Linux Audio

Check our new training course

Loading...
   1/*******************************************************************************
   2*
   3*      "swarm_cs4297a.c" --  Cirrus Logic-Crystal CS4297a linux audio driver.
   4*
   5*      Copyright (C) 2001  Broadcom Corporation.
   6*      Copyright (C) 2000,2001  Cirrus Logic Corp.  
   7*            -- adapted from drivers by Thomas Sailer, 
   8*            -- but don't bug him; Problems should go to:
   9*            -- tom woller (twoller@crystal.cirrus.com) or
  10*               (audio@crystal.cirrus.com).
  11*            -- adapted from cs4281 PCI driver for cs4297a on
  12*               BCM1250 Synchronous Serial interface
  13*               (Kip Walker, Broadcom Corp.)
  14*      Copyright (C) 2004  Maciej W. Rozycki
  15*      Copyright (C) 2005 Ralf Baechle (ralf@linux-mips.org)
  16*
  17*      This program is free software; you can redistribute it and/or modify
  18*      it under the terms of the GNU General Public License as published by
  19*      the Free Software Foundation; either version 2 of the License, or
  20*      (at your option) any later version.
  21*
  22*      This program is distributed in the hope that it will be useful,
  23*      but WITHOUT ANY WARRANTY; without even the implied warranty of
  24*      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  25*      GNU General Public License for more details.
  26*
  27*      You should have received a copy of the GNU General Public License
  28*      along with this program; if not, write to the Free Software
  29*      Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  30*
  31* Module command line parameters:
  32*   none
  33*
  34*  Supported devices:
  35*  /dev/dsp    standard /dev/dsp device, (mostly) OSS compatible
  36*  /dev/mixer  standard /dev/mixer device, (mostly) OSS compatible
  37*  /dev/midi   simple MIDI UART interface, no ioctl
  38*
  39* Modification History
  40* 08/20/00 trw - silence and no stopping DAC until release
  41* 08/23/00 trw - added CS_DBG statements, fix interrupt hang issue on DAC stop.
  42* 09/18/00 trw - added 16bit only record with conversion 
  43* 09/24/00 trw - added Enhanced Full duplex (separate simultaneous 
  44*                capture/playback rates)
  45* 10/03/00 trw - fixed mmap (fixed GRECORD and the XMMS mmap test plugin  
  46*                libOSSm.so)
  47* 10/11/00 trw - modified for 2.4.0-test9 kernel enhancements (NR_MAP removal)
  48* 11/03/00 trw - fixed interrupt loss/stutter, added debug.
  49* 11/10/00 bkz - added __devinit to cs4297a_hw_init()
  50* 11/10/00 trw - fixed SMP and capture spinlock hang.
  51* 12/04/00 trw - cleaned up CSDEBUG flags and added "defaultorder" moduleparm.
  52* 12/05/00 trw - fixed polling (myth2), and added underrun swptr fix.
  53* 12/08/00 trw - added PM support. 
  54* 12/14/00 trw - added wrapper code, builds under 2.4.0, 2.2.17-20, 2.2.17-8 
  55*		 (RH/Dell base), 2.2.18, 2.2.12.  cleaned up code mods by ident.
  56* 12/19/00 trw - added PM support for 2.2 base (apm_callback). other PM cleanup.
  57* 12/21/00 trw - added fractional "defaultorder" inputs. if >100 then use 
  58*		 defaultorder-100 as power of 2 for the buffer size. example:
  59*		 106 = 2^(106-100) = 2^6 = 64 bytes for the buffer size.
  60*
  61*******************************************************************************/
  62
  63#include <linux/list.h>
  64#include <linux/module.h>
  65#include <linux/string.h>
  66#include <linux/ioport.h>
  67#include <linux/sched.h>
  68#include <linux/delay.h>
  69#include <linux/sound.h>
  70#include <linux/slab.h>
  71#include <linux/soundcard.h>
  72#include <linux/ac97_codec.h>
  73#include <linux/pci.h>
  74#include <linux/bitops.h>
  75#include <linux/interrupt.h>
  76#include <linux/init.h>
  77#include <linux/poll.h>
  78#include <linux/mutex.h>
  79#include <linux/kernel.h>
  80
  81#include <asm/byteorder.h>
  82#include <asm/dma.h>
  83#include <asm/io.h>
  84#include <asm/uaccess.h>
  85
  86#include <asm/sibyte/sb1250_regs.h>
  87#include <asm/sibyte/sb1250_int.h>
  88#include <asm/sibyte/sb1250_dma.h>
  89#include <asm/sibyte/sb1250_scd.h>
  90#include <asm/sibyte/sb1250_syncser.h>
  91#include <asm/sibyte/sb1250_mac.h>
  92#include <asm/sibyte/sb1250.h>
  93
  94struct cs4297a_state;
  95
  96static DEFINE_MUTEX(swarm_cs4297a_mutex);
  97static void stop_dac(struct cs4297a_state *s);
  98static void stop_adc(struct cs4297a_state *s);
  99static void start_dac(struct cs4297a_state *s);
 100static void start_adc(struct cs4297a_state *s);
 101#undef OSS_DOCUMENTED_MIXER_SEMANTICS
 102
 103// --------------------------------------------------------------------- 
 104
 105#define CS4297a_MAGIC           0xf00beef1
 106
 107// buffer order determines the size of the dma buffer for the driver.
 108// under Linux, a smaller buffer allows more responsiveness from many of the 
 109// applications (e.g. games).  A larger buffer allows some of the apps (esound) 
 110// to not underrun the dma buffer as easily.  As default, use 32k (order=3)
 111// rather than 64k as some of the games work more responsively.
 112// log base 2( buff sz = 32k).
 113
 114//
 115// Turn on/off debugging compilation by commenting out "#define CSDEBUG"
 116//
 117#define CSDEBUG 0
 118#if CSDEBUG
 119#define CSDEBUG_INTERFACE 1
 120#else
 121#undef CSDEBUG_INTERFACE
 122#endif
 123//
 124// cs_debugmask areas
 125//
 126#define CS_INIT	 	0x00000001	// initialization and probe functions
 127#define CS_ERROR 	0x00000002	// tmp debugging bit placeholder
 128#define CS_INTERRUPT	0x00000004	// interrupt handler (separate from all other)
 129#define CS_FUNCTION 	0x00000008	// enter/leave functions
 130#define CS_WAVE_WRITE 	0x00000010	// write information for wave
 131#define CS_WAVE_READ 	0x00000020	// read information for wave
 132#define CS_AC97         0x00000040      // AC97 register access
 133#define CS_DESCR        0x00000080      // descriptor management
 134#define CS_OPEN		0x00000400	// all open functions in the driver
 135#define CS_RELEASE	0x00000800	// all release functions in the driver
 136#define CS_PARMS	0x00001000	// functional and operational parameters
 137#define CS_IOCTL	0x00002000	// ioctl (non-mixer)
 138#define CS_TMP		0x10000000	// tmp debug mask bit
 139
 140//
 141// CSDEBUG is usual mode is set to 1, then use the
 142// cs_debuglevel and cs_debugmask to turn on or off debugging.
 143// Debug level of 1 has been defined to be kernel errors and info
 144// that should be printed on any released driver.
 145//
 146#if CSDEBUG
 147#define CS_DBGOUT(mask,level,x) if((cs_debuglevel >= (level)) && ((mask) & cs_debugmask) ) {x;}
 148#else
 149#define CS_DBGOUT(mask,level,x)
 150#endif
 151
 152#if CSDEBUG
 153static unsigned long cs_debuglevel = 4;	// levels range from 1-9
 154static unsigned long cs_debugmask = CS_INIT /*| CS_IOCTL*/;
 155module_param(cs_debuglevel, int, 0);
 156module_param(cs_debugmask, int, 0);
 157#endif
 158#define CS_TRUE 	1
 159#define CS_FALSE 	0
 160
 161#define CS_TYPE_ADC 0
 162#define CS_TYPE_DAC 1
 163
 164#define SER_BASE    (A_SER_BASE_1 + KSEG1)
 165#define SS_CSR(t)   (SER_BASE+t)
 166#define SS_TXTBL(t) (SER_BASE+R_SER_TX_TABLE_BASE+(t*8))
 167#define SS_RXTBL(t) (SER_BASE+R_SER_RX_TABLE_BASE+(t*8))
 168
 169#define FRAME_BYTES            32
 170#define FRAME_SAMPLE_BYTES      4
 171
 172/* Should this be variable? */
 173#define SAMPLE_BUF_SIZE        (16*1024)
 174#define SAMPLE_FRAME_COUNT     (SAMPLE_BUF_SIZE / FRAME_SAMPLE_BYTES)
 175/* The driver can explode/shrink the frames to/from a smaller sample
 176   buffer */
 177#define DMA_BLOAT_FACTOR       1
 178#define DMA_DESCR              (SAMPLE_FRAME_COUNT / DMA_BLOAT_FACTOR)
 179#define DMA_BUF_SIZE           (DMA_DESCR * FRAME_BYTES)
 180
 181/* Use the maxmium count (255 == 5.1 ms between interrupts) */
 182#define DMA_INT_CNT            ((1 << S_DMA_INT_PKTCNT) - 1)
 183
 184/* Figure this out: how many TX DMAs ahead to schedule a reg access */
 185#define REG_LATENCY            150
 186
 187#define FRAME_TX_US             20
 188
 189#define SERDMA_NEXTBUF(d,f) (((d)->f+1) % (d)->ringsz)
 190
 191static const char invalid_magic[] =
 192    KERN_CRIT "cs4297a: invalid magic value\n";
 193
 194#define VALIDATE_STATE(s)                          \
 195({                                                 \
 196        if (!(s) || (s)->magic != CS4297a_MAGIC) { \
 197                printk(invalid_magic);             \
 198                return -ENXIO;                     \
 199        }                                          \
 200})
 201
 202struct list_head cs4297a_devs = { &cs4297a_devs, &cs4297a_devs };
 203
 204typedef struct serdma_descr_s {
 205        u64 descr_a;
 206        u64 descr_b;
 207} serdma_descr_t;
 208
 209typedef unsigned long paddr_t;
 210
 211typedef struct serdma_s {
 212        unsigned         ringsz;
 213        serdma_descr_t  *descrtab;
 214        serdma_descr_t  *descrtab_end;
 215        paddr_t          descrtab_phys;
 216        
 217        serdma_descr_t  *descr_add;
 218        serdma_descr_t  *descr_rem;
 219        
 220        u64  *dma_buf;           // buffer for DMA contents (frames)
 221        paddr_t          dma_buf_phys;
 222        u16  *sample_buf;		// tmp buffer for sample conversions
 223        u16  *sb_swptr;
 224        u16  *sb_hwptr;
 225        u16  *sb_end;
 226
 227        dma_addr_t dmaaddr;
 228//        unsigned buforder;	// Log base 2 of 'dma_buf' size in bytes..
 229        unsigned numfrag;	// # of 'fragments' in the buffer.
 230        unsigned fragshift;	// Log base 2 of fragment size.
 231        unsigned hwptr, swptr;
 232        unsigned total_bytes;	// # bytes process since open.
 233        unsigned blocks;	// last returned blocks value GETOPTR
 234        unsigned wakeup;	// interrupt occurred on block 
 235        int count;
 236        unsigned underrun;	// underrun flag
 237        unsigned error;	// over/underrun 
 238        wait_queue_head_t wait;
 239        wait_queue_head_t reg_wait;
 240        // redundant, but makes calculations easier 
 241        unsigned fragsize;	// 2**fragshift..
 242        unsigned sbufsz;	// 2**buforder.
 243        unsigned fragsamples;
 244        // OSS stuff 
 245        unsigned mapped:1;	// Buffer mapped in cs4297a_mmap()?
 246        unsigned ready:1;	// prog_dmabuf_dac()/adc() successful?
 247        unsigned endcleared:1;
 248        unsigned type:1;	// adc or dac buffer (CS_TYPE_XXX)
 249        unsigned ossfragshift;
 250        int ossmaxfrags;
 251        unsigned subdivision;
 252} serdma_t;
 253
 254struct cs4297a_state {
 255	// magic 
 256	unsigned int magic;
 257
 258	struct list_head list;
 259
 260	// soundcore stuff 
 261	int dev_audio;
 262	int dev_mixer;
 263
 264	// hardware resources 
 265	unsigned int irq;
 266
 267        struct {
 268                unsigned int rx_ovrrn; /* FIFO */
 269                unsigned int rx_overflow; /* staging buffer */
 270                unsigned int tx_underrun;
 271                unsigned int rx_bad;
 272                unsigned int rx_good;
 273        } stats;
 274
 275	// mixer registers 
 276	struct {
 277		unsigned short vol[10];
 278		unsigned int recsrc;
 279		unsigned int modcnt;
 280		unsigned short micpreamp;
 281	} mix;
 282
 283	// wave stuff   
 284	struct properties {
 285		unsigned fmt;
 286		unsigned fmt_original;	// original requested format
 287		unsigned channels;
 288		unsigned rate;
 289	} prop_dac, prop_adc;
 290	unsigned conversion:1;	// conversion from 16 to 8 bit in progress
 291	unsigned ena;
 292	spinlock_t lock;
 293	struct mutex open_mutex;
 294	struct mutex open_sem_adc;
 295	struct mutex open_sem_dac;
 296	fmode_t open_mode;
 297	wait_queue_head_t open_wait;
 298	wait_queue_head_t open_wait_adc;
 299	wait_queue_head_t open_wait_dac;
 300
 301	dma_addr_t dmaaddr_sample_buf;
 302	unsigned buforder_sample_buf;	// Log base 2 of 'dma_buf' size in bytes..
 303
 304        serdma_t dma_dac, dma_adc;
 305
 306        volatile u16 read_value;
 307        volatile u16 read_reg;
 308        volatile u64 reg_request;
 309};
 310
 311#if 1
 312#define prog_codec(a,b)
 313#define dealloc_dmabuf(a,b);
 314#endif
 315
 316static int prog_dmabuf_adc(struct cs4297a_state *s)
 317{
 318	s->dma_adc.ready = 1;
 319	return 0;
 320}
 321
 322
 323static int prog_dmabuf_dac(struct cs4297a_state *s)
 324{
 325	s->dma_dac.ready = 1;
 326	return 0;
 327}
 328
 329static void clear_advance(void *buf, unsigned bsize, unsigned bptr,
 330			  unsigned len, unsigned char c)
 331{
 332	if (bptr + len > bsize) {
 333		unsigned x = bsize - bptr;
 334		memset(((char *) buf) + bptr, c, x);
 335		bptr = 0;
 336		len -= x;
 337	}
 338	CS_DBGOUT(CS_WAVE_WRITE, 4, printk(KERN_INFO
 339		"cs4297a: clear_advance(): memset %d at 0x%.8x for %d size \n",
 340			(unsigned)c, (unsigned)((char *) buf) + bptr, len));
 341	memset(((char *) buf) + bptr, c, len);
 342}
 343
 344#if CSDEBUG
 345
 346// DEBUG ROUTINES
 347
 348#define SOUND_MIXER_CS_GETDBGLEVEL 	_SIOWR('M',120, int)
 349#define SOUND_MIXER_CS_SETDBGLEVEL 	_SIOWR('M',121, int)
 350#define SOUND_MIXER_CS_GETDBGMASK 	_SIOWR('M',122, int)
 351#define SOUND_MIXER_CS_SETDBGMASK 	_SIOWR('M',123, int)
 352
 353static void cs_printioctl(unsigned int x)
 354{
 355	unsigned int i;
 356	unsigned char vidx;
 357	// Index of mixtable1[] member is Device ID 
 358	// and must be <= SOUND_MIXER_NRDEVICES.
 359	// Value of array member is index into s->mix.vol[]
 360	static const unsigned char mixtable1[SOUND_MIXER_NRDEVICES] = {
 361		[SOUND_MIXER_PCM] = 1,	// voice 
 362		[SOUND_MIXER_LINE1] = 2,	// AUX
 363		[SOUND_MIXER_CD] = 3,	// CD 
 364		[SOUND_MIXER_LINE] = 4,	// Line 
 365		[SOUND_MIXER_SYNTH] = 5,	// FM
 366		[SOUND_MIXER_MIC] = 6,	// Mic 
 367		[SOUND_MIXER_SPEAKER] = 7,	// Speaker 
 368		[SOUND_MIXER_RECLEV] = 8,	// Recording level 
 369		[SOUND_MIXER_VOLUME] = 9	// Master Volume 
 370	};
 371
 372	switch (x) {
 373	case SOUND_MIXER_CS_GETDBGMASK:
 374		CS_DBGOUT(CS_IOCTL, 4,
 375			  printk("SOUND_MIXER_CS_GETDBGMASK:\n"));
 376		break;
 377	case SOUND_MIXER_CS_GETDBGLEVEL:
 378		CS_DBGOUT(CS_IOCTL, 4,
 379			  printk("SOUND_MIXER_CS_GETDBGLEVEL:\n"));
 380		break;
 381	case SOUND_MIXER_CS_SETDBGMASK:
 382		CS_DBGOUT(CS_IOCTL, 4,
 383			  printk("SOUND_MIXER_CS_SETDBGMASK:\n"));
 384		break;
 385	case SOUND_MIXER_CS_SETDBGLEVEL:
 386		CS_DBGOUT(CS_IOCTL, 4,
 387			  printk("SOUND_MIXER_CS_SETDBGLEVEL:\n"));
 388		break;
 389	case OSS_GETVERSION:
 390		CS_DBGOUT(CS_IOCTL, 4, printk("OSS_GETVERSION:\n"));
 391		break;
 392	case SNDCTL_DSP_SYNC:
 393		CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SYNC:\n"));
 394		break;
 395	case SNDCTL_DSP_SETDUPLEX:
 396		CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SETDUPLEX:\n"));
 397		break;
 398	case SNDCTL_DSP_GETCAPS:
 399		CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETCAPS:\n"));
 400		break;
 401	case SNDCTL_DSP_RESET:
 402		CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_RESET:\n"));
 403		break;
 404	case SNDCTL_DSP_SPEED:
 405		CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SPEED:\n"));
 406		break;
 407	case SNDCTL_DSP_STEREO:
 408		CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_STEREO:\n"));
 409		break;
 410	case SNDCTL_DSP_CHANNELS:
 411		CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_CHANNELS:\n"));
 412		break;
 413	case SNDCTL_DSP_GETFMTS:
 414		CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETFMTS:\n"));
 415		break;
 416	case SNDCTL_DSP_SETFMT:
 417		CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SETFMT:\n"));
 418		break;
 419	case SNDCTL_DSP_POST:
 420		CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_POST:\n"));
 421		break;
 422	case SNDCTL_DSP_GETTRIGGER:
 423		CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETTRIGGER:\n"));
 424		break;
 425	case SNDCTL_DSP_SETTRIGGER:
 426		CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SETTRIGGER:\n"));
 427		break;
 428	case SNDCTL_DSP_GETOSPACE:
 429		CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETOSPACE:\n"));
 430		break;
 431	case SNDCTL_DSP_GETISPACE:
 432		CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETISPACE:\n"));
 433		break;
 434	case SNDCTL_DSP_NONBLOCK:
 435		CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_NONBLOCK:\n"));
 436		break;
 437	case SNDCTL_DSP_GETODELAY:
 438		CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETODELAY:\n"));
 439		break;
 440	case SNDCTL_DSP_GETIPTR:
 441		CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETIPTR:\n"));
 442		break;
 443	case SNDCTL_DSP_GETOPTR:
 444		CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETOPTR:\n"));
 445		break;
 446	case SNDCTL_DSP_GETBLKSIZE:
 447		CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETBLKSIZE:\n"));
 448		break;
 449	case SNDCTL_DSP_SETFRAGMENT:
 450		CS_DBGOUT(CS_IOCTL, 4,
 451			  printk("SNDCTL_DSP_SETFRAGMENT:\n"));
 452		break;
 453	case SNDCTL_DSP_SUBDIVIDE:
 454		CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SUBDIVIDE:\n"));
 455		break;
 456	case SOUND_PCM_READ_RATE:
 457		CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_PCM_READ_RATE:\n"));
 458		break;
 459	case SOUND_PCM_READ_CHANNELS:
 460		CS_DBGOUT(CS_IOCTL, 4,
 461			  printk("SOUND_PCM_READ_CHANNELS:\n"));
 462		break;
 463	case SOUND_PCM_READ_BITS:
 464		CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_PCM_READ_BITS:\n"));
 465		break;
 466	case SOUND_PCM_WRITE_FILTER:
 467		CS_DBGOUT(CS_IOCTL, 4,
 468			  printk("SOUND_PCM_WRITE_FILTER:\n"));
 469		break;
 470	case SNDCTL_DSP_SETSYNCRO:
 471		CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SETSYNCRO:\n"));
 472		break;
 473	case SOUND_PCM_READ_FILTER:
 474		CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_PCM_READ_FILTER:\n"));
 475		break;
 476	case SOUND_MIXER_PRIVATE1:
 477		CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE1:\n"));
 478		break;
 479	case SOUND_MIXER_PRIVATE2:
 480		CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE2:\n"));
 481		break;
 482	case SOUND_MIXER_PRIVATE3:
 483		CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE3:\n"));
 484		break;
 485	case SOUND_MIXER_PRIVATE4:
 486		CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE4:\n"));
 487		break;
 488	case SOUND_MIXER_PRIVATE5:
 489		CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE5:\n"));
 490		break;
 491	case SOUND_MIXER_INFO:
 492		CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_INFO:\n"));
 493		break;
 494	case SOUND_OLD_MIXER_INFO:
 495		CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_OLD_MIXER_INFO:\n"));
 496		break;
 497
 498	default:
 499		switch (_IOC_NR(x)) {
 500		case SOUND_MIXER_VOLUME:
 501			CS_DBGOUT(CS_IOCTL, 4,
 502				  printk("SOUND_MIXER_VOLUME:\n"));
 503			break;
 504		case SOUND_MIXER_SPEAKER:
 505			CS_DBGOUT(CS_IOCTL, 4,
 506				  printk("SOUND_MIXER_SPEAKER:\n"));
 507			break;
 508		case SOUND_MIXER_RECLEV:
 509			CS_DBGOUT(CS_IOCTL, 4,
 510				  printk("SOUND_MIXER_RECLEV:\n"));
 511			break;
 512		case SOUND_MIXER_MIC:
 513			CS_DBGOUT(CS_IOCTL, 4,
 514				  printk("SOUND_MIXER_MIC:\n"));
 515			break;
 516		case SOUND_MIXER_SYNTH:
 517			CS_DBGOUT(CS_IOCTL, 4,
 518				  printk("SOUND_MIXER_SYNTH:\n"));
 519			break;
 520		case SOUND_MIXER_RECSRC:
 521			CS_DBGOUT(CS_IOCTL, 4,
 522				  printk("SOUND_MIXER_RECSRC:\n"));
 523			break;
 524		case SOUND_MIXER_DEVMASK:
 525			CS_DBGOUT(CS_IOCTL, 4,
 526				  printk("SOUND_MIXER_DEVMASK:\n"));
 527			break;
 528		case SOUND_MIXER_RECMASK:
 529			CS_DBGOUT(CS_IOCTL, 4,
 530				  printk("SOUND_MIXER_RECMASK:\n"));
 531			break;
 532		case SOUND_MIXER_STEREODEVS:
 533			CS_DBGOUT(CS_IOCTL, 4,
 534				  printk("SOUND_MIXER_STEREODEVS:\n"));
 535			break;
 536		case SOUND_MIXER_CAPS:
 537			CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_CAPS:\n"));
 538			break;
 539		default:
 540			i = _IOC_NR(x);
 541			if (i >= SOUND_MIXER_NRDEVICES
 542			    || !(vidx = mixtable1[i])) {
 543				CS_DBGOUT(CS_IOCTL, 4, printk
 544					("UNKNOWN IOCTL: 0x%.8x NR=%d\n",
 545						x, i));
 546			} else {
 547				CS_DBGOUT(CS_IOCTL, 4, printk
 548					("SOUND_MIXER_IOCTL AC9x: 0x%.8x NR=%d\n",
 549						x, i));
 550			}
 551			break;
 552		}
 553	}
 554}
 555#endif
 556
 557
 558static int ser_init(struct cs4297a_state *s)
 559{
 560        int i;
 561
 562        CS_DBGOUT(CS_INIT, 2, 
 563                  printk(KERN_INFO "cs4297a: Setting up serial parameters\n"));
 564
 565        __raw_writeq(M_SYNCSER_CMD_RX_RESET | M_SYNCSER_CMD_TX_RESET, SS_CSR(R_SER_CMD));
 566
 567        __raw_writeq(M_SYNCSER_MSB_FIRST, SS_CSR(R_SER_MODE));
 568        __raw_writeq(32, SS_CSR(R_SER_MINFRM_SZ));
 569        __raw_writeq(32, SS_CSR(R_SER_MAXFRM_SZ));
 570
 571        __raw_writeq(1, SS_CSR(R_SER_TX_RD_THRSH));
 572        __raw_writeq(4, SS_CSR(R_SER_TX_WR_THRSH));
 573        __raw_writeq(8, SS_CSR(R_SER_RX_RD_THRSH));
 574
 575        /* This looks good from experimentation */
 576        __raw_writeq((M_SYNCSER_TXSYNC_INT | V_SYNCSER_TXSYNC_DLY(0) | M_SYNCSER_TXCLK_EXT |
 577               M_SYNCSER_RXSYNC_INT | V_SYNCSER_RXSYNC_DLY(1) | M_SYNCSER_RXCLK_EXT | M_SYNCSER_RXSYNC_EDGE),
 578              SS_CSR(R_SER_LINE_MODE));
 579
 580        /* This looks good from experimentation */
 581        __raw_writeq(V_SYNCSER_SEQ_COUNT(14) | M_SYNCSER_SEQ_ENABLE | M_SYNCSER_SEQ_STROBE,
 582              SS_TXTBL(0));
 583        __raw_writeq(V_SYNCSER_SEQ_COUNT(15) | M_SYNCSER_SEQ_ENABLE | M_SYNCSER_SEQ_BYTE,
 584              SS_TXTBL(1));
 585        __raw_writeq(V_SYNCSER_SEQ_COUNT(13) | M_SYNCSER_SEQ_ENABLE | M_SYNCSER_SEQ_BYTE,
 586              SS_TXTBL(2));
 587        __raw_writeq(V_SYNCSER_SEQ_COUNT( 0) | M_SYNCSER_SEQ_ENABLE |
 588              M_SYNCSER_SEQ_STROBE | M_SYNCSER_SEQ_LAST, SS_TXTBL(3));
 589
 590        __raw_writeq(V_SYNCSER_SEQ_COUNT(14) | M_SYNCSER_SEQ_ENABLE | M_SYNCSER_SEQ_STROBE,
 591              SS_RXTBL(0));
 592        __raw_writeq(V_SYNCSER_SEQ_COUNT(15) | M_SYNCSER_SEQ_ENABLE | M_SYNCSER_SEQ_BYTE,
 593              SS_RXTBL(1));
 594        __raw_writeq(V_SYNCSER_SEQ_COUNT(13) | M_SYNCSER_SEQ_ENABLE | M_SYNCSER_SEQ_BYTE,
 595              SS_RXTBL(2));
 596        __raw_writeq(V_SYNCSER_SEQ_COUNT( 0) | M_SYNCSER_SEQ_ENABLE | M_SYNCSER_SEQ_STROBE |
 597              M_SYNCSER_SEQ_LAST, SS_RXTBL(3));
 598
 599        for (i=4; i<16; i++) {
 600                /* Just in case... */
 601                __raw_writeq(M_SYNCSER_SEQ_LAST, SS_TXTBL(i));
 602                __raw_writeq(M_SYNCSER_SEQ_LAST, SS_RXTBL(i));
 603        }
 604
 605        return 0;
 606}
 607
 608static int init_serdma(serdma_t *dma)
 609{
 610        CS_DBGOUT(CS_INIT, 2,
 611                  printk(KERN_ERR "cs4297a: desc - %d sbufsize - %d dbufsize - %d\n",
 612                         DMA_DESCR, SAMPLE_BUF_SIZE, DMA_BUF_SIZE));
 613
 614        /* Descriptors */
 615        dma->ringsz = DMA_DESCR;
 616        dma->descrtab = kzalloc(dma->ringsz * sizeof(serdma_descr_t), GFP_KERNEL);
 617        if (!dma->descrtab) {
 618                printk(KERN_ERR "cs4297a: kzalloc descrtab failed\n");
 619                return -1;
 620        }
 621        dma->descrtab_end = dma->descrtab + dma->ringsz;
 622	/* XXX bloddy mess, use proper DMA API here ...  */
 623	dma->descrtab_phys = CPHYSADDR((long)dma->descrtab);
 624        dma->descr_add = dma->descr_rem = dma->descrtab;
 625
 626        /* Frame buffer area */
 627        dma->dma_buf = kzalloc(DMA_BUF_SIZE, GFP_KERNEL);
 628        if (!dma->dma_buf) {
 629                printk(KERN_ERR "cs4297a: kzalloc dma_buf failed\n");
 630                kfree(dma->descrtab);
 631                return -1;
 632        }
 633        dma->dma_buf_phys = CPHYSADDR((long)dma->dma_buf);
 634
 635        /* Samples buffer area */
 636        dma->sbufsz = SAMPLE_BUF_SIZE;
 637        dma->sample_buf = kmalloc(dma->sbufsz, GFP_KERNEL);
 638        if (!dma->sample_buf) {
 639                printk(KERN_ERR "cs4297a: kmalloc sample_buf failed\n");
 640                kfree(dma->descrtab);
 641                kfree(dma->dma_buf);
 642                return -1;
 643        }
 644        dma->sb_swptr = dma->sb_hwptr = dma->sample_buf;
 645        dma->sb_end = (u16 *)((void *)dma->sample_buf + dma->sbufsz);
 646        dma->fragsize = dma->sbufsz >> 1;
 647
 648        CS_DBGOUT(CS_INIT, 4, 
 649                  printk(KERN_ERR "cs4297a: descrtab - %08x dma_buf - %x sample_buf - %x\n",
 650                         (int)dma->descrtab, (int)dma->dma_buf, 
 651                         (int)dma->sample_buf));
 652
 653        return 0;
 654}
 655
 656static int dma_init(struct cs4297a_state *s)
 657{
 658        int i;
 659
 660        CS_DBGOUT(CS_INIT, 2, 
 661                  printk(KERN_INFO "cs4297a: Setting up DMA\n"));
 662
 663        if (init_serdma(&s->dma_adc) ||
 664            init_serdma(&s->dma_dac))
 665                return -1;
 666
 667        if (__raw_readq(SS_CSR(R_SER_DMA_DSCR_COUNT_RX))||
 668            __raw_readq(SS_CSR(R_SER_DMA_DSCR_COUNT_TX))) {
 669                panic("DMA state corrupted?!");
 670        }
 671
 672        /* Initialize now - the descr/buffer pairings will never
 673           change... */
 674        for (i=0; i<DMA_DESCR; i++) {
 675                s->dma_dac.descrtab[i].descr_a = M_DMA_SERRX_SOP | V_DMA_DSCRA_A_SIZE(1) | 
 676                        (s->dma_dac.dma_buf_phys + i*FRAME_BYTES);
 677                s->dma_dac.descrtab[i].descr_b = V_DMA_DSCRB_PKT_SIZE(FRAME_BYTES);
 678                s->dma_adc.descrtab[i].descr_a = V_DMA_DSCRA_A_SIZE(1) |
 679                        (s->dma_adc.dma_buf_phys + i*FRAME_BYTES);
 680                s->dma_adc.descrtab[i].descr_b = 0;
 681        }
 682
 683        __raw_writeq((M_DMA_EOP_INT_EN | V_DMA_INT_PKTCNT(DMA_INT_CNT) |
 684               V_DMA_RINGSZ(DMA_DESCR) | M_DMA_TDX_EN),
 685              SS_CSR(R_SER_DMA_CONFIG0_RX));
 686        __raw_writeq(M_DMA_L2CA, SS_CSR(R_SER_DMA_CONFIG1_RX));
 687        __raw_writeq(s->dma_adc.descrtab_phys, SS_CSR(R_SER_DMA_DSCR_BASE_RX));
 688
 689        __raw_writeq(V_DMA_RINGSZ(DMA_DESCR), SS_CSR(R_SER_DMA_CONFIG0_TX));
 690        __raw_writeq(M_DMA_L2CA | M_DMA_NO_DSCR_UPDT, SS_CSR(R_SER_DMA_CONFIG1_TX));
 691        __raw_writeq(s->dma_dac.descrtab_phys, SS_CSR(R_SER_DMA_DSCR_BASE_TX));
 692
 693        /* Prep the receive DMA descriptor ring */
 694        __raw_writeq(DMA_DESCR, SS_CSR(R_SER_DMA_DSCR_COUNT_RX));
 695
 696        __raw_writeq(M_SYNCSER_DMA_RX_EN | M_SYNCSER_DMA_TX_EN, SS_CSR(R_SER_DMA_ENABLE));
 697
 698        __raw_writeq((M_SYNCSER_RX_SYNC_ERR | M_SYNCSER_RX_OVERRUN | M_SYNCSER_RX_EOP_COUNT),
 699              SS_CSR(R_SER_INT_MASK));
 700
 701        /* Enable the rx/tx; let the codec warm up to the sync and
 702           start sending good frames before the receive FIFO is
 703           enabled */
 704        __raw_writeq(M_SYNCSER_CMD_TX_EN, SS_CSR(R_SER_CMD));
 705        udelay(1000);
 706        __raw_writeq(M_SYNCSER_CMD_RX_EN | M_SYNCSER_CMD_TX_EN, SS_CSR(R_SER_CMD));
 707
 708        /* XXXKW is this magic? (the "1" part) */
 709        while ((__raw_readq(SS_CSR(R_SER_STATUS)) & 0xf1) != 1)
 710                ;
 711
 712        CS_DBGOUT(CS_INIT, 4, 
 713                  printk(KERN_INFO "cs4297a: status: %08x\n",
 714                         (unsigned int)(__raw_readq(SS_CSR(R_SER_STATUS)) & 0xffffffff)));
 715
 716        return 0;
 717}
 718
 719static int serdma_reg_access(struct cs4297a_state *s, u64 data)
 720{
 721        serdma_t *d = &s->dma_dac;
 722        u64 *data_p;
 723        unsigned swptr;
 724        unsigned long flags;
 725        serdma_descr_t *descr;
 726
 727        if (s->reg_request) {
 728                printk(KERN_ERR "cs4297a: attempt to issue multiple reg_access\n");
 729                return -1;
 730        }
 731
 732        if (s->ena & FMODE_WRITE) {
 733                /* Since a writer has the DSP open, we have to mux the
 734                   request in */
 735                s->reg_request = data;
 736                interruptible_sleep_on(&s->dma_dac.reg_wait);
 737                /* XXXKW how can I deal with the starvation case where
 738                   the opener isn't writing? */
 739        } else {
 740                /* Be safe when changing ring pointers */
 741		spin_lock_irqsave(&s->lock, flags);
 742                if (d->hwptr != d->swptr) {
 743                        printk(KERN_ERR "cs4297a: reg access found bookkeeping error (hw/sw = %d/%d\n",
 744                               d->hwptr, d->swptr);
 745                        spin_unlock_irqrestore(&s->lock, flags);
 746                        return -1;
 747                }
 748                swptr = d->swptr;
 749                d->hwptr = d->swptr = (d->swptr + 1) % d->ringsz;
 750		spin_unlock_irqrestore(&s->lock, flags);
 751
 752                descr = &d->descrtab[swptr];
 753                data_p = &d->dma_buf[swptr * 4];
 754		*data_p = cpu_to_be64(data);
 755                __raw_writeq(1, SS_CSR(R_SER_DMA_DSCR_COUNT_TX));
 756                CS_DBGOUT(CS_DESCR, 4,
 757                          printk(KERN_INFO "cs4297a: add_tx  %p (%x -> %x)\n",
 758                                 data_p, swptr, d->hwptr));
 759        }
 760
 761        CS_DBGOUT(CS_FUNCTION, 6,
 762                  printk(KERN_INFO "cs4297a: serdma_reg_access()-\n"));
 763        
 764        return 0;
 765}
 766
 767//****************************************************************************
 768// "cs4297a_read_ac97" -- Reads an AC97 register
 769//****************************************************************************
 770static int cs4297a_read_ac97(struct cs4297a_state *s, u32 offset,
 771			    u32 * value)
 772{
 773        CS_DBGOUT(CS_AC97, 1,
 774                  printk(KERN_INFO "cs4297a: read reg %2x\n", offset));
 775        if (serdma_reg_access(s, (0xCLL << 60) | (1LL << 47) | ((u64)(offset & 0x7F) << 40)))
 776                return -1;
 777
 778        interruptible_sleep_on(&s->dma_adc.reg_wait);
 779        *value = s->read_value;
 780        CS_DBGOUT(CS_AC97, 2,
 781                  printk(KERN_INFO "cs4297a: rdr reg %x -> %x\n", s->read_reg, s->read_value));
 782
 783        return 0;
 784}
 785
 786
 787//****************************************************************************
 788// "cs4297a_write_ac97()"-- writes an AC97 register
 789//****************************************************************************
 790static int cs4297a_write_ac97(struct cs4297a_state *s, u32 offset,
 791			     u32 value)
 792{
 793        CS_DBGOUT(CS_AC97, 1,
 794                  printk(KERN_INFO "cs4297a: write reg %2x -> %04x\n", offset, value));
 795        return (serdma_reg_access(s, (0xELL << 60) | ((u64)(offset & 0x7F) << 40) | ((value & 0xffff) << 12)));
 796}
 797
 798static void stop_dac(struct cs4297a_state *s)
 799{
 800	unsigned long flags;
 801
 802	CS_DBGOUT(CS_WAVE_WRITE, 3, printk(KERN_INFO "cs4297a: stop_dac():\n"));
 803	spin_lock_irqsave(&s->lock, flags);
 804	s->ena &= ~FMODE_WRITE;
 805#if 0
 806        /* XXXKW what do I really want here?  My theory for now is
 807           that I just flip the "ena" bit, and the interrupt handler
 808           will stop processing the xmit channel */
 809        __raw_writeq((s->ena & FMODE_READ) ? M_SYNCSER_DMA_RX_EN : 0,
 810              SS_CSR(R_SER_DMA_ENABLE));
 811#endif
 812
 813	spin_unlock_irqrestore(&s->lock, flags);
 814}
 815
 816
 817static void start_dac(struct cs4297a_state *s)
 818{
 819	unsigned long flags;
 820
 821	CS_DBGOUT(CS_FUNCTION, 3, printk(KERN_INFO "cs4297a: start_dac()+\n"));
 822	spin_lock_irqsave(&s->lock, flags);
 823	if (!(s->ena & FMODE_WRITE) && (s->dma_dac.mapped ||
 824					(s->dma_dac.count > 0
 825	    				&& s->dma_dac.ready))) {
 826		s->ena |= FMODE_WRITE;
 827                /* XXXKW what do I really want here?  My theory for
 828                   now is that I just flip the "ena" bit, and the
 829                   interrupt handler will start processing the xmit
 830                   channel */
 831
 832		CS_DBGOUT(CS_WAVE_WRITE | CS_PARMS, 8, printk(KERN_INFO
 833			"cs4297a: start_dac(): start dma\n"));
 834
 835	}
 836	spin_unlock_irqrestore(&s->lock, flags);
 837	CS_DBGOUT(CS_FUNCTION, 3,
 838		  printk(KERN_INFO "cs4297a: start_dac()-\n"));
 839}
 840
 841
 842static void stop_adc(struct cs4297a_state *s)
 843{
 844	unsigned long flags;
 845
 846	CS_DBGOUT(CS_FUNCTION, 3,
 847		  printk(KERN_INFO "cs4297a: stop_adc()+\n"));
 848
 849	spin_lock_irqsave(&s->lock, flags);
 850	s->ena &= ~FMODE_READ;
 851
 852	if (s->conversion == 1) {
 853		s->conversion = 0;
 854		s->prop_adc.fmt = s->prop_adc.fmt_original;
 855	}
 856        /* Nothing to do really, I need to keep the DMA going
 857           XXXKW when do I get here, and is there more I should do? */
 858	spin_unlock_irqrestore(&s->lock, flags);
 859	CS_DBGOUT(CS_FUNCTION, 3,
 860		  printk(KERN_INFO "cs4297a: stop_adc()-\n"));
 861}
 862
 863
 864static void start_adc(struct cs4297a_state *s)
 865{
 866	unsigned long flags;
 867
 868	CS_DBGOUT(CS_FUNCTION, 2,
 869		  printk(KERN_INFO "cs4297a: start_adc()+\n"));
 870
 871	if (!(s->ena & FMODE_READ) &&
 872	    (s->dma_adc.mapped || s->dma_adc.count <=
 873	     (signed) (s->dma_adc.sbufsz - 2 * s->dma_adc.fragsize))
 874	    && s->dma_adc.ready) {
 875		if (s->prop_adc.fmt & AFMT_S8 || s->prop_adc.fmt & AFMT_U8) {
 876			// 
 877			// now only use 16 bit capture, due to truncation issue
 878			// in the chip, noticeable distortion occurs.
 879			// allocate buffer and then convert from 16 bit to 
 880			// 8 bit for the user buffer.
 881			//
 882			s->prop_adc.fmt_original = s->prop_adc.fmt;
 883			if (s->prop_adc.fmt & AFMT_S8) {
 884				s->prop_adc.fmt &= ~AFMT_S8;
 885				s->prop_adc.fmt |= AFMT_S16_LE;
 886			}
 887			if (s->prop_adc.fmt & AFMT_U8) {
 888				s->prop_adc.fmt &= ~AFMT_U8;
 889				s->prop_adc.fmt |= AFMT_U16_LE;
 890			}
 891			//
 892			// prog_dmabuf_adc performs a stop_adc() but that is
 893			// ok since we really haven't started the DMA yet.
 894			//
 895			prog_codec(s, CS_TYPE_ADC);
 896
 897                        prog_dmabuf_adc(s);
 898			s->conversion = 1;
 899		}
 900		spin_lock_irqsave(&s->lock, flags);
 901		s->ena |= FMODE_READ;
 902                /* Nothing to do really, I am probably already
 903                   DMAing...  XXXKW when do I get here, and is there
 904                   more I should do? */
 905		spin_unlock_irqrestore(&s->lock, flags);
 906
 907		CS_DBGOUT(CS_PARMS, 6, printk(KERN_INFO
 908			 "cs4297a: start_adc(): start adc\n"));
 909	}
 910	CS_DBGOUT(CS_FUNCTION, 2,
 911		  printk(KERN_INFO "cs4297a: start_adc()-\n"));
 912
 913}
 914
 915
 916// call with spinlock held! 
 917static void cs4297a_update_ptr(struct cs4297a_state *s, int intflag)
 918{
 919	int good_diff, diff, diff2;
 920        u64 *data_p, data;
 921        u32 *s_ptr;
 922	unsigned hwptr;
 923        u32 status;
 924        serdma_t *d;
 925        serdma_descr_t *descr;
 926
 927	// update ADC pointer 
 928        status = intflag ? __raw_readq(SS_CSR(R_SER_STATUS)) : 0;
 929
 930	if ((s->ena & FMODE_READ) || (status & (M_SYNCSER_RX_EOP_COUNT))) {
 931                d = &s->dma_adc;
 932                hwptr = (unsigned) (((__raw_readq(SS_CSR(R_SER_DMA_CUR_DSCR_ADDR_RX)) & M_DMA_CURDSCR_ADDR) -
 933                                     d->descrtab_phys) / sizeof(serdma_descr_t));
 934
 935                if (s->ena & FMODE_READ) {
 936                        CS_DBGOUT(CS_FUNCTION, 2, 
 937                                  printk(KERN_INFO "cs4297a: upd_rcv sw->hw->hw %x/%x/%x (int-%d)n",
 938                                         d->swptr, d->hwptr, hwptr, intflag));
 939                        /* Number of DMA buffers available for software: */
 940                        diff2 = diff = (d->ringsz + hwptr - d->hwptr) % d->ringsz;
 941                        d->hwptr = hwptr;
 942                        good_diff = 0;
 943                        s_ptr = (u32 *)&(d->dma_buf[d->swptr*4]);
 944                        descr = &d->descrtab[d->swptr];
 945                        while (diff2--) {
 946				u64 data = be64_to_cpu(*(u64 *)s_ptr);
 947                                u64 descr_a;
 948                                u16 left, right;
 949                                descr_a = descr->descr_a;
 950                                descr->descr_a &= ~M_DMA_SERRX_SOP;
 951                                if ((descr_a & M_DMA_DSCRA_A_ADDR) != CPHYSADDR((long)s_ptr)) {
 952                                        printk(KERN_ERR "cs4297a: RX Bad address (read)\n");
 953                                }
 954                                if (((data & 0x9800000000000000) != 0x9800000000000000) ||
 955                                    (!(descr_a & M_DMA_SERRX_SOP)) ||
 956                                    (G_DMA_DSCRB_PKT_SIZE(descr->descr_b) != FRAME_BYTES)) {
 957                                        s->stats.rx_bad++;
 958                                        printk(KERN_DEBUG "cs4297a: RX Bad attributes (read)\n");
 959                                        continue;
 960                                }
 961                                s->stats.rx_good++;
 962                                if ((data >> 61) == 7) {
 963                                        s->read_value = (data >> 12) & 0xffff;
 964                                        s->read_reg = (data >> 40) & 0x7f;
 965                                        wake_up(&d->reg_wait);
 966                                }
 967                                if (d->count && (d->sb_hwptr == d->sb_swptr)) {
 968                                        s->stats.rx_overflow++;
 969                                        printk(KERN_DEBUG "cs4297a: RX overflow\n");
 970                                        continue;
 971                                }
 972                                good_diff++;
 973				left = ((be32_to_cpu(s_ptr[1]) & 0xff) << 8) |
 974				       ((be32_to_cpu(s_ptr[2]) >> 24) & 0xff);
 975				right = (be32_to_cpu(s_ptr[2]) >> 4) & 0xffff;
 976				*d->sb_hwptr++ = cpu_to_be16(left);
 977				*d->sb_hwptr++ = cpu_to_be16(right);
 978                                if (d->sb_hwptr == d->sb_end)
 979                                        d->sb_hwptr = d->sample_buf;
 980                                descr++;
 981                                if (descr == d->descrtab_end) {
 982                                        descr = d->descrtab;
 983                                        s_ptr = (u32 *)s->dma_adc.dma_buf;
 984                                } else {
 985                                        s_ptr += 8;
 986                                }
 987                        }
 988                        d->total_bytes += good_diff * FRAME_SAMPLE_BYTES;
 989                        d->count += good_diff * FRAME_SAMPLE_BYTES;
 990                        if (d->count > d->sbufsz) {
 991                                printk(KERN_ERR "cs4297a: bogus receive overflow!!\n");
 992                        }
 993                        d->swptr = (d->swptr + diff) % d->ringsz;
 994                        __raw_writeq(diff, SS_CSR(R_SER_DMA_DSCR_COUNT_RX));
 995                        if (d->mapped) {
 996                                if (d->count >= (signed) d->fragsize)
 997                                        wake_up(&d->wait);
 998                        } else {
 999                                if (d->count > 0) {
1000                                        CS_DBGOUT(CS_WAVE_READ, 4,
1001                                                  printk(KERN_INFO
1002                                                         "cs4297a: update count -> %d\n", d->count));
1003                                        wake_up(&d->wait);
1004                                }
1005                        }
1006                } else {
1007                        /* Receive is going even if no one is
1008                           listening (for register accesses and to
1009                           avoid FIFO overrun) */
1010                        diff2 = diff = (hwptr + d->ringsz - d->hwptr) % d->ringsz;
1011                        if (!diff) {
1012                                printk(KERN_ERR "cs4297a: RX full or empty?\n");
1013                        }
1014                        
1015                        descr = &d->descrtab[d->swptr];
1016                        data_p = &d->dma_buf[d->swptr*4];
1017
1018                        /* Force this to happen at least once; I got
1019                           here because of an interrupt, so there must
1020                           be a buffer to process. */
1021                        do {
1022				data = be64_to_cpu(*data_p);
1023                                if ((descr->descr_a & M_DMA_DSCRA_A_ADDR) != CPHYSADDR((long)data_p)) {
1024                                        printk(KERN_ERR "cs4297a: RX Bad address %d (%llx %lx)\n", d->swptr,
1025                                               (long long)(descr->descr_a & M_DMA_DSCRA_A_ADDR),
1026                                               (long)CPHYSADDR((long)data_p));
1027                                }
1028                                if (!(data & (1LL << 63)) ||
1029                                    !(descr->descr_a & M_DMA_SERRX_SOP) ||
1030                                    (G_DMA_DSCRB_PKT_SIZE(descr->descr_b) != FRAME_BYTES)) {
1031                                        s->stats.rx_bad++;
1032                                        printk(KERN_DEBUG "cs4297a: RX Bad attributes\n");
1033                                } else {
1034                                        s->stats.rx_good++;
1035                                        if ((data >> 61) == 7) {
1036                                                s->read_value = (data >> 12) & 0xffff;
1037                                                s->read_reg = (data >> 40) & 0x7f;
1038                                                wake_up(&d->reg_wait);
1039                                        }
1040                                }
1041                                descr->descr_a &= ~M_DMA_SERRX_SOP;
1042                                descr++;
1043                                d->swptr++;
1044                                data_p += 4;
1045                                if (descr == d->descrtab_end) {
1046                                        descr = d->descrtab;
1047                                        d->swptr = 0;
1048                                        data_p = d->dma_buf;
1049                                }
1050                                __raw_writeq(1, SS_CSR(R_SER_DMA_DSCR_COUNT_RX));
1051                        } while (--diff);
1052                        d->hwptr = hwptr;
1053
1054                        CS_DBGOUT(CS_DESCR, 6, 
1055                                  printk(KERN_INFO "cs4297a: hw/sw %x/%x\n", d->hwptr, d->swptr));
1056                }
1057
1058		CS_DBGOUT(CS_PARMS, 8, printk(KERN_INFO
1059			"cs4297a: cs4297a_update_ptr(): s=0x%.8x hwptr=%d total_bytes=%d count=%d \n",
1060				(unsigned)s, d->hwptr, 
1061				d->total_bytes, d->count));
1062	}
1063
1064        /* XXXKW worry about s->reg_request -- there is a starvation
1065           case if s->ena has FMODE_WRITE on, but the client isn't
1066           doing writes */
1067
1068	// update DAC pointer 
1069	//
1070	// check for end of buffer, means that we are going to wait for another interrupt
1071	// to allow silence to fill the fifos on the part, to keep pops down to a minimum.
1072	//
1073	if (s->ena & FMODE_WRITE) {
1074                serdma_t *d = &s->dma_dac;
1075                hwptr = (unsigned) (((__raw_readq(SS_CSR(R_SER_DMA_CUR_DSCR_ADDR_TX)) & M_DMA_CURDSCR_ADDR) -
1076                                     d->descrtab_phys) / sizeof(serdma_descr_t));
1077                diff = (d->ringsz + hwptr - d->hwptr) % d->ringsz;
1078                CS_DBGOUT(CS_WAVE_WRITE, 4, printk(KERN_INFO
1079                                                   "cs4297a: cs4297a_update_ptr(): hw/hw/sw %x/%x/%x diff %d count %d\n",
1080                                                   d->hwptr, hwptr, d->swptr, diff, d->count));
1081                d->hwptr = hwptr;
1082                /* XXXKW stereo? conversion? Just assume 2 16-bit samples for now */
1083                d->total_bytes += diff * FRAME_SAMPLE_BYTES;
1084		if (d->mapped) {
1085			d->count += diff * FRAME_SAMPLE_BYTES;
1086			if (d->count >= d->fragsize) {
1087				d->wakeup = 1;
1088				wake_up(&d->wait);
1089				if (d->count > d->sbufsz)
1090					d->count &= d->sbufsz - 1;
1091			}
1092		} else {
1093			d->count -= diff * FRAME_SAMPLE_BYTES;
1094			if (d->count <= 0) {
1095				//
1096				// fill with silence, and do not shut down the DAC.
1097				// Continue to play silence until the _release.
1098				//
1099				CS_DBGOUT(CS_WAVE_WRITE, 6, printk(KERN_INFO
1100					"cs4297a: cs4297a_update_ptr(): memset %d at 0x%.8x for %d size \n",
1101						(unsigned)(s->prop_dac.fmt & 
1102						(AFMT_U8 | AFMT_U16_LE)) ? 0x80 : 0, 
1103						(unsigned)d->dma_buf, 
1104						d->ringsz));
1105				memset(d->dma_buf, 0, d->ringsz * FRAME_BYTES);
1106				if (d->count < 0) {
1107					d->underrun = 1;
1108                                        s->stats.tx_underrun++;
1109					d->count = 0;
1110					CS_DBGOUT(CS_ERROR, 9, printk(KERN_INFO
1111					 "cs4297a: cs4297a_update_ptr(): underrun\n"));
1112				}
1113			} else if (d->count <=
1114				   (signed) d->fragsize
1115				   && !d->endcleared) {
1116                          /* XXXKW what is this for? */
1117				clear_advance(d->dma_buf,
1118					      d->sbufsz,
1119					      d->swptr,
1120					      d->fragsize,
1121					      0);
1122				d->endcleared = 1;
1123			}
1124			if ( (d->count <= (signed) d->sbufsz/2) || intflag)
1125			{
1126                                CS_DBGOUT(CS_WAVE_WRITE, 4,
1127                                          printk(KERN_INFO
1128                                                 "cs4297a: update count -> %d\n", d->count));
1129				wake_up(&d->wait);
1130			}
1131		}
1132		CS_DBGOUT(CS_PARMS, 8, printk(KERN_INFO
1133			"cs4297a: cs4297a_update_ptr(): s=0x%.8x hwptr=%d total_bytes=%d count=%d \n",
1134				(unsigned) s, d->hwptr, 
1135				d->total_bytes, d->count));
1136	}
1137}
1138
1139static int mixer_ioctl(struct cs4297a_state *s, unsigned int cmd,
1140		       unsigned long arg)
1141{
1142	// Index to mixer_src[] is value of AC97 Input Mux Select Reg.
1143	// Value of array member is recording source Device ID Mask.
1144	static const unsigned int mixer_src[8] = {
1145		SOUND_MASK_MIC, SOUND_MASK_CD, 0, SOUND_MASK_LINE1,
1146		SOUND_MASK_LINE, SOUND_MASK_VOLUME, 0, 0
1147	};
1148
1149	// Index of mixtable1[] member is Device ID 
1150	// and must be <= SOUND_MIXER_NRDEVICES.
1151	// Value of array member is index into s->mix.vol[]
1152	static const unsigned char mixtable1[SOUND_MIXER_NRDEVICES] = {
1153		[SOUND_MIXER_PCM] = 1,	// voice 
1154		[SOUND_MIXER_LINE1] = 2,	// AUX
1155		[SOUND_MIXER_CD] = 3,	// CD 
1156		[SOUND_MIXER_LINE] = 4,	// Line 
1157		[SOUND_MIXER_SYNTH] = 5,	// FM
1158		[SOUND_MIXER_MIC] = 6,	// Mic 
1159		[SOUND_MIXER_SPEAKER] = 7,	// Speaker 
1160		[SOUND_MIXER_RECLEV] = 8,	// Recording level 
1161		[SOUND_MIXER_VOLUME] = 9	// Master Volume 
1162	};
1163
1164	static const unsigned mixreg[] = {
1165		AC97_PCMOUT_VOL,
1166		AC97_AUX_VOL,
1167		AC97_CD_VOL,
1168		AC97_LINEIN_VOL
1169	};
1170	unsigned char l, r, rl, rr, vidx;
1171	unsigned char attentbl[11] =
1172	    { 63, 42, 26, 17, 14, 11, 8, 6, 4, 2, 0 };
1173	unsigned temp1;
1174	int i, val;
1175
1176	VALIDATE_STATE(s);
1177	CS_DBGOUT(CS_FUNCTION, 4, printk(KERN_INFO
1178		 "cs4297a: mixer_ioctl(): s=0x%.8x cmd=0x%.8x\n",
1179			 (unsigned) s, cmd));
1180#if CSDEBUG
1181	cs_printioctl(cmd);
1182#endif
1183#if CSDEBUG_INTERFACE
1184
1185	if ((cmd == SOUND_MIXER_CS_GETDBGMASK) ||
1186	    (cmd == SOUND_MIXER_CS_SETDBGMASK) ||
1187	    (cmd == SOUND_MIXER_CS_GETDBGLEVEL) ||
1188	    (cmd == SOUND_MIXER_CS_SETDBGLEVEL))
1189	{
1190		switch (cmd) {
1191
1192		case SOUND_MIXER_CS_GETDBGMASK:
1193			return put_user(cs_debugmask,
1194					(unsigned long *) arg);
1195
1196		case SOUND_MIXER_CS_GETDBGLEVEL:
1197			return put_user(cs_debuglevel,
1198					(unsigned long *) arg);
1199
1200		case SOUND_MIXER_CS_SETDBGMASK:
1201			if (get_user(val, (unsigned long *) arg))
1202				return -EFAULT;
1203			cs_debugmask = val;
1204			return 0;
1205
1206		case SOUND_MIXER_CS_SETDBGLEVEL:
1207			if (get_user(val, (unsigned long *) arg))
1208				return -EFAULT;
1209			cs_debuglevel = val;
1210			return 0;
1211		default:
1212			CS_DBGOUT(CS_ERROR, 1, printk(KERN_INFO
1213				"cs4297a: mixer_ioctl(): ERROR unknown debug cmd\n"));
1214			return 0;
1215		}
1216	}
1217#endif
1218
1219	if (cmd == SOUND_MIXER_PRIVATE1) {
1220                return -EINVAL;
1221	}
1222	if (cmd == SOUND_MIXER_PRIVATE2) {
1223		// enable/disable/query spatializer 
1224		if (get_user(val, (int *) arg))
1225			return -EFAULT;
1226		if (val != -1) {
1227			temp1 = (val & 0x3f) >> 2;
1228			cs4297a_write_ac97(s, AC97_3D_CONTROL, temp1);
1229			cs4297a_read_ac97(s, AC97_GENERAL_PURPOSE,
1230					 &temp1);
1231			cs4297a_write_ac97(s, AC97_GENERAL_PURPOSE,
1232					  temp1 | 0x2000);
1233		}
1234		cs4297a_read_ac97(s, AC97_3D_CONTROL, &temp1);
1235		return put_user((temp1 << 2) | 3, (int *) arg);
1236	}
1237	if (cmd == SOUND_MIXER_INFO) {
1238		mixer_info info;
1239		memset(&info, 0, sizeof(info));
1240		strlcpy(info.id, "CS4297a", sizeof(info.id));
1241		strlcpy(info.name, "Crystal CS4297a", sizeof(info.name));
1242		info.modify_counter = s->mix.modcnt;
1243		if (copy_to_user((void *) arg, &info, sizeof(info)))
1244			return -EFAULT;
1245		return 0;
1246	}
1247	if (cmd == SOUND_OLD_MIXER_INFO) {
1248		_old_mixer_info info;
1249		memset(&info, 0, sizeof(info));
1250		strlcpy(info.id, "CS4297a", sizeof(info.id));
1251		strlcpy(info.name, "Crystal CS4297a", sizeof(info.name));
1252		if (copy_to_user((void *) arg, &info, sizeof(info)))
1253			return -EFAULT;
1254		return 0;
1255	}
1256	if (cmd == OSS_GETVERSION)
1257		return put_user(SOUND_VERSION, (int *) arg);
1258
1259	if (_IOC_TYPE(cmd) != 'M' || _SIOC_SIZE(cmd) != sizeof(int))
1260		return -EINVAL;
1261
1262	// If ioctl has only the SIOC_READ bit(bit 31)
1263	// on, process the only-read commands. 
1264	if (_SIOC_DIR(cmd) == _SIOC_READ) {
1265		switch (_IOC_NR(cmd)) {
1266		case SOUND_MIXER_RECSRC:	// Arg contains a bit for each recording source 
1267			cs4297a_read_ac97(s, AC97_RECORD_SELECT,
1268					 &temp1);
1269			return put_user(mixer_src[temp1 & 7], (int *) arg);
1270
1271		case SOUND_MIXER_DEVMASK:	// Arg contains a bit for each supported device 
1272			return put_user(SOUND_MASK_PCM | SOUND_MASK_LINE |
1273					SOUND_MASK_VOLUME | SOUND_MASK_RECLEV,
1274                                        (int *) arg);
1275
1276		case SOUND_MIXER_RECMASK:	// Arg contains a bit for each supported recording source 
1277			return put_user(SOUND_MASK_LINE | SOUND_MASK_VOLUME,
1278                                        (int *) arg);
1279
1280		case SOUND_MIXER_STEREODEVS:	// Mixer channels supporting stereo 
1281			return put_user(SOUND_MASK_PCM | SOUND_MASK_LINE |
1282					SOUND_MASK_VOLUME | SOUND_MASK_RECLEV,
1283                                        (int *) arg);
1284
1285		case SOUND_MIXER_CAPS:
1286			return put_user(SOUND_CAP_EXCL_INPUT, (int *) arg);
1287
1288		default:
1289			i = _IOC_NR(cmd);
1290			if (i >= SOUND_MIXER_NRDEVICES
1291			    || !(vidx = mixtable1[i]))
1292				return -EINVAL;
1293			return put_user(s->mix.vol[vidx - 1], (int *) arg);
1294		}
1295	}
1296	// If ioctl doesn't have both the SIOC_READ and 
1297	// the SIOC_WRITE bit set, return invalid.
1298	if (_SIOC_DIR(cmd) != (_SIOC_READ | _SIOC_WRITE))
1299		return -EINVAL;
1300
1301	// Increment the count of volume writes.
1302	s->mix.modcnt++;
1303
1304	// Isolate the command; it must be a write.
1305	switch (_IOC_NR(cmd)) {
1306
1307	case SOUND_MIXER_RECSRC:	// Arg contains a bit for each recording source 
1308		if (get_user(val, (int *) arg))
1309			return -EFAULT;
1310		i = hweight32(val);	// i = # bits on in val.
1311		if (i != 1)	// One & only 1 bit must be on.
1312			return 0;
1313		for (i = 0; i < sizeof(mixer_src) / sizeof(int); i++) {
1314			if (val == mixer_src[i]) {
1315				temp1 = (i << 8) | i;
1316				cs4297a_write_ac97(s,
1317						  AC97_RECORD_SELECT,
1318						  temp1);
1319				return 0;
1320			}
1321		}
1322		return 0;
1323
1324	case SOUND_MIXER_VOLUME:
1325		if (get_user(val, (int *) arg))
1326			return -EFAULT;
1327		l = val & 0xff;
1328		if (l > 100)
1329			l = 100;	// Max soundcard.h vol is 100.
1330		if (l < 6) {
1331			rl = 63;
1332			l = 0;
1333		} else
1334			rl = attentbl[(10 * l) / 100];	// Convert 0-100 vol to 63-0 atten.
1335
1336		r = (val >> 8) & 0xff;
1337		if (r > 100)
1338			r = 100;	// Max right volume is 100, too
1339		if (r < 6) {
1340			rr = 63;
1341			r = 0;
1342		} else
1343			rr = attentbl[(10 * r) / 100];	// Convert volume to attenuation.
1344
1345		if ((rl > 60) && (rr > 60))	// If both l & r are 'low',          
1346			temp1 = 0x8000;	//  turn on the mute bit.
1347		else
1348			temp1 = 0;
1349
1350		temp1 |= (rl << 8) | rr;
1351
1352		cs4297a_write_ac97(s, AC97_MASTER_VOL_STEREO, temp1);
1353		cs4297a_write_ac97(s, AC97_PHONE_VOL, temp1);
1354
1355#ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
1356		s->mix.vol[8] = ((unsigned int) r << 8) | l;
1357#else
1358		s->mix.vol[8] = val;
1359#endif
1360		return put_user(s->mix.vol[8], (int *) arg);
1361
1362	case SOUND_MIXER_SPEAKER:
1363		if (get_user(val, (int *) arg))
1364			return -EFAULT;
1365		l = val & 0xff;
1366		if (l > 100)
1367			l = 100;
1368		if (l < 3) {
1369			rl = 0;
1370			l = 0;
1371		} else {
1372			rl = (l * 2 - 5) / 13;	// Convert 0-100 range to 0-15.
1373			l = (rl * 13 + 5) / 2;
1374		}
1375
1376		if (rl < 3) {
1377			temp1 = 0x8000;
1378			rl = 0;
1379		} else
1380			temp1 = 0;
1381		rl = 15 - rl;	// Convert volume to attenuation.
1382		temp1 |= rl << 1;
1383		cs4297a_write_ac97(s, AC97_PCBEEP_VOL, temp1);
1384
1385#ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
1386		s->mix.vol[6] = l << 8;
1387#else
1388		s->mix.vol[6] = val;
1389#endif
1390		return put_user(s->mix.vol[6], (int *) arg);
1391
1392	case SOUND_MIXER_RECLEV:
1393		if (get_user(val, (int *) arg))
1394			return -EFAULT;
1395		l = val & 0xff;
1396		if (l > 100)
1397			l = 100;
1398		r = (val >> 8) & 0xff;
1399		if (r > 100)
1400			r = 100;
1401		rl = (l * 2 - 5) / 13;	// Convert 0-100 scale to 0-15.
1402		rr = (r * 2 - 5) / 13;
1403		if (rl < 3 && rr < 3)
1404			temp1 = 0x8000;
1405		else
1406			temp1 = 0;
1407
1408		temp1 = temp1 | (rl << 8) | rr;
1409		cs4297a_write_ac97(s, AC97_RECORD_GAIN, temp1);
1410
1411#ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
1412		s->mix.vol[7] = ((unsigned int) r << 8) | l;
1413#else
1414		s->mix.vol[7] = val;
1415#endif
1416		return put_user(s->mix.vol[7], (int *) arg);
1417
1418	case SOUND_MIXER_MIC:
1419		if (get_user(val, (int *) arg))
1420			return -EFAULT;
1421		l = val & 0xff;
1422		if (l > 100)
1423			l = 100;
1424		if (l < 1) {
1425			l = 0;
1426			rl = 0;
1427		} else {
1428			rl = ((unsigned) l * 5 - 4) / 16;	// Convert 0-100 range to 0-31.
1429			l = (rl * 16 + 4) / 5;
1430		}
1431		cs4297a_read_ac97(s, AC97_MIC_VOL, &temp1);
1432		temp1 &= 0x40;	// Isolate 20db gain bit.
1433		if (rl < 3) {
1434			temp1 |= 0x8000;
1435			rl = 0;
1436		}
1437		rl = 31 - rl;	// Convert volume to attenuation.
1438		temp1 |= rl;
1439		cs4297a_write_ac97(s, AC97_MIC_VOL, temp1);
1440
1441#ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
1442		s->mix.vol[5] = val << 8;
1443#else
1444		s->mix.vol[5] = val;
1445#endif
1446		return put_user(s->mix.vol[5], (int *) arg);
1447
1448
1449	case SOUND_MIXER_SYNTH:
1450		if (get_user(val, (int *) arg))
1451			return -EFAULT;
1452		l = val & 0xff;
1453		if (l > 100)
1454			l = 100;
1455		if (get_user(val, (int *) arg))
1456			return -EFAULT;
1457		r = (val >> 8) & 0xff;
1458		if (r > 100)
1459			r = 100;
1460		rl = (l * 2 - 11) / 3;	// Convert 0-100 range to 0-63.
1461		rr = (r * 2 - 11) / 3;
1462		if (rl < 3)	// If l is low, turn on
1463			temp1 = 0x0080;	//  the mute bit.
1464		else
1465			temp1 = 0;
1466
1467		rl = 63 - rl;	// Convert vol to attenuation.
1468//		writel(temp1 | rl, s->pBA0 + FMLVC);
1469		if (rr < 3)	//  If rr is low, turn on
1470			temp1 = 0x0080;	//   the mute bit.
1471		else
1472			temp1 = 0;
1473		rr = 63 - rr;	// Convert vol to attenuation.
1474//		writel(temp1 | rr, s->pBA0 + FMRVC);
1475
1476#ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
1477		s->mix.vol[4] = (r << 8) | l;
1478#else
1479		s->mix.vol[4] = val;
1480#endif
1481		return put_user(s->mix.vol[4], (int *) arg);
1482
1483
1484	default:
1485		CS_DBGOUT(CS_IOCTL, 4, printk(KERN_INFO
1486			"cs4297a: mixer_ioctl(): default\n"));
1487
1488		i = _IOC_NR(cmd);
1489		if (i >= SOUND_MIXER_NRDEVICES || !(vidx = mixtable1[i]))
1490			return -EINVAL;
1491		if (get_user(val, (int *) arg))
1492			return -EFAULT;
1493		l = val & 0xff;
1494		if (l > 100)
1495			l = 100;
1496		if (l < 1) {
1497			l = 0;
1498			rl = 31;
1499		} else
1500			rl = (attentbl[(l * 10) / 100]) >> 1;
1501
1502		r = (val >> 8) & 0xff;
1503		if (r > 100)
1504			r = 100;
1505		if (r < 1) {
1506			r = 0;
1507			rr = 31;
1508		} else
1509			rr = (attentbl[(r * 10) / 100]) >> 1;
1510		if ((rl > 30) && (rr > 30))
1511			temp1 = 0x8000;
1512		else
1513			temp1 = 0;
1514		temp1 = temp1 | (rl << 8) | rr;
1515		cs4297a_write_ac97(s, mixreg[vidx - 1], temp1);
1516
1517#ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
1518		s->mix.vol[vidx - 1] = ((unsigned int) r << 8) | l;
1519#else
1520		s->mix.vol[vidx - 1] = val;
1521#endif
1522		return put_user(s->mix.vol[vidx - 1], (int *) arg);
1523	}
1524}
1525
1526
1527// --------------------------------------------------------------------- 
1528
1529static int cs4297a_open_mixdev(struct inode *inode, struct file *file)
1530{
1531	int minor = iminor(inode);
1532	struct cs4297a_state *s=NULL;
1533	struct list_head *entry;
1534
1535	CS_DBGOUT(CS_FUNCTION | CS_OPEN, 4,
1536		  printk(KERN_INFO "cs4297a: cs4297a_open_mixdev()+\n"));
1537
1538	mutex_lock(&swarm_cs4297a_mutex);
1539	list_for_each(entry, &cs4297a_devs)
1540	{
1541		s = list_entry(entry, struct cs4297a_state, list);
1542		if(s->dev_mixer == minor)
1543			break;
1544	}
1545	if (!s)
1546	{
1547		CS_DBGOUT(CS_FUNCTION | CS_OPEN | CS_ERROR, 2,
1548			printk(KERN_INFO "cs4297a: cs4297a_open_mixdev()- -ENODEV\n"));
1549
1550		mutex_unlock(&swarm_cs4297a_mutex);
1551		return -ENODEV;
1552	}
1553	VALIDATE_STATE(s);
1554	file->private_data = s;
1555
1556	CS_DBGOUT(CS_FUNCTION | CS_OPEN, 4,
1557		  printk(KERN_INFO "cs4297a: cs4297a_open_mixdev()- 0\n"));
1558	mutex_unlock(&swarm_cs4297a_mutex);
1559
1560	return nonseekable_open(inode, file);
1561}
1562
1563
1564static int cs4297a_release_mixdev(struct inode *inode, struct file *file)
1565{
1566	struct cs4297a_state *s =
1567	    (struct cs4297a_state *) file->private_data;
1568
1569	VALIDATE_STATE(s);
1570	return 0;
1571}
1572
1573
1574static int cs4297a_ioctl_mixdev(struct file *file,
1575			       unsigned int cmd, unsigned long arg)
1576{
1577	int ret;
1578	mutex_lock(&swarm_cs4297a_mutex);
1579	ret = mixer_ioctl((struct cs4297a_state *) file->private_data, cmd,
1580			   arg);
1581	mutex_unlock(&swarm_cs4297a_mutex);
1582	return ret;
1583}
1584
1585
1586// ******************************************************************************************
1587//   Mixer file operations struct.
1588// ******************************************************************************************
1589static const struct file_operations cs4297a_mixer_fops = {
1590	.owner		= THIS_MODULE,
1591	.llseek		= no_llseek,
1592	.unlocked_ioctl	= cs4297a_ioctl_mixdev,
1593	.open		= cs4297a_open_mixdev,
1594	.release	= cs4297a_release_mixdev,
1595};
1596
1597// --------------------------------------------------------------------- 
1598
1599
1600static int drain_adc(struct cs4297a_state *s, int nonblock)
1601{
1602        /* This routine serves no purpose currently - any samples
1603           sitting in the receive queue will just be processed by the
1604           background consumer.  This would be different if DMA
1605           actually stopped when there were no clients. */
1606	return 0;
1607}
1608
1609static int drain_dac(struct cs4297a_state *s, int nonblock)
1610{
1611	DECLARE_WAITQUEUE(wait, current);
1612	unsigned long flags;
1613        unsigned hwptr;
1614	unsigned tmo;
1615	int count;
1616
1617	if (s->dma_dac.mapped)
1618		return 0;
1619        if (nonblock)
1620                return -EBUSY;
1621	add_wait_queue(&s->dma_dac.wait, &wait);
1622        while ((count = __raw_readq(SS_CSR(R_SER_DMA_DSCR_COUNT_TX))) ||
1623               (s->dma_dac.count > 0)) {
1624                if (!signal_pending(current)) {
1625                        set_current_state(TASK_INTERRUPTIBLE);
1626                        /* XXXKW is this calculation working? */
1627                        tmo = ((count * FRAME_TX_US) * HZ) / 1000000;
1628                        schedule_timeout(tmo + 1);
1629                } else {
1630                        /* XXXKW do I care if there is a signal pending? */
1631                }
1632        }
1633        spin_lock_irqsave(&s->lock, flags);
1634        /* Reset the bookkeeping */
1635        hwptr = (int)(((__raw_readq(SS_CSR(R_SER_DMA_CUR_DSCR_ADDR_TX)) & M_DMA_CURDSCR_ADDR) -
1636                       s->dma_dac.descrtab_phys) / sizeof(serdma_descr_t));
1637        s->dma_dac.hwptr = s->dma_dac.swptr = hwptr;
1638        spin_unlock_irqrestore(&s->lock, flags);
1639	remove_wait_queue(&s->dma_dac.wait, &wait);
1640	current->state = TASK_RUNNING;
1641	return 0;
1642}
1643
1644
1645// --------------------------------------------------------------------- 
1646
1647static ssize_t cs4297a_read(struct file *file, char *buffer, size_t count,
1648			   loff_t * ppos)
1649{
1650	struct cs4297a_state *s =
1651	    (struct cs4297a_state *) file->private_data;
1652	ssize_t ret;
1653	unsigned long flags;
1654	int cnt, count_fr, cnt_by;
1655	unsigned copied = 0;
1656
1657	CS_DBGOUT(CS_FUNCTION | CS_WAVE_READ, 2,
1658		  printk(KERN_INFO "cs4297a: cs4297a_read()+ %d \n", count));
1659
1660	VALIDATE_STATE(s);
1661	if (s->dma_adc.mapped)
1662		return -ENXIO;
1663	if (!s->dma_adc.ready && (ret = prog_dmabuf_adc(s)))
1664		return ret;
1665	if (!access_ok(VERIFY_WRITE, buffer, count))
1666		return -EFAULT;
1667	ret = 0;
1668//
1669// "count" is the amount of bytes to read (from app), is decremented each loop
1670//      by the amount of bytes that have been returned to the user buffer.
1671// "cnt" is the running total of each read from the buffer (changes each loop)
1672// "buffer" points to the app's buffer
1673// "ret" keeps a running total of the amount of bytes that have been copied
1674//      to the user buffer.
1675// "copied" is the total bytes copied into the user buffer for each loop.
1676//
1677	while (count > 0) {
1678		CS_DBGOUT(CS_WAVE_READ, 8, printk(KERN_INFO
1679			"_read() count>0 count=%d .count=%d .swptr=%d .hwptr=%d \n",
1680				count, s->dma_adc.count,
1681				s->dma_adc.swptr, s->dma_adc.hwptr));
1682		spin_lock_irqsave(&s->lock, flags);
1683
1684                /* cnt will be the number of available samples (16-bit
1685                   stereo); it starts out as the maxmimum consequetive
1686                   samples */
1687		cnt = (s->dma_adc.sb_end - s->dma_adc.sb_swptr) / 2;
1688                count_fr = s->dma_adc.count / FRAME_SAMPLE_BYTES;
1689
1690		// dma_adc.count is the current total bytes that have not been read.
1691		// if the amount of unread bytes from the current sw pointer to the
1692		// end of the buffer is greater than the current total bytes that
1693		// have not been read, then set the "cnt" (unread bytes) to the
1694		// amount of unread bytes.  
1695
1696		if (count_fr < cnt)
1697			cnt = count_fr;
1698                cnt_by = cnt * FRAME_SAMPLE_BYTES;
1699		spin_unlock_irqrestore(&s->lock, flags);
1700		//
1701		// if we are converting from 8/16 then we need to copy
1702		// twice the number of 16 bit bytes then 8 bit bytes.
1703		// 
1704		if (s->conversion) {
1705			if (cnt_by > (count * 2)) {
1706				cnt = (count * 2) / FRAME_SAMPLE_BYTES;
1707                                cnt_by = count * 2;
1708                        }
1709		} else {
1710			if (cnt_by > count) {
1711				cnt = count / FRAME_SAMPLE_BYTES;
1712                                cnt_by = count;
1713                        }
1714		}
1715		//
1716		// "cnt" NOW is the smaller of the amount that will be read,
1717		// and the amount that is requested in this read (or partial).
1718		// if there are no bytes in the buffer to read, then start the
1719		// ADC and wait for the interrupt handler to wake us up.
1720		//
1721		if (cnt <= 0) {
1722
1723			// start up the dma engine and then continue back to the top of
1724			// the loop when wake up occurs.
1725			start_adc(s);
1726			if (file->f_flags & O_NONBLOCK)
1727				return ret ? ret : -EAGAIN;
1728			interruptible_sleep_on(&s->dma_adc.wait);
1729			if (signal_pending(current))
1730				return ret ? ret : -ERESTARTSYS;
1731			continue;
1732		}
1733		// there are bytes in the buffer to read.
1734		// copy from the hw buffer over to the user buffer.
1735		// user buffer is designated by "buffer"
1736		// virtual address to copy from is dma_buf+swptr
1737		// the "cnt" is the number of bytes to read.
1738
1739		CS_DBGOUT(CS_WAVE_READ, 2, printk(KERN_INFO
1740			"_read() copy_to cnt=%d count=%d ", cnt_by, count));
1741		CS_DBGOUT(CS_WAVE_READ, 8, printk(KERN_INFO
1742			 " .sbufsz=%d .count=%d buffer=0x%.8x ret=%d\n",
1743				 s->dma_adc.sbufsz, s->dma_adc.count,
1744				 (unsigned) buffer, ret));
1745
1746		if (copy_to_user (buffer, ((void *)s->dma_adc.sb_swptr), cnt_by))
1747			return ret ? ret : -EFAULT;
1748                copied = cnt_by;
1749
1750                /* Return the descriptors */
1751		spin_lock_irqsave(&s->lock, flags);
1752                CS_DBGOUT(CS_FUNCTION, 2, 
1753                          printk(KERN_INFO "cs4297a: upd_rcv sw->hw %x/%x\n", s->dma_adc.swptr, s->dma_adc.hwptr));
1754		s->dma_adc.count -= cnt_by;
1755                s->dma_adc.sb_swptr += cnt * 2;
1756                if (s->dma_adc.sb_swptr == s->dma_adc.sb_end)
1757                        s->dma_adc.sb_swptr = s->dma_adc.sample_buf;
1758		spin_unlock_irqrestore(&s->lock, flags);
1759		count -= copied;
1760		buffer += copied;
1761		ret += copied;
1762		start_adc(s);
1763	}
1764	CS_DBGOUT(CS_FUNCTION | CS_WAVE_READ, 2,
1765		  printk(KERN_INFO "cs4297a: cs4297a_read()- %d\n", ret));
1766	return ret;
1767}
1768
1769
1770static ssize_t cs4297a_write(struct file *file, const char *buffer,
1771			    size_t count, loff_t * ppos)
1772{
1773	struct cs4297a_state *s =
1774	    (struct cs4297a_state *) file->private_data;
1775	ssize_t ret;
1776	unsigned long flags;
1777	unsigned swptr, hwptr;
1778	int cnt;
1779
1780	CS_DBGOUT(CS_FUNCTION | CS_WAVE_WRITE, 2,
1781		  printk(KERN_INFO "cs4297a: cs4297a_write()+ count=%d\n",
1782			 count));
1783	VALIDATE_STATE(s);
1784
1785	if (s->dma_dac.mapped)
1786		return -ENXIO;
1787	if (!s->dma_dac.ready && (ret = prog_dmabuf_dac(s)))
1788		return ret;
1789	if (!access_ok(VERIFY_READ, buffer, count))
1790		return -EFAULT;
1791	ret = 0;
1792	while (count > 0) {
1793                serdma_t *d = &s->dma_dac;
1794                int copy_cnt;
1795                u32 *s_tmpl;
1796                u32 *t_tmpl;
1797                u32 left, right;
1798                int swap = (s->prop_dac.fmt == AFMT_S16_LE) || (s->prop_dac.fmt == AFMT_U16_LE);
1799                
1800                /* XXXXXX this is broken for BLOAT_FACTOR */
1801		spin_lock_irqsave(&s->lock, flags);
1802		if (d->count < 0) {
1803			d->count = 0;
1804			d->swptr = d->hwptr;
1805		}
1806		if (d->underrun) {
1807			d->underrun = 0;
1808                        hwptr = (unsigned) (((__raw_readq(SS_CSR(R_SER_DMA_CUR_DSCR_ADDR_TX)) & M_DMA_CURDSCR_ADDR) -
1809                                             d->descrtab_phys) / sizeof(serdma_descr_t));
1810			d->swptr = d->hwptr = hwptr;
1811		}
1812		swptr = d->swptr;
1813		cnt = d->sbufsz - (swptr * FRAME_SAMPLE_BYTES);
1814                /* Will this write fill up the buffer? */
1815		if (d->count + cnt > d->sbufsz)
1816			cnt = d->sbufsz - d->count;
1817		spin_unlock_irqrestore(&s->lock, flags);
1818		if (cnt > count)
1819			cnt = count;
1820		if (cnt <= 0) {
1821			start_dac(s);
1822			if (file->f_flags & O_NONBLOCK)
1823				return ret ? ret : -EAGAIN;
1824			interruptible_sleep_on(&d->wait);
1825			if (signal_pending(current))
1826				return ret ? ret : -ERESTARTSYS;
1827			continue;
1828		}
1829		if (copy_from_user(d->sample_buf, buffer, cnt))
1830			return ret ? ret : -EFAULT;
1831
1832                copy_cnt = cnt;
1833                s_tmpl = (u32 *)d->sample_buf;
1834                t_tmpl = (u32 *)(d->dma_buf + (swptr * 4));
1835
1836                /* XXXKW assuming 16-bit stereo! */
1837                do {
1838			u32 tmp;
1839
1840			t_tmpl[0] = cpu_to_be32(0x98000000);
1841
1842			tmp = be32_to_cpu(s_tmpl[0]);
1843			left = tmp & 0xffff;
1844			right = tmp >> 16;
1845			if (swap) {
1846				left = swab16(left);
1847				right = swab16(right);
1848			}
1849			t_tmpl[1] = cpu_to_be32(left >> 8);
1850			t_tmpl[2] = cpu_to_be32(((left & 0xff) << 24) |
1851						(right << 4));
1852
1853                        s_tmpl++;
1854                        t_tmpl += 8;
1855                        copy_cnt -= 4;
1856                } while (copy_cnt);
1857
1858                /* Mux in any pending read/write accesses */
1859                if (s->reg_request) {
1860			*(u64 *)(d->dma_buf + (swptr * 4)) |=
1861				cpu_to_be64(s->reg_request);
1862                        s->reg_request = 0;
1863                        wake_up(&s->dma_dac.reg_wait);
1864                }
1865
1866                CS_DBGOUT(CS_WAVE_WRITE, 4,
1867                          printk(KERN_INFO
1868                                 "cs4297a: copy in %d to swptr %x\n", cnt, swptr));
1869
1870		swptr = (swptr + (cnt/FRAME_SAMPLE_BYTES)) % d->ringsz;
1871                __raw_writeq(cnt/FRAME_SAMPLE_BYTES, SS_CSR(R_SER_DMA_DSCR_COUNT_TX));
1872		spin_lock_irqsave(&s->lock, flags);
1873		d->swptr = swptr;
1874		d->count += cnt;
1875		d->endcleared = 0;
1876		spin_unlock_irqrestore(&s->lock, flags);
1877		count -= cnt;
1878		buffer += cnt;
1879		ret += cnt;
1880		start_dac(s);
1881	}
1882	CS_DBGOUT(CS_FUNCTION | CS_WAVE_WRITE, 2,
1883		  printk(KERN_INFO "cs4297a: cs4297a_write()- %d\n", ret));
1884	return ret;
1885}
1886
1887
1888static unsigned int cs4297a_poll(struct file *file,
1889				struct poll_table_struct *wait)
1890{
1891	struct cs4297a_state *s =
1892	    (struct cs4297a_state *) file->private_data;
1893	unsigned long flags;
1894	unsigned int mask = 0;
1895
1896	CS_DBGOUT(CS_FUNCTION | CS_WAVE_WRITE | CS_WAVE_READ, 4,
1897		  printk(KERN_INFO "cs4297a: cs4297a_poll()+\n"));
1898	VALIDATE_STATE(s);
1899	if (file->f_mode & FMODE_WRITE) {
1900		CS_DBGOUT(CS_FUNCTION | CS_WAVE_WRITE | CS_WAVE_READ, 4,
1901			  printk(KERN_INFO
1902				 "cs4297a: cs4297a_poll() wait on FMODE_WRITE\n"));
1903		if(!s->dma_dac.ready && prog_dmabuf_dac(s))
1904			return 0;
1905		poll_wait(file, &s->dma_dac.wait, wait);
1906	}
1907	if (file->f_mode & FMODE_READ) {
1908		CS_DBGOUT(CS_FUNCTION | CS_WAVE_WRITE | CS_WAVE_READ, 4,
1909			  printk(KERN_INFO
1910				 "cs4297a: cs4297a_poll() wait on FMODE_READ\n"));
1911		if(!s->dma_dac.ready && prog_dmabuf_adc(s))
1912			return 0;
1913		poll_wait(file, &s->dma_adc.wait, wait);
1914	}
1915	spin_lock_irqsave(&s->lock, flags);
1916	cs4297a_update_ptr(s,CS_FALSE);
1917	if (file->f_mode & FMODE_WRITE) {
1918		if (s->dma_dac.mapped) {
1919			if (s->dma_dac.count >=
1920			    (signed) s->dma_dac.fragsize) {
1921				if (s->dma_dac.wakeup)
1922					mask |= POLLOUT | POLLWRNORM;
1923				else
1924					mask = 0;
1925				s->dma_dac.wakeup = 0;
1926			}
1927		} else {
1928			if ((signed) (s->dma_dac.sbufsz/2) >= s->dma_dac.count)
1929				mask |= POLLOUT | POLLWRNORM;
1930		}
1931	} else if (file->f_mode & FMODE_READ) {
1932		if (s->dma_adc.mapped) {
1933			if (s->dma_adc.count >= (signed) s->dma_adc.fragsize) 
1934				mask |= POLLIN | POLLRDNORM;
1935		} else {
1936			if (s->dma_adc.count > 0)
1937				mask |= POLLIN | POLLRDNORM;
1938		}
1939	}
1940	spin_unlock_irqrestore(&s->lock, flags);
1941	CS_DBGOUT(CS_FUNCTION | CS_WAVE_WRITE | CS_WAVE_READ, 4,
1942		  printk(KERN_INFO "cs4297a: cs4297a_poll()- 0x%.8x\n",
1943			 mask));
1944	return mask;
1945}
1946
1947
1948static int cs4297a_mmap(struct file *file, struct vm_area_struct *vma)
1949{
1950        /* XXXKW currently no mmap support */
1951        return -EINVAL;
1952	return 0;
1953}
1954
1955
1956static int cs4297a_ioctl(struct file *file,
1957			unsigned int cmd, unsigned long arg)
1958{
1959	struct cs4297a_state *s =
1960	    (struct cs4297a_state *) file->private_data;
1961	unsigned long flags;
1962	audio_buf_info abinfo;
1963	count_info cinfo;
1964	int val, mapped, ret;
1965
1966	CS_DBGOUT(CS_FUNCTION|CS_IOCTL, 4, printk(KERN_INFO
1967		 "cs4297a: cs4297a_ioctl(): file=0x%.8x cmd=0x%.8x\n",
1968			 (unsigned) file, cmd));
1969#if CSDEBUG
1970	cs_printioctl(cmd);
1971#endif
1972	VALIDATE_STATE(s);
1973	mapped = ((file->f_mode & FMODE_WRITE) && s->dma_dac.mapped) ||
1974	    ((file->f_mode & FMODE_READ) && s->dma_adc.mapped);
1975	switch (cmd) {
1976	case OSS_GETVERSION:
1977		CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO
1978			"cs4297a: cs4297a_ioctl(): SOUND_VERSION=0x%.8x\n",
1979				 SOUND_VERSION));
1980		return put_user(SOUND_VERSION, (int *) arg);
1981
1982	case SNDCTL_DSP_SYNC:
1983		CS_DBGOUT(CS_IOCTL, 4, printk(KERN_INFO
1984			 "cs4297a: cs4297a_ioctl(): DSP_SYNC\n"));
1985		if (file->f_mode & FMODE_WRITE)
1986			return drain_dac(s,
1987					 0 /*file->f_flags & O_NONBLOCK */
1988					 );
1989		return 0;
1990
1991	case SNDCTL_DSP_SETDUPLEX:
1992		return 0;
1993
1994	case SNDCTL_DSP_GETCAPS:
1995		return put_user(DSP_CAP_DUPLEX | DSP_CAP_REALTIME |
1996				DSP_CAP_TRIGGER | DSP_CAP_MMAP,
1997				(int *) arg);
1998
1999	case SNDCTL_DSP_RESET:
2000		CS_DBGOUT(CS_IOCTL, 4, printk(KERN_INFO
2001			 "cs4297a: cs4297a_ioctl(): DSP_RESET\n"));
2002		if (file->f_mode & FMODE_WRITE) {
2003			stop_dac(s);
2004			synchronize_irq(s->irq);
2005                        s->dma_dac.count = s->dma_dac.total_bytes =
2006                                s->dma_dac.blocks = s->dma_dac.wakeup = 0;
2007			s->dma_dac.swptr = s->dma_dac.hwptr =
2008                                (int)(((__raw_readq(SS_CSR(R_SER_DMA_CUR_DSCR_ADDR_TX)) & M_DMA_CURDSCR_ADDR) -
2009                                       s->dma_dac.descrtab_phys) / sizeof(serdma_descr_t));
2010		}
2011		if (file->f_mode & FMODE_READ) {
2012			stop_adc(s);
2013			synchronize_irq(s->irq);
2014                        s->dma_adc.count = s->dma_adc.total_bytes =
2015                                s->dma_adc.blocks = s->dma_dac.wakeup = 0;
2016			s->dma_adc.swptr = s->dma_adc.hwptr =
2017                                (int)(((__raw_readq(SS_CSR(R_SER_DMA_CUR_DSCR_ADDR_RX)) & M_DMA_CURDSCR_ADDR) -
2018                                       s->dma_adc.descrtab_phys) / sizeof(serdma_descr_t));
2019		}
2020		return 0;
2021
2022	case SNDCTL_DSP_SPEED:
2023		if (get_user(val, (int *) arg))
2024			return -EFAULT;
2025		CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO
2026			 "cs4297a: cs4297a_ioctl(): DSP_SPEED val=%d -> 48000\n", val));
2027                val = 48000;
2028                return put_user(val, (int *) arg);
2029
2030	case SNDCTL_DSP_STEREO:
2031		if (get_user(val, (int *) arg))
2032			return -EFAULT;
2033		CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO
2034			 "cs4297a: cs4297a_ioctl(): DSP_STEREO val=%d\n", val));
2035		if (file->f_mode & FMODE_READ) {
2036			stop_adc(s);
2037			s->dma_adc.ready = 0;
2038			s->prop_adc.channels = val ? 2 : 1;
2039		}
2040		if (file->f_mode & FMODE_WRITE) {
2041			stop_dac(s);
2042			s->dma_dac.ready = 0;
2043			s->prop_dac.channels = val ? 2 : 1;
2044		}
2045		return 0;
2046
2047	case SNDCTL_DSP_CHANNELS:
2048		if (get_user(val, (int *) arg))
2049			return -EFAULT;
2050		CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO
2051			 "cs4297a: cs4297a_ioctl(): DSP_CHANNELS val=%d\n",
2052				 val));
2053		if (val != 0) {
2054			if (file->f_mode & FMODE_READ) {
2055				stop_adc(s);
2056				s->dma_adc.ready = 0;
2057				if (val >= 2)
2058					s->prop_adc.channels = 2;
2059				else
2060					s->prop_adc.channels = 1;
2061			}
2062			if (file->f_mode & FMODE_WRITE) {
2063				stop_dac(s);
2064				s->dma_dac.ready = 0;
2065				if (val >= 2)
2066					s->prop_dac.channels = 2;
2067				else
2068					s->prop_dac.channels = 1;
2069			}
2070		}
2071
2072		if (file->f_mode & FMODE_WRITE)
2073			val = s->prop_dac.channels;
2074		else if (file->f_mode & FMODE_READ)
2075			val = s->prop_adc.channels;
2076
2077		return put_user(val, (int *) arg);
2078
2079	case SNDCTL_DSP_GETFMTS:	// Returns a mask 
2080		CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO
2081			"cs4297a: cs4297a_ioctl(): DSP_GETFMT val=0x%.8x\n",
2082				 AFMT_S16_LE | AFMT_U16_LE | AFMT_S8 |
2083				 AFMT_U8));
2084		return put_user(AFMT_S16_LE | AFMT_U16_LE | AFMT_S8 |
2085				AFMT_U8, (int *) arg);
2086
2087	case SNDCTL_DSP_SETFMT:
2088		if (get_user(val, (int *) arg))
2089			return -EFAULT;
2090		CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO
2091			 "cs4297a: cs4297a_ioctl(): DSP_SETFMT val=0x%.8x\n",
2092				 val));
2093		if (val != AFMT_QUERY) {
2094			if (file->f_mode & FMODE_READ) {
2095				stop_adc(s);
2096				s->dma_adc.ready = 0;
2097				if (val != AFMT_S16_LE
2098				    && val != AFMT_U16_LE && val != AFMT_S8
2099				    && val != AFMT_U8)
2100					val = AFMT_U8;
2101				s->prop_adc.fmt = val;
2102				s->prop_adc.fmt_original = s->prop_adc.fmt;
2103			}
2104			if (file->f_mode & FMODE_WRITE) {
2105				stop_dac(s);
2106				s->dma_dac.ready = 0;
2107				if (val != AFMT_S16_LE
2108				    && val != AFMT_U16_LE && val != AFMT_S8
2109				    && val != AFMT_U8)
2110					val = AFMT_U8;
2111				s->prop_dac.fmt = val;
2112				s->prop_dac.fmt_original = s->prop_dac.fmt;
2113			}
2114		} else {
2115			if (file->f_mode & FMODE_WRITE)
2116				val = s->prop_dac.fmt_original;
2117			else if (file->f_mode & FMODE_READ)
2118				val = s->prop_adc.fmt_original;
2119		}
2120		CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO
2121		  "cs4297a: cs4297a_ioctl(): DSP_SETFMT return val=0x%.8x\n", 
2122			val));
2123		return put_user(val, (int *) arg);
2124
2125	case SNDCTL_DSP_POST:
2126		CS_DBGOUT(CS_IOCTL, 4, printk(KERN_INFO
2127			 "cs4297a: cs4297a_ioctl(): DSP_POST\n"));
2128		return 0;
2129
2130	case SNDCTL_DSP_GETTRIGGER:
2131		val = 0;
2132		if (file->f_mode & s->ena & FMODE_READ)
2133			val |= PCM_ENABLE_INPUT;
2134		if (file->f_mode & s->ena & FMODE_WRITE)
2135			val |= PCM_ENABLE_OUTPUT;
2136		return put_user(val, (int *) arg);
2137
2138	case SNDCTL_DSP_SETTRIGGER:
2139		if (get_user(val, (int *) arg))
2140			return -EFAULT;
2141		if (file->f_mode & FMODE_READ) {
2142			if (val & PCM_ENABLE_INPUT) {
2143				if (!s->dma_adc.ready
2144				    && (ret = prog_dmabuf_adc(s)))
2145					return ret;
2146				start_adc(s);
2147			} else
2148				stop_adc(s);
2149		}
2150		if (file->f_mode & FMODE_WRITE) {
2151			if (val & PCM_ENABLE_OUTPUT) {
2152				if (!s->dma_dac.ready
2153				    && (ret = prog_dmabuf_dac(s)))
2154					return ret;
2155				start_dac(s);
2156			} else
2157				stop_dac(s);
2158		}
2159		return 0;
2160
2161	case SNDCTL_DSP_GETOSPACE:
2162		if (!(file->f_mode & FMODE_WRITE))
2163			return -EINVAL;
2164		if (!s->dma_dac.ready && (val = prog_dmabuf_dac(s)))
2165			return val;
2166		spin_lock_irqsave(&s->lock, flags);
2167		cs4297a_update_ptr(s,CS_FALSE);
2168		abinfo.fragsize = s->dma_dac.fragsize;
2169		if (s->dma_dac.mapped)
2170			abinfo.bytes = s->dma_dac.sbufsz;
2171		else
2172			abinfo.bytes =
2173			    s->dma_dac.sbufsz - s->dma_dac.count;
2174		abinfo.fragstotal = s->dma_dac.numfrag;
2175		abinfo.fragments = abinfo.bytes >> s->dma_dac.fragshift;
2176		CS_DBGOUT(CS_FUNCTION | CS_PARMS, 4, printk(KERN_INFO
2177			"cs4297a: cs4297a_ioctl(): GETOSPACE .fragsize=%d .bytes=%d .fragstotal=%d .fragments=%d\n",
2178				abinfo.fragsize,abinfo.bytes,abinfo.fragstotal,
2179				abinfo.fragments));
2180		spin_unlock_irqrestore(&s->lock, flags);
2181		return copy_to_user((void *) arg, &abinfo,
2182				    sizeof(abinfo)) ? -EFAULT : 0;
2183
2184	case SNDCTL_DSP_GETISPACE:
2185		if (!(file->f_mode & FMODE_READ))
2186			return -EINVAL;
2187		if (!s->dma_adc.ready && (val = prog_dmabuf_adc(s)))
2188			return val;
2189		spin_lock_irqsave(&s->lock, flags);
2190		cs4297a_update_ptr(s,CS_FALSE);
2191		if (s->conversion) {
2192			abinfo.fragsize = s->dma_adc.fragsize / 2;
2193			abinfo.bytes = s->dma_adc.count / 2;
2194			abinfo.fragstotal = s->dma_adc.numfrag;
2195			abinfo.fragments =
2196			    abinfo.bytes >> (s->dma_adc.fragshift - 1);
2197		} else {
2198			abinfo.fragsize = s->dma_adc.fragsize;
2199			abinfo.bytes = s->dma_adc.count;
2200			abinfo.fragstotal = s->dma_adc.numfrag;
2201			abinfo.fragments =
2202			    abinfo.bytes >> s->dma_adc.fragshift;
2203		}
2204		spin_unlock_irqrestore(&s->lock, flags);
2205		return copy_to_user((void *) arg, &abinfo,
2206				    sizeof(abinfo)) ? -EFAULT : 0;
2207
2208	case SNDCTL_DSP_NONBLOCK:
2209		spin_lock(&file->f_lock);
2210		file->f_flags |= O_NONBLOCK;
2211		spin_unlock(&file->f_lock);
2212		return 0;
2213
2214	case SNDCTL_DSP_GETODELAY:
2215		if (!(file->f_mode & FMODE_WRITE))
2216			return -EINVAL;
2217		if(!s->dma_dac.ready && prog_dmabuf_dac(s))
2218			return 0;
2219		spin_lock_irqsave(&s->lock, flags);
2220		cs4297a_update_ptr(s,CS_FALSE);
2221		val = s->dma_dac.count;
2222		spin_unlock_irqrestore(&s->lock, flags);
2223		return put_user(val, (int *) arg);
2224
2225	case SNDCTL_DSP_GETIPTR:
2226		if (!(file->f_mode & FMODE_READ))
2227			return -EINVAL;
2228		if(!s->dma_adc.ready && prog_dmabuf_adc(s))
2229			return 0;
2230		spin_lock_irqsave(&s->lock, flags);
2231		cs4297a_update_ptr(s,CS_FALSE);
2232		cinfo.bytes = s->dma_adc.total_bytes;
2233		if (s->dma_adc.mapped) {
2234			cinfo.blocks =
2235			    (cinfo.bytes >> s->dma_adc.fragshift) -
2236			    s->dma_adc.blocks;
2237			s->dma_adc.blocks =
2238			    cinfo.bytes >> s->dma_adc.fragshift;
2239		} else {
2240			if (s->conversion) {
2241				cinfo.blocks =
2242				    s->dma_adc.count /
2243				    2 >> (s->dma_adc.fragshift - 1);
2244			} else
2245				cinfo.blocks =
2246				    s->dma_adc.count >> s->dma_adc.
2247				    fragshift;
2248		}
2249		if (s->conversion)
2250			cinfo.ptr = s->dma_adc.hwptr / 2;
2251		else
2252			cinfo.ptr = s->dma_adc.hwptr;
2253		if (s->dma_adc.mapped)
2254			s->dma_adc.count &= s->dma_adc.fragsize - 1;
2255		spin_unlock_irqrestore(&s->lock, flags);
2256		return copy_to_user((void *) arg, &cinfo, sizeof(cinfo)) ? -EFAULT : 0;
2257
2258	case SNDCTL_DSP_GETOPTR:
2259		if (!(file->f_mode & FMODE_WRITE))
2260			return -EINVAL;
2261		if(!s->dma_dac.ready && prog_dmabuf_dac(s))
2262			return 0;
2263		spin_lock_irqsave(&s->lock, flags);
2264		cs4297a_update_ptr(s,CS_FALSE);
2265		cinfo.bytes = s->dma_dac.total_bytes;
2266		if (s->dma_dac.mapped) {
2267			cinfo.blocks =
2268			    (cinfo.bytes >> s->dma_dac.fragshift) -
2269			    s->dma_dac.blocks;
2270			s->dma_dac.blocks =
2271			    cinfo.bytes >> s->dma_dac.fragshift;
2272		} else {
2273			cinfo.blocks =
2274			    s->dma_dac.count >> s->dma_dac.fragshift;
2275		}
2276		cinfo.ptr = s->dma_dac.hwptr;
2277		if (s->dma_dac.mapped)
2278			s->dma_dac.count &= s->dma_dac.fragsize - 1;
2279		spin_unlock_irqrestore(&s->lock, flags);
2280		return copy_to_user((void *) arg, &cinfo, sizeof(cinfo)) ? -EFAULT : 0;
2281
2282	case SNDCTL_DSP_GETBLKSIZE:
2283		if (file->f_mode & FMODE_WRITE) {
2284			if ((val = prog_dmabuf_dac(s)))
2285				return val;
2286			return put_user(s->dma_dac.fragsize, (int *) arg);
2287		}
2288		if ((val = prog_dmabuf_adc(s)))
2289			return val;
2290		if (s->conversion)
2291			return put_user(s->dma_adc.fragsize / 2,
2292					(int *) arg);
2293		else
2294			return put_user(s->dma_adc.fragsize, (int *) arg);
2295
2296	case SNDCTL_DSP_SETFRAGMENT:
2297		if (get_user(val, (int *) arg))
2298			return -EFAULT;
2299		return 0;	// Say OK, but do nothing.
2300
2301	case SNDCTL_DSP_SUBDIVIDE:
2302		if ((file->f_mode & FMODE_READ && s->dma_adc.subdivision)
2303		    || (file->f_mode & FMODE_WRITE
2304			&& s->dma_dac.subdivision)) return -EINVAL;
2305		if (get_user(val, (int *) arg))
2306			return -EFAULT;
2307		if (val != 1 && val != 2 && val != 4)
2308			return -EINVAL;
2309		if (file->f_mode & FMODE_READ)
2310			s->dma_adc.subdivision = val;
2311		else if (file->f_mode & FMODE_WRITE)
2312			s->dma_dac.subdivision = val;
2313		return 0;
2314
2315	case SOUND_PCM_READ_RATE:
2316		if (file->f_mode & FMODE_READ)
2317			return put_user(s->prop_adc.rate, (int *) arg);
2318		else if (file->f_mode & FMODE_WRITE)
2319			return put_user(s->prop_dac.rate, (int *) arg);
2320
2321	case SOUND_PCM_READ_CHANNELS:
2322		if (file->f_mode & FMODE_READ)
2323			return put_user(s->prop_adc.channels, (int *) arg);
2324		else if (file->f_mode & FMODE_WRITE)
2325			return put_user(s->prop_dac.channels, (int *) arg);
2326
2327	case SOUND_PCM_READ_BITS:
2328		if (file->f_mode & FMODE_READ)
2329			return
2330			    put_user(
2331				     (s->prop_adc.
2332				      fmt & (AFMT_S8 | AFMT_U8)) ? 8 : 16,
2333				     (int *) arg);
2334		else if (file->f_mode & FMODE_WRITE)
2335			return
2336			    put_user(
2337				     (s->prop_dac.
2338				      fmt & (AFMT_S8 | AFMT_U8)) ? 8 : 16,
2339				     (int *) arg);
2340
2341	case SOUND_PCM_WRITE_FILTER:
2342	case SNDCTL_DSP_SETSYNCRO:
2343	case SOUND_PCM_READ_FILTER:
2344		return -EINVAL;
2345	}
2346	return mixer_ioctl(s, cmd, arg);
2347}
2348
2349static long cs4297a_unlocked_ioctl(struct file *file, u_int cmd, u_long arg)
2350{
2351	int ret;
2352
2353	mutex_lock(&swarm_cs4297a_mutex);
2354	ret = cs4297a_ioctl(file, cmd, arg);
2355	mutex_unlock(&swarm_cs4297a_mutex);
2356
2357	return ret;
2358}
2359
2360static int cs4297a_release(struct inode *inode, struct file *file)
2361{
2362	struct cs4297a_state *s =
2363	    (struct cs4297a_state *) file->private_data;
2364
2365        CS_DBGOUT(CS_FUNCTION | CS_RELEASE, 2, printk(KERN_INFO
2366		 "cs4297a: cs4297a_release(): inode=0x%.8x file=0x%.8x f_mode=0x%x\n",
2367			 (unsigned) inode, (unsigned) file, file->f_mode));
2368	VALIDATE_STATE(s);
2369
2370	if (file->f_mode & FMODE_WRITE) {
2371		drain_dac(s, file->f_flags & O_NONBLOCK);
2372		mutex_lock(&s->open_sem_dac);
2373		stop_dac(s);
2374		dealloc_dmabuf(s, &s->dma_dac);
2375		s->open_mode &= ~FMODE_WRITE;
2376		mutex_unlock(&s->open_sem_dac);
2377		wake_up(&s->open_wait_dac);
2378	}
2379	if (file->f_mode & FMODE_READ) {
2380		drain_adc(s, file->f_flags & O_NONBLOCK);
2381		mutex_lock(&s->open_sem_adc);
2382		stop_adc(s);
2383		dealloc_dmabuf(s, &s->dma_adc);
2384		s->open_mode &= ~FMODE_READ;
2385		mutex_unlock(&s->open_sem_adc);
2386		wake_up(&s->open_wait_adc);
2387	}
2388	return 0;
2389}
2390
2391static int cs4297a_locked_open(struct inode *inode, struct file *file)
2392{
2393	int minor = iminor(inode);
2394	struct cs4297a_state *s=NULL;
2395	struct list_head *entry;
2396
2397	CS_DBGOUT(CS_FUNCTION | CS_OPEN, 2, printk(KERN_INFO
2398		"cs4297a: cs4297a_open(): inode=0x%.8x file=0x%.8x f_mode=0x%x\n",
2399			(unsigned) inode, (unsigned) file, file->f_mode));
2400	CS_DBGOUT(CS_FUNCTION | CS_OPEN, 2, printk(KERN_INFO
2401                "cs4297a: status = %08x\n", (int)__raw_readq(SS_CSR(R_SER_STATUS_DEBUG))));
2402
2403	list_for_each(entry, &cs4297a_devs)
2404	{
2405		s = list_entry(entry, struct cs4297a_state, list);
2406
2407		if (!((s->dev_audio ^ minor) & ~0xf))
2408			break;
2409	}
2410	if (entry == &cs4297a_devs)
2411		return -ENODEV;
2412	if (!s) {
2413		CS_DBGOUT(CS_FUNCTION | CS_OPEN, 2, printk(KERN_INFO
2414			"cs4297a: cs4297a_open(): Error - unable to find audio state struct\n"));
2415		return -ENODEV;
2416	}
2417	VALIDATE_STATE(s);
2418	file->private_data = s;
2419
2420	// wait for device to become free 
2421	if (!(file->f_mode & (FMODE_WRITE | FMODE_READ))) {
2422		CS_DBGOUT(CS_FUNCTION | CS_OPEN | CS_ERROR, 2, printk(KERN_INFO
2423			 "cs4297a: cs4297a_open(): Error - must open READ and/or WRITE\n"));
2424		return -ENODEV;
2425	}
2426	if (file->f_mode & FMODE_WRITE) {
2427                if (__raw_readq(SS_CSR(R_SER_DMA_DSCR_COUNT_TX)) != 0) {
2428                        printk(KERN_ERR "cs4297a: TX pipe needs to drain\n");
2429                        while (__raw_readq(SS_CSR(R_SER_DMA_DSCR_COUNT_TX)))
2430                                ;
2431                }
2432          
2433		mutex_lock(&s->open_sem_dac);
2434		while (s->open_mode & FMODE_WRITE) {
2435			if (file->f_flags & O_NONBLOCK) {
2436				mutex_unlock(&s->open_sem_dac);
2437				return -EBUSY;
2438			}
2439			mutex_unlock(&s->open_sem_dac);
2440			interruptible_sleep_on(&s->open_wait_dac);
2441
2442			if (signal_pending(current)) {
2443                                printk("open - sig pending\n");
2444				return -ERESTARTSYS;
2445                        }
2446			mutex_lock(&s->open_sem_dac);
2447		}
2448	}
2449	if (file->f_mode & FMODE_READ) {
2450		mutex_lock(&s->open_sem_adc);
2451		while (s->open_mode & FMODE_READ) {
2452			if (file->f_flags & O_NONBLOCK) {
2453				mutex_unlock(&s->open_sem_adc);
2454				return -EBUSY;
2455			}
2456			mutex_unlock(&s->open_sem_adc);
2457			interruptible_sleep_on(&s->open_wait_adc);
2458
2459			if (signal_pending(current)) {
2460                                printk("open - sig pending\n");
2461				return -ERESTARTSYS;
2462                        }
2463			mutex_lock(&s->open_sem_adc);
2464		}
2465	}
2466	s->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE);
2467	if (file->f_mode & FMODE_READ) {
2468		s->prop_adc.fmt = AFMT_S16_BE;
2469		s->prop_adc.fmt_original = s->prop_adc.fmt;
2470		s->prop_adc.channels = 2;
2471		s->prop_adc.rate = 48000;
2472		s->conversion = 0;
2473		s->ena &= ~FMODE_READ;
2474		s->dma_adc.ossfragshift = s->dma_adc.ossmaxfrags =
2475		    s->dma_adc.subdivision = 0;
2476		mutex_unlock(&s->open_sem_adc);
2477
2478		if (prog_dmabuf_adc(s)) {
2479			CS_DBGOUT(CS_OPEN | CS_ERROR, 2, printk(KERN_ERR
2480				"cs4297a: adc Program dmabufs failed.\n"));
2481			cs4297a_release(inode, file);
2482			return -ENOMEM;
2483		}
2484	}
2485	if (file->f_mode & FMODE_WRITE) {
2486		s->prop_dac.fmt = AFMT_S16_BE;
2487		s->prop_dac.fmt_original = s->prop_dac.fmt;
2488		s->prop_dac.channels = 2;
2489		s->prop_dac.rate = 48000;
2490		s->conversion = 0;
2491		s->ena &= ~FMODE_WRITE;
2492		s->dma_dac.ossfragshift = s->dma_dac.ossmaxfrags =
2493		    s->dma_dac.subdivision = 0;
2494		mutex_unlock(&s->open_sem_dac);
2495
2496		if (prog_dmabuf_dac(s)) {
2497			CS_DBGOUT(CS_OPEN | CS_ERROR, 2, printk(KERN_ERR
2498				"cs4297a: dac Program dmabufs failed.\n"));
2499			cs4297a_release(inode, file);
2500			return -ENOMEM;
2501		}
2502	}
2503	CS_DBGOUT(CS_FUNCTION | CS_OPEN, 2,
2504		  printk(KERN_INFO "cs4297a: cs4297a_open()- 0\n"));
2505	return nonseekable_open(inode, file);
2506}
2507
2508static int cs4297a_open(struct inode *inode, struct file *file)
2509{
2510	int ret;
2511
2512	mutex_lock(&swarm_cs4297a_mutex);
2513	ret = cs4297a_open(inode, file);
2514	mutex_unlock(&swarm_cs4297a_mutex);
2515
2516	return ret;
2517}
2518
2519// ******************************************************************************************
2520//   Wave (audio) file operations struct.
2521// ******************************************************************************************
2522static const struct file_operations cs4297a_audio_fops = {
2523	.owner		= THIS_MODULE,
2524	.llseek		= no_llseek,
2525	.read		= cs4297a_read,
2526	.write		= cs4297a_write,
2527	.poll		= cs4297a_poll,
2528	.unlocked_ioctl	= cs4297a_unlocked_ioctl,
2529	.mmap		= cs4297a_mmap,
2530	.open		= cs4297a_open,
2531	.release	= cs4297a_release,
2532};
2533
2534static void cs4297a_interrupt(int irq, void *dev_id)
2535{
2536	struct cs4297a_state *s = (struct cs4297a_state *) dev_id;
2537        u32 status;
2538
2539        status = __raw_readq(SS_CSR(R_SER_STATUS_DEBUG));
2540
2541        CS_DBGOUT(CS_INTERRUPT, 6, printk(KERN_INFO
2542                 "cs4297a: cs4297a_interrupt() HISR=0x%.8x\n", status));
2543
2544#if 0
2545        /* XXXKW what check *should* be done here? */
2546        if (!(status & (M_SYNCSER_RX_EOP_COUNT | M_SYNCSER_RX_OVERRUN | M_SYNCSER_RX_SYNC_ERR))) {
2547                status = __raw_readq(SS_CSR(R_SER_STATUS));
2548                printk(KERN_ERR "cs4297a: unexpected interrupt (status %08x)\n", status);
2549                return;
2550        }
2551#endif
2552
2553        if (status & M_SYNCSER_RX_SYNC_ERR) {
2554                status = __raw_readq(SS_CSR(R_SER_STATUS));
2555                printk(KERN_ERR "cs4297a: rx sync error (status %08x)\n", status);
2556                return;
2557        }
2558
2559        if (status & M_SYNCSER_RX_OVERRUN) {
2560                int newptr, i;
2561                s->stats.rx_ovrrn++;
2562                printk(KERN_ERR "cs4297a: receive FIFO overrun\n");
2563
2564                /* Fix things up: get the receive descriptor pool
2565                   clean and give them back to the hardware */
2566                while (__raw_readq(SS_CSR(R_SER_DMA_DSCR_COUNT_RX)))
2567                        ;
2568                newptr = (unsigned) (((__raw_readq(SS_CSR(R_SER_DMA_CUR_DSCR_ADDR_RX)) & M_DMA_CURDSCR_ADDR) -
2569                                     s->dma_adc.descrtab_phys) / sizeof(serdma_descr_t));
2570                for (i=0; i<DMA_DESCR; i++) {
2571                        s->dma_adc.descrtab[i].descr_a &= ~M_DMA_SERRX_SOP;
2572                }
2573                s->dma_adc.swptr = s->dma_adc.hwptr = newptr;
2574                s->dma_adc.count = 0;
2575                s->dma_adc.sb_swptr = s->dma_adc.sb_hwptr = s->dma_adc.sample_buf;
2576                __raw_writeq(DMA_DESCR, SS_CSR(R_SER_DMA_DSCR_COUNT_RX));
2577        }
2578
2579	spin_lock(&s->lock);
2580	cs4297a_update_ptr(s,CS_TRUE);
2581	spin_unlock(&s->lock);
2582
2583	CS_DBGOUT(CS_INTERRUPT, 6, printk(KERN_INFO
2584		  "cs4297a: cs4297a_interrupt()-\n"));
2585}
2586
2587#if 0
2588static struct initvol {
2589	int mixch;
2590	int vol;
2591} initvol[] __initdata = {
2592
2593  	{SOUND_MIXER_WRITE_VOLUME, 0x4040},
2594        {SOUND_MIXER_WRITE_PCM, 0x4040},
2595        {SOUND_MIXER_WRITE_SYNTH, 0x4040},
2596	{SOUND_MIXER_WRITE_CD, 0x4040},
2597	{SOUND_MIXER_WRITE_LINE, 0x4040},
2598	{SOUND_MIXER_WRITE_LINE1, 0x4040},
2599	{SOUND_MIXER_WRITE_RECLEV, 0x0000},
2600	{SOUND_MIXER_WRITE_SPEAKER, 0x4040},
2601	{SOUND_MIXER_WRITE_MIC, 0x0000}
2602};
2603#endif
2604
2605static int __init cs4297a_init(void)
2606{
2607	struct cs4297a_state *s;
2608	u32 pwr, id;
2609	mm_segment_t fs;
2610	int rval;
2611#ifndef CONFIG_BCM_CS4297A_CSWARM
2612	u64 cfg;
2613	int mdio_val;
2614#endif
2615
2616	CS_DBGOUT(CS_INIT | CS_FUNCTION, 2, printk(KERN_INFO 
2617		"cs4297a: cs4297a_init_module()+ \n"));
2618
2619#ifndef CONFIG_BCM_CS4297A_CSWARM
2620        mdio_val = __raw_readq(KSEG1 + A_MAC_REGISTER(2, R_MAC_MDIO)) &
2621                (M_MAC_MDIO_DIR|M_MAC_MDIO_OUT);
2622
2623        /* Check syscfg for synchronous serial on port 1 */
2624        cfg = __raw_readq(KSEG1 + A_SCD_SYSTEM_CFG);
2625        if (!(cfg & M_SYS_SER1_ENABLE)) {
2626                __raw_writeq(cfg | M_SYS_SER1_ENABLE, KSEG1+A_SCD_SYSTEM_CFG);
2627                cfg = __raw_readq(KSEG1 + A_SCD_SYSTEM_CFG);
2628                if (!(cfg & M_SYS_SER1_ENABLE)) {
2629                  printk(KERN_INFO "cs4297a: serial port 1 not configured for synchronous operation\n");
2630                  return -1;
2631                }
2632
2633                printk(KERN_INFO "cs4297a: serial port 1 switching to synchronous operation\n");
2634                
2635                /* Force the codec (on SWARM) to reset by clearing
2636                   GENO, preserving MDIO (no effect on CSWARM) */
2637                __raw_writeq(mdio_val, KSEG1+A_MAC_REGISTER(2, R_MAC_MDIO));
2638                udelay(10);
2639        }
2640
2641        /* Now set GENO */
2642        __raw_writeq(mdio_val | M_MAC_GENC, KSEG1+A_MAC_REGISTER(2, R_MAC_MDIO));
2643        /* Give the codec some time to finish resetting (start the bit clock) */
2644        udelay(100);
2645#endif
2646
2647	if (!(s = kzalloc(sizeof(struct cs4297a_state), GFP_KERNEL))) {
2648		CS_DBGOUT(CS_ERROR, 1, printk(KERN_ERR
2649		      "cs4297a: probe() no memory for state struct.\n"));
2650		return -1;
2651	}
2652        s->magic = CS4297a_MAGIC;
2653	init_waitqueue_head(&s->dma_adc.wait);
2654	init_waitqueue_head(&s->dma_dac.wait);
2655	init_waitqueue_head(&s->dma_adc.reg_wait);
2656	init_waitqueue_head(&s->dma_dac.reg_wait);
2657	init_waitqueue_head(&s->open_wait);
2658	init_waitqueue_head(&s->open_wait_adc);
2659	init_waitqueue_head(&s->open_wait_dac);
2660	mutex_init(&s->open_sem_adc);
2661	mutex_init(&s->open_sem_dac);
2662	spin_lock_init(&s->lock);
2663
2664        s->irq = K_INT_SER_1;
2665
2666	if (request_irq
2667	    (s->irq, cs4297a_interrupt, 0, "Crystal CS4297a", s)) {
2668		CS_DBGOUT(CS_INIT | CS_ERROR, 1,
2669			  printk(KERN_ERR "cs4297a: irq %u in use\n", s->irq));
2670		goto err_irq;
2671	}
2672	if ((s->dev_audio = register_sound_dsp(&cs4297a_audio_fops, -1)) <
2673	    0) {
2674		CS_DBGOUT(CS_INIT | CS_ERROR, 1, printk(KERN_ERR
2675			 "cs4297a: probe() register_sound_dsp() failed.\n"));
2676		goto err_dev1;
2677	}
2678	if ((s->dev_mixer = register_sound_mixer(&cs4297a_mixer_fops, -1)) <
2679	    0) {
2680		CS_DBGOUT(CS_INIT | CS_ERROR, 1, printk(KERN_ERR
2681			 "cs4297a: probe() register_sound_mixer() failed.\n"));
2682		goto err_dev2;
2683	}
2684
2685        if (ser_init(s) || dma_init(s)) {
2686		CS_DBGOUT(CS_INIT | CS_ERROR, 1, printk(KERN_ERR
2687			 "cs4297a: ser_init failed.\n"));
2688		goto err_dev3;
2689        }
2690
2691        do {
2692                udelay(4000);
2693                rval = cs4297a_read_ac97(s, AC97_POWER_CONTROL, &pwr);
2694        } while (!rval && (pwr != 0xf));
2695
2696        if (!rval) {
2697		char *sb1250_duart_present;
2698
2699                fs = get_fs();
2700                set_fs(KERNEL_DS);
2701#if 0
2702                val = SOUND_MASK_LINE;
2703                mixer_ioctl(s, SOUND_MIXER_WRITE_RECSRC, (unsigned long) &val);
2704                for (i = 0; i < ARRAY_SIZE(initvol); i++) {
2705                        val = initvol[i].vol;
2706                        mixer_ioctl(s, initvol[i].mixch, (unsigned long) &val);
2707                }
2708//                cs4297a_write_ac97(s, 0x18, 0x0808);
2709#else
2710                //                cs4297a_write_ac97(s, 0x5e, 0x180);
2711                cs4297a_write_ac97(s, 0x02, 0x0808);
2712                cs4297a_write_ac97(s, 0x18, 0x0808);
2713#endif
2714                set_fs(fs);
2715
2716                list_add(&s->list, &cs4297a_devs);
2717
2718                cs4297a_read_ac97(s, AC97_VENDOR_ID1, &id);
2719
2720		sb1250_duart_present = symbol_get(sb1250_duart_present);
2721		if (sb1250_duart_present)
2722			sb1250_duart_present[1] = 0;
2723
2724                printk(KERN_INFO "cs4297a: initialized (vendor id = %x)\n", id);
2725
2726                CS_DBGOUT(CS_INIT | CS_FUNCTION, 2,
2727                          printk(KERN_INFO "cs4297a: cs4297a_init_module()-\n"));
2728                
2729                return 0;
2730        }
2731
2732 err_dev3:
2733	unregister_sound_mixer(s->dev_mixer);
2734 err_dev2:
2735	unregister_sound_dsp(s->dev_audio);
2736 err_dev1:
2737	free_irq(s->irq, s);
2738 err_irq:
2739	kfree(s);
2740
2741        printk(KERN_INFO "cs4297a: initialization failed\n");
2742
2743        return -1;
2744}
2745
2746static void __exit cs4297a_cleanup(void)
2747{
2748        /*
2749          XXXKW 
2750           disable_irq, free_irq
2751           drain DMA queue
2752           disable DMA
2753           disable TX/RX
2754           free memory
2755        */
2756	CS_DBGOUT(CS_INIT | CS_FUNCTION, 2,
2757		  printk(KERN_INFO "cs4297a: cleanup_cs4297a() finished\n"));
2758}
2759
2760// --------------------------------------------------------------------- 
2761
2762MODULE_AUTHOR("Kip Walker, Broadcom Corp.");
2763MODULE_DESCRIPTION("Cirrus Logic CS4297a Driver for Broadcom SWARM board");
2764
2765// --------------------------------------------------------------------- 
2766
2767module_init(cs4297a_init);
2768module_exit(cs4297a_cleanup);