listxattr = nfs3_listxattr,
106 .getxattr = nfs3_getxattr,
107 .setxattr = nfs3_setxattr,
108 .removexattr = nfs3_removexattr,
109};
110#endif /* CONFIG_NFS_V3 */
111
112#ifdef CONFIG_NFS_V4
113
114static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
115static int nfs_open_create(struct inode *dir, struct dentry *dentry, int mode, struct nameidata *nd);
116const struct inode_operations nfs4_dir_inode_operations = {
117 .create = nfs_open_create,
118 .lookup = nfs_atomic_lookup,
119 .link = nfs_link,
120 .unlink = nfs_unlink,
121 .symlink = nfs_symlink,
122 .mkdir = nfs_mkdir,
123 .rmdir = nfs_rmdir,
124 .mknod = nfs_mknod,
125 .rename = nfs_rename,
126 .permission = nfs_permission,
127 .getattr = nfs_getattr,
128 .setattr = nfs_setattr,
129 .getxattr = generic_getxattr,
130 .setxattr = generic_setxattr,
131 .listxattr = generic_listxattr,
132 .removexattr = generic_removexattr,
133};
134
135#endif /* CONFIG_NFS_V4 */
136
137static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
138{
139 struct nfs_open_dir_context *ctx;
140 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
141 if (ctx != NULL) {
142 ctx->duped = 0;
143 ctx->attr_gencount = NFS_I(dir)->attr_gencount;
144 ctx->dir_cookie = 0;
145 ctx->dup_cookie = 0;
146 ctx->cred = get_rpccred(cred);
147 return ctx;
148 }
149 return ERR_PTR(-ENOMEM);
150}
151
152static void put_nfs_open_dir_context(struct nfs_open_dir_context *ctx)
153{
154 put_rpccred(ctx->cred);
155 kfree(ctx);
156}
157
158/*
159 * Open file
160 */
161static int
162nfs_opendir(struct inode *inode, struct file *filp)
163{
164 int res = 0;
165 struct nfs_open_dir_context *ctx;
166 struct rpc_cred *cred;
167
168 dfprintk(FILE, "NFS: open dir(%s/%s)\n",
169 filp->f_path.dentry->d_parent->d_name.name,
170 filp->f_path.dentry->d_name.name);
171
172 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
173
174 cred = rpc_lookup_cred();
175 if (IS_ERR(cred))
176 return PTR_ERR(cred);
177 ctx = alloc_nfs_open_dir_context(inode, cred);
178 if (IS_ERR(ctx)) {
179 res = PTR_ERR(ctx);
180 goto out;
181 }
182 filp->private_data = ctx;
183 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
184 /* This is a mountpoint, so d_revalidate will never
185 * have been called, so we need to refresh the
186 * inode (for close-open consistency) ourselves.
187 */
188 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
189 }
190out:
191 put_rpccred(cred);
192 return res;
193}
194
195static int
196nfs_closedir(struct inode *inode, struct file *filp)
197{
198 put_nfs_open_dir_context(filp->private_data);
199 return 0;
200}
201
202struct nfs_cache_array_entry {
203 u64 cookie;
204 u64 ino;
205 struct qstr string;
206 unsigned char d_type;
207};
208
209struct nfs_cache_array {
210 unsigned int size;
211 int eof_index;
212 u64 last_cookie;
213 struct nfs_cache_array_entry array[0];
214};
215
216typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
217typedef struct {
218 struct file *file;
219 struct page *page;
220 unsigned long page_index;
221 u64 *dir_cookie;
222 u64 last_cookie;
223 loff_t current_index;
224 decode_dirent_t decode;
225
226 unsigned long timestamp;
227 unsigned long gencount;
228 unsigned int cache_entry_index;
229 unsigned int plus:1;
230 unsigned int eof:1;
231} nfs_readdir_descriptor_t;
232
233/*
234 * The caller is responsible for calling nfs_readdir_release_array(page)
235 */
236static
237struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
238{
239 void *ptr;
240 if (page == NULL)
241 return ERR_PTR(-EIO);
242 ptr = kmap(page);
243 if (ptr == NULL)
244 return ERR_PTR(-ENOMEM);
245 return ptr;
246}
247
248static
249void nfs_readdir_release_array(struct page *page)
250{
251 kunmap(page);
252}
253
254/*
255 * we are freeing strings created by nfs_add_to_readdir_array()
256 */
257static
258void nfs_readdir_clear_array(struct page *page)
259{
260 struct nfs_cache_array *array;
261 int i;
262
263 array = kmap_atomic(page, KM_USER0);
264 for (i = 0; i < array->size; i++)
265 kfree(array->array[i].string.name);
266 kunmap_atomic(array, KM_USER0);
267}
268
269/*
270 * the caller is responsible for freeing qstr.name
271 * when called by nfs_readdir_add_to_array, the strings will be freed in
272 * nfs_clear_readdir_array()
273 */
274static
275int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
276{
277 string->len = len;
278 string->name = kmemdup(name, len, GFP_KERNEL);
279 if (string->name == NULL)
280 return -ENOMEM;
281 /*
282 * Avoid a kmemleak false positive. The pointer to the name is stored
283 * in a page cache page which kmemleak does not scan.
284 */
285 kmemleak_not_leak(string->name);
286 string->hash = full_name_hash(name, len);
287 return 0;
288}
289
290static
291int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
292{
293 struct nfs_cache_array *array = nfs_readdir_get_array(page);
294 struct nfs_cache_array_entry *cache_entry;
295 int ret;
296
297 if (IS_ERR(array))
298 return PTR_ERR(array);
299
300 cache_entry = &array->array[array->size];
301
302 /* Check that this entry lies within the page bounds */
303 ret = -ENOSPC;
304 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
305 goto out;
306
307 cache_entry->cookie = entry->prev_cookie;
308 cache_entry->ino = entry->ino;
309 cache_entry->d_type = entry->d_type;
310 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
311 if (ret)
312 goto out;
313 array->last_cookie = entry->cookie;
314 array->size++;
315 if (entry->eof != 0)
316 array->eof_index = array->size;
317out:
318 nfs_readdir_release_array(page);
319 return ret;
320}
321
322static
323int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
324{
325 loff_t diff = desc->file->f_pos - desc->current_index;
326 unsigned int index;
327
328 if (diff < 0)
329 goto out_eof;
330 if (diff >= array->size) {
331 if (array->eof_index >= 0)
332 goto out_eof;
333 return -EAGAIN;
334 }
335
336 index = (unsigned int)diff;
337 *desc->dir_cookie = array->array[index].cookie;
338 desc->cache_entry_index = index;
339 return 0;
340out_eof:
341 desc->eof = 1;
342 return -EBADCOOKIE;
343}
344
345static
346int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
347{
348 int i;
349 loff_t new_pos;
350 int status = -EAGAIN;
351
352 for (i = 0; i < array->size; i++) {
353 if (array->array[i].cookie == *desc->dir_cookie) {
354 struct nfs_inode *nfsi = NFS_I(desc->file->f_path.dentry->d_inode);
355 struct nfs_open_dir_context *ctx = desc->file->private_data;
356
357 new_pos = desc->current_index + i;
358 if (ctx->attr_gencount != nfsi->attr_gencount
359 || (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))) {
360 ctx->duped = 0;
361 ctx->attr_gencount = nfsi->attr_gencount;
362 } else if (new_pos < desc->file->f_pos) {
363 if (ctx->duped > 0
364 && ctx->dup_cookie == *desc->dir_cookie) {
365 if (printk_ratelimit()) {
366 pr_notice("NFS: directory %s/%s contains a readdir loop."
367 "Please contact your server vendor. "
368 "The file: %s has duplicate cookie %llu\n",
369 desc->file->f_dentry->d_parent->d_name.name,
370 desc->file->f_dentry->d_name.name,
371 array->array[i].string.name,
372 *desc->dir_cookie);
373 }
374 status = -ELOOP;
375 goto out;
376 }
377 ctx->dup_cookie = *desc->dir_cookie;
378 ctx->duped = -1;
379 }
380 desc->file->f_pos = new_pos;
381 desc->cache_entry_index = i;
382 return 0;
383 }
384 }
385 if (array->eof_index >= 0) {
386 status = -EBADCOOKIE;
387 if (*desc->dir_cookie == array->last_cookie)
388 desc->eof = 1;
389 }
390out:
391 return status;
392}
393
394static
395int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
396{
397 struct nfs_cache_array *array;
398 int status;
399
400 array = nfs_readdir_get_array(desc->page);
401 if (IS_ERR(array)) {
402 status = PTR_ERR(array);
403 goto out;
404 }
405
406 if (*desc->dir_cookie == 0)
407 status = nfs_readdir_search_for_pos(array, desc);
408 else
409 status = nfs_readdir_search_for_cookie(array, desc);
410
411 if (status == -EAGAIN) {
412 desc->last_cookie = array->last_cookie;
413 desc->current_index += array->size;
414 desc->page_index++;
415 }
416 nfs_readdir_release_array(desc->page);
417out:
418 return status;
419}
420
421/* Fill a page with xdr information before transferring to the cache page */
422static
423int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
424 struct nfs_entry *entry, struct file *file, struct inode *inode)
425{
426 struct nfs_open_dir_context *ctx = file->private_data;
427 struct rpc_cred *cred = ctx->cred;
428 unsigned long timestamp, gencount;
429 int error;
430
431 again:
432 timestamp = jiffies;
433 gencount = nfs_inc_attr_generation_counter();
434 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
435 NFS_SERVER(inode)->dtsize, desc->plus);
436 if (error < 0) {
437 /* We requested READDIRPLUS, but the server doesn't grok it */
438 if (error == -ENOTSUPP && desc->plus) {
439 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
440 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
441 desc->plus = 0;
442 goto again;
443 }
444 goto error;
445 }
446 desc->timestamp = timestamp;
447 desc->gencount = gencount;
448error:
449 return error;
450}
451
452static int xdr_decode(nfs_readdir_descriptor_t *desc,
453 struct nfs_entry *entry, struct xdr_stream *xdr)
454{
455 int error;
456
457 error = desc->decode(xdr, entry, desc->plus);
458 if (error)
459 return error;
460 entry->fattr->time_start = desc->timestamp;
461 entry->fattr->gencount = desc->gencount;
462 return 0;
463}
464
465static
466int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
467{
468 if (dentry->d_inode == NULL)
469 goto different;
470 if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
471 goto different;
472 return 1;
473different:
474 return 0;
475}
476
477static
478void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
479{
480 struct qstr filename = {
481 .len = entry->len,
482 .name = entry->name,
483 };
484 struct dentry *dentry;
485 struct dentry *alias;
486 struct inode *dir = parent->d_inode;
487 struct inode *inode;
488
489 if (filename.name[0] == '.') {
490 if (filename.len == 1)
491 return;
492 if (filename.len == 2 && filename.name[1] == '.')
493 return;
494 }
495 filename.hash = full_name_hash(filename.name, filename.len);
496
497 dentry = d_lookup(parent, &filename);
498 if (dentry != NULL) {
499 if (nfs_same_file(dentry, entry)) {
500 nfs_refresh_inode(dentry->d_inode, entry->fattr);
501 goto out;
502 } else {
503 d_drop(dentry);
504 dput(dentry);
505 }
506 }
507
508 dentry = d_alloc(parent, &filename);
509 if (dentry == NULL)
510 return;
511
512 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
513 if (IS_ERR(inode))
514 goto out;
515
516 alias = d_materialise_unique(dentry, inode);
517 if (IS_ERR(alias))
518 goto out;
519 else if (alias) {
520 nfs_set_verifier(alias, nfs_save_change_attribute(dir));
521 dput(alias);
522 } else
523 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
524
525out:
526 dput(dentry);
527}
528
529/* Perform conversion from xdr to cache array */
530static
531int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
532 struct page **xdr_pages, struct page *page, unsigned int buflen)
533{
534 struct xdr_stream stream;
535 struct xdr_buf buf;
536 struct page *scratch;
537 struct nfs_cache_array *array;
538 unsigned int count = 0;
539 int status;
540
541 scratch = alloc_page(GFP_KERNEL);
542 if (scratch == NULL)
543 return -ENOMEM;
544
545 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
546 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
547
548 do {
549 status = xdr_decode(desc, entry, &stream);
550 if (status != 0) {
551 if (status == -EAGAIN)
552 status = 0;
553 break;
554 }
555
556 count++;
557
558 if (desc->plus != 0)
559 nfs_prime_dcache(desc->file->f_path.dentry, entry);
560
561 status = nfs_readdir_add_to_array(entry, page);
562 if (status != 0)
563 break;
564 } while (!entry->eof);
565
566 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
567 array = nfs_readdir_get_array(page);
568 if (!IS_ERR(array)) {
569 array->eof_index = array->size;
570 status = 0;
571 nfs_readdir_release_array(page);
572 } else
573 status = PTR_ERR(array);
574 }
575
576 put_page(scratch);
577 return status;
578}
579
580static
581void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
582{
583 unsigned int i;
584 for (i = 0; i < npages; i++)
585 put_page(pages[i]);
586}
587
588static
589void nfs_readdir_free_large_page(void *ptr, struct page **pages,
590 unsigned int npages)
591{
592 nfs_readdir_free_pagearray(pages, npages);
593}
594
595/*
596 * nfs_readdir_large_page will allocate pages that must be freed with a call
597 * to nfs_readdir_free_large_page
598 */
599static
600int nfs_readdir_large_page(struct page **pages, unsigned int npages)
601{
602 unsigned int i;
603
604 for (i = 0; i < npages; i++) {
605 struct page *page = alloc_page(GFP_KERNEL);
606 if (page == NULL)
607 goto out_freepages;
608 pages[i] = page;
609 }
610 return 0;
611
612out_freepages:
613 nfs_readdir_free_pagearray(pages, i);
614 return -ENOMEM;
615}
616
617static
618int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
619{
620 struct page *pages[NFS_MAX_READDIR_PAGES];
621 void *pages_ptr = NULL;
622 struct nfs_entry entry;
623 struct file *file = desc->file;
624 struct nfs_cache_array *array;
625 int status = -ENOMEM;
626 unsigned int array_size = ARRAY_SIZE(pages);
627
628 entry.prev_cookie = 0;
629 entry.cookie = desc->last_cookie;
630 entry.eof = 0;
631 entry.fh = nfs_alloc_fhandle();
632 entry.fattr = nfs_alloc_fattr();
633 entry.server = NFS_SERVER(inode);
634 if (entry.fh == NULL || entry.fattr == NULL)
635 goto out;
636
637 array = nfs_readdir_get_array(page);
638 if (IS_ERR(array)) {
639 status = PTR_ERR(array);
640 goto out;
641 }
642 memset(array, 0, sizeof(struct nfs_cache_array));
643 array->eof_index = -1;
644
645 status = nfs_readdir_large_page(pages, array_size);
646 if (status < 0)
647 goto out_release_array;
648 do {
649 unsigned int pglen;
650 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
651
652 if (status < 0)
653 break;
654 pglen = status;
655 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
656 if (status < 0) {
657 if (status == -ENOSPC)
658 status = 0;
659 break;
660 }
661 } while (array->eof_index < 0);
662
663 nfs_readdir_free_large_page(pages_ptr, pages, array_size);
664out_release_array:
665 nfs_readdir_release_array(page);
666out:
667 nfs_free_fattr(entry.fattr);
668 nfs_free_fhandle(entry.fh);
669 return status;
670}
671
672/*
673 * Now we cache directories properly, by converting xdr information
674 * to an array that can be used for lookups later. This results in
675 * fewer cache pages, since we can store more information on each page.
676 * We only need to convert from xdr once so future lookups are much simpler
677 */
678static
679int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
680{
681 struct inode *inode = desc->file->f_path.dentry->d_inode;
682 int ret;
683
684 ret = nfs_readdir_xdr_to_array(desc, page, inode);
685 if (ret < 0)
686 goto error;
687 SetPageUptodate(page);
688
689 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
690 /* Should never happen */
691 nfs_zap_mapping(inode, inode->i_mapping);
692 }
693 unlock_page(page);
694 return 0;
695 error:
696 unlock_page(page);
697 return ret;
698}
699
700static
701void cache_page_release(nfs_readdir_descriptor_t *desc)
702{
703 if (!desc->page->mapping)
704 nfs_readdir_clear_array(desc->page);
705 page_cache_release(desc->page);
706 desc->page = NULL;
707}
708
709static
710struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
711{
712 return read_cache_page(desc->file->f_path.dentry->d_inode->i_mapping,
713 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
714}
715
716/*
717 * Returns 0 if desc->dir_cookie was found on page desc->page_index
718 */
719static
720int find_cache_page(nfs_readdir_descriptor_t *desc)
721{
722 int res;
723
724 desc->page = get_cache_page(desc);
725 if (IS_ERR(desc->page))
726 return PTR_ERR(desc->page);
727
728 res = nfs_readdir_search_array(desc);
729 if (res != 0)
730 cache_page_release(desc);
731 return res;
732}
733
734/* Search for desc->dir_cookie from the beginning of the page cache */
735static inline
736int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
737{
738 int res;
739
740 if (desc->page_index == 0) {
741 desc->current_index = 0;
742 desc->last_cookie = 0;
743 }
744 do {
745 res = find_cache_page(desc);
746 } while (res == -EAGAIN);
747 return res;
748}
749
750/*
751 * Once we've found the start of the dirent within a page: fill 'er up...
752 */
753static
754int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
755 filldir_t filldir)
756{
757 struct file *file = desc->file;
758 int i = 0;
759 int res = 0;
760 struct nfs_cache_array *array = NULL;
761 struct nfs_open_dir_context *ctx = file->private_data;
762
763 array = nfs_readdir_get_array(desc->page);
764 if (IS_ERR(array)) {
765 res = PTR_ERR(array);
766 goto out;
767 }
768
769 for (i = desc->cache_entry_index; i < array->size; i++) {
770 struct nfs_cache_array_entry *ent;
771
772 ent = &array->array[i];
773 if (filldir(dirent, ent->string.name, ent->string.len,
774 file->f_pos, nfs_compat_user_ino64(ent->ino),
775 ent->d_type) < 0) {
776 desc->eof = 1;
777 break;
778 }
779 file->f_pos++;
780 if (i < (array->size-1))
781 *desc->dir_cookie = array->array[i+1].cookie;
782 else
783 *desc->dir_cookie = array->last_cookie;
784 if (ctx->duped != 0)
785 ctx->duped = 1;
786 }
787 if (array->eof_index >= 0)
788 desc->eof = 1;
789
790 nfs_readdir_release_array(desc->page);
791out:
792 cache_page_release(desc);
793 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
794 (unsigned long long)*desc->dir_cookie, res);
795 return res;
796}
797
798/*
799 * If we cannot find a cookie in our cache, we suspect that this is
800 * because it points to a deleted file, so we ask the server to return
801 * whatever it thinks is the next entry. We then feed this to filldir.
802 * If all goes well, we should then be able to find our way round the
803 * cache on the next call to readdir_search_pagecache();
804 *
805 * NOTE: we cannot add the anonymous page to the pagecache because
806 * the data it contains might not be page aligned. Besides,
807 * we should already have a complete representation of the
808 * directory in the page cache by the time we get here.
809 */
810static inline
811int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
812 filldir_t filldir)
813{
814 struct page *page = NULL;
815 int status;
816 struct inode *inode = desc->file->f_path.dentry->d_inode;
817 struct nfs_open_dir_context *ctx = desc->file->private_data;
818
819 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
820 (unsigned long long)*desc->dir_cookie);
821
822 page = alloc_page(GFP_HIGHUSER);
823 if (!page) {
824 status = -ENOMEM;
825 goto out;
826 }
827
828 desc->page_index = 0;
829 desc->last_cookie = *desc->dir_cookie;
830 desc->page = page;
831 ctx->duped = 0;
832
833 status = nfs_readdir_xdr_to_array(desc, page, inode);
834 if (status < 0)
835 goto out_release;
836
837 status = nfs_do_filldir(desc, dirent, filldir);
838
839 out:
840 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
841 __func__, status);
842 return status;
843 out_release:
844 cache_page_release(desc);
845 goto out;
846}
847
848/* The file offset position represents the dirent entry number. A
849 last cookie cache takes care of the common case of reading the
850 whole directory.
851 */
852static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
853{
854 struct dentry *dentry = filp->f_path.dentry;
855 struct inode *inode = dentry->d_inode;
856 nfs_readdir_descriptor_t my_desc,
857 *desc = &my_desc;
858 struct nfs_open_dir_context *dir_ctx = filp->private_data;
859 int res;
860
861 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
862 dentry->d_parent->d_name.name, dentry->d_name.name,
863 (long long)filp->f_pos);
864 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
865
866 /*
867 * filp->f_pos points to the dirent entry number.
868 * *desc->dir_cookie has the cookie for the next entry. We have
869 * to either find the entry with the appropriate number or
870 * revalidate the cookie.
871 */
872 memset(desc, 0, sizeof(*desc));
873
874 desc->file = filp;
875 desc->dir_cookie = &dir_ctx->dir_cookie;
876 desc->decode = NFS_PROTO(inode)->decode_dirent;
877 desc->plus = NFS_USE_READDIRPLUS(inode);
878
879 nfs_block_sillyrename(dentry);
880 res = nfs_revalidate_mapping(inode, filp->f_mapping);
881 if (res < 0)
882 goto out;
883
884 do {
885 res = readdir_search_pagecache(desc);
886
887 if (res == -EBADCOOKIE) {
888 res = 0;
889 /* This means either end of directory */
890 if (*desc->dir_cookie && desc->eof == 0) {
891 /* Or that the server has 'lost' a cookie */
892 res = uncached_readdir(desc, dirent, filldir);
893 if (res == 0)
894 continue;
895 }
896 break;
897 }
898 if (res == -ETOOSMALL && desc->plus) {
899 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
900 nfs_zap_caches(inode);
901 desc->page_index = 0;
902 desc->plus = 0;
903 desc->eof = 0;
904 continue;
905 }
906 if (res < 0)
907 break;
908
909 res = nfs_do_filldir(desc, dirent, filldir);
910 if (res < 0)
911 break;
912 } while (!desc->eof);
913out:
914 nfs_unblock_sillyrename(dentry);
915 if (res > 0)
916 res = 0;
917 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
918 dentry->d_parent->d_name.name, dentry->d_name.name,
919 res);
920 return res;
921}
922
923static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
924{
925 struct dentry *dentry = filp->f_path.dentry;
926 struct inode *inode = dentry->d_inode;
927 struct nfs_open_dir_context *dir_ctx = filp->private_data;
928
929 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
930 dentry->d_parent->d_name.name,
931 dentry->d_name.name,
932 offset, origin);
933
934 mutex_lock(&inode->i_mutex);
935 switch (origin) {
936 case 1:
937 offset += filp->f_pos;
938 case 0:
939 if (offset >= 0)
940 break;
941 default:
942 offset = -EINVAL;
943 goto out;
944 }
945 if (offset != filp->f_pos) {
946 filp->f_pos = offset;
947 dir_ctx->dir_cookie = 0;
948 dir_ctx->duped = 0;
949 }
950out:
951 mutex_unlock(&inode->i_mutex);
952 return offset;
953}
954
955/*
956 * All directory operations under NFS are synchronous, so fsync()
957 * is a dummy operation.
958 */
959static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
960 int datasync)
961{
962 struct dentry *dentry = filp->f_path.dentry;
963 struct inode *inode = dentry->d_inode;
964
965 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
966 dentry->d_parent->d_name.name, dentry->d_name.name,
967 datasync);
968
969 mutex_lock(&inode->i_mutex);
970 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
971 mutex_unlock(&inode->i_mutex);
972 return 0;
973}
974
975/**
976 * nfs_force_lookup_revalidate - Mark the directory as having changed
977 * @dir - pointer to directory inode
978 *
979 * This forces the revalidation code in nfs_lookup_revalidate() to do a
980 * full lookup on all child dentries of 'dir' whenever a change occurs
981 * on the server that might have invalidated our dcache.
982 *
983 * The caller should be holding dir->i_lock
984 */
985void nfs_force_lookup_revalidate(struct inode *dir)
986{
987 NFS_I(dir)->cache_change_attribute++;
988}
989
990/*
991 * A check for whether or not the parent directory has changed.
992 * In the case it has, we assume that the dentries are untrustworthy
993 * and may need to be looked up again.
994 */
995static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
996{
997 if (IS_ROOT(dentry))
998 return 1;
999 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1000 return 0;
1001 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1002 return 0;
1003 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1004 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1005 return 0;
1006 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1007 return 0;
1008 return 1;
1009}
1010
1011/*
1012 * Return the intent data that applies to this particular path component
1013 *
1014 * Note that the current set of intents only apply to the very last
1015 * component of the path and none of them is set before that last
1016 * component.
1017 */
1018static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd,
1019 unsigned int mask)
1020{
1021 return nd->flags & mask;
1022}
1023
1024/*
1025 * Use intent information to check whether or not we're going to do
1026 * an O_EXCL create using this path component.
1027 */
1028static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
1029{
1030 if (NFS_PROTO(dir)->version == 2)
1031 return 0;
1032 return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL);
1033}
1034
1035/*
1036 * Inode and filehandle revalidation for lookups.
1037 *
1038 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1039 * or if the intent information indicates that we're about to open this
1040 * particular file and the "nocto" mount flag is not set.
1041 *
1042 */
1043static inline
1044int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
1045{
1046 struct nfs_server *server = NFS_SERVER(inode);
1047
1048 if (IS_AUTOMOUNT(inode))
1049 return 0;
1050 if (nd != NULL) {
1051 /* VFS wants an on-the-wire revalidation */
1052 if (nd->flags & LOOKUP_REVAL)
1053 goto out_force;
1054 /* This is an open(2) */
1055 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
1056 !(server->flags & NFS_MOUNT_NOCTO) &&
1057 (S_ISREG(inode->i_mode) ||
1058 S_ISDIR(inode->i_mode)))
1059 goto out_force;
1060 return 0;
1061 }
1062 return nfs_revalidate_inode(server, inode);
1063out_force:
1064 return __nfs_revalidate_inode(server, inode);
1065}
1066
1067/*
1068 * We judge how long we want to trust negative
1069 * dentries by looking at the parent inode mtime.
1070 *
1071 * If parent mtime has changed, we revalidate, else we wait for a
1072 * period corresponding to the parent's attribute cache timeout value.
1073 */
1074static inline
1075int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1076 struct nameidata *nd)
1077{
1078 /* Don't revalidate a negative dentry if we're creating a new file */
1079 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
1080 return 0;
1081 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1082 return 1;
1083 return !nfs_check_verifier(dir, dentry);
1084}
1085
1086/*
1087 * This is called every time the dcache has a lookup hit,
1088 * and we should check whether we can really trust that
1089 * lookup.
1090 *
1091 * NOTE! The hit can be a negative hit too, don't assume
1092 * we have an inode!
1093 *
1094 * If the parent directory is seen to have changed, we throw out the
1095 * cached dentry and do a new lookup.
1096 */
1097static int nfs_lookup_revalidate(struct dentry *dentry, struct nameidata *nd)
1098{
1099 struct inode *dir;
1100 struct inode *inode;
1101 struct dentry *parent;
1102 struct nfs_fh *fhandle = NULL;
1103 struct nfs_fattr *fattr = NULL;
1104 int error;
1105
1106 if (nd->flags & LOOKUP_RCU)
1107 return -ECHILD;
1108
1109 parent = dget_parent(dentry);
1110 dir = parent->d_inode;
1111 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1112 inode = dentry->d_inode;
1113
1114 if (!inode) {
1115 if (nfs_neg_need_reval(dir, dentry, nd))
1116 goto out_bad;
1117 goto out_valid;
1118 }
1119
1120 if (is_bad_inode(inode)) {
1121 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1122 __func__, dentry->d_parent->d_name.name,
1123 dentry->d_name.name);
1124 goto out_bad;
1125 }
1126
1127 if (nfs_have_delegation(inode, FMODE_READ))
1128 goto out_set_verifier;
1129
1130 /* Force a full look up iff the parent directory has changed */
1131 if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
1132 if (nfs_lookup_verify_inode(inode, nd))
1133 goto out_zap_parent;
1134 goto out_valid;
1135 }
1136
1137 if (NFS_STALE(inode))
1138 goto out_bad;
1139
1140 error = -ENOMEM;
1141 fhandle = nfs_alloc_fhandle();
1142 fattr = nfs_alloc_fattr();
1143 if (fhandle == NULL || fattr == NULL)
1144 goto out_error;
1145
1146 error = NFS_PROTO(dir)->lookup(NFS_SERVER(dir)->client, dir, &dentry->d_name, fhandle, fattr);
1147 if (error)
1148 goto out_bad;
1149 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1150 goto out_bad;
1151 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1152 goto out_bad;
1153
1154 nfs_free_fattr(fattr);
1155 nfs_free_fhandle(fhandle);
1156out_set_verifier:
1157 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1158 out_valid:
1159 dput(parent);
1160 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
1161 __func__, dentry->d_parent->d_name.name,
1162 dentry->d_name.name);
1163 return 1;
1164out_zap_parent:
1165 nfs_zap_caches(dir);
1166 out_bad:
1167 nfs_mark_for_revalidate(dir);
1168 if (inode && S_ISDIR(inode->i_mode)) {
1169 /* Purge readdir caches. */
1170 nfs_zap_caches(inode);
1171 /* If we have submounts, don't unhash ! */
1172 if (have_submounts(dentry))
1173 goto out_valid;
1174 if (dentry->d_flags & DCACHE_DISCONNECTED)
1175 goto out_valid;
1176 shrink_dcache_parent(dentry);
1177 }
1178 d_drop(dentry);
1179 nfs_free_fattr(fattr);
1180 nfs_free_fhandle(fhandle);
1181 dput(parent);
1182 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
1183 __func__, dentry->d_parent->d_name.name,
1184 dentry->d_name.name);
1185 return 0;
1186out_error:
1187 nfs_free_fattr(fattr);
1188 nfs_free_fhandle(fhandle);
1189 dput(parent);
1190 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
1191 __func__, dentry->d_parent->d_name.name,
1192 dentry->d_name.name, error);
1193 return error;
1194}
1195
1196/*
1197 * This is called from dput() when d_count is going to 0.
1198 */
1199static int nfs_dentry_delete(const struct dentry *dentry)
1200{
1201 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
1202 dentry->d_parent->d_name.name, dentry->d_name.name,
1203 dentry->d_flags);
1204
1205 /* Unhash any dentry with a stale inode */
1206 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1207 return 1;
1208
1209 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1210 /* Unhash it, so that ->d_iput() would be called */
1211 return 1;
1212 }
1213 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1214 /* Unhash it, so that ancestors of killed async unlink
1215 * files will be cleaned up during umount */
1216 return 1;
1217 }
1218 return 0;
1219
1220}
1221
1222static void nfs_drop_nlink(struct inode *inode)
1223{
1224 spin_lock(&inode->i_lock);
1225 if (inode->i_nlink > 0)
1226 drop_nlink(inode);
1227 spin_unlock(&inode->i_lock);
1228}
1229
1230/*
1231 * Called when the dentry loses inode.
1232 * We use it to clean up silly-renamed files.
1233 */
1234static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1235{
1236 if (S_ISDIR(inode->i_mode))
1237 /* drop any readdir cache as it could easily be old */
1238 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1239
1240 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1241 drop_nlink(inode);
1242 nfs_complete_unlink(dentry, inode);
1243 }
1244 iput(inode);
1245}
1246
1247static void nfs_d_release(struct dentry *dentry)
1248{
1249 /* free cached devname value, if it survived that far */
1250 if (unlikely(dentry->d_fsdata)) {
1251 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1252 WARN_ON(1);
1253 else
1254 kfree(dentry->d_fsdata);
1255 }
1256}
1257
1258const struct dentry_operations nfs_dentry_operations = {
1259 .d_revalidate = nfs_lookup_revalidate,
1260 .d_delete = nfs_dentry_delete,
1261 .d_iput = nfs_dentry_iput,
1262 .d_automount = nfs_d_automount,
1263 .d_release = nfs_d_release,
1264};
1265
1266static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
1267{
1268 struct dentry *res;
1269 struct dentry *parent;
1270 struct inode *inode = NULL;
1271 struct nfs_fh *fhandle = NULL;
1272 struct nfs_fattr *fattr = NULL;
1273 int error;
1274
1275 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
1276 dentry->d_parent->d_name.name, dentry->d_name.name);
1277 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1278
1279 res = ERR_PTR(-ENAMETOOLONG);
1280 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1281 goto out;
1282
1283 /*
1284 * If we're doing an exclusive create, optimize away the lookup
1285 * but don't hash the dentry.
1286 */
1287 if (nfs_is_exclusive_create(dir, nd)) {
1288 d_instantiate(dentry, NULL);
1289 res = NULL;
1290 goto out;
1291 }
1292
1293 res = ERR_PTR(-ENOMEM);
1294 fhandle = nfs_alloc_fhandle();
1295 fattr = nfs_alloc_fattr();
1296 if (fhandle == NULL || fattr == NULL)
1297 goto out;
1298
1299 parent = dentry->d_parent;
1300 /* Protect against concurrent sillydeletes */
1301 nfs_block_sillyrename(parent);
1302 error = NFS_PROTO(dir)->lookup(NFS_SERVER(dir)->client, dir, &dentry->d_name, fhandle, fattr);
1303 if (error == -ENOENT)
1304 goto no_entry;
1305 if (error < 0) {
1306 res = ERR_PTR(error);
1307 goto out_unblock_sillyrename;
1308 }
1309 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1310 res = ERR_CAST(inode);
1311 if (IS_ERR(res))
1312 goto out_unblock_sillyrename;
1313
1314no_entry:
1315 res = d_materialise_unique(dentry, inode);
1316 if (res != NULL) {
1317 if (IS_ERR(res))
1318 goto out_unblock_sillyrename;
1319 dentry = res;
1320 }
1321 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1322out_unblock_sillyrename:
1323 nfs_unblock_sillyrename(parent);
1324out:
1325 nfs_free_fattr(fattr);
1326 nfs_free_fhandle(fhandle);
1327 return res;
1328}
1329
1330#ifdef CONFIG_NFS_V4
1331static int nfs_open_revalidate(struct dentry *, struct nameidata *);
1332
1333const struct dentry_operations nfs4_dentry_operations = {
1334 .d_revalidate = nfs_open_revalidate,
1335 .d_delete = nfs_dentry_delete,
1336 .d_iput = nfs_dentry_iput,
1337 .d_automount = nfs_d_automount,
1338 .d_release = nfs_d_release,
1339};
1340
1341/*
1342 * Use intent information to determine whether we need to substitute
1343 * the NFSv4-style stateful OPEN for the LOOKUP call
1344 */
1345static int is_atomic_open(struct nameidata *nd)
1346{
1347 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
1348 return 0;
1349 /* NFS does not (yet) have a stateful open for directories */
1350 if (nd->flags & LOOKUP_DIRECTORY)
1351 return 0;
1352 /* Are we trying to write to a read only partition? */
1353 if (__mnt_is_readonly(nd->path.mnt) &&
1354 (nd->intent.open.flags & (O_CREAT|O_TRUNC|O_ACCMODE)))
1355 return 0;
1356 return 1;
1357}
1358
1359static fmode_t flags_to_mode(int flags)
1360{
1361 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1362 if ((flags & O_ACCMODE) != O_WRONLY)
1363 res |= FMODE_READ;
1364 if ((flags & O_ACCMODE) != O_RDONLY)
1365 res |= FMODE_WRITE;
1366 return res;
1367}
1368
1369static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1370{
1371 struct nfs_open_context *ctx;
1372 struct rpc_cred *cred;
1373 fmode_t fmode = flags_to_mode(open_flags);
1374
1375 cred = rpc_lookup_cred();
1376 if (IS_ERR(cred))
1377 return ERR_CAST(cred);
1378 ctx = alloc_nfs_open_context(dentry, cred, fmode);
1379 put_rpccred(cred);
1380 if (ctx == NULL)
1381 return ERR_PTR(-ENOMEM);
1382 return ctx;
1383}
1384
1385static int do_open(struct inode *inode, struct file *filp)
1386{
1387 nfs_fscache_set_inode_cookie(inode, filp);
1388 return 0;
1389}
1390
1391static int nfs_intent_set_file(struct nameidata *nd, struct nfs_open_context *ctx)
1392{
1393 struct file *filp;
1394 int ret = 0;
1395
1396 /* If the open_intent is for execute, we have an extra check to make */
1397 if (ctx->mode & FMODE_EXEC) {
1398 ret = nfs_may_open(ctx->dentry->d_inode,
1399 ctx->cred,
1400 nd->intent.open.flags);
1401 if (ret < 0)
1402 goto out;
1403 }
1404 filp = lookup_instantiate_filp(nd, ctx->dentry, do_open);
1405 if (IS_ERR(filp))
1406 ret = PTR_ERR(filp);
1407 else
1408 nfs_file_set_open_context(filp, ctx);
1409out:
1410 put_nfs_open_context(ctx);
1411 return ret;
1412}
1413
1414static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1415{
1416 struct nfs_open_context *ctx;
1417 struct iattr attr;
1418 struct dentry *res = NULL;
1419 struct inode *inode;
1420 int open_flags;
1421 int err;
1422
1423 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
1424 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1425
1426 /* Check that we are indeed trying to open this file */
1427 if (!is_atomic_open(nd))
1428 goto no_open;
1429
1430 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1431 res = ERR_PTR(-ENAMETOOLONG);
1432 goto out;
1433 }
1434
1435 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
1436 * the dentry. */
1437 if (nd->flags & LOOKUP_EXCL) {
1438 d_instantiate(dentry, NULL);
1439 goto out;
1440 }
1441
1442 open_flags = nd->intent.open.flags;
1443
1444 ctx = create_nfs_open_context(dentry, open_flags);
1445 res = ERR_CAST(ctx);
1446 if (IS_ERR(ctx))
1447 goto out;
1448
1449 if (nd->flags & LOOKUP_CREATE) {
1450 attr.ia_mode = nd->intent.open.create_mode;
1451 attr.ia_valid = ATTR_MODE;
1452 attr.ia_mode &= ~current_umask();
1453 } else {
1454 open_flags &= ~(O_EXCL | O_CREAT);
1455 attr.ia_valid = 0;
1456 }
1457
1458 /* Open the file on the server */
1459 nfs_block_sillyrename(dentry->d_parent);
1460 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr);
1461 if (IS_ERR(inode)) {
1462 nfs_unblock_sillyrename(dentry->d_parent);
1463 put_nfs_open_context(ctx);
1464 switch (PTR_ERR(inode)) {
1465 /* Make a negative dentry */
1466 case -ENOENT:
1467 d_add(dentry, NULL);
1468 res = NULL;
1469 goto out;
1470 /* This turned out not to be a regular file */
1471 case -ENOTDIR:
1472 goto no_open;
1473 case -ELOOP:
1474 if (!(nd->intent.open.flags & O_NOFOLLOW))
1475 goto no_open;
1476 /* case -EISDIR: */
1477 /* case -EINVAL: */
1478 default:
1479 res = ERR_CAST(inode);
1480 goto out;
1481 }
1482 }
1483 res = d_add_unique(dentry, inode);
1484 nfs_unblock_sillyrename(dentry->d_parent);
1485 if (res != NULL) {
1486 dput(ctx->dentry);
1487 ctx->dentry = dget(res);
1488 dentry = res;
1489 }
1490 err = nfs_intent_set_file(nd, ctx);
1491 if (err < 0) {
1492 if (res != NULL)
1493 dput(res);
1494 return ERR_PTR(err);
1495 }
1496out:
1497 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1498 return res;
1499no_open:
1500 return nfs_lookup(dir, dentry, nd);
1501}
1502
1503static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1504{
1505 struct dentry *parent = NULL;
1506 struct inode *inode;
1507 struct inode *dir;
1508 struct nfs_open_context *ctx;
1509 int openflags, ret = 0;
1510
1511 if (nd->flags & LOOKUP_RCU)
1512 return -ECHILD;
1513
1514 inode = dentry->d_inode;
1515 if (!is_atomic_open(nd) || d_mountpoint(dentry))
1516 goto no_open;
1517
1518 parent = dget_parent(dentry);
1519 dir = parent->d_inode;
1520
1521 /* We can't create new files in nfs_open_revalidate(), so we
1522 * optimize away revalidation of negative dentries.
1523 */
1524 if (inode == NULL) {
1525 if (!nfs_neg_need_reval(dir, dentry, nd))
1526 ret = 1;
1527 goto out;
1528 }
1529
1530 /* NFS only supports OPEN on regular files */
1531 if (!S_ISREG(inode->i_mode))
1532 goto no_open_dput;
1533 openflags = nd->intent.open.flags;
1534 /* We cannot do exclusive creation on a positive dentry */
1535 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1536 goto no_open_dput;
1537 /* We can't create new files, or truncate existing ones here */
1538 openflags &= ~(O_CREAT|O_EXCL|O_TRUNC);
1539
1540 ctx = create_nfs_open_context(dentry, openflags);
1541 ret = PTR_ERR(ctx);
1542 if (IS_ERR(ctx))
1543 goto out;
1544 /*
1545 * Note: we're not holding inode->i_mutex and so may be racing with
1546 * operations that change the directory. We therefore save the
1547 * change attribute *before* we do the RPC call.
1548 */
1549 inode = NFS_PROTO(dir)->open_context(dir, ctx, openflags, NULL);
1550 if (IS_ERR(inode)) {
1551 ret = PTR_ERR(inode);
1552 switch (ret) {
1553 case -EPERM:
1554 case -EACCES:
1555 case -EDQUOT:
1556 case -ENOSPC:
1557 case -EROFS:
1558 goto out_put_ctx;
1559 default:
1560 goto out_drop;
1561 }
1562 }
1563 iput(inode);
1564 if (inode != dentry->d_inode)
1565 goto out_drop;
1566
1567 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1568 ret = nfs_intent_set_file(nd, ctx);
1569 if (ret >= 0)
1570 ret = 1;
1571out:
1572 dput(parent);
1573 return ret;
1574out_drop:
1575 d_drop(dentry);
1576 ret = 0;
1577out_put_ctx:
1578 put_nfs_open_context(ctx);
1579 goto out;
1580
1581no_open_dput:
1582 dput(parent);
1583no_open:
1584 return nfs_lookup_revalidate(dentry, nd);
1585}
1586
1587static int nfs_open_create(struct inode *dir, struct dentry *dentry, int mode,
1588 struct nameidata *nd)
1589{
1590 struct nfs_open_context *ctx = NULL;
1591 struct iattr attr;
1592 int error;
1593 int open_flags = O_CREAT|O_EXCL;
1594
1595 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1596 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1597
1598 attr.ia_mode = mode;
1599 attr.ia_valid = ATTR_MODE;
1600
1601 if (nd)
1602 open_flags = nd->intent.open.flags;
1603
1604 ctx = create_nfs_open_context(dentry, open_flags);
1605 error = PTR_ERR(ctx);
1606 if (IS_ERR(ctx))
1607 goto out_err_drop;
1608
1609 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, ctx);
1610 if (error != 0)
1611 goto out_put_ctx;
1612 if (nd) {
1613 error = nfs_intent_set_file(nd, ctx);
1614 if (error < 0)
1615 goto out_err;
1616 } else {
1617 put_nfs_open_context(ctx);
1618 }
1619 return 0;
1620out_put_ctx:
1621 put_nfs_open_context(ctx);
1622out_err_drop:
1623 d_drop(dentry);
1624out_err:
1625 return error;
1626}
1627
1628#endif /* CONFIG_NFSV4 */
1629
1630/*
1631 * Code common to create, mkdir, and mknod.
1632 */
1633int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1634 struct nfs_fattr *fattr)
1635{
1636 struct dentry *parent = dget_parent(dentry);
1637 struct inode *dir = parent->d_inode;
1638 struct inode *inode;
1639 int error = -EACCES;
1640
1641 d_drop(dentry);
1642
1643 /* We may have been initialized further down */
1644 if (dentry->d_inode)
1645 goto out;
1646 if (fhandle->size == 0) {
1647 error = NFS_PROTO(dir)->lookup(NFS_SERVER(dir)->client, dir, &dentry->d_name, fhandle, fattr);
1648 if (error)
1649 goto out_error;
1650 }
1651 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1652 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1653 struct nfs_server *server = NFS_SB(dentry->d_sb);
1654 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1655 if (error < 0)
1656 goto out_error;
1657 }
1658 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1659 error = PTR_ERR(inode);
1660 if (IS_ERR(inode))
1661 goto out_error;
1662 d_add(dentry, inode);
1663out:
1664 dput(parent);
1665 return 0;
1666out_error:
1667 nfs_mark_for_revalidate(dir);
1668 dput(parent);
1669 return error;
1670}
1671
1672/*
1673 * Following a failed create operation, we drop the dentry rather
1674 * than retain a negative dentry. This avoids a problem in the event
1675 * that the operation succeeded on the server, but an error in the
1676 * reply path made it appear to have failed.
1677 */
1678static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1679 struct nameidata *nd)
1680{
1681 struct iattr attr;
1682 int error;
1683 int open_flags = O_CREAT|O_EXCL;
1684
1685 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1686 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1687
1688 attr.ia_mode = mode;
1689 attr.ia_valid = ATTR_MODE;
1690
1691 if (nd)
1692 open_flags = nd->intent.open.flags;
1693
1694 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, NULL);
1695 if (error != 0)
1696 goto out_err;
1697 return 0;
1698out_err:
1699 d_drop(dentry);
1700 return error;
1701}
1702
1703/*
1704 * See comments for nfs_proc_create regarding failed operations.
1705 */
1706static int
1707nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1708{
1709 struct iattr attr;
1710 int status;
1711
1712 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1713 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1714
1715 if (!new_valid_dev(rdev))
1716 return -EINVAL;
1717
1718 attr.ia_mode = mode;
1719 attr.ia_valid = ATTR_MODE;
1720
1721 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1722 if (status != 0)
1723 goto out_err;
1724 return 0;
1725out_err:
1726 d_drop(dentry);
1727 return status;
1728}
1729
1730/*
1731 * See comments for nfs_proc_create regarding failed operations.
1732 */
1733static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1734{
1735 struct iattr attr;
1736 int error;
1737
1738 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1739 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1740
1741 attr.ia_valid = ATTR_MODE;
1742 attr.ia_mode = mode | S_IFDIR;
1743
1744 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1745 if (error != 0)
1746 goto out_err;
1747 return 0;
1748out_err:
1749 d_drop(dentry);
1750 return error;
1751}
1752
1753static void nfs_dentry_handle_enoent(struct dentry *dentry)
1754{
1755 if (dentry->d_inode != NULL && !d_unhashed(dentry))
1756 d_delete(dentry);
1757}
1758
1759static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1760{
1761 int error;
1762
1763 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1764 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1765
1766 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1767 /* Ensure the VFS deletes this inode */
1768 if (error == 0 && dentry->d_inode != NULL)
1769 clear_nlink(dentry->d_inode);
1770 else if (error == -ENOENT)
1771 nfs_dentry_handle_enoent(dentry);
1772
1773 return error;
1774}
1775
1776/*
1777 * Remove a file after making sure there are no pending writes,
1778 * and after checking that the file has only one user.
1779 *
1780 * We invalidate the attribute cache and free the inode prior to the operation
1781 * to avoid possible races if the server reuses the inode.
1782 */
1783static int nfs_safe_remove(struct dentry *dentry)
1784{
1785 struct inode *dir = dentry->d_parent->d_inode;
1786 struct inode *inode = dentry->d_inode;
1787 int error = -EBUSY;
1788
1789 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1790 dentry->d_parent->d_name.name, dentry->d_name.name);
1791
1792 /* If the dentry was sillyrenamed, we simply call d_delete() */
1793 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1794 error = 0;
1795 goto out;
1796 }
1797
1798 if (inode != NULL) {
1799 nfs_inode_return_delegation(inode);
1800 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1801 /* The VFS may want to delete this inode */
1802 if (error == 0)
1803 nfs_drop_nlink(inode);
1804 nfs_mark_for_revalidate(inode);
1805 } else
1806 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1807 if (error == -ENOENT)
1808 nfs_dentry_handle_enoent(dentry);
1809out:
1810 return error;
1811}
1812
1813/* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1814 * belongs to an active ".nfs..." file and we return -EBUSY.
1815 *
1816 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1817 */
1818static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1819{
1820 int error;
1821 int need_rehash = 0;
1822
1823 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1824 dir->i_ino, dentry->d_name.name);
1825
1826 spin_lock(&dentry->d_lock);
1827 if (dentry->d_count > 1) {
1828 spin_unlock(&dentry->d_lock);
1829 /* Start asynchronous writeout of the inode */
1830 write_inode_now(dentry->d_inode, 0);
1831 error = nfs_sillyrename(dir, dentry);
1832 return error;
1833 }
1834 if (!d_unhashed(dentry)) {
1835 __d_drop(dentry);
1836 need_rehash = 1;
1837 }
1838 spin_unlock(&dentry->d_lock);
1839 error = nfs_safe_remove(dentry);
1840 if (!error || error == -ENOENT) {
1841 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1842 } else if (need_rehash)
1843 d_rehash(dentry);
1844 return error;
1845}
1846
1847/*
1848 * To create a symbolic link, most file systems instantiate a new inode,
1849 * add a page to it containing the path, then write it out to the disk
1850 * using prepare_write/commit_write.
1851 *
1852 * Unfortunately the NFS client can't create the in-core inode first
1853 * because it needs a file handle to create an in-core inode (see
1854 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1855 * symlink request has completed on the server.
1856 *
1857 * So instead we allocate a raw page, copy the symname into it, then do
1858 * the SYMLINK request with the page as the buffer. If it succeeds, we
1859 * now have a new file handle and can instantiate an in-core NFS inode
1860 * and move the raw page into its mapping.
1861 */
1862static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1863{
1864 struct pagevec lru_pvec;
1865 struct page *page;
1866 char *kaddr;
1867 struct iattr attr;
1868 unsigned int pathlen = strlen(symname);
1869 int error;
1870
1871 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1872 dir->i_ino, dentry->d_name.name, symname);
1873
1874 if (pathlen > PAGE_SIZE)
1875 return -ENAMETOOLONG;
1876
1877 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1878 attr.ia_valid = ATTR_MODE;
1879
1880 page = alloc_page(GFP_HIGHUSER);
1881 if (!page)
1882 return -ENOMEM;
1883
1884 kaddr = kmap_atomic(page, KM_USER0);
1885 memcpy(kaddr, symname, pathlen);
1886 if (pathlen < PAGE_SIZE)
1887 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1888 kunmap_atomic(kaddr, KM_USER0);
1889
1890 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1891 if (error != 0) {
1892 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1893 dir->i_sb->s_id, dir->i_ino,
1894 dentry->d_name.name, symname, error);
1895 d_drop(dentry);
1896 __free_page(page);
1897 return error;
1898 }
1899
1900 /*
1901 * No big deal if we can't add this page to the page cache here.
1902 * READLINK will get the missing page from the server if needed.
1903 */
1904 pagevec_init(&lru_pvec, 0);
1905 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1906 GFP_KERNEL)) {
1907 pagevec_add(&lru_pvec, page);
1908 pagevec_lru_add_file(&lru_pvec);
1909 SetPageUptodate(page);
1910 unlock_page(page);
1911 } else
1912 __free_page(page);
1913
1914 return 0;
1915}
1916
1917static int
1918nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1919{
1920 struct inode *inode = old_dentry->d_inode;
1921 int error;
1922
1923 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1924 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1925 dentry->d_parent->d_name.name, dentry->d_name.name);
1926
1927 nfs_inode_return_delegation(inode);
1928
1929 d_drop(dentry);
1930 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1931 if (error == 0) {
1932 ihold(inode);
1933 d_add(dentry, inode);
1934 }
1935 return error;
1936}
1937
1938/*
1939 * RENAME
1940 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1941 * different file handle for the same inode after a rename (e.g. when
1942 * moving to a different directory). A fail-safe method to do so would
1943 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1944 * rename the old file using the sillyrename stuff. This way, the original
1945 * file in old_dir will go away when the last process iput()s the inode.
1946 *
1947 * FIXED.
1948 *
1949 * It actually works quite well. One needs to have the possibility for
1950 * at least one ".nfs..." file in each directory the file ever gets
1951 * moved or linked to which happens automagically with the new
1952 * implementation that only depends on the dcache stuff instead of
1953 * using the inode layer
1954 *
1955 * Unfortunately, things are a little more complicated than indicated
1956 * above. For a cross-directory move, we want to make sure we can get
1957 * rid of the old inode after the operation. This means there must be
1958 * no pending writes (if it's a file), and the use count must be 1.
1959 * If these conditions are met, we can drop the dentries before doing
1960 * the rename.
1961 */
1962static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1963 struct inode *new_dir, struct dentry *new_dentry)
1964{
1965 struct inode *old_inode = old_dentry->d_inode;
1966 struct inode *new_inode = new_dentry->d_inode;
1967 struct dentry *dentry = NULL, *rehash = NULL;
1968 int error = -EBUSY;
1969
1970 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1971 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1972 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1973 new_dentry->d_count);
1974
1975 /*
1976 * For non-directories, check whether the target is busy and if so,
1977 * make a copy of the dentry and then do a silly-rename. If the
1978 * silly-rename succeeds, the copied dentry is hashed and becomes
1979 * the new target.
1980 */
1981 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1982 /*
1983 * To prevent any new references to the target during the
1984 * rename, we unhash the dentry in advance.
1985 */
1986 if (!d_unhashed(new_dentry)) {
1987 d_drop(new_dentry);
1988 rehash = new_dentry;
1989 }
1990
1991 if (new_dentry->d_count > 2) {
1992 int err;
1993
1994 /* copy the target dentry's name */
1995 dentry = d_alloc(new_dentry->d_parent,
1996 &new_dentry->d_name);
1997 if (!dentry)
1998 goto out;
1999
2000 /* silly-rename the existing target ... */
2001 err = nfs_sillyrename(new_dir, new_dentry);
2002 if (err)
2003 goto out;
2004
2005 new_dentry = dentry;
2006 rehash = NULL;
2007 new_inode = NULL;
2008 }
2009 }
2010
2011 nfs_inode_return_delegation(old_inode);
2012 if (new_inode != NULL)
2013 nfs_inode_return_delegation(new_inode);
2014
2015 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
2016 new_dir, &new_dentry->d_name);
2017 nfs_mark_for_revalidate(old_inode);
2018out:
2019 if (rehash)
2020 d_rehash(rehash);
2021 if (!error) {
2022 if (new_inode != NULL)
2023 nfs_drop_nlink(new_inode);
2024 d_move(old_dentry, new_dentry);
2025 nfs_set_verifier(new_dentry,
2026 nfs_save_change_attribute(new_dir));
2027 } else if (error == -ENOENT)
2028 nfs_dentry_handle_enoent(old_dentry);
2029
2030 /* new dentry created? */
2031 if (dentry)
2032 dput(dentry);
2033 return error;
2034}
2035
2036static DEFINE_SPINLOCK(nfs_access_lru_lock);
2037static LIST_HEAD(nfs_access_lru_list);
2038static atomic_long_t nfs_access_nr_entries;
2039
2040static void nfs_access_free_entry(struct nfs_access_entry *entry)
2041{
2042 put_rpccred(entry->cred);
2043 kfree(entry);
2044 smp_mb__before_atomic_dec();
2045 atomic_long_dec(&nfs_access_nr_entries);
2046 smp_mb__after_atomic_dec();
2047}
2048
2049static void nfs_access_free_list(struct list_head *head)
2050{
2051 struct nfs_access_entry *cache;
2052
2053 while (!list_empty(head)) {
2054 cache = list_entry(head->next, struct nfs_access_entry, lru);
2055 list_del(&cache->lru);
2056 nfs_access_free_entry(cache);
2057 }
2058}
2059
2060int nfs_access_cache_shrinker(struct shrinker *shrink,
2061 struct shrink_control *sc)
2062{
2063 LIST_HEAD(head);
2064 struct nfs_inode *nfsi, *next;
2065 struct nfs_access_entry *cache;
2066 int nr_to_scan = sc->nr_to_scan;
2067 gfp_t gfp_mask = sc->gfp_mask;
2068
2069 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2070 return (nr_to_scan == 0) ? 0 : -1;
2071
2072 spin_lock(&nfs_access_lru_lock);
2073 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2074 struct inode *inode;
2075
2076 if (nr_to_scan-- == 0)
2077 break;
2078 inode = &nfsi->vfs_inode;
2079 spin_lock(&inode->i_lock);
2080 if (list_empty(&nfsi->access_cache_entry_lru))
2081 goto remove_lru_entry;
2082 cache = list_entry(nfsi->access_cache_entry_lru.next,
2083 struct nfs_access_entry, lru);
2084 list_move(&cache->lru, &head);
2085 rb_erase(&cache->rb_node, &nfsi->access_cache);
2086 if (!list_empty(&nfsi->access_cache_entry_lru))
2087 list_move_tail(&nfsi->access_cache_inode_lru,
2088 &nfs_access_lru_list);
2089 else {
2090remove_lru_entry:
2091 list_del_init(&nfsi->access_cache_inode_lru);
2092 smp_mb__before_clear_bit();
2093 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2094 smp_mb__after_clear_bit();
2095 }
2096 spin_unlock(&inode->i_lock);
2097 }
2098 spin_unlock(&nfs_access_lru_lock);
2099 nfs_access_free_list(&head);
2100 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
2101}
2102
2103static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2104{
2105 struct rb_root *root_node = &nfsi->access_cache;
2106 struct rb_node *n;
2107 struct nfs_access_entry *entry;
2108
2109 /* Unhook entries from the cache */
2110 while ((n = rb_first(root_node)) != NULL) {
2111 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2112 rb_erase(n, root_node);
2113 list_move(&entry->lru, head);
2114 }
2115 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2116}
2117
2118void nfs_access_zap_cache(struct inode *inode)
2119{
2120 LIST_HEAD(head);
2121
2122 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2123 return;
2124 /* Remove from global LRU init */
2125 spin_lock(&nfs_access_lru_lock);
2126 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2127 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2128
2129 spin_lock(&inode->i_lock);
2130 __nfs_access_zap_cache(NFS_I(inode), &head);
2131 spin_unlock(&inode->i_lock);
2132 spin_unlock(&nfs_access_lru_lock);
2133 nfs_access_free_list(&head);
2134}
2135
2136static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2137{
2138 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2139 struct nfs_access_entry *entry;
2140
2141 while (n != NULL) {
2142 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2143
2144 if (cred < entry->cred)
2145 n = n->rb_left;
2146 else if (cred > entry->cred)
2147 n = n->rb_right;
2148 else
2149 return entry;
2150 }
2151 return NULL;
2152}
2153
2154static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2155{
2156 struct nfs_inode *nfsi = NFS_I(inode);
2157 struct nfs_access_entry *cache;
2158 int err = -ENOENT;
2159
2160 spin_lock(&inode->i_lock);
2161 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2162 goto out_zap;
2163 cache = nfs_access_search_rbtree(inode, cred);
2164 if (cache == NULL)
2165 goto out;
2166 if (!nfs_have_delegated_attributes(inode) &&
2167 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2168 goto out_stale;
2169 res->jiffies = cache->jiffies;
2170 res->cred = cache->cred;
2171 res->mask = cache->mask;
2172 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2173 err = 0;
2174out:
2175 spin_unlock(&inode->i_lock);
2176 return err;
2177out_stale:
2178 rb_erase(&cache->rb_node, &nfsi->access_cache);
2179 list_del(&cache->lru);
2180 spin_unlock(&inode->i_lock);
2181 nfs_access_free_entry(cache);
2182 return -ENOENT;
2183out_zap:
2184 spin_unlock(&inode->i_lock);
2185 nfs_access_zap_cache(inode);
2186 return -ENOENT;
2187}
2188
2189static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2190{
2191 struct nfs_inode *nfsi = NFS_I(inode);
2192 struct rb_root *root_node = &nfsi->access_cache;
2193 struct rb_node **p = &root_node->rb_node;
2194 struct rb_node *parent = NULL;
2195 struct nfs_access_entry *entry;
2196
2197 spin_lock(&inode->i_lock);
2198 while (*p != NULL) {
2199 parent = *p;
2200 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2201
2202 if (set->cred < entry->cred)
2203 p = &parent->rb_left;
2204 else if (set->cred > entry->cred)
2205 p = &parent->rb_right;
2206 else
2207 goto found;
2208 }
2209 rb_link_node(&set->rb_node, parent, p);
2210 rb_insert_color(&set->rb_node, root_node);
2211 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2212 spin_unlock(&inode->i_lock);
2213 return;
2214found:
2215 rb_replace_node(parent, &set->rb_node, root_node);
2216 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2217 list_del(&entry->lru);
2218 spin_unlock(&inode->i_lock);
2219 nfs_access_free_entry(entry);
2220}
2221
2222static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2223{
2224 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2225 if (cache == NULL)
2226 return;
2227 RB_CLEAR_NODE(&cache->rb_node);
2228 cache->jiffies = set->jiffies;
2229 cache->cred = get_rpccred(set->cred);
2230 cache->mask = set->mask;
2231
2232 nfs_access_add_rbtree(inode, cache);
2233
2234 /* Update accounting */
2235 smp_mb__before_atomic_inc();
2236 atomic_long_inc(&nfs_access_nr_entries);
2237 smp_mb__after_atomic_inc();
2238
2239 /* Add inode to global LRU list */
2240 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2241 spin_lock(&nfs_access_lru_lock);
2242 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2243 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2244 &nfs_access_lru_list);
2245 spin_unlock(&nfs_access_lru_lock);
2246 }
2247}
2248
2249static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2250{
2251 struct nfs_access_entry cache;
2252 int status;
2253
2254 status = nfs_access_get_cached(inode, cred, &cache);
2255 if (status == 0)
2256 goto out;
2257
2258 /* Be clever: ask server to check for all possible rights */
2259 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2260 cache.cred = cred;
2261 cache.jiffies = jiffies;
2262 status = NFS_PROTO(inode)->access(inode, &cache);
2263 if (status != 0) {
2264 if (status == -ESTALE) {
2265 nfs_zap_caches(inode);
2266 if (!S_ISDIR(inode->i_mode))
2267 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2268 }
2269 return status;
2270 }
2271 nfs_access_add_cache(inode, &cache);
2272out:
2273 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2274 return 0;
2275 return -EACCES;
2276}
2277
2278static int nfs_open_permission_mask(int openflags)
2279{
2280 int mask = 0;
2281
2282 if ((openflags & O_ACCMODE) != O_WRONLY)
2283 mask |= MAY_READ;
2284 if ((openflags & O_ACCMODE) != O_RDONLY)
2285 mask |= MAY_WRITE;
2286 if (openflags & __FMODE_EXEC)
2287 mask |= MAY_EXEC;
2288 return mask;
2289}
2290
2291int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2292{
2293 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2294}
2295
2296int nfs_permission(struct inode *inode, int mask)
2297{
2298 struct rpc_cred *cred;
2299 int res = 0;
2300
2301 if (mask & MAY_NOT_BLOCK)
2302 return -ECHILD;
2303
2304 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2305
2306 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2307 goto out;
2308 /* Is this sys_access() ? */
2309 if (mask & (MAY_ACCESS | MAY_CHDIR))
2310 goto force_lookup;
2311
2312 switch (inode->i_mode & S_IFMT) {
2313 case S_IFLNK:
2314 goto out;
2315 case S_IFREG:
2316 /* NFSv4 has atomic_open... */
2317 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
2318 && (mask & MAY_OPEN)
2319 && !(mask & MAY_EXEC))
2320 goto out;
2321 break;
2322 case S_IFDIR:
2323 /*
2324 * Optimize away all write operations, since the server
2325 * will check permissions when we perform the op.
2326 */
2327 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2328 goto out;
2329 }
2330
2331force_lookup:
2332 if (!NFS_PROTO(inode)->access)
2333 goto out_notsup;
2334
2335 cred = rpc_lookup_cred();
2336 if (!IS_ERR(cred)) {
2337 res = nfs_do_access(inode, cred, mask);
2338 put_rpccred(cred);
2339 } else
2340 res = PTR_ERR(cred);
2341out:
2342 if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2343 res = -EACCES;
2344
2345 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2346 inode->i_sb->s_id, inode->i_ino, mask, res);
2347 return res;
2348out_notsup:
2349 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2350 if (res == 0)
2351 res = generic_permission(inode, mask);
2352 goto out;
2353}
2354
2355/*
2356 * Local variables:
2357 * version-control: t
2358 * kept-new-versions: 5
2359 * End:
2360 */