Loading...
1/*
2 * 6pack.c This module implements the 6pack protocol for kernel-based
3 * devices like TTY. It interfaces between a raw TTY and the
4 * kernel's AX.25 protocol layers.
5 *
6 * Authors: Andreas Könsgen <ajk@comnets.uni-bremen.de>
7 * Ralf Baechle DL5RB <ralf@linux-mips.org>
8 *
9 * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
10 *
11 * Laurence Culhane, <loz@holmes.demon.co.uk>
12 * Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
13 */
14
15#include <linux/module.h>
16#include <linux/uaccess.h>
17#include <linux/bitops.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/interrupt.h>
21#include <linux/in.h>
22#include <linux/tty.h>
23#include <linux/errno.h>
24#include <linux/netdevice.h>
25#include <linux/timer.h>
26#include <linux/slab.h>
27#include <net/ax25.h>
28#include <linux/etherdevice.h>
29#include <linux/skbuff.h>
30#include <linux/rtnetlink.h>
31#include <linux/spinlock.h>
32#include <linux/if_arp.h>
33#include <linux/init.h>
34#include <linux/ip.h>
35#include <linux/tcp.h>
36#include <linux/semaphore.h>
37#include <linux/compat.h>
38#include <linux/atomic.h>
39
40#define SIXPACK_VERSION "Revision: 0.3.0"
41
42/* sixpack priority commands */
43#define SIXP_SEOF 0x40 /* start and end of a 6pack frame */
44#define SIXP_TX_URUN 0x48 /* transmit overrun */
45#define SIXP_RX_ORUN 0x50 /* receive overrun */
46#define SIXP_RX_BUF_OVL 0x58 /* receive buffer overflow */
47
48#define SIXP_CHKSUM 0xFF /* valid checksum of a 6pack frame */
49
50/* masks to get certain bits out of the status bytes sent by the TNC */
51
52#define SIXP_CMD_MASK 0xC0
53#define SIXP_CHN_MASK 0x07
54#define SIXP_PRIO_CMD_MASK 0x80
55#define SIXP_STD_CMD_MASK 0x40
56#define SIXP_PRIO_DATA_MASK 0x38
57#define SIXP_TX_MASK 0x20
58#define SIXP_RX_MASK 0x10
59#define SIXP_RX_DCD_MASK 0x18
60#define SIXP_LEDS_ON 0x78
61#define SIXP_LEDS_OFF 0x60
62#define SIXP_CON 0x08
63#define SIXP_STA 0x10
64
65#define SIXP_FOUND_TNC 0xe9
66#define SIXP_CON_ON 0x68
67#define SIXP_DCD_MASK 0x08
68#define SIXP_DAMA_OFF 0
69
70/* default level 2 parameters */
71#define SIXP_TXDELAY (HZ/4) /* in 1 s */
72#define SIXP_PERSIST 50 /* in 256ths */
73#define SIXP_SLOTTIME (HZ/10) /* in 1 s */
74#define SIXP_INIT_RESYNC_TIMEOUT (3*HZ/2) /* in 1 s */
75#define SIXP_RESYNC_TIMEOUT 5*HZ /* in 1 s */
76
77/* 6pack configuration. */
78#define SIXP_NRUNIT 31 /* MAX number of 6pack channels */
79#define SIXP_MTU 256 /* Default MTU */
80
81enum sixpack_flags {
82 SIXPF_ERROR, /* Parity, etc. error */
83};
84
85struct sixpack {
86 /* Various fields. */
87 struct tty_struct *tty; /* ptr to TTY structure */
88 struct net_device *dev; /* easy for intr handling */
89
90 /* These are pointers to the malloc()ed frame buffers. */
91 unsigned char *rbuff; /* receiver buffer */
92 int rcount; /* received chars counter */
93 unsigned char *xbuff; /* transmitter buffer */
94 unsigned char *xhead; /* next byte to XMIT */
95 int xleft; /* bytes left in XMIT queue */
96
97 unsigned char raw_buf[4];
98 unsigned char cooked_buf[400];
99
100 unsigned int rx_count;
101 unsigned int rx_count_cooked;
102
103 int mtu; /* Our mtu (to spot changes!) */
104 int buffsize; /* Max buffers sizes */
105
106 unsigned long flags; /* Flag values/ mode etc */
107 unsigned char mode; /* 6pack mode */
108
109 /* 6pack stuff */
110 unsigned char tx_delay;
111 unsigned char persistence;
112 unsigned char slottime;
113 unsigned char duplex;
114 unsigned char led_state;
115 unsigned char status;
116 unsigned char status1;
117 unsigned char status2;
118 unsigned char tx_enable;
119 unsigned char tnc_state;
120
121 struct timer_list tx_t;
122 struct timer_list resync_t;
123 atomic_t refcnt;
124 struct semaphore dead_sem;
125 spinlock_t lock;
126};
127
128#define AX25_6PACK_HEADER_LEN 0
129
130static void sixpack_decode(struct sixpack *, const unsigned char[], int);
131static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);
132
133/*
134 * Perform the persistence/slottime algorithm for CSMA access. If the
135 * persistence check was successful, write the data to the serial driver.
136 * Note that in case of DAMA operation, the data is not sent here.
137 */
138
139static void sp_xmit_on_air(unsigned long channel)
140{
141 struct sixpack *sp = (struct sixpack *) channel;
142 int actual, when = sp->slottime;
143 static unsigned char random;
144
145 random = random * 17 + 41;
146
147 if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
148 sp->led_state = 0x70;
149 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
150 sp->tx_enable = 1;
151 actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
152 sp->xleft -= actual;
153 sp->xhead += actual;
154 sp->led_state = 0x60;
155 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
156 sp->status2 = 0;
157 } else
158 mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
159}
160
161/* ----> 6pack timer interrupt handler and friends. <---- */
162
163/* Encapsulate one AX.25 frame and stuff into a TTY queue. */
164static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
165{
166 unsigned char *msg, *p = icp;
167 int actual, count;
168
169 if (len > sp->mtu) { /* sp->mtu = AX25_MTU = max. PACLEN = 256 */
170 msg = "oversized transmit packet!";
171 goto out_drop;
172 }
173
174 if (len > sp->mtu) { /* sp->mtu = AX25_MTU = max. PACLEN = 256 */
175 msg = "oversized transmit packet!";
176 goto out_drop;
177 }
178
179 if (p[0] > 5) {
180 msg = "invalid KISS command";
181 goto out_drop;
182 }
183
184 if ((p[0] != 0) && (len > 2)) {
185 msg = "KISS control packet too long";
186 goto out_drop;
187 }
188
189 if ((p[0] == 0) && (len < 15)) {
190 msg = "bad AX.25 packet to transmit";
191 goto out_drop;
192 }
193
194 count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
195 set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
196
197 switch (p[0]) {
198 case 1: sp->tx_delay = p[1];
199 return;
200 case 2: sp->persistence = p[1];
201 return;
202 case 3: sp->slottime = p[1];
203 return;
204 case 4: /* ignored */
205 return;
206 case 5: sp->duplex = p[1];
207 return;
208 }
209
210 if (p[0] != 0)
211 return;
212
213 /*
214 * In case of fullduplex or DAMA operation, we don't take care about the
215 * state of the DCD or of any timers, as the determination of the
216 * correct time to send is the job of the AX.25 layer. We send
217 * immediately after data has arrived.
218 */
219 if (sp->duplex == 1) {
220 sp->led_state = 0x70;
221 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
222 sp->tx_enable = 1;
223 actual = sp->tty->ops->write(sp->tty, sp->xbuff, count);
224 sp->xleft = count - actual;
225 sp->xhead = sp->xbuff + actual;
226 sp->led_state = 0x60;
227 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
228 } else {
229 sp->xleft = count;
230 sp->xhead = sp->xbuff;
231 sp->status2 = count;
232 sp_xmit_on_air((unsigned long)sp);
233 }
234
235 return;
236
237out_drop:
238 sp->dev->stats.tx_dropped++;
239 netif_start_queue(sp->dev);
240 if (net_ratelimit())
241 printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
242}
243
244/* Encapsulate an IP datagram and kick it into a TTY queue. */
245
246static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev)
247{
248 struct sixpack *sp = netdev_priv(dev);
249
250 if (skb->protocol == htons(ETH_P_IP))
251 return ax25_ip_xmit(skb);
252
253 spin_lock_bh(&sp->lock);
254 /* We were not busy, so we are now... :-) */
255 netif_stop_queue(dev);
256 dev->stats.tx_bytes += skb->len;
257 sp_encaps(sp, skb->data, skb->len);
258 spin_unlock_bh(&sp->lock);
259
260 dev_kfree_skb(skb);
261
262 return NETDEV_TX_OK;
263}
264
265static int sp_open_dev(struct net_device *dev)
266{
267 struct sixpack *sp = netdev_priv(dev);
268
269 if (sp->tty == NULL)
270 return -ENODEV;
271 return 0;
272}
273
274/* Close the low-level part of the 6pack channel. */
275static int sp_close(struct net_device *dev)
276{
277 struct sixpack *sp = netdev_priv(dev);
278
279 spin_lock_bh(&sp->lock);
280 if (sp->tty) {
281 /* TTY discipline is running. */
282 clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
283 }
284 netif_stop_queue(dev);
285 spin_unlock_bh(&sp->lock);
286
287 return 0;
288}
289
290static int sp_set_mac_address(struct net_device *dev, void *addr)
291{
292 struct sockaddr_ax25 *sa = addr;
293
294 netif_tx_lock_bh(dev);
295 netif_addr_lock(dev);
296 memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN);
297 netif_addr_unlock(dev);
298 netif_tx_unlock_bh(dev);
299
300 return 0;
301}
302
303static const struct net_device_ops sp_netdev_ops = {
304 .ndo_open = sp_open_dev,
305 .ndo_stop = sp_close,
306 .ndo_start_xmit = sp_xmit,
307 .ndo_set_mac_address = sp_set_mac_address,
308};
309
310static void sp_setup(struct net_device *dev)
311{
312 /* Finish setting up the DEVICE info. */
313 dev->netdev_ops = &sp_netdev_ops;
314 dev->destructor = free_netdev;
315 dev->mtu = SIXP_MTU;
316 dev->hard_header_len = AX25_MAX_HEADER_LEN;
317 dev->header_ops = &ax25_header_ops;
318
319 dev->addr_len = AX25_ADDR_LEN;
320 dev->type = ARPHRD_AX25;
321 dev->tx_queue_len = 10;
322
323 /* Only activated in AX.25 mode */
324 memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
325 memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);
326
327 dev->flags = 0;
328}
329
330/* Send one completely decapsulated IP datagram to the IP layer. */
331
332/*
333 * This is the routine that sends the received data to the kernel AX.25.
334 * 'cmd' is the KISS command. For AX.25 data, it is zero.
335 */
336
337static void sp_bump(struct sixpack *sp, char cmd)
338{
339 struct sk_buff *skb;
340 int count;
341 unsigned char *ptr;
342
343 count = sp->rcount + 1;
344
345 sp->dev->stats.rx_bytes += count;
346
347 if ((skb = dev_alloc_skb(count)) == NULL)
348 goto out_mem;
349
350 ptr = skb_put(skb, count);
351 *ptr++ = cmd; /* KISS command */
352
353 memcpy(ptr, sp->cooked_buf + 1, count);
354 skb->protocol = ax25_type_trans(skb, sp->dev);
355 netif_rx(skb);
356 sp->dev->stats.rx_packets++;
357
358 return;
359
360out_mem:
361 sp->dev->stats.rx_dropped++;
362}
363
364
365/* ----------------------------------------------------------------------- */
366
367/*
368 * We have a potential race on dereferencing tty->disc_data, because the tty
369 * layer provides no locking at all - thus one cpu could be running
370 * sixpack_receive_buf while another calls sixpack_close, which zeroes
371 * tty->disc_data and frees the memory that sixpack_receive_buf is using. The
372 * best way to fix this is to use a rwlock in the tty struct, but for now we
373 * use a single global rwlock for all ttys in ppp line discipline.
374 */
375static DEFINE_RWLOCK(disc_data_lock);
376
377static struct sixpack *sp_get(struct tty_struct *tty)
378{
379 struct sixpack *sp;
380
381 read_lock(&disc_data_lock);
382 sp = tty->disc_data;
383 if (sp)
384 atomic_inc(&sp->refcnt);
385 read_unlock(&disc_data_lock);
386
387 return sp;
388}
389
390static void sp_put(struct sixpack *sp)
391{
392 if (atomic_dec_and_test(&sp->refcnt))
393 up(&sp->dead_sem);
394}
395
396/*
397 * Called by the TTY driver when there's room for more data. If we have
398 * more packets to send, we send them here.
399 */
400static void sixpack_write_wakeup(struct tty_struct *tty)
401{
402 struct sixpack *sp = sp_get(tty);
403 int actual;
404
405 if (!sp)
406 return;
407 if (sp->xleft <= 0) {
408 /* Now serial buffer is almost free & we can start
409 * transmission of another packet */
410 sp->dev->stats.tx_packets++;
411 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
412 sp->tx_enable = 0;
413 netif_wake_queue(sp->dev);
414 goto out;
415 }
416
417 if (sp->tx_enable) {
418 actual = tty->ops->write(tty, sp->xhead, sp->xleft);
419 sp->xleft -= actual;
420 sp->xhead += actual;
421 }
422
423out:
424 sp_put(sp);
425}
426
427/* ----------------------------------------------------------------------- */
428
429/*
430 * Handle the 'receiver data ready' interrupt.
431 * This function is called by the tty module in the kernel when
432 * a block of 6pack data has been received, which can now be decapsulated
433 * and sent on to some IP layer for further processing.
434 */
435static void sixpack_receive_buf(struct tty_struct *tty,
436 const unsigned char *cp, char *fp, int count)
437{
438 struct sixpack *sp;
439 int count1;
440
441 if (!count)
442 return;
443
444 sp = sp_get(tty);
445 if (!sp)
446 return;
447
448 /* Read the characters out of the buffer */
449 count1 = count;
450 while (count) {
451 count--;
452 if (fp && *fp++) {
453 if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
454 sp->dev->stats.rx_errors++;
455 continue;
456 }
457 }
458 sixpack_decode(sp, cp, count1);
459
460 sp_put(sp);
461 tty_unthrottle(tty);
462}
463
464/*
465 * Try to resync the TNC. Called by the resync timer defined in
466 * decode_prio_command
467 */
468
469#define TNC_UNINITIALIZED 0
470#define TNC_UNSYNC_STARTUP 1
471#define TNC_UNSYNCED 2
472#define TNC_IN_SYNC 3
473
474static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
475{
476 char *msg;
477
478 switch (new_tnc_state) {
479 default: /* gcc oh piece-o-crap ... */
480 case TNC_UNSYNC_STARTUP:
481 msg = "Synchronizing with TNC";
482 break;
483 case TNC_UNSYNCED:
484 msg = "Lost synchronization with TNC\n";
485 break;
486 case TNC_IN_SYNC:
487 msg = "Found TNC";
488 break;
489 }
490
491 sp->tnc_state = new_tnc_state;
492 printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
493}
494
495static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
496{
497 int old_tnc_state = sp->tnc_state;
498
499 if (old_tnc_state != new_tnc_state)
500 __tnc_set_sync_state(sp, new_tnc_state);
501}
502
503static void resync_tnc(unsigned long channel)
504{
505 struct sixpack *sp = (struct sixpack *) channel;
506 static char resync_cmd = 0xe8;
507
508 /* clear any data that might have been received */
509
510 sp->rx_count = 0;
511 sp->rx_count_cooked = 0;
512
513 /* reset state machine */
514
515 sp->status = 1;
516 sp->status1 = 1;
517 sp->status2 = 0;
518
519 /* resync the TNC */
520
521 sp->led_state = 0x60;
522 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
523 sp->tty->ops->write(sp->tty, &resync_cmd, 1);
524
525
526 /* Start resync timer again -- the TNC might be still absent */
527
528 del_timer(&sp->resync_t);
529 sp->resync_t.data = (unsigned long) sp;
530 sp->resync_t.function = resync_tnc;
531 sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT;
532 add_timer(&sp->resync_t);
533}
534
535static inline int tnc_init(struct sixpack *sp)
536{
537 unsigned char inbyte = 0xe8;
538
539 tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);
540
541 sp->tty->ops->write(sp->tty, &inbyte, 1);
542
543 del_timer(&sp->resync_t);
544 sp->resync_t.data = (unsigned long) sp;
545 sp->resync_t.function = resync_tnc;
546 sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT;
547 add_timer(&sp->resync_t);
548
549 return 0;
550}
551
552/*
553 * Open the high-level part of the 6pack channel.
554 * This function is called by the TTY module when the
555 * 6pack line discipline is called for. Because we are
556 * sure the tty line exists, we only have to link it to
557 * a free 6pcack channel...
558 */
559static int sixpack_open(struct tty_struct *tty)
560{
561 char *rbuff = NULL, *xbuff = NULL;
562 struct net_device *dev;
563 struct sixpack *sp;
564 unsigned long len;
565 int err = 0;
566
567 if (!capable(CAP_NET_ADMIN))
568 return -EPERM;
569 if (tty->ops->write == NULL)
570 return -EOPNOTSUPP;
571
572 dev = alloc_netdev(sizeof(struct sixpack), "sp%d", NET_NAME_UNKNOWN,
573 sp_setup);
574 if (!dev) {
575 err = -ENOMEM;
576 goto out;
577 }
578
579 sp = netdev_priv(dev);
580 sp->dev = dev;
581
582 spin_lock_init(&sp->lock);
583 atomic_set(&sp->refcnt, 1);
584 sema_init(&sp->dead_sem, 0);
585
586 /* !!! length of the buffers. MTU is IP MTU, not PACLEN! */
587
588 len = dev->mtu * 2;
589
590 rbuff = kmalloc(len + 4, GFP_KERNEL);
591 xbuff = kmalloc(len + 4, GFP_KERNEL);
592
593 if (rbuff == NULL || xbuff == NULL) {
594 err = -ENOBUFS;
595 goto out_free;
596 }
597
598 spin_lock_bh(&sp->lock);
599
600 sp->tty = tty;
601
602 sp->rbuff = rbuff;
603 sp->xbuff = xbuff;
604
605 sp->mtu = AX25_MTU + 73;
606 sp->buffsize = len;
607 sp->rcount = 0;
608 sp->rx_count = 0;
609 sp->rx_count_cooked = 0;
610 sp->xleft = 0;
611
612 sp->flags = 0; /* Clear ESCAPE & ERROR flags */
613
614 sp->duplex = 0;
615 sp->tx_delay = SIXP_TXDELAY;
616 sp->persistence = SIXP_PERSIST;
617 sp->slottime = SIXP_SLOTTIME;
618 sp->led_state = 0x60;
619 sp->status = 1;
620 sp->status1 = 1;
621 sp->status2 = 0;
622 sp->tx_enable = 0;
623
624 netif_start_queue(dev);
625
626 init_timer(&sp->tx_t);
627 sp->tx_t.function = sp_xmit_on_air;
628 sp->tx_t.data = (unsigned long) sp;
629
630 init_timer(&sp->resync_t);
631
632 spin_unlock_bh(&sp->lock);
633
634 /* Done. We have linked the TTY line to a channel. */
635 tty->disc_data = sp;
636 tty->receive_room = 65536;
637
638 /* Now we're ready to register. */
639 err = register_netdev(dev);
640 if (err)
641 goto out_free;
642
643 tnc_init(sp);
644
645 return 0;
646
647out_free:
648 kfree(xbuff);
649 kfree(rbuff);
650
651 free_netdev(dev);
652
653out:
654 return err;
655}
656
657
658/*
659 * Close down a 6pack channel.
660 * This means flushing out any pending queues, and then restoring the
661 * TTY line discipline to what it was before it got hooked to 6pack
662 * (which usually is TTY again).
663 */
664static void sixpack_close(struct tty_struct *tty)
665{
666 struct sixpack *sp;
667
668 write_lock_bh(&disc_data_lock);
669 sp = tty->disc_data;
670 tty->disc_data = NULL;
671 write_unlock_bh(&disc_data_lock);
672 if (!sp)
673 return;
674
675 /*
676 * We have now ensured that nobody can start using ap from now on, but
677 * we have to wait for all existing users to finish.
678 */
679 if (!atomic_dec_and_test(&sp->refcnt))
680 down(&sp->dead_sem);
681
682 /* We must stop the queue to avoid potentially scribbling
683 * on the free buffers. The sp->dead_sem is not sufficient
684 * to protect us from sp->xbuff access.
685 */
686 netif_stop_queue(sp->dev);
687
688 del_timer_sync(&sp->tx_t);
689 del_timer_sync(&sp->resync_t);
690
691 /* Free all 6pack frame buffers. */
692 kfree(sp->rbuff);
693 kfree(sp->xbuff);
694
695 unregister_netdev(sp->dev);
696}
697
698/* Perform I/O control on an active 6pack channel. */
699static int sixpack_ioctl(struct tty_struct *tty, struct file *file,
700 unsigned int cmd, unsigned long arg)
701{
702 struct sixpack *sp = sp_get(tty);
703 struct net_device *dev;
704 unsigned int tmp, err;
705
706 if (!sp)
707 return -ENXIO;
708 dev = sp->dev;
709
710 switch(cmd) {
711 case SIOCGIFNAME:
712 err = copy_to_user((void __user *) arg, dev->name,
713 strlen(dev->name) + 1) ? -EFAULT : 0;
714 break;
715
716 case SIOCGIFENCAP:
717 err = put_user(0, (int __user *) arg);
718 break;
719
720 case SIOCSIFENCAP:
721 if (get_user(tmp, (int __user *) arg)) {
722 err = -EFAULT;
723 break;
724 }
725
726 sp->mode = tmp;
727 dev->addr_len = AX25_ADDR_LEN;
728 dev->hard_header_len = AX25_KISS_HEADER_LEN +
729 AX25_MAX_HEADER_LEN + 3;
730 dev->type = ARPHRD_AX25;
731
732 err = 0;
733 break;
734
735 case SIOCSIFHWADDR: {
736 char addr[AX25_ADDR_LEN];
737
738 if (copy_from_user(&addr,
739 (void __user *) arg, AX25_ADDR_LEN)) {
740 err = -EFAULT;
741 break;
742 }
743
744 netif_tx_lock_bh(dev);
745 memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN);
746 netif_tx_unlock_bh(dev);
747
748 err = 0;
749 break;
750 }
751
752 default:
753 err = tty_mode_ioctl(tty, file, cmd, arg);
754 }
755
756 sp_put(sp);
757
758 return err;
759}
760
761#ifdef CONFIG_COMPAT
762static long sixpack_compat_ioctl(struct tty_struct * tty, struct file * file,
763 unsigned int cmd, unsigned long arg)
764{
765 switch (cmd) {
766 case SIOCGIFNAME:
767 case SIOCGIFENCAP:
768 case SIOCSIFENCAP:
769 case SIOCSIFHWADDR:
770 return sixpack_ioctl(tty, file, cmd,
771 (unsigned long)compat_ptr(arg));
772 }
773
774 return -ENOIOCTLCMD;
775}
776#endif
777
778static struct tty_ldisc_ops sp_ldisc = {
779 .owner = THIS_MODULE,
780 .magic = TTY_LDISC_MAGIC,
781 .name = "6pack",
782 .open = sixpack_open,
783 .close = sixpack_close,
784 .ioctl = sixpack_ioctl,
785#ifdef CONFIG_COMPAT
786 .compat_ioctl = sixpack_compat_ioctl,
787#endif
788 .receive_buf = sixpack_receive_buf,
789 .write_wakeup = sixpack_write_wakeup,
790};
791
792/* Initialize 6pack control device -- register 6pack line discipline */
793
794static const char msg_banner[] __initconst = KERN_INFO \
795 "AX.25: 6pack driver, " SIXPACK_VERSION "\n";
796static const char msg_regfail[] __initconst = KERN_ERR \
797 "6pack: can't register line discipline (err = %d)\n";
798
799static int __init sixpack_init_driver(void)
800{
801 int status;
802
803 printk(msg_banner);
804
805 /* Register the provided line protocol discipline */
806 if ((status = tty_register_ldisc(N_6PACK, &sp_ldisc)) != 0)
807 printk(msg_regfail, status);
808
809 return status;
810}
811
812static const char msg_unregfail[] = KERN_ERR \
813 "6pack: can't unregister line discipline (err = %d)\n";
814
815static void __exit sixpack_exit_driver(void)
816{
817 int ret;
818
819 if ((ret = tty_unregister_ldisc(N_6PACK)))
820 printk(msg_unregfail, ret);
821}
822
823/* encode an AX.25 packet into 6pack */
824
825static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
826 int length, unsigned char tx_delay)
827{
828 int count = 0;
829 unsigned char checksum = 0, buf[400];
830 int raw_count = 0;
831
832 tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
833 tx_buf_raw[raw_count++] = SIXP_SEOF;
834
835 buf[0] = tx_delay;
836 for (count = 1; count < length; count++)
837 buf[count] = tx_buf[count];
838
839 for (count = 0; count < length; count++)
840 checksum += buf[count];
841 buf[length] = (unsigned char) 0xff - checksum;
842
843 for (count = 0; count <= length; count++) {
844 if ((count % 3) == 0) {
845 tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
846 tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
847 } else if ((count % 3) == 1) {
848 tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
849 tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x3c);
850 } else {
851 tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
852 tx_buf_raw[raw_count++] = (buf[count] >> 2);
853 }
854 }
855 if ((length % 3) != 2)
856 raw_count++;
857 tx_buf_raw[raw_count++] = SIXP_SEOF;
858 return raw_count;
859}
860
861/* decode 4 sixpack-encoded bytes into 3 data bytes */
862
863static void decode_data(struct sixpack *sp, unsigned char inbyte)
864{
865 unsigned char *buf;
866
867 if (sp->rx_count != 3) {
868 sp->raw_buf[sp->rx_count++] = inbyte;
869
870 return;
871 }
872
873 buf = sp->raw_buf;
874 sp->cooked_buf[sp->rx_count_cooked++] =
875 buf[0] | ((buf[1] << 2) & 0xc0);
876 sp->cooked_buf[sp->rx_count_cooked++] =
877 (buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
878 sp->cooked_buf[sp->rx_count_cooked++] =
879 (buf[2] & 0x03) | (inbyte << 2);
880 sp->rx_count = 0;
881}
882
883/* identify and execute a 6pack priority command byte */
884
885static void decode_prio_command(struct sixpack *sp, unsigned char cmd)
886{
887 unsigned char channel;
888 int actual;
889
890 channel = cmd & SIXP_CHN_MASK;
891 if ((cmd & SIXP_PRIO_DATA_MASK) != 0) { /* idle ? */
892
893 /* RX and DCD flags can only be set in the same prio command,
894 if the DCD flag has been set without the RX flag in the previous
895 prio command. If DCD has not been set before, something in the
896 transmission has gone wrong. In this case, RX and DCD are
897 cleared in order to prevent the decode_data routine from
898 reading further data that might be corrupt. */
899
900 if (((sp->status & SIXP_DCD_MASK) == 0) &&
901 ((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
902 if (sp->status != 1)
903 printk(KERN_DEBUG "6pack: protocol violation\n");
904 else
905 sp->status = 0;
906 cmd &= ~SIXP_RX_DCD_MASK;
907 }
908 sp->status = cmd & SIXP_PRIO_DATA_MASK;
909 } else { /* output watchdog char if idle */
910 if ((sp->status2 != 0) && (sp->duplex == 1)) {
911 sp->led_state = 0x70;
912 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
913 sp->tx_enable = 1;
914 actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
915 sp->xleft -= actual;
916 sp->xhead += actual;
917 sp->led_state = 0x60;
918 sp->status2 = 0;
919
920 }
921 }
922
923 /* needed to trigger the TNC watchdog */
924 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
925
926 /* if the state byte has been received, the TNC is present,
927 so the resync timer can be reset. */
928
929 if (sp->tnc_state == TNC_IN_SYNC) {
930 del_timer(&sp->resync_t);
931 sp->resync_t.data = (unsigned long) sp;
932 sp->resync_t.function = resync_tnc;
933 sp->resync_t.expires = jiffies + SIXP_INIT_RESYNC_TIMEOUT;
934 add_timer(&sp->resync_t);
935 }
936
937 sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
938}
939
940/* identify and execute a standard 6pack command byte */
941
942static void decode_std_command(struct sixpack *sp, unsigned char cmd)
943{
944 unsigned char checksum = 0, rest = 0, channel;
945 short i;
946
947 channel = cmd & SIXP_CHN_MASK;
948 switch (cmd & SIXP_CMD_MASK) { /* normal command */
949 case SIXP_SEOF:
950 if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
951 if ((sp->status & SIXP_RX_DCD_MASK) ==
952 SIXP_RX_DCD_MASK) {
953 sp->led_state = 0x68;
954 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
955 }
956 } else {
957 sp->led_state = 0x60;
958 /* fill trailing bytes with zeroes */
959 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
960 rest = sp->rx_count;
961 if (rest != 0)
962 for (i = rest; i <= 3; i++)
963 decode_data(sp, 0);
964 if (rest == 2)
965 sp->rx_count_cooked -= 2;
966 else if (rest == 3)
967 sp->rx_count_cooked -= 1;
968 for (i = 0; i < sp->rx_count_cooked; i++)
969 checksum += sp->cooked_buf[i];
970 if (checksum != SIXP_CHKSUM) {
971 printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
972 } else {
973 sp->rcount = sp->rx_count_cooked-2;
974 sp_bump(sp, 0);
975 }
976 sp->rx_count_cooked = 0;
977 }
978 break;
979 case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
980 break;
981 case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
982 break;
983 case SIXP_RX_BUF_OVL:
984 printk(KERN_DEBUG "6pack: RX buffer overflow\n");
985 }
986}
987
988/* decode a 6pack packet */
989
990static void
991sixpack_decode(struct sixpack *sp, const unsigned char *pre_rbuff, int count)
992{
993 unsigned char inbyte;
994 int count1;
995
996 for (count1 = 0; count1 < count; count1++) {
997 inbyte = pre_rbuff[count1];
998 if (inbyte == SIXP_FOUND_TNC) {
999 tnc_set_sync_state(sp, TNC_IN_SYNC);
1000 del_timer(&sp->resync_t);
1001 }
1002 if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
1003 decode_prio_command(sp, inbyte);
1004 else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
1005 decode_std_command(sp, inbyte);
1006 else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)
1007 decode_data(sp, inbyte);
1008 }
1009}
1010
1011MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
1012MODULE_DESCRIPTION("6pack driver for AX.25");
1013MODULE_LICENSE("GPL");
1014MODULE_ALIAS_LDISC(N_6PACK);
1015
1016module_init(sixpack_init_driver);
1017module_exit(sixpack_exit_driver);
1/*
2 * 6pack.c This module implements the 6pack protocol for kernel-based
3 * devices like TTY. It interfaces between a raw TTY and the
4 * kernel's AX.25 protocol layers.
5 *
6 * Authors: Andreas Könsgen <ajk@comnets.uni-bremen.de>
7 * Ralf Baechle DL5RB <ralf@linux-mips.org>
8 *
9 * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
10 *
11 * Laurence Culhane, <loz@holmes.demon.co.uk>
12 * Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
13 */
14
15#include <linux/module.h>
16#include <asm/system.h>
17#include <asm/uaccess.h>
18#include <linux/bitops.h>
19#include <linux/string.h>
20#include <linux/mm.h>
21#include <linux/interrupt.h>
22#include <linux/in.h>
23#include <linux/tty.h>
24#include <linux/errno.h>
25#include <linux/netdevice.h>
26#include <linux/timer.h>
27#include <linux/slab.h>
28#include <net/ax25.h>
29#include <linux/etherdevice.h>
30#include <linux/skbuff.h>
31#include <linux/rtnetlink.h>
32#include <linux/spinlock.h>
33#include <linux/if_arp.h>
34#include <linux/init.h>
35#include <linux/ip.h>
36#include <linux/tcp.h>
37#include <linux/semaphore.h>
38#include <linux/compat.h>
39#include <linux/atomic.h>
40
41#define SIXPACK_VERSION "Revision: 0.3.0"
42
43/* sixpack priority commands */
44#define SIXP_SEOF 0x40 /* start and end of a 6pack frame */
45#define SIXP_TX_URUN 0x48 /* transmit overrun */
46#define SIXP_RX_ORUN 0x50 /* receive overrun */
47#define SIXP_RX_BUF_OVL 0x58 /* receive buffer overflow */
48
49#define SIXP_CHKSUM 0xFF /* valid checksum of a 6pack frame */
50
51/* masks to get certain bits out of the status bytes sent by the TNC */
52
53#define SIXP_CMD_MASK 0xC0
54#define SIXP_CHN_MASK 0x07
55#define SIXP_PRIO_CMD_MASK 0x80
56#define SIXP_STD_CMD_MASK 0x40
57#define SIXP_PRIO_DATA_MASK 0x38
58#define SIXP_TX_MASK 0x20
59#define SIXP_RX_MASK 0x10
60#define SIXP_RX_DCD_MASK 0x18
61#define SIXP_LEDS_ON 0x78
62#define SIXP_LEDS_OFF 0x60
63#define SIXP_CON 0x08
64#define SIXP_STA 0x10
65
66#define SIXP_FOUND_TNC 0xe9
67#define SIXP_CON_ON 0x68
68#define SIXP_DCD_MASK 0x08
69#define SIXP_DAMA_OFF 0
70
71/* default level 2 parameters */
72#define SIXP_TXDELAY (HZ/4) /* in 1 s */
73#define SIXP_PERSIST 50 /* in 256ths */
74#define SIXP_SLOTTIME (HZ/10) /* in 1 s */
75#define SIXP_INIT_RESYNC_TIMEOUT (3*HZ/2) /* in 1 s */
76#define SIXP_RESYNC_TIMEOUT 5*HZ /* in 1 s */
77
78/* 6pack configuration. */
79#define SIXP_NRUNIT 31 /* MAX number of 6pack channels */
80#define SIXP_MTU 256 /* Default MTU */
81
82enum sixpack_flags {
83 SIXPF_ERROR, /* Parity, etc. error */
84};
85
86struct sixpack {
87 /* Various fields. */
88 struct tty_struct *tty; /* ptr to TTY structure */
89 struct net_device *dev; /* easy for intr handling */
90
91 /* These are pointers to the malloc()ed frame buffers. */
92 unsigned char *rbuff; /* receiver buffer */
93 int rcount; /* received chars counter */
94 unsigned char *xbuff; /* transmitter buffer */
95 unsigned char *xhead; /* next byte to XMIT */
96 int xleft; /* bytes left in XMIT queue */
97
98 unsigned char raw_buf[4];
99 unsigned char cooked_buf[400];
100
101 unsigned int rx_count;
102 unsigned int rx_count_cooked;
103
104 int mtu; /* Our mtu (to spot changes!) */
105 int buffsize; /* Max buffers sizes */
106
107 unsigned long flags; /* Flag values/ mode etc */
108 unsigned char mode; /* 6pack mode */
109
110 /* 6pack stuff */
111 unsigned char tx_delay;
112 unsigned char persistence;
113 unsigned char slottime;
114 unsigned char duplex;
115 unsigned char led_state;
116 unsigned char status;
117 unsigned char status1;
118 unsigned char status2;
119 unsigned char tx_enable;
120 unsigned char tnc_state;
121
122 struct timer_list tx_t;
123 struct timer_list resync_t;
124 atomic_t refcnt;
125 struct semaphore dead_sem;
126 spinlock_t lock;
127};
128
129#define AX25_6PACK_HEADER_LEN 0
130
131static void sixpack_decode(struct sixpack *, unsigned char[], int);
132static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);
133
134/*
135 * Perform the persistence/slottime algorithm for CSMA access. If the
136 * persistence check was successful, write the data to the serial driver.
137 * Note that in case of DAMA operation, the data is not sent here.
138 */
139
140static void sp_xmit_on_air(unsigned long channel)
141{
142 struct sixpack *sp = (struct sixpack *) channel;
143 int actual, when = sp->slottime;
144 static unsigned char random;
145
146 random = random * 17 + 41;
147
148 if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
149 sp->led_state = 0x70;
150 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
151 sp->tx_enable = 1;
152 actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
153 sp->xleft -= actual;
154 sp->xhead += actual;
155 sp->led_state = 0x60;
156 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
157 sp->status2 = 0;
158 } else
159 mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
160}
161
162/* ----> 6pack timer interrupt handler and friends. <---- */
163
164/* Encapsulate one AX.25 frame and stuff into a TTY queue. */
165static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
166{
167 unsigned char *msg, *p = icp;
168 int actual, count;
169
170 if (len > sp->mtu) { /* sp->mtu = AX25_MTU = max. PACLEN = 256 */
171 msg = "oversized transmit packet!";
172 goto out_drop;
173 }
174
175 if (len > sp->mtu) { /* sp->mtu = AX25_MTU = max. PACLEN = 256 */
176 msg = "oversized transmit packet!";
177 goto out_drop;
178 }
179
180 if (p[0] > 5) {
181 msg = "invalid KISS command";
182 goto out_drop;
183 }
184
185 if ((p[0] != 0) && (len > 2)) {
186 msg = "KISS control packet too long";
187 goto out_drop;
188 }
189
190 if ((p[0] == 0) && (len < 15)) {
191 msg = "bad AX.25 packet to transmit";
192 goto out_drop;
193 }
194
195 count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
196 set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
197
198 switch (p[0]) {
199 case 1: sp->tx_delay = p[1];
200 return;
201 case 2: sp->persistence = p[1];
202 return;
203 case 3: sp->slottime = p[1];
204 return;
205 case 4: /* ignored */
206 return;
207 case 5: sp->duplex = p[1];
208 return;
209 }
210
211 if (p[0] != 0)
212 return;
213
214 /*
215 * In case of fullduplex or DAMA operation, we don't take care about the
216 * state of the DCD or of any timers, as the determination of the
217 * correct time to send is the job of the AX.25 layer. We send
218 * immediately after data has arrived.
219 */
220 if (sp->duplex == 1) {
221 sp->led_state = 0x70;
222 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
223 sp->tx_enable = 1;
224 actual = sp->tty->ops->write(sp->tty, sp->xbuff, count);
225 sp->xleft = count - actual;
226 sp->xhead = sp->xbuff + actual;
227 sp->led_state = 0x60;
228 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
229 } else {
230 sp->xleft = count;
231 sp->xhead = sp->xbuff;
232 sp->status2 = count;
233 sp_xmit_on_air((unsigned long)sp);
234 }
235
236 return;
237
238out_drop:
239 sp->dev->stats.tx_dropped++;
240 netif_start_queue(sp->dev);
241 if (net_ratelimit())
242 printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
243}
244
245/* Encapsulate an IP datagram and kick it into a TTY queue. */
246
247static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev)
248{
249 struct sixpack *sp = netdev_priv(dev);
250
251 spin_lock_bh(&sp->lock);
252 /* We were not busy, so we are now... :-) */
253 netif_stop_queue(dev);
254 dev->stats.tx_bytes += skb->len;
255 sp_encaps(sp, skb->data, skb->len);
256 spin_unlock_bh(&sp->lock);
257
258 dev_kfree_skb(skb);
259
260 return NETDEV_TX_OK;
261}
262
263static int sp_open_dev(struct net_device *dev)
264{
265 struct sixpack *sp = netdev_priv(dev);
266
267 if (sp->tty == NULL)
268 return -ENODEV;
269 return 0;
270}
271
272/* Close the low-level part of the 6pack channel. */
273static int sp_close(struct net_device *dev)
274{
275 struct sixpack *sp = netdev_priv(dev);
276
277 spin_lock_bh(&sp->lock);
278 if (sp->tty) {
279 /* TTY discipline is running. */
280 clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
281 }
282 netif_stop_queue(dev);
283 spin_unlock_bh(&sp->lock);
284
285 return 0;
286}
287
288/* Return the frame type ID */
289static int sp_header(struct sk_buff *skb, struct net_device *dev,
290 unsigned short type, const void *daddr,
291 const void *saddr, unsigned len)
292{
293#ifdef CONFIG_INET
294 if (type != ETH_P_AX25)
295 return ax25_hard_header(skb, dev, type, daddr, saddr, len);
296#endif
297 return 0;
298}
299
300static int sp_set_mac_address(struct net_device *dev, void *addr)
301{
302 struct sockaddr_ax25 *sa = addr;
303
304 netif_tx_lock_bh(dev);
305 netif_addr_lock(dev);
306 memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN);
307 netif_addr_unlock(dev);
308 netif_tx_unlock_bh(dev);
309
310 return 0;
311}
312
313static int sp_rebuild_header(struct sk_buff *skb)
314{
315#ifdef CONFIG_INET
316 return ax25_rebuild_header(skb);
317#else
318 return 0;
319#endif
320}
321
322static const struct header_ops sp_header_ops = {
323 .create = sp_header,
324 .rebuild = sp_rebuild_header,
325};
326
327static const struct net_device_ops sp_netdev_ops = {
328 .ndo_open = sp_open_dev,
329 .ndo_stop = sp_close,
330 .ndo_start_xmit = sp_xmit,
331 .ndo_set_mac_address = sp_set_mac_address,
332};
333
334static void sp_setup(struct net_device *dev)
335{
336 /* Finish setting up the DEVICE info. */
337 dev->netdev_ops = &sp_netdev_ops;
338 dev->destructor = free_netdev;
339 dev->mtu = SIXP_MTU;
340 dev->hard_header_len = AX25_MAX_HEADER_LEN;
341 dev->header_ops = &sp_header_ops;
342
343 dev->addr_len = AX25_ADDR_LEN;
344 dev->type = ARPHRD_AX25;
345 dev->tx_queue_len = 10;
346
347 /* Only activated in AX.25 mode */
348 memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
349 memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);
350
351 dev->flags = 0;
352}
353
354/* Send one completely decapsulated IP datagram to the IP layer. */
355
356/*
357 * This is the routine that sends the received data to the kernel AX.25.
358 * 'cmd' is the KISS command. For AX.25 data, it is zero.
359 */
360
361static void sp_bump(struct sixpack *sp, char cmd)
362{
363 struct sk_buff *skb;
364 int count;
365 unsigned char *ptr;
366
367 count = sp->rcount + 1;
368
369 sp->dev->stats.rx_bytes += count;
370
371 if ((skb = dev_alloc_skb(count)) == NULL)
372 goto out_mem;
373
374 ptr = skb_put(skb, count);
375 *ptr++ = cmd; /* KISS command */
376
377 memcpy(ptr, sp->cooked_buf + 1, count);
378 skb->protocol = ax25_type_trans(skb, sp->dev);
379 netif_rx(skb);
380 sp->dev->stats.rx_packets++;
381
382 return;
383
384out_mem:
385 sp->dev->stats.rx_dropped++;
386}
387
388
389/* ----------------------------------------------------------------------- */
390
391/*
392 * We have a potential race on dereferencing tty->disc_data, because the tty
393 * layer provides no locking at all - thus one cpu could be running
394 * sixpack_receive_buf while another calls sixpack_close, which zeroes
395 * tty->disc_data and frees the memory that sixpack_receive_buf is using. The
396 * best way to fix this is to use a rwlock in the tty struct, but for now we
397 * use a single global rwlock for all ttys in ppp line discipline.
398 */
399static DEFINE_RWLOCK(disc_data_lock);
400
401static struct sixpack *sp_get(struct tty_struct *tty)
402{
403 struct sixpack *sp;
404
405 read_lock(&disc_data_lock);
406 sp = tty->disc_data;
407 if (sp)
408 atomic_inc(&sp->refcnt);
409 read_unlock(&disc_data_lock);
410
411 return sp;
412}
413
414static void sp_put(struct sixpack *sp)
415{
416 if (atomic_dec_and_test(&sp->refcnt))
417 up(&sp->dead_sem);
418}
419
420/*
421 * Called by the TTY driver when there's room for more data. If we have
422 * more packets to send, we send them here.
423 */
424static void sixpack_write_wakeup(struct tty_struct *tty)
425{
426 struct sixpack *sp = sp_get(tty);
427 int actual;
428
429 if (!sp)
430 return;
431 if (sp->xleft <= 0) {
432 /* Now serial buffer is almost free & we can start
433 * transmission of another packet */
434 sp->dev->stats.tx_packets++;
435 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
436 sp->tx_enable = 0;
437 netif_wake_queue(sp->dev);
438 goto out;
439 }
440
441 if (sp->tx_enable) {
442 actual = tty->ops->write(tty, sp->xhead, sp->xleft);
443 sp->xleft -= actual;
444 sp->xhead += actual;
445 }
446
447out:
448 sp_put(sp);
449}
450
451/* ----------------------------------------------------------------------- */
452
453/*
454 * Handle the 'receiver data ready' interrupt.
455 * This function is called by the 'tty_io' module in the kernel when
456 * a block of 6pack data has been received, which can now be decapsulated
457 * and sent on to some IP layer for further processing.
458 */
459static void sixpack_receive_buf(struct tty_struct *tty,
460 const unsigned char *cp, char *fp, int count)
461{
462 struct sixpack *sp;
463 unsigned char buf[512];
464 int count1;
465
466 if (!count)
467 return;
468
469 sp = sp_get(tty);
470 if (!sp)
471 return;
472
473 memcpy(buf, cp, count < sizeof(buf) ? count : sizeof(buf));
474
475 /* Read the characters out of the buffer */
476
477 count1 = count;
478 while (count) {
479 count--;
480 if (fp && *fp++) {
481 if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
482 sp->dev->stats.rx_errors++;
483 continue;
484 }
485 }
486 sixpack_decode(sp, buf, count1);
487
488 sp_put(sp);
489 tty_unthrottle(tty);
490}
491
492/*
493 * Try to resync the TNC. Called by the resync timer defined in
494 * decode_prio_command
495 */
496
497#define TNC_UNINITIALIZED 0
498#define TNC_UNSYNC_STARTUP 1
499#define TNC_UNSYNCED 2
500#define TNC_IN_SYNC 3
501
502static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
503{
504 char *msg;
505
506 switch (new_tnc_state) {
507 default: /* gcc oh piece-o-crap ... */
508 case TNC_UNSYNC_STARTUP:
509 msg = "Synchronizing with TNC";
510 break;
511 case TNC_UNSYNCED:
512 msg = "Lost synchronization with TNC\n";
513 break;
514 case TNC_IN_SYNC:
515 msg = "Found TNC";
516 break;
517 }
518
519 sp->tnc_state = new_tnc_state;
520 printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
521}
522
523static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
524{
525 int old_tnc_state = sp->tnc_state;
526
527 if (old_tnc_state != new_tnc_state)
528 __tnc_set_sync_state(sp, new_tnc_state);
529}
530
531static void resync_tnc(unsigned long channel)
532{
533 struct sixpack *sp = (struct sixpack *) channel;
534 static char resync_cmd = 0xe8;
535
536 /* clear any data that might have been received */
537
538 sp->rx_count = 0;
539 sp->rx_count_cooked = 0;
540
541 /* reset state machine */
542
543 sp->status = 1;
544 sp->status1 = 1;
545 sp->status2 = 0;
546
547 /* resync the TNC */
548
549 sp->led_state = 0x60;
550 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
551 sp->tty->ops->write(sp->tty, &resync_cmd, 1);
552
553
554 /* Start resync timer again -- the TNC might be still absent */
555
556 del_timer(&sp->resync_t);
557 sp->resync_t.data = (unsigned long) sp;
558 sp->resync_t.function = resync_tnc;
559 sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT;
560 add_timer(&sp->resync_t);
561}
562
563static inline int tnc_init(struct sixpack *sp)
564{
565 unsigned char inbyte = 0xe8;
566
567 tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);
568
569 sp->tty->ops->write(sp->tty, &inbyte, 1);
570
571 del_timer(&sp->resync_t);
572 sp->resync_t.data = (unsigned long) sp;
573 sp->resync_t.function = resync_tnc;
574 sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT;
575 add_timer(&sp->resync_t);
576
577 return 0;
578}
579
580/*
581 * Open the high-level part of the 6pack channel.
582 * This function is called by the TTY module when the
583 * 6pack line discipline is called for. Because we are
584 * sure the tty line exists, we only have to link it to
585 * a free 6pcack channel...
586 */
587static int sixpack_open(struct tty_struct *tty)
588{
589 char *rbuff = NULL, *xbuff = NULL;
590 struct net_device *dev;
591 struct sixpack *sp;
592 unsigned long len;
593 int err = 0;
594
595 if (!capable(CAP_NET_ADMIN))
596 return -EPERM;
597 if (tty->ops->write == NULL)
598 return -EOPNOTSUPP;
599
600 dev = alloc_netdev(sizeof(struct sixpack), "sp%d", sp_setup);
601 if (!dev) {
602 err = -ENOMEM;
603 goto out;
604 }
605
606 sp = netdev_priv(dev);
607 sp->dev = dev;
608
609 spin_lock_init(&sp->lock);
610 atomic_set(&sp->refcnt, 1);
611 sema_init(&sp->dead_sem, 0);
612
613 /* !!! length of the buffers. MTU is IP MTU, not PACLEN! */
614
615 len = dev->mtu * 2;
616
617 rbuff = kmalloc(len + 4, GFP_KERNEL);
618 xbuff = kmalloc(len + 4, GFP_KERNEL);
619
620 if (rbuff == NULL || xbuff == NULL) {
621 err = -ENOBUFS;
622 goto out_free;
623 }
624
625 spin_lock_bh(&sp->lock);
626
627 sp->tty = tty;
628
629 sp->rbuff = rbuff;
630 sp->xbuff = xbuff;
631
632 sp->mtu = AX25_MTU + 73;
633 sp->buffsize = len;
634 sp->rcount = 0;
635 sp->rx_count = 0;
636 sp->rx_count_cooked = 0;
637 sp->xleft = 0;
638
639 sp->flags = 0; /* Clear ESCAPE & ERROR flags */
640
641 sp->duplex = 0;
642 sp->tx_delay = SIXP_TXDELAY;
643 sp->persistence = SIXP_PERSIST;
644 sp->slottime = SIXP_SLOTTIME;
645 sp->led_state = 0x60;
646 sp->status = 1;
647 sp->status1 = 1;
648 sp->status2 = 0;
649 sp->tx_enable = 0;
650
651 netif_start_queue(dev);
652
653 init_timer(&sp->tx_t);
654 sp->tx_t.function = sp_xmit_on_air;
655 sp->tx_t.data = (unsigned long) sp;
656
657 init_timer(&sp->resync_t);
658
659 spin_unlock_bh(&sp->lock);
660
661 /* Done. We have linked the TTY line to a channel. */
662 tty->disc_data = sp;
663 tty->receive_room = 65536;
664
665 /* Now we're ready to register. */
666 if (register_netdev(dev))
667 goto out_free;
668
669 tnc_init(sp);
670
671 return 0;
672
673out_free:
674 kfree(xbuff);
675 kfree(rbuff);
676
677 if (dev)
678 free_netdev(dev);
679
680out:
681 return err;
682}
683
684
685/*
686 * Close down a 6pack channel.
687 * This means flushing out any pending queues, and then restoring the
688 * TTY line discipline to what it was before it got hooked to 6pack
689 * (which usually is TTY again).
690 */
691static void sixpack_close(struct tty_struct *tty)
692{
693 struct sixpack *sp;
694
695 write_lock_bh(&disc_data_lock);
696 sp = tty->disc_data;
697 tty->disc_data = NULL;
698 write_unlock_bh(&disc_data_lock);
699 if (!sp)
700 return;
701
702 /*
703 * We have now ensured that nobody can start using ap from now on, but
704 * we have to wait for all existing users to finish.
705 */
706 if (!atomic_dec_and_test(&sp->refcnt))
707 down(&sp->dead_sem);
708
709 unregister_netdev(sp->dev);
710
711 del_timer(&sp->tx_t);
712 del_timer(&sp->resync_t);
713
714 /* Free all 6pack frame buffers. */
715 kfree(sp->rbuff);
716 kfree(sp->xbuff);
717}
718
719/* Perform I/O control on an active 6pack channel. */
720static int sixpack_ioctl(struct tty_struct *tty, struct file *file,
721 unsigned int cmd, unsigned long arg)
722{
723 struct sixpack *sp = sp_get(tty);
724 struct net_device *dev;
725 unsigned int tmp, err;
726
727 if (!sp)
728 return -ENXIO;
729 dev = sp->dev;
730
731 switch(cmd) {
732 case SIOCGIFNAME:
733 err = copy_to_user((void __user *) arg, dev->name,
734 strlen(dev->name) + 1) ? -EFAULT : 0;
735 break;
736
737 case SIOCGIFENCAP:
738 err = put_user(0, (int __user *) arg);
739 break;
740
741 case SIOCSIFENCAP:
742 if (get_user(tmp, (int __user *) arg)) {
743 err = -EFAULT;
744 break;
745 }
746
747 sp->mode = tmp;
748 dev->addr_len = AX25_ADDR_LEN;
749 dev->hard_header_len = AX25_KISS_HEADER_LEN +
750 AX25_MAX_HEADER_LEN + 3;
751 dev->type = ARPHRD_AX25;
752
753 err = 0;
754 break;
755
756 case SIOCSIFHWADDR: {
757 char addr[AX25_ADDR_LEN];
758
759 if (copy_from_user(&addr,
760 (void __user *) arg, AX25_ADDR_LEN)) {
761 err = -EFAULT;
762 break;
763 }
764
765 netif_tx_lock_bh(dev);
766 memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN);
767 netif_tx_unlock_bh(dev);
768
769 err = 0;
770 break;
771 }
772
773 default:
774 err = tty_mode_ioctl(tty, file, cmd, arg);
775 }
776
777 sp_put(sp);
778
779 return err;
780}
781
782#ifdef CONFIG_COMPAT
783static long sixpack_compat_ioctl(struct tty_struct * tty, struct file * file,
784 unsigned int cmd, unsigned long arg)
785{
786 switch (cmd) {
787 case SIOCGIFNAME:
788 case SIOCGIFENCAP:
789 case SIOCSIFENCAP:
790 case SIOCSIFHWADDR:
791 return sixpack_ioctl(tty, file, cmd,
792 (unsigned long)compat_ptr(arg));
793 }
794
795 return -ENOIOCTLCMD;
796}
797#endif
798
799static struct tty_ldisc_ops sp_ldisc = {
800 .owner = THIS_MODULE,
801 .magic = TTY_LDISC_MAGIC,
802 .name = "6pack",
803 .open = sixpack_open,
804 .close = sixpack_close,
805 .ioctl = sixpack_ioctl,
806#ifdef CONFIG_COMPAT
807 .compat_ioctl = sixpack_compat_ioctl,
808#endif
809 .receive_buf = sixpack_receive_buf,
810 .write_wakeup = sixpack_write_wakeup,
811};
812
813/* Initialize 6pack control device -- register 6pack line discipline */
814
815static const char msg_banner[] __initdata = KERN_INFO \
816 "AX.25: 6pack driver, " SIXPACK_VERSION "\n";
817static const char msg_regfail[] __initdata = KERN_ERR \
818 "6pack: can't register line discipline (err = %d)\n";
819
820static int __init sixpack_init_driver(void)
821{
822 int status;
823
824 printk(msg_banner);
825
826 /* Register the provided line protocol discipline */
827 if ((status = tty_register_ldisc(N_6PACK, &sp_ldisc)) != 0)
828 printk(msg_regfail, status);
829
830 return status;
831}
832
833static const char msg_unregfail[] __exitdata = KERN_ERR \
834 "6pack: can't unregister line discipline (err = %d)\n";
835
836static void __exit sixpack_exit_driver(void)
837{
838 int ret;
839
840 if ((ret = tty_unregister_ldisc(N_6PACK)))
841 printk(msg_unregfail, ret);
842}
843
844/* encode an AX.25 packet into 6pack */
845
846static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
847 int length, unsigned char tx_delay)
848{
849 int count = 0;
850 unsigned char checksum = 0, buf[400];
851 int raw_count = 0;
852
853 tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
854 tx_buf_raw[raw_count++] = SIXP_SEOF;
855
856 buf[0] = tx_delay;
857 for (count = 1; count < length; count++)
858 buf[count] = tx_buf[count];
859
860 for (count = 0; count < length; count++)
861 checksum += buf[count];
862 buf[length] = (unsigned char) 0xff - checksum;
863
864 for (count = 0; count <= length; count++) {
865 if ((count % 3) == 0) {
866 tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
867 tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
868 } else if ((count % 3) == 1) {
869 tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
870 tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x3c);
871 } else {
872 tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
873 tx_buf_raw[raw_count++] = (buf[count] >> 2);
874 }
875 }
876 if ((length % 3) != 2)
877 raw_count++;
878 tx_buf_raw[raw_count++] = SIXP_SEOF;
879 return raw_count;
880}
881
882/* decode 4 sixpack-encoded bytes into 3 data bytes */
883
884static void decode_data(struct sixpack *sp, unsigned char inbyte)
885{
886 unsigned char *buf;
887
888 if (sp->rx_count != 3) {
889 sp->raw_buf[sp->rx_count++] = inbyte;
890
891 return;
892 }
893
894 buf = sp->raw_buf;
895 sp->cooked_buf[sp->rx_count_cooked++] =
896 buf[0] | ((buf[1] << 2) & 0xc0);
897 sp->cooked_buf[sp->rx_count_cooked++] =
898 (buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
899 sp->cooked_buf[sp->rx_count_cooked++] =
900 (buf[2] & 0x03) | (inbyte << 2);
901 sp->rx_count = 0;
902}
903
904/* identify and execute a 6pack priority command byte */
905
906static void decode_prio_command(struct sixpack *sp, unsigned char cmd)
907{
908 unsigned char channel;
909 int actual;
910
911 channel = cmd & SIXP_CHN_MASK;
912 if ((cmd & SIXP_PRIO_DATA_MASK) != 0) { /* idle ? */
913
914 /* RX and DCD flags can only be set in the same prio command,
915 if the DCD flag has been set without the RX flag in the previous
916 prio command. If DCD has not been set before, something in the
917 transmission has gone wrong. In this case, RX and DCD are
918 cleared in order to prevent the decode_data routine from
919 reading further data that might be corrupt. */
920
921 if (((sp->status & SIXP_DCD_MASK) == 0) &&
922 ((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
923 if (sp->status != 1)
924 printk(KERN_DEBUG "6pack: protocol violation\n");
925 else
926 sp->status = 0;
927 cmd &= ~SIXP_RX_DCD_MASK;
928 }
929 sp->status = cmd & SIXP_PRIO_DATA_MASK;
930 } else { /* output watchdog char if idle */
931 if ((sp->status2 != 0) && (sp->duplex == 1)) {
932 sp->led_state = 0x70;
933 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
934 sp->tx_enable = 1;
935 actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
936 sp->xleft -= actual;
937 sp->xhead += actual;
938 sp->led_state = 0x60;
939 sp->status2 = 0;
940
941 }
942 }
943
944 /* needed to trigger the TNC watchdog */
945 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
946
947 /* if the state byte has been received, the TNC is present,
948 so the resync timer can be reset. */
949
950 if (sp->tnc_state == TNC_IN_SYNC) {
951 del_timer(&sp->resync_t);
952 sp->resync_t.data = (unsigned long) sp;
953 sp->resync_t.function = resync_tnc;
954 sp->resync_t.expires = jiffies + SIXP_INIT_RESYNC_TIMEOUT;
955 add_timer(&sp->resync_t);
956 }
957
958 sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
959}
960
961/* identify and execute a standard 6pack command byte */
962
963static void decode_std_command(struct sixpack *sp, unsigned char cmd)
964{
965 unsigned char checksum = 0, rest = 0, channel;
966 short i;
967
968 channel = cmd & SIXP_CHN_MASK;
969 switch (cmd & SIXP_CMD_MASK) { /* normal command */
970 case SIXP_SEOF:
971 if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
972 if ((sp->status & SIXP_RX_DCD_MASK) ==
973 SIXP_RX_DCD_MASK) {
974 sp->led_state = 0x68;
975 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
976 }
977 } else {
978 sp->led_state = 0x60;
979 /* fill trailing bytes with zeroes */
980 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
981 rest = sp->rx_count;
982 if (rest != 0)
983 for (i = rest; i <= 3; i++)
984 decode_data(sp, 0);
985 if (rest == 2)
986 sp->rx_count_cooked -= 2;
987 else if (rest == 3)
988 sp->rx_count_cooked -= 1;
989 for (i = 0; i < sp->rx_count_cooked; i++)
990 checksum += sp->cooked_buf[i];
991 if (checksum != SIXP_CHKSUM) {
992 printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
993 } else {
994 sp->rcount = sp->rx_count_cooked-2;
995 sp_bump(sp, 0);
996 }
997 sp->rx_count_cooked = 0;
998 }
999 break;
1000 case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
1001 break;
1002 case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
1003 break;
1004 case SIXP_RX_BUF_OVL:
1005 printk(KERN_DEBUG "6pack: RX buffer overflow\n");
1006 }
1007}
1008
1009/* decode a 6pack packet */
1010
1011static void
1012sixpack_decode(struct sixpack *sp, unsigned char *pre_rbuff, int count)
1013{
1014 unsigned char inbyte;
1015 int count1;
1016
1017 for (count1 = 0; count1 < count; count1++) {
1018 inbyte = pre_rbuff[count1];
1019 if (inbyte == SIXP_FOUND_TNC) {
1020 tnc_set_sync_state(sp, TNC_IN_SYNC);
1021 del_timer(&sp->resync_t);
1022 }
1023 if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
1024 decode_prio_command(sp, inbyte);
1025 else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
1026 decode_std_command(sp, inbyte);
1027 else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)
1028 decode_data(sp, inbyte);
1029 }
1030}
1031
1032MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
1033MODULE_DESCRIPTION("6pack driver for AX.25");
1034MODULE_LICENSE("GPL");
1035MODULE_ALIAS_LDISC(N_6PACK);
1036
1037module_init(sixpack_init_driver);
1038module_exit(sixpack_exit_driver);