Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
Note: File does not exist in v3.1.
   1/* Freescale QUICC Engine HDLC Device Driver
   2 *
   3 * Copyright 2016 Freescale Semiconductor Inc.
   4 *
   5 * This program is free software; you can redistribute  it and/or modify it
   6 * under  the terms of  the GNU General  Public License as published by the
   7 * Free Software Foundation;  either version 2 of the  License, or (at your
   8 * option) any later version.
   9 */
  10
  11#include <linux/delay.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/hdlc.h>
  14#include <linux/init.h>
  15#include <linux/interrupt.h>
  16#include <linux/io.h>
  17#include <linux/irq.h>
  18#include <linux/kernel.h>
  19#include <linux/module.h>
  20#include <linux/netdevice.h>
  21#include <linux/of_address.h>
  22#include <linux/of_irq.h>
  23#include <linux/of_platform.h>
  24#include <linux/platform_device.h>
  25#include <linux/sched.h>
  26#include <linux/skbuff.h>
  27#include <linux/slab.h>
  28#include <linux/spinlock.h>
  29#include <linux/stddef.h>
  30#include <soc/fsl/qe/qe_tdm.h>
  31#include <uapi/linux/if_arp.h>
  32
  33#include "fsl_ucc_hdlc.h"
  34
  35#define DRV_DESC "Freescale QE UCC HDLC Driver"
  36#define DRV_NAME "ucc_hdlc"
  37
  38#define TDM_PPPOHT_SLIC_MAXIN
  39#define BROKEN_FRAME_INFO
  40
  41static struct ucc_tdm_info utdm_primary_info = {
  42	.uf_info = {
  43		.tsa = 0,
  44		.cdp = 0,
  45		.cds = 1,
  46		.ctsp = 1,
  47		.ctss = 1,
  48		.revd = 0,
  49		.urfs = 256,
  50		.utfs = 256,
  51		.urfet = 128,
  52		.urfset = 192,
  53		.utfet = 128,
  54		.utftt = 0x40,
  55		.ufpt = 256,
  56		.mode = UCC_FAST_PROTOCOL_MODE_HDLC,
  57		.ttx_trx = UCC_FAST_GUMR_TRANSPARENT_TTX_TRX_NORMAL,
  58		.tenc = UCC_FAST_TX_ENCODING_NRZ,
  59		.renc = UCC_FAST_RX_ENCODING_NRZ,
  60		.tcrc = UCC_FAST_16_BIT_CRC,
  61		.synl = UCC_FAST_SYNC_LEN_NOT_USED,
  62	},
  63
  64	.si_info = {
  65#ifdef TDM_PPPOHT_SLIC_MAXIN
  66		.simr_rfsd = 1,
  67		.simr_tfsd = 2,
  68#else
  69		.simr_rfsd = 0,
  70		.simr_tfsd = 0,
  71#endif
  72		.simr_crt = 0,
  73		.simr_sl = 0,
  74		.simr_ce = 1,
  75		.simr_fe = 1,
  76		.simr_gm = 0,
  77	},
  78};
  79
  80static struct ucc_tdm_info utdm_info[MAX_HDLC_NUM];
  81
  82static int uhdlc_init(struct ucc_hdlc_private *priv)
  83{
  84	struct ucc_tdm_info *ut_info;
  85	struct ucc_fast_info *uf_info;
  86	u32 cecr_subblock;
  87	u16 bd_status;
  88	int ret, i;
  89	void *bd_buffer;
  90	dma_addr_t bd_dma_addr;
  91	u32 riptr;
  92	u32 tiptr;
  93	u32 gumr;
  94
  95	ut_info = priv->ut_info;
  96	uf_info = &ut_info->uf_info;
  97
  98	if (priv->tsa) {
  99		uf_info->tsa = 1;
 100		uf_info->ctsp = 1;
 101	}
 102	uf_info->uccm_mask = ((UCC_HDLC_UCCE_RXB | UCC_HDLC_UCCE_RXF |
 103				UCC_HDLC_UCCE_TXB) << 16);
 104
 105	ret = ucc_fast_init(uf_info, &priv->uccf);
 106	if (ret) {
 107		dev_err(priv->dev, "Failed to init uccf.");
 108		return ret;
 109	}
 110
 111	priv->uf_regs = priv->uccf->uf_regs;
 112	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
 113
 114	/* Loopback mode */
 115	if (priv->loopback) {
 116		dev_info(priv->dev, "Loopback Mode\n");
 117		gumr = ioread32be(&priv->uf_regs->gumr);
 118		gumr |= (UCC_FAST_GUMR_LOOPBACK | UCC_FAST_GUMR_CDS |
 119			 UCC_FAST_GUMR_TCI);
 120		gumr &= ~(UCC_FAST_GUMR_CTSP | UCC_FAST_GUMR_RSYN);
 121		iowrite32be(gumr, &priv->uf_regs->gumr);
 122	}
 123
 124	/* Initialize SI */
 125	if (priv->tsa)
 126		ucc_tdm_init(priv->utdm, priv->ut_info);
 127
 128	/* Write to QE CECR, UCCx channel to Stop Transmission */
 129	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
 130	ret = qe_issue_cmd(QE_STOP_TX, cecr_subblock,
 131			   QE_CR_PROTOCOL_UNSPECIFIED, 0);
 132
 133	/* Set UPSMR normal mode (need fixed)*/
 134	iowrite32be(0, &priv->uf_regs->upsmr);
 135
 136	priv->rx_ring_size = RX_BD_RING_LEN;
 137	priv->tx_ring_size = TX_BD_RING_LEN;
 138	/* Alloc Rx BD */
 139	priv->rx_bd_base = dma_alloc_coherent(priv->dev,
 140			RX_BD_RING_LEN * sizeof(struct qe_bd *),
 141			&priv->dma_rx_bd, GFP_KERNEL);
 142
 143	if (!priv->rx_bd_base) {
 144		dev_err(priv->dev, "Cannot allocate MURAM memory for RxBDs\n");
 145		ret = -ENOMEM;
 146		goto free_uccf;
 147	}
 148
 149	/* Alloc Tx BD */
 150	priv->tx_bd_base = dma_alloc_coherent(priv->dev,
 151			TX_BD_RING_LEN * sizeof(struct qe_bd *),
 152			&priv->dma_tx_bd, GFP_KERNEL);
 153
 154	if (!priv->tx_bd_base) {
 155		dev_err(priv->dev, "Cannot allocate MURAM memory for TxBDs\n");
 156		ret = -ENOMEM;
 157		goto free_rx_bd;
 158	}
 159
 160	/* Alloc parameter ram for ucc hdlc */
 161	priv->ucc_pram_offset = qe_muram_alloc(sizeof(priv->ucc_pram),
 162				ALIGNMENT_OF_UCC_HDLC_PRAM);
 163
 164	if (priv->ucc_pram_offset < 0) {
 165		dev_err(priv->dev, "Can not allocate MURAM for hdlc parameter.\n");
 166		ret = -ENOMEM;
 167		goto free_tx_bd;
 168	}
 169
 170	priv->rx_skbuff = kzalloc(priv->rx_ring_size * sizeof(*priv->rx_skbuff),
 171				  GFP_KERNEL);
 172	if (!priv->rx_skbuff)
 173		goto free_ucc_pram;
 174
 175	priv->tx_skbuff = kzalloc(priv->tx_ring_size * sizeof(*priv->tx_skbuff),
 176				  GFP_KERNEL);
 177	if (!priv->tx_skbuff)
 178		goto free_rx_skbuff;
 179
 180	priv->skb_curtx = 0;
 181	priv->skb_dirtytx = 0;
 182	priv->curtx_bd = priv->tx_bd_base;
 183	priv->dirty_tx = priv->tx_bd_base;
 184	priv->currx_bd = priv->rx_bd_base;
 185	priv->currx_bdnum = 0;
 186
 187	/* init parameter base */
 188	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
 189	ret = qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock,
 190			   QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset);
 191
 192	priv->ucc_pram = (struct ucc_hdlc_param __iomem *)
 193					qe_muram_addr(priv->ucc_pram_offset);
 194
 195	/* Zero out parameter ram */
 196	memset_io(priv->ucc_pram, 0, sizeof(struct ucc_hdlc_param));
 197
 198	/* Alloc riptr, tiptr */
 199	riptr = qe_muram_alloc(32, 32);
 200	if (riptr < 0) {
 201		dev_err(priv->dev, "Cannot allocate MURAM mem for Receive internal temp data pointer\n");
 202		ret = -ENOMEM;
 203		goto free_tx_skbuff;
 204	}
 205
 206	tiptr = qe_muram_alloc(32, 32);
 207	if (tiptr < 0) {
 208		dev_err(priv->dev, "Cannot allocate MURAM mem for Transmit internal temp data pointer\n");
 209		ret = -ENOMEM;
 210		goto free_riptr;
 211	}
 212
 213	/* Set RIPTR, TIPTR */
 214	iowrite16be(riptr, &priv->ucc_pram->riptr);
 215	iowrite16be(tiptr, &priv->ucc_pram->tiptr);
 216
 217	/* Set MRBLR */
 218	iowrite16be(MAX_RX_BUF_LENGTH, &priv->ucc_pram->mrblr);
 219
 220	/* Set RBASE, TBASE */
 221	iowrite32be(priv->dma_rx_bd, &priv->ucc_pram->rbase);
 222	iowrite32be(priv->dma_tx_bd, &priv->ucc_pram->tbase);
 223
 224	/* Set RSTATE, TSTATE */
 225	iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->rstate);
 226	iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->tstate);
 227
 228	/* Set C_MASK, C_PRES for 16bit CRC */
 229	iowrite32be(CRC_16BIT_MASK, &priv->ucc_pram->c_mask);
 230	iowrite32be(CRC_16BIT_PRES, &priv->ucc_pram->c_pres);
 231
 232	iowrite16be(MAX_FRAME_LENGTH, &priv->ucc_pram->mflr);
 233	iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfthr);
 234	iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfcnt);
 235	iowrite16be(DEFAULT_ADDR_MASK, &priv->ucc_pram->hmask);
 236	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr1);
 237	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr2);
 238	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr3);
 239	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr4);
 240
 241	/* Get BD buffer */
 242	bd_buffer = dma_alloc_coherent(priv->dev,
 243				       (RX_BD_RING_LEN + TX_BD_RING_LEN) *
 244				       MAX_RX_BUF_LENGTH,
 245				       &bd_dma_addr, GFP_KERNEL);
 246
 247	if (!bd_buffer) {
 248		dev_err(priv->dev, "Could not allocate buffer descriptors\n");
 249		ret = -ENOMEM;
 250		goto free_tiptr;
 251	}
 252
 253	memset(bd_buffer, 0, (RX_BD_RING_LEN + TX_BD_RING_LEN)
 254			* MAX_RX_BUF_LENGTH);
 255
 256	priv->rx_buffer = bd_buffer;
 257	priv->tx_buffer = bd_buffer + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH;
 258
 259	priv->dma_rx_addr = bd_dma_addr;
 260	priv->dma_tx_addr = bd_dma_addr + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH;
 261
 262	for (i = 0; i < RX_BD_RING_LEN; i++) {
 263		if (i < (RX_BD_RING_LEN - 1))
 264			bd_status = R_E_S | R_I_S;
 265		else
 266			bd_status = R_E_S | R_I_S | R_W_S;
 267
 268		iowrite16be(bd_status, &priv->rx_bd_base[i].status);
 269		iowrite32be(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH,
 270			    &priv->rx_bd_base[i].buf);
 271	}
 272
 273	for (i = 0; i < TX_BD_RING_LEN; i++) {
 274		if (i < (TX_BD_RING_LEN - 1))
 275			bd_status =  T_I_S | T_TC_S;
 276		else
 277			bd_status =  T_I_S | T_TC_S | T_W_S;
 278
 279		iowrite16be(bd_status, &priv->tx_bd_base[i].status);
 280		iowrite32be(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH,
 281			    &priv->tx_bd_base[i].buf);
 282	}
 283
 284	return 0;
 285
 286free_tiptr:
 287	qe_muram_free(tiptr);
 288free_riptr:
 289	qe_muram_free(riptr);
 290free_tx_skbuff:
 291	kfree(priv->tx_skbuff);
 292free_rx_skbuff:
 293	kfree(priv->rx_skbuff);
 294free_ucc_pram:
 295	qe_muram_free(priv->ucc_pram_offset);
 296free_tx_bd:
 297	dma_free_coherent(priv->dev,
 298			  TX_BD_RING_LEN * sizeof(struct qe_bd *),
 299			  priv->tx_bd_base, priv->dma_tx_bd);
 300free_rx_bd:
 301	dma_free_coherent(priv->dev,
 302			  RX_BD_RING_LEN * sizeof(struct qe_bd *),
 303			  priv->rx_bd_base, priv->dma_rx_bd);
 304free_uccf:
 305	ucc_fast_free(priv->uccf);
 306
 307	return ret;
 308}
 309
 310static netdev_tx_t ucc_hdlc_tx(struct sk_buff *skb, struct net_device *dev)
 311{
 312	hdlc_device *hdlc = dev_to_hdlc(dev);
 313	struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)hdlc->priv;
 314	struct qe_bd __iomem *bd;
 315	u16 bd_status;
 316	unsigned long flags;
 317	u8 *send_buf;
 318	int i;
 319	u16 *proto_head;
 320
 321	switch (dev->type) {
 322	case ARPHRD_RAWHDLC:
 323		if (skb_headroom(skb) < HDLC_HEAD_LEN) {
 324			dev->stats.tx_dropped++;
 325			dev_kfree_skb(skb);
 326			netdev_err(dev, "No enough space for hdlc head\n");
 327			return -ENOMEM;
 328		}
 329
 330		skb_push(skb, HDLC_HEAD_LEN);
 331
 332		proto_head = (u16 *)skb->data;
 333		*proto_head = htons(DEFAULT_HDLC_HEAD);
 334
 335		dev->stats.tx_bytes += skb->len;
 336		break;
 337
 338	case ARPHRD_PPP:
 339		proto_head = (u16 *)skb->data;
 340		if (*proto_head != htons(DEFAULT_PPP_HEAD)) {
 341			dev->stats.tx_dropped++;
 342			dev_kfree_skb(skb);
 343			netdev_err(dev, "Wrong ppp header\n");
 344			return -ENOMEM;
 345		}
 346
 347		dev->stats.tx_bytes += skb->len;
 348		break;
 349
 350	default:
 351		dev->stats.tx_dropped++;
 352		dev_kfree_skb(skb);
 353		return -ENOMEM;
 354	}
 355
 356	pr_info("Tx data skb->len:%d ", skb->len);
 357	send_buf = (u8 *)skb->data;
 358	pr_info("\nTransmitted data:\n");
 359	for (i = 0; i < 16; i++) {
 360		if (i == skb->len)
 361			pr_info("++++");
 362		else
 363		pr_info("%02x\n", send_buf[i]);
 364	}
 365	spin_lock_irqsave(&priv->lock, flags);
 366
 367	/* Start from the next BD that should be filled */
 368	bd = priv->curtx_bd;
 369	bd_status = ioread16be(&bd->status);
 370	/* Save the skb pointer so we can free it later */
 371	priv->tx_skbuff[priv->skb_curtx] = skb;
 372
 373	/* Update the current skb pointer (wrapping if this was the last) */
 374	priv->skb_curtx =
 375	    (priv->skb_curtx + 1) & TX_RING_MOD_MASK(TX_BD_RING_LEN);
 376
 377	/* copy skb data to tx buffer for sdma processing */
 378	memcpy(priv->tx_buffer + (be32_to_cpu(bd->buf) - priv->dma_tx_addr),
 379	       skb->data, skb->len);
 380
 381	/* set bd status and length */
 382	bd_status = (bd_status & T_W_S) | T_R_S | T_I_S | T_L_S | T_TC_S;
 383
 384	iowrite16be(bd_status, &bd->status);
 385	iowrite16be(skb->len, &bd->length);
 386
 387	/* Move to next BD in the ring */
 388	if (!(bd_status & T_W_S))
 389		bd += 1;
 390	else
 391		bd = priv->tx_bd_base;
 392
 393	if (bd == priv->dirty_tx) {
 394		if (!netif_queue_stopped(dev))
 395			netif_stop_queue(dev);
 396	}
 397
 398	priv->curtx_bd = bd;
 399
 400	spin_unlock_irqrestore(&priv->lock, flags);
 401
 402	return NETDEV_TX_OK;
 403}
 404
 405static int hdlc_tx_done(struct ucc_hdlc_private *priv)
 406{
 407	/* Start from the next BD that should be filled */
 408	struct net_device *dev = priv->ndev;
 409	struct qe_bd *bd;		/* BD pointer */
 410	u16 bd_status;
 411
 412	bd = priv->dirty_tx;
 413	bd_status = ioread16be(&bd->status);
 414
 415	/* Normal processing. */
 416	while ((bd_status & T_R_S) == 0) {
 417		struct sk_buff *skb;
 418
 419		/* BD contains already transmitted buffer.   */
 420		/* Handle the transmitted buffer and release */
 421		/* the BD to be used with the current frame  */
 422
 423		skb = priv->tx_skbuff[priv->skb_dirtytx];
 424		if (!skb)
 425			break;
 426		pr_info("TxBD: %x\n", bd_status);
 427		dev->stats.tx_packets++;
 428		memset(priv->tx_buffer +
 429		       (be32_to_cpu(bd->buf) - priv->dma_tx_addr),
 430		       0, skb->len);
 431		dev_kfree_skb_irq(skb);
 432
 433		priv->tx_skbuff[priv->skb_dirtytx] = NULL;
 434		priv->skb_dirtytx =
 435		    (priv->skb_dirtytx +
 436		     1) & TX_RING_MOD_MASK(TX_BD_RING_LEN);
 437
 438		/* We freed a buffer, so now we can restart transmission */
 439		if (netif_queue_stopped(dev))
 440			netif_wake_queue(dev);
 441
 442		/* Advance the confirmation BD pointer */
 443		if (!(bd_status & T_W_S))
 444			bd += 1;
 445		else
 446			bd = priv->tx_bd_base;
 447		bd_status = ioread16be(&bd->status);
 448	}
 449	priv->dirty_tx = bd;
 450
 451	return 0;
 452}
 453
 454static int hdlc_rx_done(struct ucc_hdlc_private *priv, int rx_work_limit)
 455{
 456	struct net_device *dev = priv->ndev;
 457	struct sk_buff *skb;
 458	hdlc_device *hdlc = dev_to_hdlc(dev);
 459	struct qe_bd *bd;
 460	u32 bd_status;
 461	u16 length, howmany = 0;
 462	u8 *bdbuffer;
 463	int i;
 464	static int entry;
 465
 466	bd = priv->currx_bd;
 467	bd_status = ioread16be(&bd->status);
 468
 469	/* while there are received buffers and BD is full (~R_E) */
 470	while (!((bd_status & (R_E_S)) || (--rx_work_limit < 0))) {
 471		if (bd_status & R_OV_S)
 472			dev->stats.rx_over_errors++;
 473		if (bd_status & R_CR_S) {
 474#ifdef BROKEN_FRAME_INFO
 475			pr_info("Broken Frame with RxBD: %x\n", bd_status);
 476#endif
 477			dev->stats.rx_crc_errors++;
 478			dev->stats.rx_dropped++;
 479			goto recycle;
 480		}
 481		bdbuffer = priv->rx_buffer +
 482			(priv->currx_bdnum * MAX_RX_BUF_LENGTH);
 483		length = ioread16be(&bd->length);
 484
 485		pr_info("Received data length:%d", length);
 486		pr_info("while entry times:%d", entry++);
 487
 488		pr_info("\nReceived data:\n");
 489		for (i = 0; (i < 16); i++) {
 490			if (i == length)
 491				pr_info("++++");
 492			else
 493			pr_info("%02x\n", bdbuffer[i]);
 494		}
 495
 496		switch (dev->type) {
 497		case ARPHRD_RAWHDLC:
 498			bdbuffer += HDLC_HEAD_LEN;
 499			length -= (HDLC_HEAD_LEN + HDLC_CRC_SIZE);
 500
 501			skb = dev_alloc_skb(length);
 502			if (!skb) {
 503				dev->stats.rx_dropped++;
 504				return -ENOMEM;
 505			}
 506
 507			skb_put(skb, length);
 508			skb->len = length;
 509			skb->dev = dev;
 510			memcpy(skb->data, bdbuffer, length);
 511			break;
 512
 513		case ARPHRD_PPP:
 514			length -= HDLC_CRC_SIZE;
 515
 516			skb = dev_alloc_skb(length);
 517			if (!skb) {
 518				dev->stats.rx_dropped++;
 519				return -ENOMEM;
 520			}
 521
 522			skb_put(skb, length);
 523			skb->len = length;
 524			skb->dev = dev;
 525			memcpy(skb->data, bdbuffer, length);
 526			break;
 527		}
 528
 529		dev->stats.rx_packets++;
 530		dev->stats.rx_bytes += skb->len;
 531		howmany++;
 532		if (hdlc->proto)
 533			skb->protocol = hdlc_type_trans(skb, dev);
 534		pr_info("skb->protocol:%x\n", skb->protocol);
 535		netif_receive_skb(skb);
 536
 537recycle:
 538		iowrite16be(bd_status | R_E_S | R_I_S, &bd->status);
 539
 540		/* update to point at the next bd */
 541		if (bd_status & R_W_S) {
 542			priv->currx_bdnum = 0;
 543			bd = priv->rx_bd_base;
 544		} else {
 545			if (priv->currx_bdnum < (RX_BD_RING_LEN - 1))
 546				priv->currx_bdnum += 1;
 547			else
 548				priv->currx_bdnum = RX_BD_RING_LEN - 1;
 549
 550			bd += 1;
 551		}
 552
 553		bd_status = ioread16be(&bd->status);
 554	}
 555
 556	priv->currx_bd = bd;
 557	return howmany;
 558}
 559
 560static int ucc_hdlc_poll(struct napi_struct *napi, int budget)
 561{
 562	struct ucc_hdlc_private *priv = container_of(napi,
 563						     struct ucc_hdlc_private,
 564						     napi);
 565	int howmany;
 566
 567	/* Tx event processing */
 568	spin_lock(&priv->lock);
 569		hdlc_tx_done(priv);
 570	spin_unlock(&priv->lock);
 571
 572	howmany = 0;
 573	howmany += hdlc_rx_done(priv, budget - howmany);
 574
 575	if (howmany < budget) {
 576		napi_complete(napi);
 577		qe_setbits32(priv->uccf->p_uccm,
 578			     (UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS) << 16);
 579	}
 580
 581	return howmany;
 582}
 583
 584static irqreturn_t ucc_hdlc_irq_handler(int irq, void *dev_id)
 585{
 586	struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)dev_id;
 587	struct net_device *dev = priv->ndev;
 588	struct ucc_fast_private *uccf;
 589	struct ucc_tdm_info *ut_info;
 590	u32 ucce;
 591	u32 uccm;
 592
 593	ut_info = priv->ut_info;
 594	uccf = priv->uccf;
 595
 596	ucce = ioread32be(uccf->p_ucce);
 597	uccm = ioread32be(uccf->p_uccm);
 598	ucce &= uccm;
 599	iowrite32be(ucce, uccf->p_ucce);
 600	pr_info("irq ucce:%x\n", ucce);
 601	if (!ucce)
 602		return IRQ_NONE;
 603
 604	if ((ucce >> 16) & (UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS)) {
 605		if (napi_schedule_prep(&priv->napi)) {
 606			uccm &= ~((UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS)
 607				  << 16);
 608			iowrite32be(uccm, uccf->p_uccm);
 609			__napi_schedule(&priv->napi);
 610		}
 611	}
 612
 613	/* Errors and other events */
 614	if (ucce >> 16 & UCC_HDLC_UCCE_BSY)
 615		dev->stats.rx_errors++;
 616	if (ucce >> 16 & UCC_HDLC_UCCE_TXE)
 617		dev->stats.tx_errors++;
 618
 619	return IRQ_HANDLED;
 620}
 621
 622static int uhdlc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
 623{
 624	const size_t size = sizeof(te1_settings);
 625	te1_settings line;
 626	struct ucc_hdlc_private *priv = netdev_priv(dev);
 627
 628	if (cmd != SIOCWANDEV)
 629		return hdlc_ioctl(dev, ifr, cmd);
 630
 631	switch (ifr->ifr_settings.type) {
 632	case IF_GET_IFACE:
 633		ifr->ifr_settings.type = IF_IFACE_E1;
 634		if (ifr->ifr_settings.size < size) {
 635			ifr->ifr_settings.size = size; /* data size wanted */
 636			return -ENOBUFS;
 637		}
 638		memset(&line, 0, sizeof(line));
 639		line.clock_type = priv->clocking;
 640
 641		if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &line, size))
 642			return -EFAULT;
 643		return 0;
 644
 645	default:
 646		return hdlc_ioctl(dev, ifr, cmd);
 647	}
 648}
 649
 650static int uhdlc_open(struct net_device *dev)
 651{
 652	u32 cecr_subblock;
 653	hdlc_device *hdlc = dev_to_hdlc(dev);
 654	struct ucc_hdlc_private *priv = hdlc->priv;
 655	struct ucc_tdm *utdm = priv->utdm;
 656
 657	if (priv->hdlc_busy != 1) {
 658		if (request_irq(priv->ut_info->uf_info.irq,
 659				ucc_hdlc_irq_handler, 0, "hdlc", priv))
 660			return -ENODEV;
 661
 662		cecr_subblock = ucc_fast_get_qe_cr_subblock(
 663					priv->ut_info->uf_info.ucc_num);
 664
 665		qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
 666			     QE_CR_PROTOCOL_UNSPECIFIED, 0);
 667
 668		ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
 669
 670		/* Enable the TDM port */
 671		if (priv->tsa)
 672			utdm->si_regs->siglmr1_h |= (0x1 << utdm->tdm_port);
 673
 674		priv->hdlc_busy = 1;
 675		netif_device_attach(priv->ndev);
 676		napi_enable(&priv->napi);
 677		netif_start_queue(dev);
 678		hdlc_open(dev);
 679	}
 680
 681	return 0;
 682}
 683
 684static void uhdlc_memclean(struct ucc_hdlc_private *priv)
 685{
 686	qe_muram_free(priv->ucc_pram->riptr);
 687	qe_muram_free(priv->ucc_pram->tiptr);
 688
 689	if (priv->rx_bd_base) {
 690		dma_free_coherent(priv->dev,
 691				  RX_BD_RING_LEN * sizeof(struct qe_bd *),
 692				  priv->rx_bd_base, priv->dma_rx_bd);
 693
 694		priv->rx_bd_base = NULL;
 695		priv->dma_rx_bd = 0;
 696	}
 697
 698	if (priv->tx_bd_base) {
 699		dma_free_coherent(priv->dev,
 700				  TX_BD_RING_LEN * sizeof(struct qe_bd *),
 701				  priv->tx_bd_base, priv->dma_tx_bd);
 702
 703		priv->tx_bd_base = NULL;
 704		priv->dma_tx_bd = 0;
 705	}
 706
 707	if (priv->ucc_pram) {
 708		qe_muram_free(priv->ucc_pram_offset);
 709		priv->ucc_pram = NULL;
 710		priv->ucc_pram_offset = 0;
 711	 }
 712
 713	kfree(priv->rx_skbuff);
 714	priv->rx_skbuff = NULL;
 715
 716	kfree(priv->tx_skbuff);
 717	priv->tx_skbuff = NULL;
 718
 719	if (priv->uf_regs) {
 720		iounmap(priv->uf_regs);
 721		priv->uf_regs = NULL;
 722	}
 723
 724	if (priv->uccf) {
 725		ucc_fast_free(priv->uccf);
 726		priv->uccf = NULL;
 727	}
 728
 729	if (priv->rx_buffer) {
 730		dma_free_coherent(priv->dev,
 731				  RX_BD_RING_LEN * MAX_RX_BUF_LENGTH,
 732				  priv->rx_buffer, priv->dma_rx_addr);
 733		priv->rx_buffer = NULL;
 734		priv->dma_rx_addr = 0;
 735	}
 736
 737	if (priv->tx_buffer) {
 738		dma_free_coherent(priv->dev,
 739				  TX_BD_RING_LEN * MAX_RX_BUF_LENGTH,
 740				  priv->tx_buffer, priv->dma_tx_addr);
 741		priv->tx_buffer = NULL;
 742		priv->dma_tx_addr = 0;
 743	}
 744}
 745
 746static int uhdlc_close(struct net_device *dev)
 747{
 748	struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv;
 749	struct ucc_tdm *utdm = priv->utdm;
 750	u32 cecr_subblock;
 751
 752	napi_disable(&priv->napi);
 753	cecr_subblock = ucc_fast_get_qe_cr_subblock(
 754				priv->ut_info->uf_info.ucc_num);
 755
 756	qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
 757		     (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
 758	qe_issue_cmd(QE_CLOSE_RX_BD, cecr_subblock,
 759		     (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
 760
 761	if (priv->tsa)
 762		utdm->si_regs->siglmr1_h &= ~(0x1 << utdm->tdm_port);
 763
 764	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
 765
 766	free_irq(priv->ut_info->uf_info.irq, priv);
 767	netif_stop_queue(dev);
 768	priv->hdlc_busy = 0;
 769
 770	return 0;
 771}
 772
 773static int ucc_hdlc_attach(struct net_device *dev, unsigned short encoding,
 774			   unsigned short parity)
 775{
 776	struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv;
 777
 778	if (encoding != ENCODING_NRZ &&
 779	    encoding != ENCODING_NRZI)
 780		return -EINVAL;
 781
 782	if (parity != PARITY_NONE &&
 783	    parity != PARITY_CRC32_PR1_CCITT &&
 784	    parity != PARITY_CRC16_PR1_CCITT)
 785		return -EINVAL;
 786
 787	priv->encoding = encoding;
 788	priv->parity = parity;
 789
 790	return 0;
 791}
 792
 793#ifdef CONFIG_PM
 794static void store_clk_config(struct ucc_hdlc_private *priv)
 795{
 796	struct qe_mux *qe_mux_reg = &qe_immr->qmx;
 797
 798	/* store si clk */
 799	priv->cmxsi1cr_h = ioread32be(&qe_mux_reg->cmxsi1cr_h);
 800	priv->cmxsi1cr_l = ioread32be(&qe_mux_reg->cmxsi1cr_l);
 801
 802	/* store si sync */
 803	priv->cmxsi1syr = ioread32be(&qe_mux_reg->cmxsi1syr);
 804
 805	/* store ucc clk */
 806	memcpy_fromio(priv->cmxucr, qe_mux_reg->cmxucr, 4 * sizeof(u32));
 807}
 808
 809static void resume_clk_config(struct ucc_hdlc_private *priv)
 810{
 811	struct qe_mux *qe_mux_reg = &qe_immr->qmx;
 812
 813	memcpy_toio(qe_mux_reg->cmxucr, priv->cmxucr, 4 * sizeof(u32));
 814
 815	iowrite32be(priv->cmxsi1cr_h, &qe_mux_reg->cmxsi1cr_h);
 816	iowrite32be(priv->cmxsi1cr_l, &qe_mux_reg->cmxsi1cr_l);
 817
 818	iowrite32be(priv->cmxsi1syr, &qe_mux_reg->cmxsi1syr);
 819}
 820
 821static int uhdlc_suspend(struct device *dev)
 822{
 823	struct ucc_hdlc_private *priv = dev_get_drvdata(dev);
 824	struct ucc_tdm_info *ut_info;
 825	struct ucc_fast __iomem *uf_regs;
 826
 827	if (!priv)
 828		return -EINVAL;
 829
 830	if (!netif_running(priv->ndev))
 831		return 0;
 832
 833	netif_device_detach(priv->ndev);
 834	napi_disable(&priv->napi);
 835
 836	ut_info = priv->ut_info;
 837	uf_regs = priv->uf_regs;
 838
 839	/* backup gumr guemr*/
 840	priv->gumr = ioread32be(&uf_regs->gumr);
 841	priv->guemr = ioread8(&uf_regs->guemr);
 842
 843	priv->ucc_pram_bak = kmalloc(sizeof(*priv->ucc_pram_bak),
 844					GFP_KERNEL);
 845	if (!priv->ucc_pram_bak)
 846		return -ENOMEM;
 847
 848	/* backup HDLC parameter */
 849	memcpy_fromio(priv->ucc_pram_bak, priv->ucc_pram,
 850		      sizeof(struct ucc_hdlc_param));
 851
 852	/* store the clk configuration */
 853	store_clk_config(priv);
 854
 855	/* save power */
 856	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
 857
 858	dev_dbg(dev, "ucc hdlc suspend\n");
 859	return 0;
 860}
 861
 862static int uhdlc_resume(struct device *dev)
 863{
 864	struct ucc_hdlc_private *priv = dev_get_drvdata(dev);
 865	struct ucc_tdm *utdm;
 866	struct ucc_tdm_info *ut_info;
 867	struct ucc_fast __iomem *uf_regs;
 868	struct ucc_fast_private *uccf;
 869	struct ucc_fast_info *uf_info;
 870	int ret, i;
 871	u32 cecr_subblock;
 872	u16 bd_status;
 873
 874	if (!priv)
 875		return -EINVAL;
 876
 877	if (!netif_running(priv->ndev))
 878		return 0;
 879
 880	utdm = priv->utdm;
 881	ut_info = priv->ut_info;
 882	uf_info = &ut_info->uf_info;
 883	uf_regs = priv->uf_regs;
 884	uccf = priv->uccf;
 885
 886	/* restore gumr guemr */
 887	iowrite8(priv->guemr, &uf_regs->guemr);
 888	iowrite32be(priv->gumr, &uf_regs->gumr);
 889
 890	/* Set Virtual Fifo registers */
 891	iowrite16be(uf_info->urfs, &uf_regs->urfs);
 892	iowrite16be(uf_info->urfet, &uf_regs->urfet);
 893	iowrite16be(uf_info->urfset, &uf_regs->urfset);
 894	iowrite16be(uf_info->utfs, &uf_regs->utfs);
 895	iowrite16be(uf_info->utfet, &uf_regs->utfet);
 896	iowrite16be(uf_info->utftt, &uf_regs->utftt);
 897	/* utfb, urfb are offsets from MURAM base */
 898	iowrite32be(uccf->ucc_fast_tx_virtual_fifo_base_offset, &uf_regs->utfb);
 899	iowrite32be(uccf->ucc_fast_rx_virtual_fifo_base_offset, &uf_regs->urfb);
 900
 901	/* Rx Tx and sync clock routing */
 902	resume_clk_config(priv);
 903
 904	iowrite32be(uf_info->uccm_mask, &uf_regs->uccm);
 905	iowrite32be(0xffffffff, &uf_regs->ucce);
 906
 907	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
 908
 909	/* rebuild SIRAM */
 910	if (priv->tsa)
 911		ucc_tdm_init(priv->utdm, priv->ut_info);
 912
 913	/* Write to QE CECR, UCCx channel to Stop Transmission */
 914	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
 915	ret = qe_issue_cmd(QE_STOP_TX, cecr_subblock,
 916			   (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
 917
 918	/* Set UPSMR normal mode */
 919	iowrite32be(0, &uf_regs->upsmr);
 920
 921	/* init parameter base */
 922	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
 923	ret = qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock,
 924			   QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset);
 925
 926	priv->ucc_pram = (struct ucc_hdlc_param __iomem *)
 927				qe_muram_addr(priv->ucc_pram_offset);
 928
 929	/* restore ucc parameter */
 930	memcpy_toio(priv->ucc_pram, priv->ucc_pram_bak,
 931		    sizeof(struct ucc_hdlc_param));
 932	kfree(priv->ucc_pram_bak);
 933
 934	/* rebuild BD entry */
 935	for (i = 0; i < RX_BD_RING_LEN; i++) {
 936		if (i < (RX_BD_RING_LEN - 1))
 937			bd_status = R_E_S | R_I_S;
 938		else
 939			bd_status = R_E_S | R_I_S | R_W_S;
 940
 941		iowrite16be(bd_status, &priv->rx_bd_base[i].status);
 942		iowrite32be(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH,
 943			    &priv->rx_bd_base[i].buf);
 944	}
 945
 946	for (i = 0; i < TX_BD_RING_LEN; i++) {
 947		if (i < (TX_BD_RING_LEN - 1))
 948			bd_status =  T_I_S | T_TC_S;
 949		else
 950			bd_status =  T_I_S | T_TC_S | T_W_S;
 951
 952		iowrite16be(bd_status, &priv->tx_bd_base[i].status);
 953		iowrite32be(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH,
 954			    &priv->tx_bd_base[i].buf);
 955	}
 956
 957	/* if hdlc is busy enable TX and RX */
 958	if (priv->hdlc_busy == 1) {
 959		cecr_subblock = ucc_fast_get_qe_cr_subblock(
 960					priv->ut_info->uf_info.ucc_num);
 961
 962		qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
 963			     (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
 964
 965		ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
 966
 967		/* Enable the TDM port */
 968		if (priv->tsa)
 969			utdm->si_regs->siglmr1_h |= (0x1 << utdm->tdm_port);
 970	}
 971
 972	napi_enable(&priv->napi);
 973	netif_device_attach(priv->ndev);
 974
 975	return 0;
 976}
 977
 978static const struct dev_pm_ops uhdlc_pm_ops = {
 979	.suspend = uhdlc_suspend,
 980	.resume = uhdlc_resume,
 981	.freeze = uhdlc_suspend,
 982	.thaw = uhdlc_resume,
 983};
 984
 985#define HDLC_PM_OPS (&uhdlc_pm_ops)
 986
 987#else
 988
 989#define HDLC_PM_OPS NULL
 990
 991#endif
 992static const struct net_device_ops uhdlc_ops = {
 993	.ndo_open       = uhdlc_open,
 994	.ndo_stop       = uhdlc_close,
 995	.ndo_start_xmit = hdlc_start_xmit,
 996	.ndo_do_ioctl   = uhdlc_ioctl,
 997};
 998
 999static int ucc_hdlc_probe(struct platform_device *pdev)
1000{
1001	struct device_node *np = pdev->dev.of_node;
1002	struct ucc_hdlc_private *uhdlc_priv = NULL;
1003	struct ucc_tdm_info *ut_info;
1004	struct ucc_tdm *utdm;
1005	struct resource res;
1006	struct net_device *dev;
1007	hdlc_device *hdlc;
1008	int ucc_num;
1009	const char *sprop;
1010	int ret;
1011	u32 val;
1012
1013	ret = of_property_read_u32_index(np, "cell-index", 0, &val);
1014	if (ret) {
1015		dev_err(&pdev->dev, "Invalid ucc property\n");
1016		return -ENODEV;
1017	}
1018
1019	ucc_num = val - 1;
1020	if ((ucc_num > 3) || (ucc_num < 0)) {
1021		dev_err(&pdev->dev, ": Invalid UCC num\n");
1022		return -EINVAL;
1023	}
1024
1025	memcpy(&utdm_info[ucc_num], &utdm_primary_info,
1026	       sizeof(utdm_primary_info));
1027
1028	ut_info = &utdm_info[ucc_num];
1029	ut_info->uf_info.ucc_num = ucc_num;
1030
1031	sprop = of_get_property(np, "rx-clock-name", NULL);
1032	if (sprop) {
1033		ut_info->uf_info.rx_clock = qe_clock_source(sprop);
1034		if ((ut_info->uf_info.rx_clock < QE_CLK_NONE) ||
1035		    (ut_info->uf_info.rx_clock > QE_CLK24)) {
1036			dev_err(&pdev->dev, "Invalid rx-clock-name property\n");
1037			return -EINVAL;
1038		}
1039	} else {
1040		dev_err(&pdev->dev, "Invalid rx-clock-name property\n");
1041		return -EINVAL;
1042	}
1043
1044	sprop = of_get_property(np, "tx-clock-name", NULL);
1045	if (sprop) {
1046		ut_info->uf_info.tx_clock = qe_clock_source(sprop);
1047		if ((ut_info->uf_info.tx_clock < QE_CLK_NONE) ||
1048		    (ut_info->uf_info.tx_clock > QE_CLK24)) {
1049			dev_err(&pdev->dev, "Invalid tx-clock-name property\n");
1050			return -EINVAL;
1051		}
1052	} else {
1053		dev_err(&pdev->dev, "Invalid tx-clock-name property\n");
1054		return -EINVAL;
1055	}
1056
1057	/* use the same clock when work in loopback */
1058	if (ut_info->uf_info.rx_clock == ut_info->uf_info.tx_clock)
1059		qe_setbrg(ut_info->uf_info.rx_clock, 20000000, 1);
1060
1061	ret = of_address_to_resource(np, 0, &res);
1062	if (ret)
1063		return -EINVAL;
1064
1065	ut_info->uf_info.regs = res.start;
1066	ut_info->uf_info.irq = irq_of_parse_and_map(np, 0);
1067
1068	uhdlc_priv = kzalloc(sizeof(*uhdlc_priv), GFP_KERNEL);
1069	if (!uhdlc_priv) {
1070		return -ENOMEM;
1071	}
1072
1073	dev_set_drvdata(&pdev->dev, uhdlc_priv);
1074	uhdlc_priv->dev = &pdev->dev;
1075	uhdlc_priv->ut_info = ut_info;
1076
1077	if (of_get_property(np, "fsl,tdm-interface", NULL))
1078		uhdlc_priv->tsa = 1;
1079
1080	if (of_get_property(np, "fsl,ucc-internal-loopback", NULL))
1081		uhdlc_priv->loopback = 1;
1082
1083	if (uhdlc_priv->tsa == 1) {
1084		utdm = kzalloc(sizeof(*utdm), GFP_KERNEL);
1085		if (!utdm) {
1086			ret = -ENOMEM;
1087			dev_err(&pdev->dev, "No mem to alloc ucc tdm data\n");
1088			goto free_uhdlc_priv;
1089		}
1090		uhdlc_priv->utdm = utdm;
1091		ret = ucc_of_parse_tdm(np, utdm, ut_info);
1092		if (ret)
1093			goto free_utdm;
1094	}
1095
1096	ret = uhdlc_init(uhdlc_priv);
1097	if (ret) {
1098		dev_err(&pdev->dev, "Failed to init uhdlc\n");
1099		goto free_utdm;
1100	}
1101
1102	dev = alloc_hdlcdev(uhdlc_priv);
1103	if (!dev) {
1104		ret = -ENOMEM;
1105		pr_err("ucc_hdlc: unable to allocate memory\n");
1106		goto undo_uhdlc_init;
1107	}
1108
1109	uhdlc_priv->ndev = dev;
1110	hdlc = dev_to_hdlc(dev);
1111	dev->tx_queue_len = 16;
1112	dev->netdev_ops = &uhdlc_ops;
1113	hdlc->attach = ucc_hdlc_attach;
1114	hdlc->xmit = ucc_hdlc_tx;
1115	netif_napi_add(dev, &uhdlc_priv->napi, ucc_hdlc_poll, 32);
1116	if (register_hdlc_device(dev)) {
1117		ret = -ENOBUFS;
1118		pr_err("ucc_hdlc: unable to register hdlc device\n");
1119		free_netdev(dev);
1120		goto free_dev;
1121	}
1122
1123	return 0;
1124
1125free_dev:
1126	free_netdev(dev);
1127undo_uhdlc_init:
1128free_utdm:
1129	if (uhdlc_priv->tsa)
1130		kfree(utdm);
1131free_uhdlc_priv:
1132	kfree(uhdlc_priv);
1133	return ret;
1134}
1135
1136static int ucc_hdlc_remove(struct platform_device *pdev)
1137{
1138	struct ucc_hdlc_private *priv = dev_get_drvdata(&pdev->dev);
1139
1140	uhdlc_memclean(priv);
1141
1142	if (priv->utdm->si_regs) {
1143		iounmap(priv->utdm->si_regs);
1144		priv->utdm->si_regs = NULL;
1145	}
1146
1147	if (priv->utdm->siram) {
1148		iounmap(priv->utdm->siram);
1149		priv->utdm->siram = NULL;
1150	}
1151	kfree(priv);
1152
1153	dev_info(&pdev->dev, "UCC based hdlc module removed\n");
1154
1155	return 0;
1156}
1157
1158static const struct of_device_id fsl_ucc_hdlc_of_match[] = {
1159	{
1160	.compatible = "fsl,ucc-hdlc",
1161	},
1162	{},
1163};
1164
1165MODULE_DEVICE_TABLE(of, fsl_ucc_hdlc_of_match);
1166
1167static struct platform_driver ucc_hdlc_driver = {
1168	.probe	= ucc_hdlc_probe,
1169	.remove	= ucc_hdlc_remove,
1170	.driver	= {
1171		.name		= DRV_NAME,
1172		.pm		= HDLC_PM_OPS,
1173		.of_match_table	= fsl_ucc_hdlc_of_match,
1174	},
1175};
1176
1177module_platform_driver(ucc_hdlc_driver);