Linux Audio

Check our new training course

Loading...
v4.10.11
   1/* smp.c: Sparc64 SMP support.
   2 *
   3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
   4 */
   5
   6#include <linux/export.h>
   7#include <linux/kernel.h>
   8#include <linux/sched.h>
   9#include <linux/mm.h>
  10#include <linux/pagemap.h>
  11#include <linux/threads.h>
  12#include <linux/smp.h>
  13#include <linux/interrupt.h>
  14#include <linux/kernel_stat.h>
  15#include <linux/delay.h>
  16#include <linux/init.h>
  17#include <linux/spinlock.h>
  18#include <linux/fs.h>
  19#include <linux/seq_file.h>
  20#include <linux/cache.h>
  21#include <linux/jiffies.h>
  22#include <linux/profile.h>
  23#include <linux/bootmem.h>
  24#include <linux/vmalloc.h>
  25#include <linux/ftrace.h>
  26#include <linux/cpu.h>
  27#include <linux/slab.h>
  28#include <linux/kgdb.h>
  29
  30#include <asm/head.h>
  31#include <asm/ptrace.h>
  32#include <linux/atomic.h>
  33#include <asm/tlbflush.h>
  34#include <asm/mmu_context.h>
  35#include <asm/cpudata.h>
  36#include <asm/hvtramp.h>
  37#include <asm/io.h>
  38#include <asm/timer.h>
  39#include <asm/setup.h>
  40
  41#include <asm/irq.h>
  42#include <asm/irq_regs.h>
  43#include <asm/page.h>
  44#include <asm/pgtable.h>
  45#include <asm/oplib.h>
  46#include <linux/uaccess.h>
  47#include <asm/starfire.h>
  48#include <asm/tlb.h>
  49#include <asm/sections.h>
  50#include <asm/prom.h>
  51#include <asm/mdesc.h>
  52#include <asm/ldc.h>
  53#include <asm/hypervisor.h>
  54#include <asm/pcr.h>
  55
  56#include "cpumap.h"
  57#include "kernel.h"
 
  58
  59DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
  60cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
  61	{ [0 ... NR_CPUS-1] = CPU_MASK_NONE };
  62
  63cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
  64	[0 ... NR_CPUS-1] = CPU_MASK_NONE };
  65
  66cpumask_t cpu_core_sib_cache_map[NR_CPUS] __read_mostly = {
  67	[0 ... NR_CPUS - 1] = CPU_MASK_NONE };
  68
  69EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  70EXPORT_SYMBOL(cpu_core_map);
  71EXPORT_SYMBOL(cpu_core_sib_map);
  72EXPORT_SYMBOL(cpu_core_sib_cache_map);
  73
  74static cpumask_t smp_commenced_mask;
  75
  76void smp_info(struct seq_file *m)
  77{
  78	int i;
  79	
  80	seq_printf(m, "State:\n");
  81	for_each_online_cpu(i)
  82		seq_printf(m, "CPU%d:\t\tonline\n", i);
  83}
  84
  85void smp_bogo(struct seq_file *m)
  86{
  87	int i;
  88	
  89	for_each_online_cpu(i)
  90		seq_printf(m,
  91			   "Cpu%dClkTck\t: %016lx\n",
  92			   i, cpu_data(i).clock_tick);
  93}
  94
  95extern void setup_sparc64_timer(void);
  96
  97static volatile unsigned long callin_flag = 0;
  98
  99void smp_callin(void)
 100{
 101	int cpuid = hard_smp_processor_id();
 102
 103	__local_per_cpu_offset = __per_cpu_offset(cpuid);
 104
 105	if (tlb_type == hypervisor)
 106		sun4v_ktsb_register();
 107
 108	__flush_tlb_all();
 109
 110	setup_sparc64_timer();
 111
 112	if (cheetah_pcache_forced_on)
 113		cheetah_enable_pcache();
 114
 
 
 115	callin_flag = 1;
 116	__asm__ __volatile__("membar #Sync\n\t"
 117			     "flush  %%g6" : : : "memory");
 118
 119	/* Clear this or we will die instantly when we
 120	 * schedule back to this idler...
 121	 */
 122	current_thread_info()->new_child = 0;
 123
 124	/* Attach to the address space of init_task. */
 125	atomic_inc(&init_mm.mm_count);
 126	current->active_mm = &init_mm;
 127
 128	/* inform the notifiers about the new cpu */
 129	notify_cpu_starting(cpuid);
 130
 131	while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
 132		rmb();
 133
 
 134	set_cpu_online(cpuid, true);
 
 135
 136	/* idle thread is expected to have preempt disabled */
 137	preempt_disable();
 138
 139	local_irq_enable();
 140
 141	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 142}
 143
 144void cpu_panic(void)
 145{
 146	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
 147	panic("SMP bolixed\n");
 148}
 149
 150/* This tick register synchronization scheme is taken entirely from
 151 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
 152 *
 153 * The only change I've made is to rework it so that the master
 154 * initiates the synchonization instead of the slave. -DaveM
 155 */
 156
 157#define MASTER	0
 158#define SLAVE	(SMP_CACHE_BYTES/sizeof(unsigned long))
 159
 160#define NUM_ROUNDS	64	/* magic value */
 161#define NUM_ITERS	5	/* likewise */
 162
 163static DEFINE_RAW_SPINLOCK(itc_sync_lock);
 164static unsigned long go[SLAVE + 1];
 165
 166#define DEBUG_TICK_SYNC	0
 167
 168static inline long get_delta (long *rt, long *master)
 169{
 170	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
 171	unsigned long tcenter, t0, t1, tm;
 172	unsigned long i;
 173
 174	for (i = 0; i < NUM_ITERS; i++) {
 175		t0 = tick_ops->get_tick();
 176		go[MASTER] = 1;
 177		membar_safe("#StoreLoad");
 178		while (!(tm = go[SLAVE]))
 179			rmb();
 180		go[SLAVE] = 0;
 181		wmb();
 182		t1 = tick_ops->get_tick();
 183
 184		if (t1 - t0 < best_t1 - best_t0)
 185			best_t0 = t0, best_t1 = t1, best_tm = tm;
 186	}
 187
 188	*rt = best_t1 - best_t0;
 189	*master = best_tm - best_t0;
 190
 191	/* average best_t0 and best_t1 without overflow: */
 192	tcenter = (best_t0/2 + best_t1/2);
 193	if (best_t0 % 2 + best_t1 % 2 == 2)
 194		tcenter++;
 195	return tcenter - best_tm;
 196}
 197
 198void smp_synchronize_tick_client(void)
 199{
 200	long i, delta, adj, adjust_latency = 0, done = 0;
 201	unsigned long flags, rt, master_time_stamp;
 202#if DEBUG_TICK_SYNC
 203	struct {
 204		long rt;	/* roundtrip time */
 205		long master;	/* master's timestamp */
 206		long diff;	/* difference between midpoint and master's timestamp */
 207		long lat;	/* estimate of itc adjustment latency */
 208	} t[NUM_ROUNDS];
 209#endif
 210
 211	go[MASTER] = 1;
 212
 213	while (go[MASTER])
 214		rmb();
 215
 216	local_irq_save(flags);
 217	{
 218		for (i = 0; i < NUM_ROUNDS; i++) {
 219			delta = get_delta(&rt, &master_time_stamp);
 220			if (delta == 0)
 221				done = 1;	/* let's lock on to this... */
 222
 223			if (!done) {
 224				if (i > 0) {
 225					adjust_latency += -delta;
 226					adj = -delta + adjust_latency/4;
 227				} else
 228					adj = -delta;
 229
 230				tick_ops->add_tick(adj);
 231			}
 232#if DEBUG_TICK_SYNC
 233			t[i].rt = rt;
 234			t[i].master = master_time_stamp;
 235			t[i].diff = delta;
 236			t[i].lat = adjust_latency/4;
 237#endif
 238		}
 239	}
 240	local_irq_restore(flags);
 241
 242#if DEBUG_TICK_SYNC
 243	for (i = 0; i < NUM_ROUNDS; i++)
 244		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
 245		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
 246#endif
 247
 248	printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
 249	       "(last diff %ld cycles, maxerr %lu cycles)\n",
 250	       smp_processor_id(), delta, rt);
 251}
 252
 253static void smp_start_sync_tick_client(int cpu);
 254
 255static void smp_synchronize_one_tick(int cpu)
 256{
 257	unsigned long flags, i;
 258
 259	go[MASTER] = 0;
 260
 261	smp_start_sync_tick_client(cpu);
 262
 263	/* wait for client to be ready */
 264	while (!go[MASTER])
 265		rmb();
 266
 267	/* now let the client proceed into his loop */
 268	go[MASTER] = 0;
 269	membar_safe("#StoreLoad");
 270
 271	raw_spin_lock_irqsave(&itc_sync_lock, flags);
 272	{
 273		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
 274			while (!go[MASTER])
 275				rmb();
 276			go[MASTER] = 0;
 277			wmb();
 278			go[SLAVE] = tick_ops->get_tick();
 279			membar_safe("#StoreLoad");
 280		}
 281	}
 282	raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
 283}
 284
 285#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 286static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
 287				void **descrp)
 
 
 
 
 
 
 
 288{
 289	extern unsigned long sparc64_ttable_tl0;
 290	extern unsigned long kern_locked_tte_data;
 291	struct hvtramp_descr *hdesc;
 292	unsigned long trampoline_ra;
 293	struct trap_per_cpu *tb;
 294	u64 tte_vaddr, tte_data;
 295	unsigned long hv_err;
 296	int i;
 297
 298	hdesc = kzalloc(sizeof(*hdesc) +
 299			(sizeof(struct hvtramp_mapping) *
 300			 num_kernel_image_mappings - 1),
 301			GFP_KERNEL);
 302	if (!hdesc) {
 303		printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
 304		       "hvtramp_descr.\n");
 305		return;
 306	}
 307	*descrp = hdesc;
 308
 309	hdesc->cpu = cpu;
 310	hdesc->num_mappings = num_kernel_image_mappings;
 311
 312	tb = &trap_block[cpu];
 313
 314	hdesc->fault_info_va = (unsigned long) &tb->fault_info;
 315	hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
 316
 317	hdesc->thread_reg = thread_reg;
 318
 319	tte_vaddr = (unsigned long) KERNBASE;
 320	tte_data = kern_locked_tte_data;
 321
 322	for (i = 0; i < hdesc->num_mappings; i++) {
 323		hdesc->maps[i].vaddr = tte_vaddr;
 324		hdesc->maps[i].tte   = tte_data;
 325		tte_vaddr += 0x400000;
 326		tte_data  += 0x400000;
 327	}
 328
 329	trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
 330
 331	hv_err = sun4v_cpu_start(cpu, trampoline_ra,
 332				 kimage_addr_to_ra(&sparc64_ttable_tl0),
 333				 __pa(hdesc));
 334	if (hv_err)
 335		printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
 336		       "gives error %lu\n", hv_err);
 337}
 338#endif
 339
 340extern unsigned long sparc64_cpu_startup;
 341
 342/* The OBP cpu startup callback truncates the 3rd arg cookie to
 343 * 32-bits (I think) so to be safe we have it read the pointer
 344 * contained here so we work on >4GB machines. -DaveM
 345 */
 346static struct thread_info *cpu_new_thread = NULL;
 347
 348static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
 349{
 350	unsigned long entry =
 351		(unsigned long)(&sparc64_cpu_startup);
 352	unsigned long cookie =
 353		(unsigned long)(&cpu_new_thread);
 
 354	void *descr = NULL;
 355	int timeout, ret;
 356
 
 
 
 357	callin_flag = 0;
 358	cpu_new_thread = task_thread_info(idle);
 359
 360	if (tlb_type == hypervisor) {
 361#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 362		if (ldom_domaining_enabled)
 363			ldom_startcpu_cpuid(cpu,
 364					    (unsigned long) cpu_new_thread,
 365					    &descr);
 366		else
 367#endif
 368			prom_startcpu_cpuid(cpu, entry, cookie);
 369	} else {
 370		struct device_node *dp = of_find_node_by_cpuid(cpu);
 371
 372		prom_startcpu(dp->phandle, entry, cookie);
 373	}
 374
 375	for (timeout = 0; timeout < 50000; timeout++) {
 376		if (callin_flag)
 377			break;
 378		udelay(100);
 379	}
 380
 381	if (callin_flag) {
 382		ret = 0;
 383	} else {
 384		printk("Processor %d is stuck.\n", cpu);
 385		ret = -ENODEV;
 386	}
 387	cpu_new_thread = NULL;
 388
 389	kfree(descr);
 390
 391	return ret;
 392}
 393
 394static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
 395{
 396	u64 result, target;
 397	int stuck, tmp;
 398
 399	if (this_is_starfire) {
 400		/* map to real upaid */
 401		cpu = (((cpu & 0x3c) << 1) |
 402			((cpu & 0x40) >> 4) |
 403			(cpu & 0x3));
 404	}
 405
 406	target = (cpu << 14) | 0x70;
 407again:
 408	/* Ok, this is the real Spitfire Errata #54.
 409	 * One must read back from a UDB internal register
 410	 * after writes to the UDB interrupt dispatch, but
 411	 * before the membar Sync for that write.
 412	 * So we use the high UDB control register (ASI 0x7f,
 413	 * ADDR 0x20) for the dummy read. -DaveM
 414	 */
 415	tmp = 0x40;
 416	__asm__ __volatile__(
 417	"wrpr	%1, %2, %%pstate\n\t"
 418	"stxa	%4, [%0] %3\n\t"
 419	"stxa	%5, [%0+%8] %3\n\t"
 420	"add	%0, %8, %0\n\t"
 421	"stxa	%6, [%0+%8] %3\n\t"
 422	"membar	#Sync\n\t"
 423	"stxa	%%g0, [%7] %3\n\t"
 424	"membar	#Sync\n\t"
 425	"mov	0x20, %%g1\n\t"
 426	"ldxa	[%%g1] 0x7f, %%g0\n\t"
 427	"membar	#Sync"
 428	: "=r" (tmp)
 429	: "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
 430	  "r" (data0), "r" (data1), "r" (data2), "r" (target),
 431	  "r" (0x10), "0" (tmp)
 432        : "g1");
 433
 434	/* NOTE: PSTATE_IE is still clear. */
 435	stuck = 100000;
 436	do {
 437		__asm__ __volatile__("ldxa [%%g0] %1, %0"
 438			: "=r" (result)
 439			: "i" (ASI_INTR_DISPATCH_STAT));
 440		if (result == 0) {
 441			__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 442					     : : "r" (pstate));
 443			return;
 444		}
 445		stuck -= 1;
 446		if (stuck == 0)
 447			break;
 448	} while (result & 0x1);
 449	__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 450			     : : "r" (pstate));
 451	if (stuck == 0) {
 452		printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 453		       smp_processor_id(), result);
 454	} else {
 455		udelay(2);
 456		goto again;
 457	}
 458}
 459
 460static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 461{
 462	u64 *mondo, data0, data1, data2;
 463	u16 *cpu_list;
 464	u64 pstate;
 465	int i;
 466
 467	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 468	cpu_list = __va(tb->cpu_list_pa);
 469	mondo = __va(tb->cpu_mondo_block_pa);
 470	data0 = mondo[0];
 471	data1 = mondo[1];
 472	data2 = mondo[2];
 473	for (i = 0; i < cnt; i++)
 474		spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
 475}
 476
 477/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
 478 * packet, but we have no use for that.  However we do take advantage of
 479 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
 480 */
 481static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 482{
 483	int nack_busy_id, is_jbus, need_more;
 484	u64 *mondo, pstate, ver, busy_mask;
 485	u16 *cpu_list;
 486
 487	cpu_list = __va(tb->cpu_list_pa);
 488	mondo = __va(tb->cpu_mondo_block_pa);
 489
 490	/* Unfortunately, someone at Sun had the brilliant idea to make the
 491	 * busy/nack fields hard-coded by ITID number for this Ultra-III
 492	 * derivative processor.
 493	 */
 494	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
 495	is_jbus = ((ver >> 32) == __JALAPENO_ID ||
 496		   (ver >> 32) == __SERRANO_ID);
 497
 498	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 499
 500retry:
 501	need_more = 0;
 502	__asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
 503			     : : "r" (pstate), "i" (PSTATE_IE));
 504
 505	/* Setup the dispatch data registers. */
 506	__asm__ __volatile__("stxa	%0, [%3] %6\n\t"
 507			     "stxa	%1, [%4] %6\n\t"
 508			     "stxa	%2, [%5] %6\n\t"
 509			     "membar	#Sync\n\t"
 510			     : /* no outputs */
 511			     : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
 512			       "r" (0x40), "r" (0x50), "r" (0x60),
 513			       "i" (ASI_INTR_W));
 514
 515	nack_busy_id = 0;
 516	busy_mask = 0;
 517	{
 518		int i;
 519
 520		for (i = 0; i < cnt; i++) {
 521			u64 target, nr;
 522
 523			nr = cpu_list[i];
 524			if (nr == 0xffff)
 525				continue;
 526
 527			target = (nr << 14) | 0x70;
 528			if (is_jbus) {
 529				busy_mask |= (0x1UL << (nr * 2));
 530			} else {
 531				target |= (nack_busy_id << 24);
 532				busy_mask |= (0x1UL <<
 533					      (nack_busy_id * 2));
 534			}
 535			__asm__ __volatile__(
 536				"stxa	%%g0, [%0] %1\n\t"
 537				"membar	#Sync\n\t"
 538				: /* no outputs */
 539				: "r" (target), "i" (ASI_INTR_W));
 540			nack_busy_id++;
 541			if (nack_busy_id == 32) {
 542				need_more = 1;
 543				break;
 544			}
 545		}
 546	}
 547
 548	/* Now, poll for completion. */
 549	{
 550		u64 dispatch_stat, nack_mask;
 551		long stuck;
 552
 553		stuck = 100000 * nack_busy_id;
 554		nack_mask = busy_mask << 1;
 555		do {
 556			__asm__ __volatile__("ldxa	[%%g0] %1, %0"
 557					     : "=r" (dispatch_stat)
 558					     : "i" (ASI_INTR_DISPATCH_STAT));
 559			if (!(dispatch_stat & (busy_mask | nack_mask))) {
 560				__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 561						     : : "r" (pstate));
 562				if (unlikely(need_more)) {
 563					int i, this_cnt = 0;
 564					for (i = 0; i < cnt; i++) {
 565						if (cpu_list[i] == 0xffff)
 566							continue;
 567						cpu_list[i] = 0xffff;
 568						this_cnt++;
 569						if (this_cnt == 32)
 570							break;
 571					}
 572					goto retry;
 573				}
 574				return;
 575			}
 576			if (!--stuck)
 577				break;
 578		} while (dispatch_stat & busy_mask);
 579
 580		__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 581				     : : "r" (pstate));
 582
 583		if (dispatch_stat & busy_mask) {
 584			/* Busy bits will not clear, continue instead
 585			 * of freezing up on this cpu.
 586			 */
 587			printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 588			       smp_processor_id(), dispatch_stat);
 589		} else {
 590			int i, this_busy_nack = 0;
 591
 592			/* Delay some random time with interrupts enabled
 593			 * to prevent deadlock.
 594			 */
 595			udelay(2 * nack_busy_id);
 596
 597			/* Clear out the mask bits for cpus which did not
 598			 * NACK us.
 599			 */
 600			for (i = 0; i < cnt; i++) {
 601				u64 check_mask, nr;
 602
 603				nr = cpu_list[i];
 604				if (nr == 0xffff)
 605					continue;
 606
 607				if (is_jbus)
 608					check_mask = (0x2UL << (2*nr));
 609				else
 610					check_mask = (0x2UL <<
 611						      this_busy_nack);
 612				if ((dispatch_stat & check_mask) == 0)
 613					cpu_list[i] = 0xffff;
 614				this_busy_nack += 2;
 615				if (this_busy_nack == 64)
 616					break;
 617			}
 618
 619			goto retry;
 620		}
 621	}
 622}
 623
 624/* Multi-cpu list version.  */
 625static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 626{
 627	int retries, this_cpu, prev_sent, i, saw_cpu_error;
 628	unsigned long status;
 629	u16 *cpu_list;
 630
 631	this_cpu = smp_processor_id();
 632
 633	cpu_list = __va(tb->cpu_list_pa);
 634
 635	saw_cpu_error = 0;
 636	retries = 0;
 637	prev_sent = 0;
 638	do {
 639		int forward_progress, n_sent;
 640
 641		status = sun4v_cpu_mondo_send(cnt,
 642					      tb->cpu_list_pa,
 643					      tb->cpu_mondo_block_pa);
 644
 645		/* HV_EOK means all cpus received the xcall, we're done.  */
 646		if (likely(status == HV_EOK))
 647			break;
 648
 649		/* First, see if we made any forward progress.
 650		 *
 651		 * The hypervisor indicates successful sends by setting
 652		 * cpu list entries to the value 0xffff.
 653		 */
 654		n_sent = 0;
 655		for (i = 0; i < cnt; i++) {
 656			if (likely(cpu_list[i] == 0xffff))
 657				n_sent++;
 658		}
 659
 660		forward_progress = 0;
 661		if (n_sent > prev_sent)
 662			forward_progress = 1;
 663
 664		prev_sent = n_sent;
 665
 666		/* If we get a HV_ECPUERROR, then one or more of the cpus
 667		 * in the list are in error state.  Use the cpu_state()
 668		 * hypervisor call to find out which cpus are in error state.
 669		 */
 670		if (unlikely(status == HV_ECPUERROR)) {
 671			for (i = 0; i < cnt; i++) {
 672				long err;
 673				u16 cpu;
 674
 675				cpu = cpu_list[i];
 676				if (cpu == 0xffff)
 677					continue;
 678
 679				err = sun4v_cpu_state(cpu);
 680				if (err == HV_CPU_STATE_ERROR) {
 681					saw_cpu_error = (cpu + 1);
 682					cpu_list[i] = 0xffff;
 683				}
 684			}
 685		} else if (unlikely(status != HV_EWOULDBLOCK))
 686			goto fatal_mondo_error;
 687
 688		/* Don't bother rewriting the CPU list, just leave the
 689		 * 0xffff and non-0xffff entries in there and the
 690		 * hypervisor will do the right thing.
 691		 *
 692		 * Only advance timeout state if we didn't make any
 693		 * forward progress.
 694		 */
 695		if (unlikely(!forward_progress)) {
 696			if (unlikely(++retries > 10000))
 697				goto fatal_mondo_timeout;
 698
 699			/* Delay a little bit to let other cpus catch up
 700			 * on their cpu mondo queue work.
 701			 */
 702			udelay(2 * cnt);
 703		}
 704	} while (1);
 705
 706	if (unlikely(saw_cpu_error))
 707		goto fatal_mondo_cpu_error;
 708
 709	return;
 710
 711fatal_mondo_cpu_error:
 712	printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
 713	       "(including %d) were in error state\n",
 714	       this_cpu, saw_cpu_error - 1);
 715	return;
 716
 717fatal_mondo_timeout:
 718	printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
 719	       " progress after %d retries.\n",
 720	       this_cpu, retries);
 721	goto dump_cpu_list_and_out;
 722
 723fatal_mondo_error:
 724	printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
 725	       this_cpu, status);
 726	printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
 727	       "mondo_block_pa(%lx)\n",
 728	       this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
 729
 730dump_cpu_list_and_out:
 731	printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
 732	for (i = 0; i < cnt; i++)
 733		printk("%u ", cpu_list[i]);
 734	printk("]\n");
 735}
 736
 737static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
 738
 739static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
 740{
 741	struct trap_per_cpu *tb;
 742	int this_cpu, i, cnt;
 743	unsigned long flags;
 744	u16 *cpu_list;
 745	u64 *mondo;
 746
 747	/* We have to do this whole thing with interrupts fully disabled.
 748	 * Otherwise if we send an xcall from interrupt context it will
 749	 * corrupt both our mondo block and cpu list state.
 750	 *
 751	 * One consequence of this is that we cannot use timeout mechanisms
 752	 * that depend upon interrupts being delivered locally.  So, for
 753	 * example, we cannot sample jiffies and expect it to advance.
 754	 *
 755	 * Fortunately, udelay() uses %stick/%tick so we can use that.
 756	 */
 757	local_irq_save(flags);
 758
 759	this_cpu = smp_processor_id();
 760	tb = &trap_block[this_cpu];
 761
 762	mondo = __va(tb->cpu_mondo_block_pa);
 763	mondo[0] = data0;
 764	mondo[1] = data1;
 765	mondo[2] = data2;
 766	wmb();
 767
 768	cpu_list = __va(tb->cpu_list_pa);
 769
 770	/* Setup the initial cpu list.  */
 771	cnt = 0;
 772	for_each_cpu(i, mask) {
 773		if (i == this_cpu || !cpu_online(i))
 774			continue;
 775		cpu_list[cnt++] = i;
 776	}
 777
 778	if (cnt)
 779		xcall_deliver_impl(tb, cnt);
 780
 781	local_irq_restore(flags);
 782}
 783
 784/* Send cross call to all processors mentioned in MASK_P
 785 * except self.  Really, there are only two cases currently,
 786 * "cpu_online_mask" and "mm_cpumask(mm)".
 787 */
 788static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
 789{
 790	u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
 791
 792	xcall_deliver(data0, data1, data2, mask);
 793}
 794
 795/* Send cross call to all processors except self. */
 796static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
 797{
 798	smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
 799}
 800
 801extern unsigned long xcall_sync_tick;
 802
 803static void smp_start_sync_tick_client(int cpu)
 804{
 805	xcall_deliver((u64) &xcall_sync_tick, 0, 0,
 806		      cpumask_of(cpu));
 807}
 808
 809extern unsigned long xcall_call_function;
 810
 811void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 812{
 813	xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
 814}
 815
 816extern unsigned long xcall_call_function_single;
 817
 818void arch_send_call_function_single_ipi(int cpu)
 819{
 820	xcall_deliver((u64) &xcall_call_function_single, 0, 0,
 821		      cpumask_of(cpu));
 822}
 823
 824void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
 825{
 826	clear_softint(1 << irq);
 827	irq_enter();
 828	generic_smp_call_function_interrupt();
 829	irq_exit();
 830}
 831
 832void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
 833{
 834	clear_softint(1 << irq);
 835	irq_enter();
 836	generic_smp_call_function_single_interrupt();
 837	irq_exit();
 838}
 839
 840static void tsb_sync(void *info)
 841{
 842	struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
 843	struct mm_struct *mm = info;
 844
 845	/* It is not valid to test "current->active_mm == mm" here.
 846	 *
 847	 * The value of "current" is not changed atomically with
 848	 * switch_mm().  But that's OK, we just need to check the
 849	 * current cpu's trap block PGD physical address.
 850	 */
 851	if (tp->pgd_paddr == __pa(mm->pgd))
 852		tsb_context_switch(mm);
 853}
 854
 855void smp_tsb_sync(struct mm_struct *mm)
 856{
 857	smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
 858}
 859
 860extern unsigned long xcall_flush_tlb_mm;
 861extern unsigned long xcall_flush_tlb_page;
 862extern unsigned long xcall_flush_tlb_kernel_range;
 863extern unsigned long xcall_fetch_glob_regs;
 864extern unsigned long xcall_fetch_glob_pmu;
 865extern unsigned long xcall_fetch_glob_pmu_n4;
 866extern unsigned long xcall_receive_signal;
 867extern unsigned long xcall_new_mmu_context_version;
 868#ifdef CONFIG_KGDB
 869extern unsigned long xcall_kgdb_capture;
 870#endif
 871
 872#ifdef DCACHE_ALIASING_POSSIBLE
 873extern unsigned long xcall_flush_dcache_page_cheetah;
 874#endif
 875extern unsigned long xcall_flush_dcache_page_spitfire;
 876
 
 
 
 
 
 877static inline void __local_flush_dcache_page(struct page *page)
 878{
 879#ifdef DCACHE_ALIASING_POSSIBLE
 880	__flush_dcache_page(page_address(page),
 881			    ((tlb_type == spitfire) &&
 882			     page_mapping(page) != NULL));
 883#else
 884	if (page_mapping(page) != NULL &&
 885	    tlb_type == spitfire)
 886		__flush_icache_page(__pa(page_address(page)));
 887#endif
 888}
 889
 890void smp_flush_dcache_page_impl(struct page *page, int cpu)
 891{
 892	int this_cpu;
 893
 894	if (tlb_type == hypervisor)
 895		return;
 896
 897#ifdef CONFIG_DEBUG_DCFLUSH
 898	atomic_inc(&dcpage_flushes);
 899#endif
 900
 901	this_cpu = get_cpu();
 902
 903	if (cpu == this_cpu) {
 904		__local_flush_dcache_page(page);
 905	} else if (cpu_online(cpu)) {
 906		void *pg_addr = page_address(page);
 907		u64 data0 = 0;
 908
 909		if (tlb_type == spitfire) {
 910			data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 911			if (page_mapping(page) != NULL)
 912				data0 |= ((u64)1 << 32);
 913		} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 914#ifdef DCACHE_ALIASING_POSSIBLE
 915			data0 =	((u64)&xcall_flush_dcache_page_cheetah);
 916#endif
 917		}
 918		if (data0) {
 919			xcall_deliver(data0, __pa(pg_addr),
 920				      (u64) pg_addr, cpumask_of(cpu));
 921#ifdef CONFIG_DEBUG_DCFLUSH
 922			atomic_inc(&dcpage_flushes_xcall);
 923#endif
 924		}
 925	}
 926
 927	put_cpu();
 928}
 929
 930void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
 931{
 932	void *pg_addr;
 933	u64 data0;
 934
 935	if (tlb_type == hypervisor)
 936		return;
 937
 938	preempt_disable();
 939
 940#ifdef CONFIG_DEBUG_DCFLUSH
 941	atomic_inc(&dcpage_flushes);
 942#endif
 943	data0 = 0;
 944	pg_addr = page_address(page);
 945	if (tlb_type == spitfire) {
 946		data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 947		if (page_mapping(page) != NULL)
 948			data0 |= ((u64)1 << 32);
 949	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 950#ifdef DCACHE_ALIASING_POSSIBLE
 951		data0 = ((u64)&xcall_flush_dcache_page_cheetah);
 952#endif
 953	}
 954	if (data0) {
 955		xcall_deliver(data0, __pa(pg_addr),
 956			      (u64) pg_addr, cpu_online_mask);
 957#ifdef CONFIG_DEBUG_DCFLUSH
 958		atomic_inc(&dcpage_flushes_xcall);
 959#endif
 960	}
 961	__local_flush_dcache_page(page);
 962
 963	preempt_enable();
 964}
 965
 966void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
 967{
 968	struct mm_struct *mm;
 969	unsigned long flags;
 970
 971	clear_softint(1 << irq);
 972
 973	/* See if we need to allocate a new TLB context because
 974	 * the version of the one we are using is now out of date.
 975	 */
 976	mm = current->active_mm;
 977	if (unlikely(!mm || (mm == &init_mm)))
 978		return;
 979
 980	spin_lock_irqsave(&mm->context.lock, flags);
 981
 982	if (unlikely(!CTX_VALID(mm->context)))
 983		get_new_mmu_context(mm);
 984
 985	spin_unlock_irqrestore(&mm->context.lock, flags);
 986
 987	load_secondary_context(mm);
 988	__flush_tlb_mm(CTX_HWBITS(mm->context),
 989		       SECONDARY_CONTEXT);
 990}
 991
 992void smp_new_mmu_context_version(void)
 993{
 994	smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
 995}
 996
 997#ifdef CONFIG_KGDB
 998void kgdb_roundup_cpus(unsigned long flags)
 999{
1000	smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1001}
1002#endif
1003
1004void smp_fetch_global_regs(void)
1005{
1006	smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1007}
1008
1009void smp_fetch_global_pmu(void)
1010{
1011	if (tlb_type == hypervisor &&
1012	    sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1013		smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1014	else
1015		smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1016}
1017
1018/* We know that the window frames of the user have been flushed
1019 * to the stack before we get here because all callers of us
1020 * are flush_tlb_*() routines, and these run after flush_cache_*()
1021 * which performs the flushw.
1022 *
1023 * The SMP TLB coherency scheme we use works as follows:
1024 *
1025 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1026 *    space has (potentially) executed on, this is the heuristic
1027 *    we use to avoid doing cross calls.
1028 *
1029 *    Also, for flushing from kswapd and also for clones, we
1030 *    use cpu_vm_mask as the list of cpus to make run the TLB.
1031 *
1032 * 2) TLB context numbers are shared globally across all processors
1033 *    in the system, this allows us to play several games to avoid
1034 *    cross calls.
1035 *
1036 *    One invariant is that when a cpu switches to a process, and
1037 *    that processes tsk->active_mm->cpu_vm_mask does not have the
1038 *    current cpu's bit set, that tlb context is flushed locally.
1039 *
1040 *    If the address space is non-shared (ie. mm->count == 1) we avoid
1041 *    cross calls when we want to flush the currently running process's
1042 *    tlb state.  This is done by clearing all cpu bits except the current
1043 *    processor's in current->mm->cpu_vm_mask and performing the
1044 *    flush locally only.  This will force any subsequent cpus which run
1045 *    this task to flush the context from the local tlb if the process
1046 *    migrates to another cpu (again).
1047 *
1048 * 3) For shared address spaces (threads) and swapping we bite the
1049 *    bullet for most cases and perform the cross call (but only to
1050 *    the cpus listed in cpu_vm_mask).
1051 *
1052 *    The performance gain from "optimizing" away the cross call for threads is
1053 *    questionable (in theory the big win for threads is the massive sharing of
1054 *    address space state across processors).
1055 */
1056
1057/* This currently is only used by the hugetlb arch pre-fault
1058 * hook on UltraSPARC-III+ and later when changing the pagesize
1059 * bits of the context register for an address space.
1060 */
1061void smp_flush_tlb_mm(struct mm_struct *mm)
1062{
1063	u32 ctx = CTX_HWBITS(mm->context);
1064	int cpu = get_cpu();
1065
1066	if (atomic_read(&mm->mm_users) == 1) {
1067		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1068		goto local_flush_and_out;
1069	}
1070
1071	smp_cross_call_masked(&xcall_flush_tlb_mm,
1072			      ctx, 0, 0,
1073			      mm_cpumask(mm));
1074
1075local_flush_and_out:
1076	__flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1077
1078	put_cpu();
1079}
1080
1081struct tlb_pending_info {
1082	unsigned long ctx;
1083	unsigned long nr;
1084	unsigned long *vaddrs;
1085};
1086
1087static void tlb_pending_func(void *info)
1088{
1089	struct tlb_pending_info *t = info;
1090
1091	__flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1092}
1093
1094void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1095{
1096	u32 ctx = CTX_HWBITS(mm->context);
1097	struct tlb_pending_info info;
1098	int cpu = get_cpu();
1099
1100	info.ctx = ctx;
1101	info.nr = nr;
1102	info.vaddrs = vaddrs;
1103
1104	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1105		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1106	else
1107		smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1108				       &info, 1);
 
1109
1110	__flush_tlb_pending(ctx, nr, vaddrs);
1111
1112	put_cpu();
1113}
1114
1115void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1116{
1117	unsigned long context = CTX_HWBITS(mm->context);
1118	int cpu = get_cpu();
1119
1120	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1121		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1122	else
1123		smp_cross_call_masked(&xcall_flush_tlb_page,
1124				      context, vaddr, 0,
1125				      mm_cpumask(mm));
1126	__flush_tlb_page(context, vaddr);
1127
1128	put_cpu();
1129}
1130
1131void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1132{
1133	start &= PAGE_MASK;
1134	end    = PAGE_ALIGN(end);
1135	if (start != end) {
1136		smp_cross_call(&xcall_flush_tlb_kernel_range,
1137			       0, start, end);
1138
1139		__flush_tlb_kernel_range(start, end);
1140	}
1141}
1142
1143/* CPU capture. */
1144/* #define CAPTURE_DEBUG */
1145extern unsigned long xcall_capture;
1146
1147static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1148static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1149static unsigned long penguins_are_doing_time;
1150
1151void smp_capture(void)
1152{
1153	int result = atomic_add_return(1, &smp_capture_depth);
1154
1155	if (result == 1) {
1156		int ncpus = num_online_cpus();
1157
1158#ifdef CAPTURE_DEBUG
1159		printk("CPU[%d]: Sending penguins to jail...",
1160		       smp_processor_id());
1161#endif
1162		penguins_are_doing_time = 1;
1163		atomic_inc(&smp_capture_registry);
1164		smp_cross_call(&xcall_capture, 0, 0, 0);
1165		while (atomic_read(&smp_capture_registry) != ncpus)
1166			rmb();
1167#ifdef CAPTURE_DEBUG
1168		printk("done\n");
1169#endif
1170	}
1171}
1172
1173void smp_release(void)
1174{
1175	if (atomic_dec_and_test(&smp_capture_depth)) {
1176#ifdef CAPTURE_DEBUG
1177		printk("CPU[%d]: Giving pardon to "
1178		       "imprisoned penguins\n",
1179		       smp_processor_id());
1180#endif
1181		penguins_are_doing_time = 0;
1182		membar_safe("#StoreLoad");
1183		atomic_dec(&smp_capture_registry);
1184	}
1185}
1186
1187/* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1188 * set, so they can service tlb flush xcalls...
1189 */
1190extern void prom_world(int);
1191
1192void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1193{
1194	clear_softint(1 << irq);
1195
1196	preempt_disable();
1197
1198	__asm__ __volatile__("flushw");
1199	prom_world(1);
1200	atomic_inc(&smp_capture_registry);
1201	membar_safe("#StoreLoad");
1202	while (penguins_are_doing_time)
1203		rmb();
1204	atomic_dec(&smp_capture_registry);
1205	prom_world(0);
1206
1207	preempt_enable();
1208}
1209
1210/* /proc/profile writes can call this, don't __init it please. */
1211int setup_profiling_timer(unsigned int multiplier)
1212{
1213	return -EINVAL;
1214}
1215
1216void __init smp_prepare_cpus(unsigned int max_cpus)
1217{
1218}
1219
1220void smp_prepare_boot_cpu(void)
1221{
1222}
1223
1224void __init smp_setup_processor_id(void)
1225{
1226	if (tlb_type == spitfire)
1227		xcall_deliver_impl = spitfire_xcall_deliver;
1228	else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1229		xcall_deliver_impl = cheetah_xcall_deliver;
1230	else
1231		xcall_deliver_impl = hypervisor_xcall_deliver;
1232}
1233
1234void __init smp_fill_in_cpu_possible_map(void)
1235{
1236	int possible_cpus = num_possible_cpus();
1237	int i;
1238
1239	if (possible_cpus > nr_cpu_ids)
1240		possible_cpus = nr_cpu_ids;
1241
1242	for (i = 0; i < possible_cpus; i++)
1243		set_cpu_possible(i, true);
1244	for (; i < NR_CPUS; i++)
1245		set_cpu_possible(i, false);
1246}
1247
1248void smp_fill_in_sib_core_maps(void)
1249{
1250	unsigned int i;
1251
1252	for_each_present_cpu(i) {
1253		unsigned int j;
1254
1255		cpumask_clear(&cpu_core_map[i]);
1256		if (cpu_data(i).core_id == 0) {
1257			cpumask_set_cpu(i, &cpu_core_map[i]);
1258			continue;
1259		}
1260
1261		for_each_present_cpu(j) {
1262			if (cpu_data(i).core_id ==
1263			    cpu_data(j).core_id)
1264				cpumask_set_cpu(j, &cpu_core_map[i]);
1265		}
1266	}
1267
1268	for_each_present_cpu(i)  {
1269		unsigned int j;
1270
1271		for_each_present_cpu(j)  {
1272			if (cpu_data(i).max_cache_id ==
1273			    cpu_data(j).max_cache_id)
1274				cpumask_set_cpu(j, &cpu_core_sib_cache_map[i]);
1275
1276			if (cpu_data(i).sock_id == cpu_data(j).sock_id)
1277				cpumask_set_cpu(j, &cpu_core_sib_map[i]);
1278		}
1279	}
1280
1281	for_each_present_cpu(i) {
1282		unsigned int j;
1283
1284		cpumask_clear(&per_cpu(cpu_sibling_map, i));
1285		if (cpu_data(i).proc_id == -1) {
1286			cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1287			continue;
1288		}
1289
1290		for_each_present_cpu(j) {
1291			if (cpu_data(i).proc_id ==
1292			    cpu_data(j).proc_id)
1293				cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1294		}
1295	}
1296}
1297
1298int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1299{
1300	int ret = smp_boot_one_cpu(cpu, tidle);
1301
1302	if (!ret) {
1303		cpumask_set_cpu(cpu, &smp_commenced_mask);
1304		while (!cpu_online(cpu))
1305			mb();
1306		if (!cpu_online(cpu)) {
1307			ret = -ENODEV;
1308		} else {
1309			/* On SUN4V, writes to %tick and %stick are
1310			 * not allowed.
1311			 */
1312			if (tlb_type != hypervisor)
1313				smp_synchronize_one_tick(cpu);
1314		}
1315	}
1316	return ret;
1317}
1318
1319#ifdef CONFIG_HOTPLUG_CPU
1320void cpu_play_dead(void)
1321{
1322	int cpu = smp_processor_id();
1323	unsigned long pstate;
1324
1325	idle_task_exit();
1326
1327	if (tlb_type == hypervisor) {
1328		struct trap_per_cpu *tb = &trap_block[cpu];
1329
1330		sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1331				tb->cpu_mondo_pa, 0);
1332		sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1333				tb->dev_mondo_pa, 0);
1334		sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1335				tb->resum_mondo_pa, 0);
1336		sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1337				tb->nonresum_mondo_pa, 0);
1338	}
1339
1340	cpumask_clear_cpu(cpu, &smp_commenced_mask);
1341	membar_safe("#Sync");
1342
1343	local_irq_disable();
1344
1345	__asm__ __volatile__(
1346		"rdpr	%%pstate, %0\n\t"
1347		"wrpr	%0, %1, %%pstate"
1348		: "=r" (pstate)
1349		: "i" (PSTATE_IE));
1350
1351	while (1)
1352		barrier();
1353}
1354
1355int __cpu_disable(void)
1356{
1357	int cpu = smp_processor_id();
1358	cpuinfo_sparc *c;
1359	int i;
1360
1361	for_each_cpu(i, &cpu_core_map[cpu])
1362		cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1363	cpumask_clear(&cpu_core_map[cpu]);
1364
1365	for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1366		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1367	cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1368
1369	c = &cpu_data(cpu);
1370
1371	c->core_id = 0;
1372	c->proc_id = -1;
1373
1374	smp_wmb();
1375
1376	/* Make sure no interrupts point to this cpu.  */
1377	fixup_irqs();
1378
1379	local_irq_enable();
1380	mdelay(1);
1381	local_irq_disable();
1382
 
1383	set_cpu_online(cpu, false);
 
1384
1385	cpu_map_rebuild();
1386
1387	return 0;
1388}
1389
1390void __cpu_die(unsigned int cpu)
1391{
1392	int i;
1393
1394	for (i = 0; i < 100; i++) {
1395		smp_rmb();
1396		if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1397			break;
1398		msleep(100);
1399	}
1400	if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1401		printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1402	} else {
1403#if defined(CONFIG_SUN_LDOMS)
1404		unsigned long hv_err;
1405		int limit = 100;
1406
1407		do {
1408			hv_err = sun4v_cpu_stop(cpu);
1409			if (hv_err == HV_EOK) {
1410				set_cpu_present(cpu, false);
1411				break;
1412			}
1413		} while (--limit > 0);
1414		if (limit <= 0) {
1415			printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1416			       hv_err);
1417		}
1418#endif
1419	}
1420}
1421#endif
1422
1423void __init smp_cpus_done(unsigned int max_cpus)
1424{
 
1425}
1426
1427void smp_send_reschedule(int cpu)
1428{
1429	if (cpu == smp_processor_id()) {
1430		WARN_ON_ONCE(preemptible());
1431		set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1432	} else {
1433		xcall_deliver((u64) &xcall_receive_signal,
1434			      0, 0, cpumask_of(cpu));
1435	}
1436}
1437
1438void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1439{
1440	clear_softint(1 << irq);
1441	scheduler_ipi();
1442}
1443
1444static void stop_this_cpu(void *dummy)
1445{
1446	prom_stopself();
1447}
1448
1449void smp_send_stop(void)
1450{
1451	int cpu;
1452
1453	if (tlb_type == hypervisor) {
1454		for_each_online_cpu(cpu) {
1455			if (cpu == smp_processor_id())
1456				continue;
1457#ifdef CONFIG_SUN_LDOMS
1458			if (ldom_domaining_enabled) {
1459				unsigned long hv_err;
1460				hv_err = sun4v_cpu_stop(cpu);
1461				if (hv_err)
1462					printk(KERN_ERR "sun4v_cpu_stop() "
1463					       "failed err=%lu\n", hv_err);
1464			} else
1465#endif
1466				prom_stopcpu_cpuid(cpu);
1467		}
1468	} else
1469		smp_call_function(stop_this_cpu, NULL, 0);
1470}
1471
1472/**
1473 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1474 * @cpu: cpu to allocate for
1475 * @size: size allocation in bytes
1476 * @align: alignment
1477 *
1478 * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1479 * does the right thing for NUMA regardless of the current
1480 * configuration.
1481 *
1482 * RETURNS:
1483 * Pointer to the allocated area on success, NULL on failure.
1484 */
1485static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1486					size_t align)
1487{
1488	const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1489#ifdef CONFIG_NEED_MULTIPLE_NODES
1490	int node = cpu_to_node(cpu);
1491	void *ptr;
1492
1493	if (!node_online(node) || !NODE_DATA(node)) {
1494		ptr = __alloc_bootmem(size, align, goal);
1495		pr_info("cpu %d has no node %d or node-local memory\n",
1496			cpu, node);
1497		pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1498			 cpu, size, __pa(ptr));
1499	} else {
1500		ptr = __alloc_bootmem_node(NODE_DATA(node),
1501					   size, align, goal);
1502		pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1503			 "%016lx\n", cpu, size, node, __pa(ptr));
1504	}
1505	return ptr;
1506#else
1507	return __alloc_bootmem(size, align, goal);
1508#endif
1509}
1510
1511static void __init pcpu_free_bootmem(void *ptr, size_t size)
1512{
1513	free_bootmem(__pa(ptr), size);
1514}
1515
1516static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1517{
1518	if (cpu_to_node(from) == cpu_to_node(to))
1519		return LOCAL_DISTANCE;
1520	else
1521		return REMOTE_DISTANCE;
1522}
1523
1524static void __init pcpu_populate_pte(unsigned long addr)
1525{
1526	pgd_t *pgd = pgd_offset_k(addr);
1527	pud_t *pud;
1528	pmd_t *pmd;
1529
1530	if (pgd_none(*pgd)) {
1531		pud_t *new;
1532
1533		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1534		pgd_populate(&init_mm, pgd, new);
1535	}
1536
1537	pud = pud_offset(pgd, addr);
1538	if (pud_none(*pud)) {
1539		pmd_t *new;
1540
1541		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1542		pud_populate(&init_mm, pud, new);
1543	}
1544
1545	pmd = pmd_offset(pud, addr);
1546	if (!pmd_present(*pmd)) {
1547		pte_t *new;
1548
1549		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1550		pmd_populate_kernel(&init_mm, pmd, new);
1551	}
1552}
1553
1554void __init setup_per_cpu_areas(void)
1555{
1556	unsigned long delta;
1557	unsigned int cpu;
1558	int rc = -EINVAL;
1559
1560	if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1561		rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1562					    PERCPU_DYNAMIC_RESERVE, 4 << 20,
1563					    pcpu_cpu_distance,
1564					    pcpu_alloc_bootmem,
1565					    pcpu_free_bootmem);
1566		if (rc)
1567			pr_warning("PERCPU: %s allocator failed (%d), "
1568				   "falling back to page size\n",
1569				   pcpu_fc_names[pcpu_chosen_fc], rc);
1570	}
1571	if (rc < 0)
1572		rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1573					   pcpu_alloc_bootmem,
1574					   pcpu_free_bootmem,
1575					   pcpu_populate_pte);
1576	if (rc < 0)
1577		panic("cannot initialize percpu area (err=%d)", rc);
1578
1579	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1580	for_each_possible_cpu(cpu)
1581		__per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1582
1583	/* Setup %g5 for the boot cpu.  */
1584	__local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1585
1586	of_fill_in_cpu_data();
1587	if (tlb_type == hypervisor)
1588		mdesc_fill_in_cpu_data(cpu_all_mask);
1589}
v3.1
   1/* smp.c: Sparc64 SMP support.
   2 *
   3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
   4 */
   5
   6#include <linux/module.h>
   7#include <linux/kernel.h>
   8#include <linux/sched.h>
   9#include <linux/mm.h>
  10#include <linux/pagemap.h>
  11#include <linux/threads.h>
  12#include <linux/smp.h>
  13#include <linux/interrupt.h>
  14#include <linux/kernel_stat.h>
  15#include <linux/delay.h>
  16#include <linux/init.h>
  17#include <linux/spinlock.h>
  18#include <linux/fs.h>
  19#include <linux/seq_file.h>
  20#include <linux/cache.h>
  21#include <linux/jiffies.h>
  22#include <linux/profile.h>
  23#include <linux/bootmem.h>
  24#include <linux/vmalloc.h>
  25#include <linux/ftrace.h>
  26#include <linux/cpu.h>
  27#include <linux/slab.h>
 
  28
  29#include <asm/head.h>
  30#include <asm/ptrace.h>
  31#include <linux/atomic.h>
  32#include <asm/tlbflush.h>
  33#include <asm/mmu_context.h>
  34#include <asm/cpudata.h>
  35#include <asm/hvtramp.h>
  36#include <asm/io.h>
  37#include <asm/timer.h>
 
  38
  39#include <asm/irq.h>
  40#include <asm/irq_regs.h>
  41#include <asm/page.h>
  42#include <asm/pgtable.h>
  43#include <asm/oplib.h>
  44#include <asm/uaccess.h>
  45#include <asm/starfire.h>
  46#include <asm/tlb.h>
  47#include <asm/sections.h>
  48#include <asm/prom.h>
  49#include <asm/mdesc.h>
  50#include <asm/ldc.h>
  51#include <asm/hypervisor.h>
  52#include <asm/pcr.h>
  53
  54#include "cpumap.h"
  55
  56int sparc64_multi_core __read_mostly;
  57
  58DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
  59cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
  60	{ [0 ... NR_CPUS-1] = CPU_MASK_NONE };
  61
 
 
 
 
 
 
  62EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  63EXPORT_SYMBOL(cpu_core_map);
 
 
  64
  65static cpumask_t smp_commenced_mask;
  66
  67void smp_info(struct seq_file *m)
  68{
  69	int i;
  70	
  71	seq_printf(m, "State:\n");
  72	for_each_online_cpu(i)
  73		seq_printf(m, "CPU%d:\t\tonline\n", i);
  74}
  75
  76void smp_bogo(struct seq_file *m)
  77{
  78	int i;
  79	
  80	for_each_online_cpu(i)
  81		seq_printf(m,
  82			   "Cpu%dClkTck\t: %016lx\n",
  83			   i, cpu_data(i).clock_tick);
  84}
  85
  86extern void setup_sparc64_timer(void);
  87
  88static volatile unsigned long callin_flag = 0;
  89
  90void __cpuinit smp_callin(void)
  91{
  92	int cpuid = hard_smp_processor_id();
  93
  94	__local_per_cpu_offset = __per_cpu_offset(cpuid);
  95
  96	if (tlb_type == hypervisor)
  97		sun4v_ktsb_register();
  98
  99	__flush_tlb_all();
 100
 101	setup_sparc64_timer();
 102
 103	if (cheetah_pcache_forced_on)
 104		cheetah_enable_pcache();
 105
 106	local_irq_enable();
 107
 108	callin_flag = 1;
 109	__asm__ __volatile__("membar #Sync\n\t"
 110			     "flush  %%g6" : : : "memory");
 111
 112	/* Clear this or we will die instantly when we
 113	 * schedule back to this idler...
 114	 */
 115	current_thread_info()->new_child = 0;
 116
 117	/* Attach to the address space of init_task. */
 118	atomic_inc(&init_mm.mm_count);
 119	current->active_mm = &init_mm;
 120
 121	/* inform the notifiers about the new cpu */
 122	notify_cpu_starting(cpuid);
 123
 124	while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
 125		rmb();
 126
 127	ipi_call_lock_irq();
 128	set_cpu_online(cpuid, true);
 129	ipi_call_unlock_irq();
 130
 131	/* idle thread is expected to have preempt disabled */
 132	preempt_disable();
 
 
 
 
 133}
 134
 135void cpu_panic(void)
 136{
 137	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
 138	panic("SMP bolixed\n");
 139}
 140
 141/* This tick register synchronization scheme is taken entirely from
 142 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
 143 *
 144 * The only change I've made is to rework it so that the master
 145 * initiates the synchonization instead of the slave. -DaveM
 146 */
 147
 148#define MASTER	0
 149#define SLAVE	(SMP_CACHE_BYTES/sizeof(unsigned long))
 150
 151#define NUM_ROUNDS	64	/* magic value */
 152#define NUM_ITERS	5	/* likewise */
 153
 154static DEFINE_SPINLOCK(itc_sync_lock);
 155static unsigned long go[SLAVE + 1];
 156
 157#define DEBUG_TICK_SYNC	0
 158
 159static inline long get_delta (long *rt, long *master)
 160{
 161	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
 162	unsigned long tcenter, t0, t1, tm;
 163	unsigned long i;
 164
 165	for (i = 0; i < NUM_ITERS; i++) {
 166		t0 = tick_ops->get_tick();
 167		go[MASTER] = 1;
 168		membar_safe("#StoreLoad");
 169		while (!(tm = go[SLAVE]))
 170			rmb();
 171		go[SLAVE] = 0;
 172		wmb();
 173		t1 = tick_ops->get_tick();
 174
 175		if (t1 - t0 < best_t1 - best_t0)
 176			best_t0 = t0, best_t1 = t1, best_tm = tm;
 177	}
 178
 179	*rt = best_t1 - best_t0;
 180	*master = best_tm - best_t0;
 181
 182	/* average best_t0 and best_t1 without overflow: */
 183	tcenter = (best_t0/2 + best_t1/2);
 184	if (best_t0 % 2 + best_t1 % 2 == 2)
 185		tcenter++;
 186	return tcenter - best_tm;
 187}
 188
 189void smp_synchronize_tick_client(void)
 190{
 191	long i, delta, adj, adjust_latency = 0, done = 0;
 192	unsigned long flags, rt, master_time_stamp;
 193#if DEBUG_TICK_SYNC
 194	struct {
 195		long rt;	/* roundtrip time */
 196		long master;	/* master's timestamp */
 197		long diff;	/* difference between midpoint and master's timestamp */
 198		long lat;	/* estimate of itc adjustment latency */
 199	} t[NUM_ROUNDS];
 200#endif
 201
 202	go[MASTER] = 1;
 203
 204	while (go[MASTER])
 205		rmb();
 206
 207	local_irq_save(flags);
 208	{
 209		for (i = 0; i < NUM_ROUNDS; i++) {
 210			delta = get_delta(&rt, &master_time_stamp);
 211			if (delta == 0)
 212				done = 1;	/* let's lock on to this... */
 213
 214			if (!done) {
 215				if (i > 0) {
 216					adjust_latency += -delta;
 217					adj = -delta + adjust_latency/4;
 218				} else
 219					adj = -delta;
 220
 221				tick_ops->add_tick(adj);
 222			}
 223#if DEBUG_TICK_SYNC
 224			t[i].rt = rt;
 225			t[i].master = master_time_stamp;
 226			t[i].diff = delta;
 227			t[i].lat = adjust_latency/4;
 228#endif
 229		}
 230	}
 231	local_irq_restore(flags);
 232
 233#if DEBUG_TICK_SYNC
 234	for (i = 0; i < NUM_ROUNDS; i++)
 235		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
 236		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
 237#endif
 238
 239	printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
 240	       "(last diff %ld cycles, maxerr %lu cycles)\n",
 241	       smp_processor_id(), delta, rt);
 242}
 243
 244static void smp_start_sync_tick_client(int cpu);
 245
 246static void smp_synchronize_one_tick(int cpu)
 247{
 248	unsigned long flags, i;
 249
 250	go[MASTER] = 0;
 251
 252	smp_start_sync_tick_client(cpu);
 253
 254	/* wait for client to be ready */
 255	while (!go[MASTER])
 256		rmb();
 257
 258	/* now let the client proceed into his loop */
 259	go[MASTER] = 0;
 260	membar_safe("#StoreLoad");
 261
 262	spin_lock_irqsave(&itc_sync_lock, flags);
 263	{
 264		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
 265			while (!go[MASTER])
 266				rmb();
 267			go[MASTER] = 0;
 268			wmb();
 269			go[SLAVE] = tick_ops->get_tick();
 270			membar_safe("#StoreLoad");
 271		}
 272	}
 273	spin_unlock_irqrestore(&itc_sync_lock, flags);
 274}
 275
 276#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 277/* XXX Put this in some common place. XXX */
 278static unsigned long kimage_addr_to_ra(void *p)
 279{
 280	unsigned long val = (unsigned long) p;
 281
 282	return kern_base + (val - KERNBASE);
 283}
 284
 285static void __cpuinit ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg, void **descrp)
 286{
 287	extern unsigned long sparc64_ttable_tl0;
 288	extern unsigned long kern_locked_tte_data;
 289	struct hvtramp_descr *hdesc;
 290	unsigned long trampoline_ra;
 291	struct trap_per_cpu *tb;
 292	u64 tte_vaddr, tte_data;
 293	unsigned long hv_err;
 294	int i;
 295
 296	hdesc = kzalloc(sizeof(*hdesc) +
 297			(sizeof(struct hvtramp_mapping) *
 298			 num_kernel_image_mappings - 1),
 299			GFP_KERNEL);
 300	if (!hdesc) {
 301		printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
 302		       "hvtramp_descr.\n");
 303		return;
 304	}
 305	*descrp = hdesc;
 306
 307	hdesc->cpu = cpu;
 308	hdesc->num_mappings = num_kernel_image_mappings;
 309
 310	tb = &trap_block[cpu];
 311
 312	hdesc->fault_info_va = (unsigned long) &tb->fault_info;
 313	hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
 314
 315	hdesc->thread_reg = thread_reg;
 316
 317	tte_vaddr = (unsigned long) KERNBASE;
 318	tte_data = kern_locked_tte_data;
 319
 320	for (i = 0; i < hdesc->num_mappings; i++) {
 321		hdesc->maps[i].vaddr = tte_vaddr;
 322		hdesc->maps[i].tte   = tte_data;
 323		tte_vaddr += 0x400000;
 324		tte_data  += 0x400000;
 325	}
 326
 327	trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
 328
 329	hv_err = sun4v_cpu_start(cpu, trampoline_ra,
 330				 kimage_addr_to_ra(&sparc64_ttable_tl0),
 331				 __pa(hdesc));
 332	if (hv_err)
 333		printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
 334		       "gives error %lu\n", hv_err);
 335}
 336#endif
 337
 338extern unsigned long sparc64_cpu_startup;
 339
 340/* The OBP cpu startup callback truncates the 3rd arg cookie to
 341 * 32-bits (I think) so to be safe we have it read the pointer
 342 * contained here so we work on >4GB machines. -DaveM
 343 */
 344static struct thread_info *cpu_new_thread = NULL;
 345
 346static int __cpuinit smp_boot_one_cpu(unsigned int cpu)
 347{
 348	unsigned long entry =
 349		(unsigned long)(&sparc64_cpu_startup);
 350	unsigned long cookie =
 351		(unsigned long)(&cpu_new_thread);
 352	struct task_struct *p;
 353	void *descr = NULL;
 354	int timeout, ret;
 355
 356	p = fork_idle(cpu);
 357	if (IS_ERR(p))
 358		return PTR_ERR(p);
 359	callin_flag = 0;
 360	cpu_new_thread = task_thread_info(p);
 361
 362	if (tlb_type == hypervisor) {
 363#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 364		if (ldom_domaining_enabled)
 365			ldom_startcpu_cpuid(cpu,
 366					    (unsigned long) cpu_new_thread,
 367					    &descr);
 368		else
 369#endif
 370			prom_startcpu_cpuid(cpu, entry, cookie);
 371	} else {
 372		struct device_node *dp = of_find_node_by_cpuid(cpu);
 373
 374		prom_startcpu(dp->phandle, entry, cookie);
 375	}
 376
 377	for (timeout = 0; timeout < 50000; timeout++) {
 378		if (callin_flag)
 379			break;
 380		udelay(100);
 381	}
 382
 383	if (callin_flag) {
 384		ret = 0;
 385	} else {
 386		printk("Processor %d is stuck.\n", cpu);
 387		ret = -ENODEV;
 388	}
 389	cpu_new_thread = NULL;
 390
 391	kfree(descr);
 392
 393	return ret;
 394}
 395
 396static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
 397{
 398	u64 result, target;
 399	int stuck, tmp;
 400
 401	if (this_is_starfire) {
 402		/* map to real upaid */
 403		cpu = (((cpu & 0x3c) << 1) |
 404			((cpu & 0x40) >> 4) |
 405			(cpu & 0x3));
 406	}
 407
 408	target = (cpu << 14) | 0x70;
 409again:
 410	/* Ok, this is the real Spitfire Errata #54.
 411	 * One must read back from a UDB internal register
 412	 * after writes to the UDB interrupt dispatch, but
 413	 * before the membar Sync for that write.
 414	 * So we use the high UDB control register (ASI 0x7f,
 415	 * ADDR 0x20) for the dummy read. -DaveM
 416	 */
 417	tmp = 0x40;
 418	__asm__ __volatile__(
 419	"wrpr	%1, %2, %%pstate\n\t"
 420	"stxa	%4, [%0] %3\n\t"
 421	"stxa	%5, [%0+%8] %3\n\t"
 422	"add	%0, %8, %0\n\t"
 423	"stxa	%6, [%0+%8] %3\n\t"
 424	"membar	#Sync\n\t"
 425	"stxa	%%g0, [%7] %3\n\t"
 426	"membar	#Sync\n\t"
 427	"mov	0x20, %%g1\n\t"
 428	"ldxa	[%%g1] 0x7f, %%g0\n\t"
 429	"membar	#Sync"
 430	: "=r" (tmp)
 431	: "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
 432	  "r" (data0), "r" (data1), "r" (data2), "r" (target),
 433	  "r" (0x10), "0" (tmp)
 434        : "g1");
 435
 436	/* NOTE: PSTATE_IE is still clear. */
 437	stuck = 100000;
 438	do {
 439		__asm__ __volatile__("ldxa [%%g0] %1, %0"
 440			: "=r" (result)
 441			: "i" (ASI_INTR_DISPATCH_STAT));
 442		if (result == 0) {
 443			__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 444					     : : "r" (pstate));
 445			return;
 446		}
 447		stuck -= 1;
 448		if (stuck == 0)
 449			break;
 450	} while (result & 0x1);
 451	__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 452			     : : "r" (pstate));
 453	if (stuck == 0) {
 454		printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 455		       smp_processor_id(), result);
 456	} else {
 457		udelay(2);
 458		goto again;
 459	}
 460}
 461
 462static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 463{
 464	u64 *mondo, data0, data1, data2;
 465	u16 *cpu_list;
 466	u64 pstate;
 467	int i;
 468
 469	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 470	cpu_list = __va(tb->cpu_list_pa);
 471	mondo = __va(tb->cpu_mondo_block_pa);
 472	data0 = mondo[0];
 473	data1 = mondo[1];
 474	data2 = mondo[2];
 475	for (i = 0; i < cnt; i++)
 476		spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
 477}
 478
 479/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
 480 * packet, but we have no use for that.  However we do take advantage of
 481 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
 482 */
 483static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 484{
 485	int nack_busy_id, is_jbus, need_more;
 486	u64 *mondo, pstate, ver, busy_mask;
 487	u16 *cpu_list;
 488
 489	cpu_list = __va(tb->cpu_list_pa);
 490	mondo = __va(tb->cpu_mondo_block_pa);
 491
 492	/* Unfortunately, someone at Sun had the brilliant idea to make the
 493	 * busy/nack fields hard-coded by ITID number for this Ultra-III
 494	 * derivative processor.
 495	 */
 496	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
 497	is_jbus = ((ver >> 32) == __JALAPENO_ID ||
 498		   (ver >> 32) == __SERRANO_ID);
 499
 500	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 501
 502retry:
 503	need_more = 0;
 504	__asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
 505			     : : "r" (pstate), "i" (PSTATE_IE));
 506
 507	/* Setup the dispatch data registers. */
 508	__asm__ __volatile__("stxa	%0, [%3] %6\n\t"
 509			     "stxa	%1, [%4] %6\n\t"
 510			     "stxa	%2, [%5] %6\n\t"
 511			     "membar	#Sync\n\t"
 512			     : /* no outputs */
 513			     : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
 514			       "r" (0x40), "r" (0x50), "r" (0x60),
 515			       "i" (ASI_INTR_W));
 516
 517	nack_busy_id = 0;
 518	busy_mask = 0;
 519	{
 520		int i;
 521
 522		for (i = 0; i < cnt; i++) {
 523			u64 target, nr;
 524
 525			nr = cpu_list[i];
 526			if (nr == 0xffff)
 527				continue;
 528
 529			target = (nr << 14) | 0x70;
 530			if (is_jbus) {
 531				busy_mask |= (0x1UL << (nr * 2));
 532			} else {
 533				target |= (nack_busy_id << 24);
 534				busy_mask |= (0x1UL <<
 535					      (nack_busy_id * 2));
 536			}
 537			__asm__ __volatile__(
 538				"stxa	%%g0, [%0] %1\n\t"
 539				"membar	#Sync\n\t"
 540				: /* no outputs */
 541				: "r" (target), "i" (ASI_INTR_W));
 542			nack_busy_id++;
 543			if (nack_busy_id == 32) {
 544				need_more = 1;
 545				break;
 546			}
 547		}
 548	}
 549
 550	/* Now, poll for completion. */
 551	{
 552		u64 dispatch_stat, nack_mask;
 553		long stuck;
 554
 555		stuck = 100000 * nack_busy_id;
 556		nack_mask = busy_mask << 1;
 557		do {
 558			__asm__ __volatile__("ldxa	[%%g0] %1, %0"
 559					     : "=r" (dispatch_stat)
 560					     : "i" (ASI_INTR_DISPATCH_STAT));
 561			if (!(dispatch_stat & (busy_mask | nack_mask))) {
 562				__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 563						     : : "r" (pstate));
 564				if (unlikely(need_more)) {
 565					int i, this_cnt = 0;
 566					for (i = 0; i < cnt; i++) {
 567						if (cpu_list[i] == 0xffff)
 568							continue;
 569						cpu_list[i] = 0xffff;
 570						this_cnt++;
 571						if (this_cnt == 32)
 572							break;
 573					}
 574					goto retry;
 575				}
 576				return;
 577			}
 578			if (!--stuck)
 579				break;
 580		} while (dispatch_stat & busy_mask);
 581
 582		__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 583				     : : "r" (pstate));
 584
 585		if (dispatch_stat & busy_mask) {
 586			/* Busy bits will not clear, continue instead
 587			 * of freezing up on this cpu.
 588			 */
 589			printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 590			       smp_processor_id(), dispatch_stat);
 591		} else {
 592			int i, this_busy_nack = 0;
 593
 594			/* Delay some random time with interrupts enabled
 595			 * to prevent deadlock.
 596			 */
 597			udelay(2 * nack_busy_id);
 598
 599			/* Clear out the mask bits for cpus which did not
 600			 * NACK us.
 601			 */
 602			for (i = 0; i < cnt; i++) {
 603				u64 check_mask, nr;
 604
 605				nr = cpu_list[i];
 606				if (nr == 0xffff)
 607					continue;
 608
 609				if (is_jbus)
 610					check_mask = (0x2UL << (2*nr));
 611				else
 612					check_mask = (0x2UL <<
 613						      this_busy_nack);
 614				if ((dispatch_stat & check_mask) == 0)
 615					cpu_list[i] = 0xffff;
 616				this_busy_nack += 2;
 617				if (this_busy_nack == 64)
 618					break;
 619			}
 620
 621			goto retry;
 622		}
 623	}
 624}
 625
 626/* Multi-cpu list version.  */
 627static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 628{
 629	int retries, this_cpu, prev_sent, i, saw_cpu_error;
 630	unsigned long status;
 631	u16 *cpu_list;
 632
 633	this_cpu = smp_processor_id();
 634
 635	cpu_list = __va(tb->cpu_list_pa);
 636
 637	saw_cpu_error = 0;
 638	retries = 0;
 639	prev_sent = 0;
 640	do {
 641		int forward_progress, n_sent;
 642
 643		status = sun4v_cpu_mondo_send(cnt,
 644					      tb->cpu_list_pa,
 645					      tb->cpu_mondo_block_pa);
 646
 647		/* HV_EOK means all cpus received the xcall, we're done.  */
 648		if (likely(status == HV_EOK))
 649			break;
 650
 651		/* First, see if we made any forward progress.
 652		 *
 653		 * The hypervisor indicates successful sends by setting
 654		 * cpu list entries to the value 0xffff.
 655		 */
 656		n_sent = 0;
 657		for (i = 0; i < cnt; i++) {
 658			if (likely(cpu_list[i] == 0xffff))
 659				n_sent++;
 660		}
 661
 662		forward_progress = 0;
 663		if (n_sent > prev_sent)
 664			forward_progress = 1;
 665
 666		prev_sent = n_sent;
 667
 668		/* If we get a HV_ECPUERROR, then one or more of the cpus
 669		 * in the list are in error state.  Use the cpu_state()
 670		 * hypervisor call to find out which cpus are in error state.
 671		 */
 672		if (unlikely(status == HV_ECPUERROR)) {
 673			for (i = 0; i < cnt; i++) {
 674				long err;
 675				u16 cpu;
 676
 677				cpu = cpu_list[i];
 678				if (cpu == 0xffff)
 679					continue;
 680
 681				err = sun4v_cpu_state(cpu);
 682				if (err == HV_CPU_STATE_ERROR) {
 683					saw_cpu_error = (cpu + 1);
 684					cpu_list[i] = 0xffff;
 685				}
 686			}
 687		} else if (unlikely(status != HV_EWOULDBLOCK))
 688			goto fatal_mondo_error;
 689
 690		/* Don't bother rewriting the CPU list, just leave the
 691		 * 0xffff and non-0xffff entries in there and the
 692		 * hypervisor will do the right thing.
 693		 *
 694		 * Only advance timeout state if we didn't make any
 695		 * forward progress.
 696		 */
 697		if (unlikely(!forward_progress)) {
 698			if (unlikely(++retries > 10000))
 699				goto fatal_mondo_timeout;
 700
 701			/* Delay a little bit to let other cpus catch up
 702			 * on their cpu mondo queue work.
 703			 */
 704			udelay(2 * cnt);
 705		}
 706	} while (1);
 707
 708	if (unlikely(saw_cpu_error))
 709		goto fatal_mondo_cpu_error;
 710
 711	return;
 712
 713fatal_mondo_cpu_error:
 714	printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
 715	       "(including %d) were in error state\n",
 716	       this_cpu, saw_cpu_error - 1);
 717	return;
 718
 719fatal_mondo_timeout:
 720	printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
 721	       " progress after %d retries.\n",
 722	       this_cpu, retries);
 723	goto dump_cpu_list_and_out;
 724
 725fatal_mondo_error:
 726	printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
 727	       this_cpu, status);
 728	printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
 729	       "mondo_block_pa(%lx)\n",
 730	       this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
 731
 732dump_cpu_list_and_out:
 733	printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
 734	for (i = 0; i < cnt; i++)
 735		printk("%u ", cpu_list[i]);
 736	printk("]\n");
 737}
 738
 739static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
 740
 741static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
 742{
 743	struct trap_per_cpu *tb;
 744	int this_cpu, i, cnt;
 745	unsigned long flags;
 746	u16 *cpu_list;
 747	u64 *mondo;
 748
 749	/* We have to do this whole thing with interrupts fully disabled.
 750	 * Otherwise if we send an xcall from interrupt context it will
 751	 * corrupt both our mondo block and cpu list state.
 752	 *
 753	 * One consequence of this is that we cannot use timeout mechanisms
 754	 * that depend upon interrupts being delivered locally.  So, for
 755	 * example, we cannot sample jiffies and expect it to advance.
 756	 *
 757	 * Fortunately, udelay() uses %stick/%tick so we can use that.
 758	 */
 759	local_irq_save(flags);
 760
 761	this_cpu = smp_processor_id();
 762	tb = &trap_block[this_cpu];
 763
 764	mondo = __va(tb->cpu_mondo_block_pa);
 765	mondo[0] = data0;
 766	mondo[1] = data1;
 767	mondo[2] = data2;
 768	wmb();
 769
 770	cpu_list = __va(tb->cpu_list_pa);
 771
 772	/* Setup the initial cpu list.  */
 773	cnt = 0;
 774	for_each_cpu(i, mask) {
 775		if (i == this_cpu || !cpu_online(i))
 776			continue;
 777		cpu_list[cnt++] = i;
 778	}
 779
 780	if (cnt)
 781		xcall_deliver_impl(tb, cnt);
 782
 783	local_irq_restore(flags);
 784}
 785
 786/* Send cross call to all processors mentioned in MASK_P
 787 * except self.  Really, there are only two cases currently,
 788 * "cpu_online_mask" and "mm_cpumask(mm)".
 789 */
 790static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
 791{
 792	u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
 793
 794	xcall_deliver(data0, data1, data2, mask);
 795}
 796
 797/* Send cross call to all processors except self. */
 798static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
 799{
 800	smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
 801}
 802
 803extern unsigned long xcall_sync_tick;
 804
 805static void smp_start_sync_tick_client(int cpu)
 806{
 807	xcall_deliver((u64) &xcall_sync_tick, 0, 0,
 808		      cpumask_of(cpu));
 809}
 810
 811extern unsigned long xcall_call_function;
 812
 813void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 814{
 815	xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
 816}
 817
 818extern unsigned long xcall_call_function_single;
 819
 820void arch_send_call_function_single_ipi(int cpu)
 821{
 822	xcall_deliver((u64) &xcall_call_function_single, 0, 0,
 823		      cpumask_of(cpu));
 824}
 825
 826void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
 827{
 828	clear_softint(1 << irq);
 
 829	generic_smp_call_function_interrupt();
 
 830}
 831
 832void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
 833{
 834	clear_softint(1 << irq);
 
 835	generic_smp_call_function_single_interrupt();
 
 836}
 837
 838static void tsb_sync(void *info)
 839{
 840	struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
 841	struct mm_struct *mm = info;
 842
 843	/* It is not valid to test "currrent->active_mm == mm" here.
 844	 *
 845	 * The value of "current" is not changed atomically with
 846	 * switch_mm().  But that's OK, we just need to check the
 847	 * current cpu's trap block PGD physical address.
 848	 */
 849	if (tp->pgd_paddr == __pa(mm->pgd))
 850		tsb_context_switch(mm);
 851}
 852
 853void smp_tsb_sync(struct mm_struct *mm)
 854{
 855	smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
 856}
 857
 858extern unsigned long xcall_flush_tlb_mm;
 859extern unsigned long xcall_flush_tlb_pending;
 860extern unsigned long xcall_flush_tlb_kernel_range;
 861extern unsigned long xcall_fetch_glob_regs;
 
 
 862extern unsigned long xcall_receive_signal;
 863extern unsigned long xcall_new_mmu_context_version;
 864#ifdef CONFIG_KGDB
 865extern unsigned long xcall_kgdb_capture;
 866#endif
 867
 868#ifdef DCACHE_ALIASING_POSSIBLE
 869extern unsigned long xcall_flush_dcache_page_cheetah;
 870#endif
 871extern unsigned long xcall_flush_dcache_page_spitfire;
 872
 873#ifdef CONFIG_DEBUG_DCFLUSH
 874extern atomic_t dcpage_flushes;
 875extern atomic_t dcpage_flushes_xcall;
 876#endif
 877
 878static inline void __local_flush_dcache_page(struct page *page)
 879{
 880#ifdef DCACHE_ALIASING_POSSIBLE
 881	__flush_dcache_page(page_address(page),
 882			    ((tlb_type == spitfire) &&
 883			     page_mapping(page) != NULL));
 884#else
 885	if (page_mapping(page) != NULL &&
 886	    tlb_type == spitfire)
 887		__flush_icache_page(__pa(page_address(page)));
 888#endif
 889}
 890
 891void smp_flush_dcache_page_impl(struct page *page, int cpu)
 892{
 893	int this_cpu;
 894
 895	if (tlb_type == hypervisor)
 896		return;
 897
 898#ifdef CONFIG_DEBUG_DCFLUSH
 899	atomic_inc(&dcpage_flushes);
 900#endif
 901
 902	this_cpu = get_cpu();
 903
 904	if (cpu == this_cpu) {
 905		__local_flush_dcache_page(page);
 906	} else if (cpu_online(cpu)) {
 907		void *pg_addr = page_address(page);
 908		u64 data0 = 0;
 909
 910		if (tlb_type == spitfire) {
 911			data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 912			if (page_mapping(page) != NULL)
 913				data0 |= ((u64)1 << 32);
 914		} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 915#ifdef DCACHE_ALIASING_POSSIBLE
 916			data0 =	((u64)&xcall_flush_dcache_page_cheetah);
 917#endif
 918		}
 919		if (data0) {
 920			xcall_deliver(data0, __pa(pg_addr),
 921				      (u64) pg_addr, cpumask_of(cpu));
 922#ifdef CONFIG_DEBUG_DCFLUSH
 923			atomic_inc(&dcpage_flushes_xcall);
 924#endif
 925		}
 926	}
 927
 928	put_cpu();
 929}
 930
 931void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
 932{
 933	void *pg_addr;
 934	u64 data0;
 935
 936	if (tlb_type == hypervisor)
 937		return;
 938
 939	preempt_disable();
 940
 941#ifdef CONFIG_DEBUG_DCFLUSH
 942	atomic_inc(&dcpage_flushes);
 943#endif
 944	data0 = 0;
 945	pg_addr = page_address(page);
 946	if (tlb_type == spitfire) {
 947		data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 948		if (page_mapping(page) != NULL)
 949			data0 |= ((u64)1 << 32);
 950	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 951#ifdef DCACHE_ALIASING_POSSIBLE
 952		data0 = ((u64)&xcall_flush_dcache_page_cheetah);
 953#endif
 954	}
 955	if (data0) {
 956		xcall_deliver(data0, __pa(pg_addr),
 957			      (u64) pg_addr, cpu_online_mask);
 958#ifdef CONFIG_DEBUG_DCFLUSH
 959		atomic_inc(&dcpage_flushes_xcall);
 960#endif
 961	}
 962	__local_flush_dcache_page(page);
 963
 964	preempt_enable();
 965}
 966
 967void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
 968{
 969	struct mm_struct *mm;
 970	unsigned long flags;
 971
 972	clear_softint(1 << irq);
 973
 974	/* See if we need to allocate a new TLB context because
 975	 * the version of the one we are using is now out of date.
 976	 */
 977	mm = current->active_mm;
 978	if (unlikely(!mm || (mm == &init_mm)))
 979		return;
 980
 981	spin_lock_irqsave(&mm->context.lock, flags);
 982
 983	if (unlikely(!CTX_VALID(mm->context)))
 984		get_new_mmu_context(mm);
 985
 986	spin_unlock_irqrestore(&mm->context.lock, flags);
 987
 988	load_secondary_context(mm);
 989	__flush_tlb_mm(CTX_HWBITS(mm->context),
 990		       SECONDARY_CONTEXT);
 991}
 992
 993void smp_new_mmu_context_version(void)
 994{
 995	smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
 996}
 997
 998#ifdef CONFIG_KGDB
 999void kgdb_roundup_cpus(unsigned long flags)
1000{
1001	smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1002}
1003#endif
1004
1005void smp_fetch_global_regs(void)
1006{
1007	smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1008}
1009
 
 
 
 
 
 
 
 
 
1010/* We know that the window frames of the user have been flushed
1011 * to the stack before we get here because all callers of us
1012 * are flush_tlb_*() routines, and these run after flush_cache_*()
1013 * which performs the flushw.
1014 *
1015 * The SMP TLB coherency scheme we use works as follows:
1016 *
1017 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1018 *    space has (potentially) executed on, this is the heuristic
1019 *    we use to avoid doing cross calls.
1020 *
1021 *    Also, for flushing from kswapd and also for clones, we
1022 *    use cpu_vm_mask as the list of cpus to make run the TLB.
1023 *
1024 * 2) TLB context numbers are shared globally across all processors
1025 *    in the system, this allows us to play several games to avoid
1026 *    cross calls.
1027 *
1028 *    One invariant is that when a cpu switches to a process, and
1029 *    that processes tsk->active_mm->cpu_vm_mask does not have the
1030 *    current cpu's bit set, that tlb context is flushed locally.
1031 *
1032 *    If the address space is non-shared (ie. mm->count == 1) we avoid
1033 *    cross calls when we want to flush the currently running process's
1034 *    tlb state.  This is done by clearing all cpu bits except the current
1035 *    processor's in current->mm->cpu_vm_mask and performing the
1036 *    flush locally only.  This will force any subsequent cpus which run
1037 *    this task to flush the context from the local tlb if the process
1038 *    migrates to another cpu (again).
1039 *
1040 * 3) For shared address spaces (threads) and swapping we bite the
1041 *    bullet for most cases and perform the cross call (but only to
1042 *    the cpus listed in cpu_vm_mask).
1043 *
1044 *    The performance gain from "optimizing" away the cross call for threads is
1045 *    questionable (in theory the big win for threads is the massive sharing of
1046 *    address space state across processors).
1047 */
1048
1049/* This currently is only used by the hugetlb arch pre-fault
1050 * hook on UltraSPARC-III+ and later when changing the pagesize
1051 * bits of the context register for an address space.
1052 */
1053void smp_flush_tlb_mm(struct mm_struct *mm)
1054{
1055	u32 ctx = CTX_HWBITS(mm->context);
1056	int cpu = get_cpu();
1057
1058	if (atomic_read(&mm->mm_users) == 1) {
1059		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1060		goto local_flush_and_out;
1061	}
1062
1063	smp_cross_call_masked(&xcall_flush_tlb_mm,
1064			      ctx, 0, 0,
1065			      mm_cpumask(mm));
1066
1067local_flush_and_out:
1068	__flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1069
1070	put_cpu();
1071}
1072
 
 
 
 
 
 
 
 
 
 
 
 
 
1073void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1074{
1075	u32 ctx = CTX_HWBITS(mm->context);
 
1076	int cpu = get_cpu();
1077
 
 
 
 
1078	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1079		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1080	else
1081		smp_cross_call_masked(&xcall_flush_tlb_pending,
1082				      ctx, nr, (unsigned long) vaddrs,
1083				      mm_cpumask(mm));
1084
1085	__flush_tlb_pending(ctx, nr, vaddrs);
1086
1087	put_cpu();
1088}
1089
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1090void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1091{
1092	start &= PAGE_MASK;
1093	end    = PAGE_ALIGN(end);
1094	if (start != end) {
1095		smp_cross_call(&xcall_flush_tlb_kernel_range,
1096			       0, start, end);
1097
1098		__flush_tlb_kernel_range(start, end);
1099	}
1100}
1101
1102/* CPU capture. */
1103/* #define CAPTURE_DEBUG */
1104extern unsigned long xcall_capture;
1105
1106static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1107static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1108static unsigned long penguins_are_doing_time;
1109
1110void smp_capture(void)
1111{
1112	int result = atomic_add_ret(1, &smp_capture_depth);
1113
1114	if (result == 1) {
1115		int ncpus = num_online_cpus();
1116
1117#ifdef CAPTURE_DEBUG
1118		printk("CPU[%d]: Sending penguins to jail...",
1119		       smp_processor_id());
1120#endif
1121		penguins_are_doing_time = 1;
1122		atomic_inc(&smp_capture_registry);
1123		smp_cross_call(&xcall_capture, 0, 0, 0);
1124		while (atomic_read(&smp_capture_registry) != ncpus)
1125			rmb();
1126#ifdef CAPTURE_DEBUG
1127		printk("done\n");
1128#endif
1129	}
1130}
1131
1132void smp_release(void)
1133{
1134	if (atomic_dec_and_test(&smp_capture_depth)) {
1135#ifdef CAPTURE_DEBUG
1136		printk("CPU[%d]: Giving pardon to "
1137		       "imprisoned penguins\n",
1138		       smp_processor_id());
1139#endif
1140		penguins_are_doing_time = 0;
1141		membar_safe("#StoreLoad");
1142		atomic_dec(&smp_capture_registry);
1143	}
1144}
1145
1146/* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1147 * set, so they can service tlb flush xcalls...
1148 */
1149extern void prom_world(int);
1150
1151void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1152{
1153	clear_softint(1 << irq);
1154
1155	preempt_disable();
1156
1157	__asm__ __volatile__("flushw");
1158	prom_world(1);
1159	atomic_inc(&smp_capture_registry);
1160	membar_safe("#StoreLoad");
1161	while (penguins_are_doing_time)
1162		rmb();
1163	atomic_dec(&smp_capture_registry);
1164	prom_world(0);
1165
1166	preempt_enable();
1167}
1168
1169/* /proc/profile writes can call this, don't __init it please. */
1170int setup_profiling_timer(unsigned int multiplier)
1171{
1172	return -EINVAL;
1173}
1174
1175void __init smp_prepare_cpus(unsigned int max_cpus)
1176{
1177}
1178
1179void __devinit smp_prepare_boot_cpu(void)
1180{
1181}
1182
1183void __init smp_setup_processor_id(void)
1184{
1185	if (tlb_type == spitfire)
1186		xcall_deliver_impl = spitfire_xcall_deliver;
1187	else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1188		xcall_deliver_impl = cheetah_xcall_deliver;
1189	else
1190		xcall_deliver_impl = hypervisor_xcall_deliver;
1191}
1192
1193void __devinit smp_fill_in_sib_core_maps(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1194{
1195	unsigned int i;
1196
1197	for_each_present_cpu(i) {
1198		unsigned int j;
1199
1200		cpumask_clear(&cpu_core_map[i]);
1201		if (cpu_data(i).core_id == 0) {
1202			cpumask_set_cpu(i, &cpu_core_map[i]);
1203			continue;
1204		}
1205
1206		for_each_present_cpu(j) {
1207			if (cpu_data(i).core_id ==
1208			    cpu_data(j).core_id)
1209				cpumask_set_cpu(j, &cpu_core_map[i]);
1210		}
1211	}
1212
 
 
 
 
 
 
 
 
 
 
 
 
 
1213	for_each_present_cpu(i) {
1214		unsigned int j;
1215
1216		cpumask_clear(&per_cpu(cpu_sibling_map, i));
1217		if (cpu_data(i).proc_id == -1) {
1218			cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1219			continue;
1220		}
1221
1222		for_each_present_cpu(j) {
1223			if (cpu_data(i).proc_id ==
1224			    cpu_data(j).proc_id)
1225				cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1226		}
1227	}
1228}
1229
1230int __cpuinit __cpu_up(unsigned int cpu)
1231{
1232	int ret = smp_boot_one_cpu(cpu);
1233
1234	if (!ret) {
1235		cpumask_set_cpu(cpu, &smp_commenced_mask);
1236		while (!cpu_online(cpu))
1237			mb();
1238		if (!cpu_online(cpu)) {
1239			ret = -ENODEV;
1240		} else {
1241			/* On SUN4V, writes to %tick and %stick are
1242			 * not allowed.
1243			 */
1244			if (tlb_type != hypervisor)
1245				smp_synchronize_one_tick(cpu);
1246		}
1247	}
1248	return ret;
1249}
1250
1251#ifdef CONFIG_HOTPLUG_CPU
1252void cpu_play_dead(void)
1253{
1254	int cpu = smp_processor_id();
1255	unsigned long pstate;
1256
1257	idle_task_exit();
1258
1259	if (tlb_type == hypervisor) {
1260		struct trap_per_cpu *tb = &trap_block[cpu];
1261
1262		sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1263				tb->cpu_mondo_pa, 0);
1264		sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1265				tb->dev_mondo_pa, 0);
1266		sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1267				tb->resum_mondo_pa, 0);
1268		sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1269				tb->nonresum_mondo_pa, 0);
1270	}
1271
1272	cpumask_clear_cpu(cpu, &smp_commenced_mask);
1273	membar_safe("#Sync");
1274
1275	local_irq_disable();
1276
1277	__asm__ __volatile__(
1278		"rdpr	%%pstate, %0\n\t"
1279		"wrpr	%0, %1, %%pstate"
1280		: "=r" (pstate)
1281		: "i" (PSTATE_IE));
1282
1283	while (1)
1284		barrier();
1285}
1286
1287int __cpu_disable(void)
1288{
1289	int cpu = smp_processor_id();
1290	cpuinfo_sparc *c;
1291	int i;
1292
1293	for_each_cpu(i, &cpu_core_map[cpu])
1294		cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1295	cpumask_clear(&cpu_core_map[cpu]);
1296
1297	for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1298		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1299	cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1300
1301	c = &cpu_data(cpu);
1302
1303	c->core_id = 0;
1304	c->proc_id = -1;
1305
1306	smp_wmb();
1307
1308	/* Make sure no interrupts point to this cpu.  */
1309	fixup_irqs();
1310
1311	local_irq_enable();
1312	mdelay(1);
1313	local_irq_disable();
1314
1315	ipi_call_lock();
1316	set_cpu_online(cpu, false);
1317	ipi_call_unlock();
1318
1319	cpu_map_rebuild();
1320
1321	return 0;
1322}
1323
1324void __cpu_die(unsigned int cpu)
1325{
1326	int i;
1327
1328	for (i = 0; i < 100; i++) {
1329		smp_rmb();
1330		if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1331			break;
1332		msleep(100);
1333	}
1334	if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1335		printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1336	} else {
1337#if defined(CONFIG_SUN_LDOMS)
1338		unsigned long hv_err;
1339		int limit = 100;
1340
1341		do {
1342			hv_err = sun4v_cpu_stop(cpu);
1343			if (hv_err == HV_EOK) {
1344				set_cpu_present(cpu, false);
1345				break;
1346			}
1347		} while (--limit > 0);
1348		if (limit <= 0) {
1349			printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1350			       hv_err);
1351		}
1352#endif
1353	}
1354}
1355#endif
1356
1357void __init smp_cpus_done(unsigned int max_cpus)
1358{
1359	pcr_arch_init();
1360}
1361
1362void smp_send_reschedule(int cpu)
1363{
1364	xcall_deliver((u64) &xcall_receive_signal, 0, 0,
1365		      cpumask_of(cpu));
 
 
 
 
 
1366}
1367
1368void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1369{
1370	clear_softint(1 << irq);
1371	scheduler_ipi();
1372}
1373
1374/* This is a nop because we capture all other cpus
1375 * anyways when making the PROM active.
1376 */
 
 
1377void smp_send_stop(void)
1378{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1379}
1380
1381/**
1382 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1383 * @cpu: cpu to allocate for
1384 * @size: size allocation in bytes
1385 * @align: alignment
1386 *
1387 * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1388 * does the right thing for NUMA regardless of the current
1389 * configuration.
1390 *
1391 * RETURNS:
1392 * Pointer to the allocated area on success, NULL on failure.
1393 */
1394static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1395					size_t align)
1396{
1397	const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1398#ifdef CONFIG_NEED_MULTIPLE_NODES
1399	int node = cpu_to_node(cpu);
1400	void *ptr;
1401
1402	if (!node_online(node) || !NODE_DATA(node)) {
1403		ptr = __alloc_bootmem(size, align, goal);
1404		pr_info("cpu %d has no node %d or node-local memory\n",
1405			cpu, node);
1406		pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1407			 cpu, size, __pa(ptr));
1408	} else {
1409		ptr = __alloc_bootmem_node(NODE_DATA(node),
1410					   size, align, goal);
1411		pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1412			 "%016lx\n", cpu, size, node, __pa(ptr));
1413	}
1414	return ptr;
1415#else
1416	return __alloc_bootmem(size, align, goal);
1417#endif
1418}
1419
1420static void __init pcpu_free_bootmem(void *ptr, size_t size)
1421{
1422	free_bootmem(__pa(ptr), size);
1423}
1424
1425static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1426{
1427	if (cpu_to_node(from) == cpu_to_node(to))
1428		return LOCAL_DISTANCE;
1429	else
1430		return REMOTE_DISTANCE;
1431}
1432
1433static void __init pcpu_populate_pte(unsigned long addr)
1434{
1435	pgd_t *pgd = pgd_offset_k(addr);
1436	pud_t *pud;
1437	pmd_t *pmd;
 
 
 
 
 
 
 
1438
1439	pud = pud_offset(pgd, addr);
1440	if (pud_none(*pud)) {
1441		pmd_t *new;
1442
1443		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1444		pud_populate(&init_mm, pud, new);
1445	}
1446
1447	pmd = pmd_offset(pud, addr);
1448	if (!pmd_present(*pmd)) {
1449		pte_t *new;
1450
1451		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1452		pmd_populate_kernel(&init_mm, pmd, new);
1453	}
1454}
1455
1456void __init setup_per_cpu_areas(void)
1457{
1458	unsigned long delta;
1459	unsigned int cpu;
1460	int rc = -EINVAL;
1461
1462	if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1463		rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1464					    PERCPU_DYNAMIC_RESERVE, 4 << 20,
1465					    pcpu_cpu_distance,
1466					    pcpu_alloc_bootmem,
1467					    pcpu_free_bootmem);
1468		if (rc)
1469			pr_warning("PERCPU: %s allocator failed (%d), "
1470				   "falling back to page size\n",
1471				   pcpu_fc_names[pcpu_chosen_fc], rc);
1472	}
1473	if (rc < 0)
1474		rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1475					   pcpu_alloc_bootmem,
1476					   pcpu_free_bootmem,
1477					   pcpu_populate_pte);
1478	if (rc < 0)
1479		panic("cannot initialize percpu area (err=%d)", rc);
1480
1481	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1482	for_each_possible_cpu(cpu)
1483		__per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1484
1485	/* Setup %g5 for the boot cpu.  */
1486	__local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1487
1488	of_fill_in_cpu_data();
1489	if (tlb_type == hypervisor)
1490		mdesc_fill_in_cpu_data(cpu_all_mask);
1491}