Linux Audio

Check our new training course

Loading...
  1/*
  2 * Copyright (C) 2011
  3 * Boaz Harrosh <bharrosh@panasas.com>
  4 *
  5 * This file is part of the objects raid engine (ore).
  6 *
  7 * It is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as published
  9 * by the Free Software Foundation.
 10 *
 11 * You should have received a copy of the GNU General Public License
 12 * along with "ore". If not, write to the Free Software Foundation, Inc:
 13 *	"Free Software Foundation <info@fsf.org>"
 14 */
 15
 16#include <linux/gfp.h>
 17#include <linux/async_tx.h>
 18
 19#include "ore_raid.h"
 20
 21#undef ORE_DBGMSG2
 22#define ORE_DBGMSG2 ORE_DBGMSG
 23
 24struct page *_raid_page_alloc(void)
 25{
 26	return alloc_page(GFP_KERNEL);
 27}
 28
 29void _raid_page_free(struct page *p)
 30{
 31	__free_page(p);
 32}
 33
 34/* This struct is forward declare in ore_io_state, but is private to here.
 35 * It is put on ios->sp2d for RAID5/6 writes only. See _gen_xor_unit.
 36 *
 37 * __stripe_pages_2d is a 2d array of pages, and it is also a corner turn.
 38 * Ascending page index access is sp2d(p-minor, c-major). But storage is
 39 * sp2d[p-minor][c-major], so it can be properlly presented to the async-xor
 40 * API.
 41 */
 42struct __stripe_pages_2d {
 43	/* Cache some hot path repeated calculations */
 44	unsigned parity;
 45	unsigned data_devs;
 46	unsigned pages_in_unit;
 47
 48	bool needed ;
 49
 50	/* Array size is pages_in_unit (layout->stripe_unit / PAGE_SIZE) */
 51	struct __1_page_stripe {
 52		bool alloc;
 53		unsigned write_count;
 54		struct async_submit_ctl submit;
 55		struct dma_async_tx_descriptor *tx;
 56
 57		/* The size of this array is data_devs + parity */
 58		struct page **pages;
 59		struct page **scribble;
 60		/* bool array, size of this array is data_devs */
 61		char *page_is_read;
 62	} _1p_stripes[];
 63};
 64
 65/* This can get bigger then a page. So support multiple page allocations
 66 * _sp2d_free should be called even if _sp2d_alloc fails (by returning
 67 * none-zero).
 68 */
 69static int _sp2d_alloc(unsigned pages_in_unit, unsigned group_width,
 70		       unsigned parity, struct __stripe_pages_2d **psp2d)
 71{
 72	struct __stripe_pages_2d *sp2d;
 73	unsigned data_devs = group_width - parity;
 74	struct _alloc_all_bytes {
 75		struct __alloc_stripe_pages_2d {
 76			struct __stripe_pages_2d sp2d;
 77			struct __1_page_stripe _1p_stripes[pages_in_unit];
 78		} __asp2d;
 79		struct __alloc_1p_arrays {
 80			struct page *pages[group_width];
 81			struct page *scribble[group_width];
 82			char page_is_read[data_devs];
 83		} __a1pa[pages_in_unit];
 84	} *_aab;
 85	struct __alloc_1p_arrays *__a1pa;
 86	struct __alloc_1p_arrays *__a1pa_end;
 87	const unsigned sizeof__a1pa = sizeof(_aab->__a1pa[0]);
 88	unsigned num_a1pa, alloc_size, i;
 89
 90	/* FIXME: check these numbers in ore_verify_layout */
 91	BUG_ON(sizeof(_aab->__asp2d) > PAGE_SIZE);
 92	BUG_ON(sizeof__a1pa > PAGE_SIZE);
 93
 94	if (sizeof(*_aab) > PAGE_SIZE) {
 95		num_a1pa = (PAGE_SIZE - sizeof(_aab->__asp2d)) / sizeof__a1pa;
 96		alloc_size = sizeof(_aab->__asp2d) + sizeof__a1pa * num_a1pa;
 97	} else {
 98		num_a1pa = pages_in_unit;
 99		alloc_size = sizeof(*_aab);
100	}
101
102	_aab = kzalloc(alloc_size, GFP_KERNEL);
103	if (unlikely(!_aab)) {
104		ORE_DBGMSG("!! Failed to alloc sp2d size=%d\n", alloc_size);
105		return -ENOMEM;
106	}
107
108	sp2d = &_aab->__asp2d.sp2d;
109	*psp2d = sp2d; /* From here Just call _sp2d_free */
110
111	__a1pa = _aab->__a1pa;
112	__a1pa_end = __a1pa + num_a1pa;
113
114	for (i = 0; i < pages_in_unit; ++i) {
115		if (unlikely(__a1pa >= __a1pa_end)) {
116			num_a1pa = min_t(unsigned, PAGE_SIZE / sizeof__a1pa,
117							pages_in_unit - i);
118
119			__a1pa = kzalloc(num_a1pa * sizeof__a1pa, GFP_KERNEL);
120			if (unlikely(!__a1pa)) {
121				ORE_DBGMSG("!! Failed to _alloc_1p_arrays=%d\n",
122					   num_a1pa);
123				return -ENOMEM;
124			}
125			__a1pa_end = __a1pa + num_a1pa;
126			/* First *pages is marked for kfree of the buffer */
127			sp2d->_1p_stripes[i].alloc = true;
128		}
129
130		sp2d->_1p_stripes[i].pages = __a1pa->pages;
131		sp2d->_1p_stripes[i].scribble = __a1pa->scribble ;
132		sp2d->_1p_stripes[i].page_is_read = __a1pa->page_is_read;
133		++__a1pa;
134	}
135
136	sp2d->parity = parity;
137	sp2d->data_devs = data_devs;
138	sp2d->pages_in_unit = pages_in_unit;
139	return 0;
140}
141
142static void _sp2d_reset(struct __stripe_pages_2d *sp2d,
143			const struct _ore_r4w_op *r4w, void *priv)
144{
145	unsigned data_devs = sp2d->data_devs;
146	unsigned group_width = data_devs + sp2d->parity;
147	int p, c;
148
149	if (!sp2d->needed)
150		return;
151
152	for (c = data_devs - 1; c >= 0; --c)
153		for (p = sp2d->pages_in_unit - 1; p >= 0; --p) {
154			struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
155
156			if (_1ps->page_is_read[c]) {
157				struct page *page = _1ps->pages[c];
158
159				r4w->put_page(priv, page);
160				_1ps->page_is_read[c] = false;
161			}
162		}
163
164	for (p = 0; p < sp2d->pages_in_unit; p++) {
165		struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
166
167		memset(_1ps->pages, 0, group_width * sizeof(*_1ps->pages));
168		_1ps->write_count = 0;
169		_1ps->tx = NULL;
170	}
171
172	sp2d->needed = false;
173}
174
175static void _sp2d_free(struct __stripe_pages_2d *sp2d)
176{
177	unsigned i;
178
179	if (!sp2d)
180		return;
181
182	for (i = 0; i < sp2d->pages_in_unit; ++i) {
183		if (sp2d->_1p_stripes[i].alloc)
184			kfree(sp2d->_1p_stripes[i].pages);
185	}
186
187	kfree(sp2d);
188}
189
190static unsigned _sp2d_min_pg(struct __stripe_pages_2d *sp2d)
191{
192	unsigned p;
193
194	for (p = 0; p < sp2d->pages_in_unit; p++) {
195		struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
196
197		if (_1ps->write_count)
198			return p;
199	}
200
201	return ~0;
202}
203
204static unsigned _sp2d_max_pg(struct __stripe_pages_2d *sp2d)
205{
206	unsigned p;
207
208	for (p = sp2d->pages_in_unit - 1; p >= 0; --p) {
209		struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
210
211		if (_1ps->write_count)
212			return p;
213	}
214
215	return ~0;
216}
217
218static void _gen_xor_unit(struct __stripe_pages_2d *sp2d)
219{
220	unsigned p;
221	for (p = 0; p < sp2d->pages_in_unit; p++) {
222		struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
223
224		if (!_1ps->write_count)
225			continue;
226
227		init_async_submit(&_1ps->submit,
228			ASYNC_TX_XOR_ZERO_DST | ASYNC_TX_ACK,
229			NULL,
230			NULL, NULL,
231			(addr_conv_t *)_1ps->scribble);
232
233		/* TODO: raid6 */
234		_1ps->tx = async_xor(_1ps->pages[sp2d->data_devs], _1ps->pages,
235				     0, sp2d->data_devs, PAGE_SIZE,
236				     &_1ps->submit);
237	}
238
239	for (p = 0; p < sp2d->pages_in_unit; p++) {
240		struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
241		/* NOTE: We wait for HW synchronously (I don't have such HW
242		 * to test with.) Is parallelism needed with today's multi
243		 * cores?
244		 */
245		async_tx_issue_pending(_1ps->tx);
246	}
247}
248
249void _ore_add_stripe_page(struct __stripe_pages_2d *sp2d,
250		       struct ore_striping_info *si, struct page *page)
251{
252	struct __1_page_stripe *_1ps;
253
254	sp2d->needed = true;
255
256	_1ps = &sp2d->_1p_stripes[si->cur_pg];
257	_1ps->pages[si->cur_comp] = page;
258	++_1ps->write_count;
259
260	si->cur_pg = (si->cur_pg + 1) % sp2d->pages_in_unit;
261	/* si->cur_comp is advanced outside at main loop */
262}
263
264void _ore_add_sg_seg(struct ore_per_dev_state *per_dev, unsigned cur_len,
265		     bool not_last)
266{
267	struct osd_sg_entry *sge;
268
269	ORE_DBGMSG("dev=%d cur_len=0x%x not_last=%d cur_sg=%d "
270		     "offset=0x%llx length=0x%x last_sgs_total=0x%x\n",
271		     per_dev->dev, cur_len, not_last, per_dev->cur_sg,
272		     _LLU(per_dev->offset), per_dev->length,
273		     per_dev->last_sgs_total);
274
275	if (!per_dev->cur_sg) {
276		sge = per_dev->sglist;
277
278		/* First time we prepare two entries */
279		if (per_dev->length) {
280			++per_dev->cur_sg;
281			sge->offset = per_dev->offset;
282			sge->len = per_dev->length;
283		} else {
284			/* Here the parity is the first unit of this object.
285			 * This happens every time we reach a parity device on
286			 * the same stripe as the per_dev->offset. We need to
287			 * just skip this unit.
288			 */
289			per_dev->offset += cur_len;
290			return;
291		}
292	} else {
293		/* finalize the last one */
294		sge = &per_dev->sglist[per_dev->cur_sg - 1];
295		sge->len = per_dev->length - per_dev->last_sgs_total;
296	}
297
298	if (not_last) {
299		/* Partly prepare the next one */
300		struct osd_sg_entry *next_sge = sge + 1;
301
302		++per_dev->cur_sg;
303		next_sge->offset = sge->offset + sge->len + cur_len;
304		/* Save cur len so we know how mutch was added next time */
305		per_dev->last_sgs_total = per_dev->length;
306		next_sge->len = 0;
307	} else if (!sge->len) {
308		/* Optimize for when the last unit is a parity */
309		--per_dev->cur_sg;
310	}
311}
312
313static int _alloc_read_4_write(struct ore_io_state *ios)
314{
315	struct ore_layout *layout = ios->layout;
316	int ret;
317	/* We want to only read those pages not in cache so worst case
318	 * is a stripe populated with every other page
319	 */
320	unsigned sgs_per_dev = ios->sp2d->pages_in_unit + 2;
321
322	ret = _ore_get_io_state(layout, ios->oc,
323				layout->group_width * layout->mirrors_p1,
324				sgs_per_dev, 0, &ios->ios_read_4_write);
325	return ret;
326}
327
328/* @si contains info of the to-be-inserted page. Update of @si should be
329 * maintained by caller. Specificaly si->dev, si->obj_offset, ...
330 */
331static int _add_to_r4w(struct ore_io_state *ios, struct ore_striping_info *si,
332		       struct page *page, unsigned pg_len)
333{
334	struct request_queue *q;
335	struct ore_per_dev_state *per_dev;
336	struct ore_io_state *read_ios;
337	unsigned first_dev = si->dev - (si->dev %
338			  (ios->layout->group_width * ios->layout->mirrors_p1));
339	unsigned comp = si->dev - first_dev;
340	unsigned added_len;
341
342	if (!ios->ios_read_4_write) {
343		int ret = _alloc_read_4_write(ios);
344
345		if (unlikely(ret))
346			return ret;
347	}
348
349	read_ios = ios->ios_read_4_write;
350	read_ios->numdevs = ios->layout->group_width * ios->layout->mirrors_p1;
351
352	per_dev = &read_ios->per_dev[comp];
353	if (!per_dev->length) {
354		per_dev->bio = bio_kmalloc(GFP_KERNEL,
355					   ios->sp2d->pages_in_unit);
356		if (unlikely(!per_dev->bio)) {
357			ORE_DBGMSG("Failed to allocate BIO size=%u\n",
358				     ios->sp2d->pages_in_unit);
359			return -ENOMEM;
360		}
361		per_dev->offset = si->obj_offset;
362		per_dev->dev = si->dev;
363	} else if (si->obj_offset != (per_dev->offset + per_dev->length)) {
364		u64 gap = si->obj_offset - (per_dev->offset + per_dev->length);
365
366		_ore_add_sg_seg(per_dev, gap, true);
367	}
368	q = osd_request_queue(ore_comp_dev(read_ios->oc, per_dev->dev));
369	added_len = bio_add_pc_page(q, per_dev->bio, page, pg_len,
370				    si->obj_offset % PAGE_SIZE);
371	if (unlikely(added_len != pg_len)) {
372		ORE_DBGMSG("Failed to bio_add_pc_page bi_vcnt=%d\n",
373			      per_dev->bio->bi_vcnt);
374		return -ENOMEM;
375	}
376
377	per_dev->length += pg_len;
378	return 0;
379}
380
381/* read the beginning of an unaligned first page */
382static int _add_to_r4w_first_page(struct ore_io_state *ios, struct page *page)
383{
384	struct ore_striping_info si;
385	unsigned pg_len;
386
387	ore_calc_stripe_info(ios->layout, ios->offset, 0, &si);
388
389	pg_len = si.obj_offset % PAGE_SIZE;
390	si.obj_offset -= pg_len;
391
392	ORE_DBGMSG("offset=0x%llx len=0x%x index=0x%lx dev=%x\n",
393		   _LLU(si.obj_offset), pg_len, page->index, si.dev);
394
395	return _add_to_r4w(ios, &si, page, pg_len);
396}
397
398/* read the end of an incomplete last page */
399static int _add_to_r4w_last_page(struct ore_io_state *ios, u64 *offset)
400{
401	struct ore_striping_info si;
402	struct page *page;
403	unsigned pg_len, p, c;
404
405	ore_calc_stripe_info(ios->layout, *offset, 0, &si);
406
407	p = si.unit_off / PAGE_SIZE;
408	c = _dev_order(ios->layout->group_width * ios->layout->mirrors_p1,
409		       ios->layout->mirrors_p1, si.par_dev, si.dev);
410	page = ios->sp2d->_1p_stripes[p].pages[c];
411
412	pg_len = PAGE_SIZE - (si.unit_off % PAGE_SIZE);
413	*offset += pg_len;
414
415	ORE_DBGMSG("p=%d, c=%d next-offset=0x%llx len=0x%x dev=%x par_dev=%d\n",
416		   p, c, _LLU(*offset), pg_len, si.dev, si.par_dev);
417
418	BUG_ON(!page);
419
420	return _add_to_r4w(ios, &si, page, pg_len);
421}
422
423static void _mark_read4write_pages_uptodate(struct ore_io_state *ios, int ret)
424{
425	struct bio_vec *bv;
426	unsigned i, d;
427
428	/* loop on all devices all pages */
429	for (d = 0; d < ios->numdevs; d++) {
430		struct bio *bio = ios->per_dev[d].bio;
431
432		if (!bio)
433			continue;
434
435		__bio_for_each_segment(bv, bio, i, 0) {
436			struct page *page = bv->bv_page;
437
438			SetPageUptodate(page);
439			if (PageError(page))
440				ClearPageError(page);
441		}
442	}
443}
444
445/* read_4_write is hacked to read the start of the first stripe and/or
446 * the end of the last stripe. If needed, with an sg-gap at each device/page.
447 * It is assumed to be called after the to_be_written pages of the first stripe
448 * are populating ios->sp2d[][]
449 *
450 * NOTE: We call ios->r4w->lock_fn for all pages needed for parity calculations
451 * These pages are held at sp2d[p].pages[c] but with
452 * sp2d[p].page_is_read[c] = true. At _sp2d_reset these pages are
453 * ios->r4w->lock_fn(). The ios->r4w->lock_fn might signal that the page is
454 * @uptodate=true, so we don't need to read it, only unlock, after IO.
455 *
456 * TODO: The read_4_write should calc a need_to_read_pages_count, if bigger then
457 * to-be-written count, we should consider the xor-in-place mode.
458 * need_to_read_pages_count is the actual number of pages not present in cache.
459 * maybe "devs_in_group - ios->sp2d[p].write_count" is a good enough
460 * approximation? In this mode the read pages are put in the empty places of
461 * ios->sp2d[p][*], xor is calculated the same way. These pages are
462 * allocated/freed and don't go through cache
463 */
464static int _read_4_write_first_stripe(struct ore_io_state *ios)
465{
466	struct ore_striping_info read_si;
467	struct __stripe_pages_2d *sp2d = ios->sp2d;
468	u64 offset = ios->si.first_stripe_start;
469	unsigned c, p, min_p = sp2d->pages_in_unit, max_p = -1;
470
471	if (offset == ios->offset) /* Go to start collect $200 */
472		goto read_last_stripe;
473
474	min_p = _sp2d_min_pg(sp2d);
475	max_p = _sp2d_max_pg(sp2d);
476
477	ORE_DBGMSG("stripe_start=0x%llx ios->offset=0x%llx min_p=%d max_p=%d\n",
478		   offset, ios->offset, min_p, max_p);
479
480	for (c = 0; ; c++) {
481		ore_calc_stripe_info(ios->layout, offset, 0, &read_si);
482		read_si.obj_offset += min_p * PAGE_SIZE;
483		offset += min_p * PAGE_SIZE;
484		for (p = min_p; p <= max_p; p++) {
485			struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
486			struct page **pp = &_1ps->pages[c];
487			bool uptodate;
488
489			if (*pp) {
490				if (ios->offset % PAGE_SIZE)
491					/* Read the remainder of the page */
492					_add_to_r4w_first_page(ios, *pp);
493				/* to-be-written pages start here */
494				goto read_last_stripe;
495			}
496
497			*pp = ios->r4w->get_page(ios->private, offset,
498						 &uptodate);
499			if (unlikely(!*pp))
500				return -ENOMEM;
501
502			if (!uptodate)
503				_add_to_r4w(ios, &read_si, *pp, PAGE_SIZE);
504
505			/* Mark read-pages to be cache_released */
506			_1ps->page_is_read[c] = true;
507			read_si.obj_offset += PAGE_SIZE;
508			offset += PAGE_SIZE;
509		}
510		offset += (sp2d->pages_in_unit - p) * PAGE_SIZE;
511	}
512
513read_last_stripe:
514	return 0;
515}
516
517static int _read_4_write_last_stripe(struct ore_io_state *ios)
518{
519	struct ore_striping_info read_si;
520	struct __stripe_pages_2d *sp2d = ios->sp2d;
521	u64 offset;
522	u64 last_stripe_end;
523	unsigned bytes_in_stripe = ios->si.bytes_in_stripe;
524	unsigned c, p, min_p = sp2d->pages_in_unit, max_p = -1;
525
526	offset = ios->offset + ios->length;
527	if (offset % PAGE_SIZE)
528		_add_to_r4w_last_page(ios, &offset);
529		/* offset will be aligned to next page */
530
531	last_stripe_end = div_u64(offset + bytes_in_stripe - 1, bytes_in_stripe)
532				 * bytes_in_stripe;
533	if (offset == last_stripe_end) /* Optimize for the aligned case */
534		goto read_it;
535
536	ore_calc_stripe_info(ios->layout, offset, 0, &read_si);
537	p = read_si.unit_off / PAGE_SIZE;
538	c = _dev_order(ios->layout->group_width * ios->layout->mirrors_p1,
539		       ios->layout->mirrors_p1, read_si.par_dev, read_si.dev);
540
541	if (min_p == sp2d->pages_in_unit) {
542		/* Didn't do it yet */
543		min_p = _sp2d_min_pg(sp2d);
544		max_p = _sp2d_max_pg(sp2d);
545	}
546
547	ORE_DBGMSG("offset=0x%llx stripe_end=0x%llx min_p=%d max_p=%d\n",
548		   offset, last_stripe_end, min_p, max_p);
549
550	while (offset < last_stripe_end) {
551		struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
552
553		if ((min_p <= p) && (p <= max_p)) {
554			struct page *page;
555			bool uptodate;
556
557			BUG_ON(_1ps->pages[c]);
558			page = ios->r4w->get_page(ios->private, offset,
559						  &uptodate);
560			if (unlikely(!page))
561				return -ENOMEM;
562
563			_1ps->pages[c] = page;
564			/* Mark read-pages to be cache_released */
565			_1ps->page_is_read[c] = true;
566			if (!uptodate)
567				_add_to_r4w(ios, &read_si, page, PAGE_SIZE);
568		}
569
570		offset += PAGE_SIZE;
571		if (p == (sp2d->pages_in_unit - 1)) {
572			++c;
573			p = 0;
574			ore_calc_stripe_info(ios->layout, offset, 0, &read_si);
575		} else {
576			read_si.obj_offset += PAGE_SIZE;
577			++p;
578		}
579	}
580
581read_it:
582	return 0;
583}
584
585static int _read_4_write_execute(struct ore_io_state *ios)
586{
587	struct ore_io_state *ios_read;
588	unsigned i;
589	int ret;
590
591	ios_read = ios->ios_read_4_write;
592	if (!ios_read)
593		return 0;
594
595	/* FIXME: Ugly to signal _sbi_read_mirror that we have bio(s). Change
596	 * to check for per_dev->bio
597	 */
598	ios_read->pages = ios->pages;
599
600	/* Now read these devices */
601	for (i = 0; i < ios_read->numdevs; i += ios_read->layout->mirrors_p1) {
602		ret = _ore_read_mirror(ios_read, i);
603		if (unlikely(ret))
604			return ret;
605	}
606
607	ret = ore_io_execute(ios_read); /* Synchronus execution */
608	if (unlikely(ret)) {
609		ORE_DBGMSG("!! ore_io_execute => %d\n", ret);
610		return ret;
611	}
612
613	_mark_read4write_pages_uptodate(ios_read, ret);
614	ore_put_io_state(ios_read);
615	ios->ios_read_4_write = NULL; /* Might need a reuse at last stripe */
616	return 0;
617}
618
619/* In writes @cur_len means length left. .i.e cur_len==0 is the last parity U */
620int _ore_add_parity_unit(struct ore_io_state *ios,
621			    struct ore_striping_info *si,
622			    struct ore_per_dev_state *per_dev,
623			    unsigned cur_len)
624{
625	if (ios->reading) {
626		if (per_dev->cur_sg >= ios->sgs_per_dev) {
627			ORE_DBGMSG("cur_sg(%d) >= sgs_per_dev(%d)\n" ,
628				per_dev->cur_sg, ios->sgs_per_dev);
629			return -ENOMEM;
630		}
631		_ore_add_sg_seg(per_dev, cur_len, true);
632	} else {
633		struct __stripe_pages_2d *sp2d = ios->sp2d;
634		struct page **pages = ios->parity_pages + ios->cur_par_page;
635		unsigned num_pages;
636		unsigned array_start = 0;
637		unsigned i;
638		int ret;
639
640		si->cur_pg = _sp2d_min_pg(sp2d);
641		num_pages  = _sp2d_max_pg(sp2d) + 1 - si->cur_pg;
642
643		if (!cur_len) /* If last stripe operate on parity comp */
644			si->cur_comp = sp2d->data_devs;
645
646		if (!per_dev->length) {
647			per_dev->offset += si->cur_pg * PAGE_SIZE;
648			/* If first stripe, Read in all read4write pages
649			 * (if needed) before we calculate the first parity.
650			 */
651			_read_4_write_first_stripe(ios);
652		}
653		if (!cur_len) /* If last stripe r4w pages of last stripe */
654			_read_4_write_last_stripe(ios);
655		_read_4_write_execute(ios);
656
657		for (i = 0; i < num_pages; i++) {
658			pages[i] = _raid_page_alloc();
659			if (unlikely(!pages[i]))
660				return -ENOMEM;
661
662			++(ios->cur_par_page);
663		}
664
665		BUG_ON(si->cur_comp != sp2d->data_devs);
666		BUG_ON(si->cur_pg + num_pages > sp2d->pages_in_unit);
667
668		ret = _ore_add_stripe_unit(ios,  &array_start, 0, pages,
669					   per_dev, num_pages * PAGE_SIZE);
670		if (unlikely(ret))
671			return ret;
672
673		/* TODO: raid6 if (last_parity_dev) */
674		_gen_xor_unit(sp2d);
675		_sp2d_reset(sp2d, ios->r4w, ios->private);
676	}
677	return 0;
678}
679
680int _ore_post_alloc_raid_stuff(struct ore_io_state *ios)
681{
682	if (ios->parity_pages) {
683		struct ore_layout *layout = ios->layout;
684		unsigned pages_in_unit = layout->stripe_unit / PAGE_SIZE;
685
686		if (_sp2d_alloc(pages_in_unit, layout->group_width,
687				layout->parity, &ios->sp2d)) {
688			return -ENOMEM;
689		}
690	}
691	return 0;
692}
693
694void _ore_free_raid_stuff(struct ore_io_state *ios)
695{
696	if (ios->sp2d) { /* writing and raid */
697		unsigned i;
698
699		for (i = 0; i < ios->cur_par_page; i++) {
700			struct page *page = ios->parity_pages[i];
701
702			if (page)
703				_raid_page_free(page);
704		}
705		if (ios->extra_part_alloc)
706			kfree(ios->parity_pages);
707		/* If IO returned an error pages might need unlocking */
708		_sp2d_reset(ios->sp2d, ios->r4w, ios->private);
709		_sp2d_free(ios->sp2d);
710	} else {
711		/* Will only be set if raid reading && sglist is big */
712		if (ios->extra_part_alloc)
713			kfree(ios->per_dev[0].sglist);
714	}
715	if (ios->ios_read_4_write)
716		ore_put_io_state(ios->ios_read_4_write);
717}