Linux Audio

Check our new training course

Loading...
   1/*
   2 * fs/direct-io.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 *
   6 * O_DIRECT
   7 *
   8 * 04Jul2002	Andrew Morton
   9 *		Initial version
  10 * 11Sep2002	janetinc@us.ibm.com
  11 * 		added readv/writev support.
  12 * 29Oct2002	Andrew Morton
  13 *		rewrote bio_add_page() support.
  14 * 30Oct2002	pbadari@us.ibm.com
  15 *		added support for non-aligned IO.
  16 * 06Nov2002	pbadari@us.ibm.com
  17 *		added asynchronous IO support.
  18 * 21Jul2003	nathans@sgi.com
  19 *		added IO completion notifier.
  20 */
  21
  22#include <linux/kernel.h>
  23#include <linux/module.h>
  24#include <linux/types.h>
  25#include <linux/fs.h>
  26#include <linux/mm.h>
  27#include <linux/slab.h>
  28#include <linux/highmem.h>
  29#include <linux/pagemap.h>
  30#include <linux/task_io_accounting_ops.h>
  31#include <linux/bio.h>
  32#include <linux/wait.h>
  33#include <linux/err.h>
  34#include <linux/blkdev.h>
  35#include <linux/buffer_head.h>
  36#include <linux/rwsem.h>
  37#include <linux/uio.h>
  38#include <linux/atomic.h>
  39#include <linux/prefetch.h>
  40
  41/*
  42 * How many user pages to map in one call to get_user_pages().  This determines
  43 * the size of a structure in the slab cache
  44 */
  45#define DIO_PAGES	64
  46
  47/*
  48 * This code generally works in units of "dio_blocks".  A dio_block is
  49 * somewhere between the hard sector size and the filesystem block size.  it
  50 * is determined on a per-invocation basis.   When talking to the filesystem
  51 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
  52 * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
  53 * to bio_block quantities by shifting left by blkfactor.
  54 *
  55 * If blkfactor is zero then the user's request was aligned to the filesystem's
  56 * blocksize.
  57 */
  58
  59/* dio_state only used in the submission path */
  60
  61struct dio_submit {
  62	struct bio *bio;		/* bio under assembly */
  63	unsigned blkbits;		/* doesn't change */
  64	unsigned blkfactor;		/* When we're using an alignment which
  65					   is finer than the filesystem's soft
  66					   blocksize, this specifies how much
  67					   finer.  blkfactor=2 means 1/4-block
  68					   alignment.  Does not change */
  69	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
  70					   been performed at the start of a
  71					   write */
  72	int pages_in_io;		/* approximate total IO pages */
  73	size_t	size;			/* total request size (doesn't change)*/
  74	sector_t block_in_file;		/* Current offset into the underlying
  75					   file in dio_block units. */
  76	unsigned blocks_available;	/* At block_in_file.  changes */
  77	int reap_counter;		/* rate limit reaping */
  78	sector_t final_block_in_request;/* doesn't change */
  79	unsigned first_block_in_page;	/* doesn't change, Used only once */
  80	int boundary;			/* prev block is at a boundary */
  81	get_block_t *get_block;		/* block mapping function */
  82	dio_submit_t *submit_io;	/* IO submition function */
  83
  84	loff_t logical_offset_in_bio;	/* current first logical block in bio */
  85	sector_t final_block_in_bio;	/* current final block in bio + 1 */
  86	sector_t next_block_for_io;	/* next block to be put under IO,
  87					   in dio_blocks units */
  88
  89	/*
  90	 * Deferred addition of a page to the dio.  These variables are
  91	 * private to dio_send_cur_page(), submit_page_section() and
  92	 * dio_bio_add_page().
  93	 */
  94	struct page *cur_page;		/* The page */
  95	unsigned cur_page_offset;	/* Offset into it, in bytes */
  96	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
  97	sector_t cur_page_block;	/* Where it starts */
  98	loff_t cur_page_fs_offset;	/* Offset in file */
  99
 100	/*
 101	 * Page fetching state. These variables belong to dio_refill_pages().
 102	 */
 103	int curr_page;			/* changes */
 104	int total_pages;		/* doesn't change */
 105	unsigned long curr_user_address;/* changes */
 106
 107	/*
 108	 * Page queue.  These variables belong to dio_refill_pages() and
 109	 * dio_get_page().
 110	 */
 111	unsigned head;			/* next page to process */
 112	unsigned tail;			/* last valid page + 1 */
 113};
 114
 115/* dio_state communicated between submission path and end_io */
 116struct dio {
 117	int flags;			/* doesn't change */
 118	int rw;
 119	struct inode *inode;
 120	loff_t i_size;			/* i_size when submitted */
 121	dio_iodone_t *end_io;		/* IO completion function */
 122
 123	void *private;			/* copy from map_bh.b_private */
 124
 125	/* BIO completion state */
 126	spinlock_t bio_lock;		/* protects BIO fields below */
 127	int page_errors;		/* errno from get_user_pages() */
 128	int is_async;			/* is IO async ? */
 129	int io_error;			/* IO error in completion path */
 130	unsigned long refcount;		/* direct_io_worker() and bios */
 131	struct bio *bio_list;		/* singly linked via bi_private */
 132	struct task_struct *waiter;	/* waiting task (NULL if none) */
 133
 134	/* AIO related stuff */
 135	struct kiocb *iocb;		/* kiocb */
 136	ssize_t result;                 /* IO result */
 137
 138	/*
 139	 * pages[] (and any fields placed after it) are not zeroed out at
 140	 * allocation time.  Don't add new fields after pages[] unless you
 141	 * wish that they not be zeroed.
 142	 */
 143	struct page *pages[DIO_PAGES];	/* page buffer */
 144} ____cacheline_aligned_in_smp;
 145
 146static struct kmem_cache *dio_cache __read_mostly;
 147
 148/*
 149 * How many pages are in the queue?
 150 */
 151static inline unsigned dio_pages_present(struct dio_submit *sdio)
 152{
 153	return sdio->tail - sdio->head;
 154}
 155
 156/*
 157 * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
 158 */
 159static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
 160{
 161	int ret;
 162	int nr_pages;
 163
 164	nr_pages = min(sdio->total_pages - sdio->curr_page, DIO_PAGES);
 165	ret = get_user_pages_fast(
 166		sdio->curr_user_address,		/* Where from? */
 167		nr_pages,			/* How many pages? */
 168		dio->rw == READ,		/* Write to memory? */
 169		&dio->pages[0]);		/* Put results here */
 170
 171	if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) {
 172		struct page *page = ZERO_PAGE(0);
 173		/*
 174		 * A memory fault, but the filesystem has some outstanding
 175		 * mapped blocks.  We need to use those blocks up to avoid
 176		 * leaking stale data in the file.
 177		 */
 178		if (dio->page_errors == 0)
 179			dio->page_errors = ret;
 180		page_cache_get(page);
 181		dio->pages[0] = page;
 182		sdio->head = 0;
 183		sdio->tail = 1;
 184		ret = 0;
 185		goto out;
 186	}
 187
 188	if (ret >= 0) {
 189		sdio->curr_user_address += ret * PAGE_SIZE;
 190		sdio->curr_page += ret;
 191		sdio->head = 0;
 192		sdio->tail = ret;
 193		ret = 0;
 194	}
 195out:
 196	return ret;	
 197}
 198
 199/*
 200 * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
 201 * buffered inside the dio so that we can call get_user_pages() against a
 202 * decent number of pages, less frequently.  To provide nicer use of the
 203 * L1 cache.
 204 */
 205static inline struct page *dio_get_page(struct dio *dio,
 206		struct dio_submit *sdio)
 207{
 208	if (dio_pages_present(sdio) == 0) {
 209		int ret;
 210
 211		ret = dio_refill_pages(dio, sdio);
 212		if (ret)
 213			return ERR_PTR(ret);
 214		BUG_ON(dio_pages_present(sdio) == 0);
 215	}
 216	return dio->pages[sdio->head++];
 217}
 218
 219/**
 220 * dio_complete() - called when all DIO BIO I/O has been completed
 221 * @offset: the byte offset in the file of the completed operation
 222 *
 223 * This releases locks as dictated by the locking type, lets interested parties
 224 * know that a DIO operation has completed, and calculates the resulting return
 225 * code for the operation.
 226 *
 227 * It lets the filesystem know if it registered an interest earlier via
 228 * get_block.  Pass the private field of the map buffer_head so that
 229 * filesystems can use it to hold additional state between get_block calls and
 230 * dio_complete.
 231 */
 232static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret, bool is_async)
 233{
 234	ssize_t transferred = 0;
 235
 236	/*
 237	 * AIO submission can race with bio completion to get here while
 238	 * expecting to have the last io completed by bio completion.
 239	 * In that case -EIOCBQUEUED is in fact not an error we want
 240	 * to preserve through this call.
 241	 */
 242	if (ret == -EIOCBQUEUED)
 243		ret = 0;
 244
 245	if (dio->result) {
 246		transferred = dio->result;
 247
 248		/* Check for short read case */
 249		if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
 250			transferred = dio->i_size - offset;
 251	}
 252
 253	if (ret == 0)
 254		ret = dio->page_errors;
 255	if (ret == 0)
 256		ret = dio->io_error;
 257	if (ret == 0)
 258		ret = transferred;
 259
 260	if (dio->end_io && dio->result) {
 261		dio->end_io(dio->iocb, offset, transferred,
 262			    dio->private, ret, is_async);
 263	} else {
 264		if (is_async)
 265			aio_complete(dio->iocb, ret, 0);
 266		inode_dio_done(dio->inode);
 267	}
 268
 269	return ret;
 270}
 271
 272static int dio_bio_complete(struct dio *dio, struct bio *bio);
 273/*
 274 * Asynchronous IO callback. 
 275 */
 276static void dio_bio_end_aio(struct bio *bio, int error)
 277{
 278	struct dio *dio = bio->bi_private;
 279	unsigned long remaining;
 280	unsigned long flags;
 281
 282	/* cleanup the bio */
 283	dio_bio_complete(dio, bio);
 284
 285	spin_lock_irqsave(&dio->bio_lock, flags);
 286	remaining = --dio->refcount;
 287	if (remaining == 1 && dio->waiter)
 288		wake_up_process(dio->waiter);
 289	spin_unlock_irqrestore(&dio->bio_lock, flags);
 290
 291	if (remaining == 0) {
 292		dio_complete(dio, dio->iocb->ki_pos, 0, true);
 293		kmem_cache_free(dio_cache, dio);
 294	}
 295}
 296
 297/*
 298 * The BIO completion handler simply queues the BIO up for the process-context
 299 * handler.
 300 *
 301 * During I/O bi_private points at the dio.  After I/O, bi_private is used to
 302 * implement a singly-linked list of completed BIOs, at dio->bio_list.
 303 */
 304static void dio_bio_end_io(struct bio *bio, int error)
 305{
 306	struct dio *dio = bio->bi_private;
 307	unsigned long flags;
 308
 309	spin_lock_irqsave(&dio->bio_lock, flags);
 310	bio->bi_private = dio->bio_list;
 311	dio->bio_list = bio;
 312	if (--dio->refcount == 1 && dio->waiter)
 313		wake_up_process(dio->waiter);
 314	spin_unlock_irqrestore(&dio->bio_lock, flags);
 315}
 316
 317/**
 318 * dio_end_io - handle the end io action for the given bio
 319 * @bio: The direct io bio thats being completed
 320 * @error: Error if there was one
 321 *
 322 * This is meant to be called by any filesystem that uses their own dio_submit_t
 323 * so that the DIO specific endio actions are dealt with after the filesystem
 324 * has done it's completion work.
 325 */
 326void dio_end_io(struct bio *bio, int error)
 327{
 328	struct dio *dio = bio->bi_private;
 329
 330	if (dio->is_async)
 331		dio_bio_end_aio(bio, error);
 332	else
 333		dio_bio_end_io(bio, error);
 334}
 335EXPORT_SYMBOL_GPL(dio_end_io);
 336
 337static inline void
 338dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
 339	      struct block_device *bdev,
 340	      sector_t first_sector, int nr_vecs)
 341{
 342	struct bio *bio;
 343
 344	/*
 345	 * bio_alloc() is guaranteed to return a bio when called with
 346	 * __GFP_WAIT and we request a valid number of vectors.
 347	 */
 348	bio = bio_alloc(GFP_KERNEL, nr_vecs);
 349
 350	bio->bi_bdev = bdev;
 351	bio->bi_sector = first_sector;
 352	if (dio->is_async)
 353		bio->bi_end_io = dio_bio_end_aio;
 354	else
 355		bio->bi_end_io = dio_bio_end_io;
 356
 357	sdio->bio = bio;
 358	sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
 359}
 360
 361/*
 362 * In the AIO read case we speculatively dirty the pages before starting IO.
 363 * During IO completion, any of these pages which happen to have been written
 364 * back will be redirtied by bio_check_pages_dirty().
 365 *
 366 * bios hold a dio reference between submit_bio and ->end_io.
 367 */
 368static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
 369{
 370	struct bio *bio = sdio->bio;
 371	unsigned long flags;
 372
 373	bio->bi_private = dio;
 374
 375	spin_lock_irqsave(&dio->bio_lock, flags);
 376	dio->refcount++;
 377	spin_unlock_irqrestore(&dio->bio_lock, flags);
 378
 379	if (dio->is_async && dio->rw == READ)
 380		bio_set_pages_dirty(bio);
 381
 382	if (sdio->submit_io)
 383		sdio->submit_io(dio->rw, bio, dio->inode,
 384			       sdio->logical_offset_in_bio);
 385	else
 386		submit_bio(dio->rw, bio);
 387
 388	sdio->bio = NULL;
 389	sdio->boundary = 0;
 390	sdio->logical_offset_in_bio = 0;
 391}
 392
 393/*
 394 * Release any resources in case of a failure
 395 */
 396static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
 397{
 398	while (dio_pages_present(sdio))
 399		page_cache_release(dio_get_page(dio, sdio));
 400}
 401
 402/*
 403 * Wait for the next BIO to complete.  Remove it and return it.  NULL is
 404 * returned once all BIOs have been completed.  This must only be called once
 405 * all bios have been issued so that dio->refcount can only decrease.  This
 406 * requires that that the caller hold a reference on the dio.
 407 */
 408static struct bio *dio_await_one(struct dio *dio)
 409{
 410	unsigned long flags;
 411	struct bio *bio = NULL;
 412
 413	spin_lock_irqsave(&dio->bio_lock, flags);
 414
 415	/*
 416	 * Wait as long as the list is empty and there are bios in flight.  bio
 417	 * completion drops the count, maybe adds to the list, and wakes while
 418	 * holding the bio_lock so we don't need set_current_state()'s barrier
 419	 * and can call it after testing our condition.
 420	 */
 421	while (dio->refcount > 1 && dio->bio_list == NULL) {
 422		__set_current_state(TASK_UNINTERRUPTIBLE);
 423		dio->waiter = current;
 424		spin_unlock_irqrestore(&dio->bio_lock, flags);
 425		io_schedule();
 426		/* wake up sets us TASK_RUNNING */
 427		spin_lock_irqsave(&dio->bio_lock, flags);
 428		dio->waiter = NULL;
 429	}
 430	if (dio->bio_list) {
 431		bio = dio->bio_list;
 432		dio->bio_list = bio->bi_private;
 433	}
 434	spin_unlock_irqrestore(&dio->bio_lock, flags);
 435	return bio;
 436}
 437
 438/*
 439 * Process one completed BIO.  No locks are held.
 440 */
 441static int dio_bio_complete(struct dio *dio, struct bio *bio)
 442{
 443	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 444	struct bio_vec *bvec = bio->bi_io_vec;
 445	int page_no;
 446
 447	if (!uptodate)
 448		dio->io_error = -EIO;
 449
 450	if (dio->is_async && dio->rw == READ) {
 451		bio_check_pages_dirty(bio);	/* transfers ownership */
 452	} else {
 453		for (page_no = 0; page_no < bio->bi_vcnt; page_no++) {
 454			struct page *page = bvec[page_no].bv_page;
 455
 456			if (dio->rw == READ && !PageCompound(page))
 457				set_page_dirty_lock(page);
 458			page_cache_release(page);
 459		}
 460		bio_put(bio);
 461	}
 462	return uptodate ? 0 : -EIO;
 463}
 464
 465/*
 466 * Wait on and process all in-flight BIOs.  This must only be called once
 467 * all bios have been issued so that the refcount can only decrease.
 468 * This just waits for all bios to make it through dio_bio_complete.  IO
 469 * errors are propagated through dio->io_error and should be propagated via
 470 * dio_complete().
 471 */
 472static void dio_await_completion(struct dio *dio)
 473{
 474	struct bio *bio;
 475	do {
 476		bio = dio_await_one(dio);
 477		if (bio)
 478			dio_bio_complete(dio, bio);
 479	} while (bio);
 480}
 481
 482/*
 483 * A really large O_DIRECT read or write can generate a lot of BIOs.  So
 484 * to keep the memory consumption sane we periodically reap any completed BIOs
 485 * during the BIO generation phase.
 486 *
 487 * This also helps to limit the peak amount of pinned userspace memory.
 488 */
 489static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
 490{
 491	int ret = 0;
 492
 493	if (sdio->reap_counter++ >= 64) {
 494		while (dio->bio_list) {
 495			unsigned long flags;
 496			struct bio *bio;
 497			int ret2;
 498
 499			spin_lock_irqsave(&dio->bio_lock, flags);
 500			bio = dio->bio_list;
 501			dio->bio_list = bio->bi_private;
 502			spin_unlock_irqrestore(&dio->bio_lock, flags);
 503			ret2 = dio_bio_complete(dio, bio);
 504			if (ret == 0)
 505				ret = ret2;
 506		}
 507		sdio->reap_counter = 0;
 508	}
 509	return ret;
 510}
 511
 512/*
 513 * Call into the fs to map some more disk blocks.  We record the current number
 514 * of available blocks at sdio->blocks_available.  These are in units of the
 515 * fs blocksize, (1 << inode->i_blkbits).
 516 *
 517 * The fs is allowed to map lots of blocks at once.  If it wants to do that,
 518 * it uses the passed inode-relative block number as the file offset, as usual.
 519 *
 520 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
 521 * has remaining to do.  The fs should not map more than this number of blocks.
 522 *
 523 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
 524 * indicate how much contiguous disk space has been made available at
 525 * bh->b_blocknr.
 526 *
 527 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
 528 * This isn't very efficient...
 529 *
 530 * In the case of filesystem holes: the fs may return an arbitrarily-large
 531 * hole by returning an appropriate value in b_size and by clearing
 532 * buffer_mapped().  However the direct-io code will only process holes one
 533 * block at a time - it will repeatedly call get_block() as it walks the hole.
 534 */
 535static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
 536			   struct buffer_head *map_bh)
 537{
 538	int ret;
 539	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
 540	sector_t fs_endblk;	/* Into file, in filesystem-sized blocks */
 541	unsigned long fs_count;	/* Number of filesystem-sized blocks */
 542	int create;
 543
 544	/*
 545	 * If there was a memory error and we've overwritten all the
 546	 * mapped blocks then we can now return that memory error
 547	 */
 548	ret = dio->page_errors;
 549	if (ret == 0) {
 550		BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
 551		fs_startblk = sdio->block_in_file >> sdio->blkfactor;
 552		fs_endblk = (sdio->final_block_in_request - 1) >>
 553					sdio->blkfactor;
 554		fs_count = fs_endblk - fs_startblk + 1;
 555
 556		map_bh->b_state = 0;
 557		map_bh->b_size = fs_count << dio->inode->i_blkbits;
 558
 559		/*
 560		 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
 561		 * forbid block creations: only overwrites are permitted.
 562		 * We will return early to the caller once we see an
 563		 * unmapped buffer head returned, and the caller will fall
 564		 * back to buffered I/O.
 565		 *
 566		 * Otherwise the decision is left to the get_blocks method,
 567		 * which may decide to handle it or also return an unmapped
 568		 * buffer head.
 569		 */
 570		create = dio->rw & WRITE;
 571		if (dio->flags & DIO_SKIP_HOLES) {
 572			if (sdio->block_in_file < (i_size_read(dio->inode) >>
 573							sdio->blkbits))
 574				create = 0;
 575		}
 576
 577		ret = (*sdio->get_block)(dio->inode, fs_startblk,
 578						map_bh, create);
 579
 580		/* Store for completion */
 581		dio->private = map_bh->b_private;
 582	}
 583	return ret;
 584}
 585
 586/*
 587 * There is no bio.  Make one now.
 588 */
 589static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
 590		sector_t start_sector, struct buffer_head *map_bh)
 591{
 592	sector_t sector;
 593	int ret, nr_pages;
 594
 595	ret = dio_bio_reap(dio, sdio);
 596	if (ret)
 597		goto out;
 598	sector = start_sector << (sdio->blkbits - 9);
 599	nr_pages = min(sdio->pages_in_io, bio_get_nr_vecs(map_bh->b_bdev));
 600	nr_pages = min(nr_pages, BIO_MAX_PAGES);
 601	BUG_ON(nr_pages <= 0);
 602	dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
 603	sdio->boundary = 0;
 604out:
 605	return ret;
 606}
 607
 608/*
 609 * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
 610 * that was successful then update final_block_in_bio and take a ref against
 611 * the just-added page.
 612 *
 613 * Return zero on success.  Non-zero means the caller needs to start a new BIO.
 614 */
 615static inline int dio_bio_add_page(struct dio_submit *sdio)
 616{
 617	int ret;
 618
 619	ret = bio_add_page(sdio->bio, sdio->cur_page,
 620			sdio->cur_page_len, sdio->cur_page_offset);
 621	if (ret == sdio->cur_page_len) {
 622		/*
 623		 * Decrement count only, if we are done with this page
 624		 */
 625		if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
 626			sdio->pages_in_io--;
 627		page_cache_get(sdio->cur_page);
 628		sdio->final_block_in_bio = sdio->cur_page_block +
 629			(sdio->cur_page_len >> sdio->blkbits);
 630		ret = 0;
 631	} else {
 632		ret = 1;
 633	}
 634	return ret;
 635}
 636		
 637/*
 638 * Put cur_page under IO.  The section of cur_page which is described by
 639 * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
 640 * starts on-disk at cur_page_block.
 641 *
 642 * We take a ref against the page here (on behalf of its presence in the bio).
 643 *
 644 * The caller of this function is responsible for removing cur_page from the
 645 * dio, and for dropping the refcount which came from that presence.
 646 */
 647static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
 648		struct buffer_head *map_bh)
 649{
 650	int ret = 0;
 651
 652	if (sdio->bio) {
 653		loff_t cur_offset = sdio->cur_page_fs_offset;
 654		loff_t bio_next_offset = sdio->logical_offset_in_bio +
 655			sdio->bio->bi_size;
 656
 657		/*
 658		 * See whether this new request is contiguous with the old.
 659		 *
 660		 * Btrfs cannot handle having logically non-contiguous requests
 661		 * submitted.  For example if you have
 662		 *
 663		 * Logical:  [0-4095][HOLE][8192-12287]
 664		 * Physical: [0-4095]      [4096-8191]
 665		 *
 666		 * We cannot submit those pages together as one BIO.  So if our
 667		 * current logical offset in the file does not equal what would
 668		 * be the next logical offset in the bio, submit the bio we
 669		 * have.
 670		 */
 671		if (sdio->final_block_in_bio != sdio->cur_page_block ||
 672		    cur_offset != bio_next_offset)
 673			dio_bio_submit(dio, sdio);
 674		/*
 675		 * Submit now if the underlying fs is about to perform a
 676		 * metadata read
 677		 */
 678		else if (sdio->boundary)
 679			dio_bio_submit(dio, sdio);
 680	}
 681
 682	if (sdio->bio == NULL) {
 683		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
 684		if (ret)
 685			goto out;
 686	}
 687
 688	if (dio_bio_add_page(sdio) != 0) {
 689		dio_bio_submit(dio, sdio);
 690		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
 691		if (ret == 0) {
 692			ret = dio_bio_add_page(sdio);
 693			BUG_ON(ret != 0);
 694		}
 695	}
 696out:
 697	return ret;
 698}
 699
 700/*
 701 * An autonomous function to put a chunk of a page under deferred IO.
 702 *
 703 * The caller doesn't actually know (or care) whether this piece of page is in
 704 * a BIO, or is under IO or whatever.  We just take care of all possible 
 705 * situations here.  The separation between the logic of do_direct_IO() and
 706 * that of submit_page_section() is important for clarity.  Please don't break.
 707 *
 708 * The chunk of page starts on-disk at blocknr.
 709 *
 710 * We perform deferred IO, by recording the last-submitted page inside our
 711 * private part of the dio structure.  If possible, we just expand the IO
 712 * across that page here.
 713 *
 714 * If that doesn't work out then we put the old page into the bio and add this
 715 * page to the dio instead.
 716 */
 717static inline int
 718submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
 719		    unsigned offset, unsigned len, sector_t blocknr,
 720		    struct buffer_head *map_bh)
 721{
 722	int ret = 0;
 723
 724	if (dio->rw & WRITE) {
 725		/*
 726		 * Read accounting is performed in submit_bio()
 727		 */
 728		task_io_account_write(len);
 729	}
 730
 731	/*
 732	 * Can we just grow the current page's presence in the dio?
 733	 */
 734	if (sdio->cur_page == page &&
 735	    sdio->cur_page_offset + sdio->cur_page_len == offset &&
 736	    sdio->cur_page_block +
 737	    (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
 738		sdio->cur_page_len += len;
 739
 740		/*
 741		 * If sdio->boundary then we want to schedule the IO now to
 742		 * avoid metadata seeks.
 743		 */
 744		if (sdio->boundary) {
 745			ret = dio_send_cur_page(dio, sdio, map_bh);
 746			page_cache_release(sdio->cur_page);
 747			sdio->cur_page = NULL;
 748		}
 749		goto out;
 750	}
 751
 752	/*
 753	 * If there's a deferred page already there then send it.
 754	 */
 755	if (sdio->cur_page) {
 756		ret = dio_send_cur_page(dio, sdio, map_bh);
 757		page_cache_release(sdio->cur_page);
 758		sdio->cur_page = NULL;
 759		if (ret)
 760			goto out;
 761	}
 762
 763	page_cache_get(page);		/* It is in dio */
 764	sdio->cur_page = page;
 765	sdio->cur_page_offset = offset;
 766	sdio->cur_page_len = len;
 767	sdio->cur_page_block = blocknr;
 768	sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
 769out:
 770	return ret;
 771}
 772
 773/*
 774 * Clean any dirty buffers in the blockdev mapping which alias newly-created
 775 * file blocks.  Only called for S_ISREG files - blockdevs do not set
 776 * buffer_new
 777 */
 778static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh)
 779{
 780	unsigned i;
 781	unsigned nblocks;
 782
 783	nblocks = map_bh->b_size >> dio->inode->i_blkbits;
 784
 785	for (i = 0; i < nblocks; i++) {
 786		unmap_underlying_metadata(map_bh->b_bdev,
 787					  map_bh->b_blocknr + i);
 788	}
 789}
 790
 791/*
 792 * If we are not writing the entire block and get_block() allocated
 793 * the block for us, we need to fill-in the unused portion of the
 794 * block with zeros. This happens only if user-buffer, fileoffset or
 795 * io length is not filesystem block-size multiple.
 796 *
 797 * `end' is zero if we're doing the start of the IO, 1 at the end of the
 798 * IO.
 799 */
 800static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
 801		int end, struct buffer_head *map_bh)
 802{
 803	unsigned dio_blocks_per_fs_block;
 804	unsigned this_chunk_blocks;	/* In dio_blocks */
 805	unsigned this_chunk_bytes;
 806	struct page *page;
 807
 808	sdio->start_zero_done = 1;
 809	if (!sdio->blkfactor || !buffer_new(map_bh))
 810		return;
 811
 812	dio_blocks_per_fs_block = 1 << sdio->blkfactor;
 813	this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
 814
 815	if (!this_chunk_blocks)
 816		return;
 817
 818	/*
 819	 * We need to zero out part of an fs block.  It is either at the
 820	 * beginning or the end of the fs block.
 821	 */
 822	if (end) 
 823		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
 824
 825	this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
 826
 827	page = ZERO_PAGE(0);
 828	if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
 829				sdio->next_block_for_io, map_bh))
 830		return;
 831
 832	sdio->next_block_for_io += this_chunk_blocks;
 833}
 834
 835/*
 836 * Walk the user pages, and the file, mapping blocks to disk and generating
 837 * a sequence of (page,offset,len,block) mappings.  These mappings are injected
 838 * into submit_page_section(), which takes care of the next stage of submission
 839 *
 840 * Direct IO against a blockdev is different from a file.  Because we can
 841 * happily perform page-sized but 512-byte aligned IOs.  It is important that
 842 * blockdev IO be able to have fine alignment and large sizes.
 843 *
 844 * So what we do is to permit the ->get_block function to populate bh.b_size
 845 * with the size of IO which is permitted at this offset and this i_blkbits.
 846 *
 847 * For best results, the blockdev should be set up with 512-byte i_blkbits and
 848 * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
 849 * fine alignment but still allows this function to work in PAGE_SIZE units.
 850 */
 851static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
 852			struct buffer_head *map_bh)
 853{
 854	const unsigned blkbits = sdio->blkbits;
 855	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
 856	struct page *page;
 857	unsigned block_in_page;
 858	int ret = 0;
 859
 860	/* The I/O can start at any block offset within the first page */
 861	block_in_page = sdio->first_block_in_page;
 862
 863	while (sdio->block_in_file < sdio->final_block_in_request) {
 864		page = dio_get_page(dio, sdio);
 865		if (IS_ERR(page)) {
 866			ret = PTR_ERR(page);
 867			goto out;
 868		}
 869
 870		while (block_in_page < blocks_per_page) {
 871			unsigned offset_in_page = block_in_page << blkbits;
 872			unsigned this_chunk_bytes;	/* # of bytes mapped */
 873			unsigned this_chunk_blocks;	/* # of blocks */
 874			unsigned u;
 875
 876			if (sdio->blocks_available == 0) {
 877				/*
 878				 * Need to go and map some more disk
 879				 */
 880				unsigned long blkmask;
 881				unsigned long dio_remainder;
 882
 883				ret = get_more_blocks(dio, sdio, map_bh);
 884				if (ret) {
 885					page_cache_release(page);
 886					goto out;
 887				}
 888				if (!buffer_mapped(map_bh))
 889					goto do_holes;
 890
 891				sdio->blocks_available =
 892						map_bh->b_size >> sdio->blkbits;
 893				sdio->next_block_for_io =
 894					map_bh->b_blocknr << sdio->blkfactor;
 895				if (buffer_new(map_bh))
 896					clean_blockdev_aliases(dio, map_bh);
 897
 898				if (!sdio->blkfactor)
 899					goto do_holes;
 900
 901				blkmask = (1 << sdio->blkfactor) - 1;
 902				dio_remainder = (sdio->block_in_file & blkmask);
 903
 904				/*
 905				 * If we are at the start of IO and that IO
 906				 * starts partway into a fs-block,
 907				 * dio_remainder will be non-zero.  If the IO
 908				 * is a read then we can simply advance the IO
 909				 * cursor to the first block which is to be
 910				 * read.  But if the IO is a write and the
 911				 * block was newly allocated we cannot do that;
 912				 * the start of the fs block must be zeroed out
 913				 * on-disk
 914				 */
 915				if (!buffer_new(map_bh))
 916					sdio->next_block_for_io += dio_remainder;
 917				sdio->blocks_available -= dio_remainder;
 918			}
 919do_holes:
 920			/* Handle holes */
 921			if (!buffer_mapped(map_bh)) {
 922				loff_t i_size_aligned;
 923
 924				/* AKPM: eargh, -ENOTBLK is a hack */
 925				if (dio->rw & WRITE) {
 926					page_cache_release(page);
 927					return -ENOTBLK;
 928				}
 929
 930				/*
 931				 * Be sure to account for a partial block as the
 932				 * last block in the file
 933				 */
 934				i_size_aligned = ALIGN(i_size_read(dio->inode),
 935							1 << blkbits);
 936				if (sdio->block_in_file >=
 937						i_size_aligned >> blkbits) {
 938					/* We hit eof */
 939					page_cache_release(page);
 940					goto out;
 941				}
 942				zero_user(page, block_in_page << blkbits,
 943						1 << blkbits);
 944				sdio->block_in_file++;
 945				block_in_page++;
 946				goto next_block;
 947			}
 948
 949			/*
 950			 * If we're performing IO which has an alignment which
 951			 * is finer than the underlying fs, go check to see if
 952			 * we must zero out the start of this block.
 953			 */
 954			if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
 955				dio_zero_block(dio, sdio, 0, map_bh);
 956
 957			/*
 958			 * Work out, in this_chunk_blocks, how much disk we
 959			 * can add to this page
 960			 */
 961			this_chunk_blocks = sdio->blocks_available;
 962			u = (PAGE_SIZE - offset_in_page) >> blkbits;
 963			if (this_chunk_blocks > u)
 964				this_chunk_blocks = u;
 965			u = sdio->final_block_in_request - sdio->block_in_file;
 966			if (this_chunk_blocks > u)
 967				this_chunk_blocks = u;
 968			this_chunk_bytes = this_chunk_blocks << blkbits;
 969			BUG_ON(this_chunk_bytes == 0);
 970
 971			sdio->boundary = buffer_boundary(map_bh);
 972			ret = submit_page_section(dio, sdio, page,
 973						  offset_in_page,
 974						  this_chunk_bytes,
 975						  sdio->next_block_for_io,
 976						  map_bh);
 977			if (ret) {
 978				page_cache_release(page);
 979				goto out;
 980			}
 981			sdio->next_block_for_io += this_chunk_blocks;
 982
 983			sdio->block_in_file += this_chunk_blocks;
 984			block_in_page += this_chunk_blocks;
 985			sdio->blocks_available -= this_chunk_blocks;
 986next_block:
 987			BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
 988			if (sdio->block_in_file == sdio->final_block_in_request)
 989				break;
 990		}
 991
 992		/* Drop the ref which was taken in get_user_pages() */
 993		page_cache_release(page);
 994		block_in_page = 0;
 995	}
 996out:
 997	return ret;
 998}
 999
1000static inline int drop_refcount(struct dio *dio)
1001{
1002	int ret2;
1003	unsigned long flags;
1004
1005	/*
1006	 * Sync will always be dropping the final ref and completing the
1007	 * operation.  AIO can if it was a broken operation described above or
1008	 * in fact if all the bios race to complete before we get here.  In
1009	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1010	 * return code that the caller will hand to aio_complete().
1011	 *
1012	 * This is managed by the bio_lock instead of being an atomic_t so that
1013	 * completion paths can drop their ref and use the remaining count to
1014	 * decide to wake the submission path atomically.
1015	 */
1016	spin_lock_irqsave(&dio->bio_lock, flags);
1017	ret2 = --dio->refcount;
1018	spin_unlock_irqrestore(&dio->bio_lock, flags);
1019	return ret2;
1020}
1021
1022/*
1023 * This is a library function for use by filesystem drivers.
1024 *
1025 * The locking rules are governed by the flags parameter:
1026 *  - if the flags value contains DIO_LOCKING we use a fancy locking
1027 *    scheme for dumb filesystems.
1028 *    For writes this function is called under i_mutex and returns with
1029 *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1030 *    taken and dropped again before returning.
1031 *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1032 *    internal locking but rather rely on the filesystem to synchronize
1033 *    direct I/O reads/writes versus each other and truncate.
1034 *
1035 * To help with locking against truncate we incremented the i_dio_count
1036 * counter before starting direct I/O, and decrement it once we are done.
1037 * Truncate can wait for it to reach zero to provide exclusion.  It is
1038 * expected that filesystem provide exclusion between new direct I/O
1039 * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1040 * but other filesystems need to take care of this on their own.
1041 *
1042 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1043 * is always inlined. Otherwise gcc is unable to split the structure into
1044 * individual fields and will generate much worse code. This is important
1045 * for the whole file.
1046 */
1047static inline ssize_t
1048do_blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1049	struct block_device *bdev, const struct iovec *iov, loff_t offset, 
1050	unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1051	dio_submit_t submit_io,	int flags)
1052{
1053	int seg;
1054	size_t size;
1055	unsigned long addr;
1056	unsigned blkbits = inode->i_blkbits;
1057	unsigned blocksize_mask = (1 << blkbits) - 1;
1058	ssize_t retval = -EINVAL;
1059	loff_t end = offset;
1060	struct dio *dio;
1061	struct dio_submit sdio = { 0, };
1062	unsigned long user_addr;
1063	size_t bytes;
1064	struct buffer_head map_bh = { 0, };
1065
1066	if (rw & WRITE)
1067		rw = WRITE_ODIRECT;
1068
1069	/*
1070	 * Avoid references to bdev if not absolutely needed to give
1071	 * the early prefetch in the caller enough time.
1072	 */
1073
1074	if (offset & blocksize_mask) {
1075		if (bdev)
1076			blkbits = blksize_bits(bdev_logical_block_size(bdev));
1077		blocksize_mask = (1 << blkbits) - 1;
1078		if (offset & blocksize_mask)
1079			goto out;
1080	}
1081
1082	/* Check the memory alignment.  Blocks cannot straddle pages */
1083	for (seg = 0; seg < nr_segs; seg++) {
1084		addr = (unsigned long)iov[seg].iov_base;
1085		size = iov[seg].iov_len;
1086		end += size;
1087		if (unlikely((addr & blocksize_mask) ||
1088			     (size & blocksize_mask))) {
1089			if (bdev)
1090				blkbits = blksize_bits(
1091					 bdev_logical_block_size(bdev));
1092			blocksize_mask = (1 << blkbits) - 1;
1093			if ((addr & blocksize_mask) || (size & blocksize_mask))
1094				goto out;
1095		}
1096	}
1097
1098	/* watch out for a 0 len io from a tricksy fs */
1099	if (rw == READ && end == offset)
1100		return 0;
1101
1102	dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1103	retval = -ENOMEM;
1104	if (!dio)
1105		goto out;
1106	/*
1107	 * Believe it or not, zeroing out the page array caused a .5%
1108	 * performance regression in a database benchmark.  So, we take
1109	 * care to only zero out what's needed.
1110	 */
1111	memset(dio, 0, offsetof(struct dio, pages));
1112
1113	dio->flags = flags;
1114	if (dio->flags & DIO_LOCKING) {
1115		if (rw == READ) {
1116			struct address_space *mapping =
1117					iocb->ki_filp->f_mapping;
1118
1119			/* will be released by direct_io_worker */
1120			mutex_lock(&inode->i_mutex);
1121
1122			retval = filemap_write_and_wait_range(mapping, offset,
1123							      end - 1);
1124			if (retval) {
1125				mutex_unlock(&inode->i_mutex);
1126				kmem_cache_free(dio_cache, dio);
1127				goto out;
1128			}
1129		}
1130	}
1131
1132	/*
1133	 * Will be decremented at I/O completion time.
1134	 */
1135	atomic_inc(&inode->i_dio_count);
1136
1137	/*
1138	 * For file extending writes updating i_size before data
1139	 * writeouts complete can expose uninitialized blocks. So
1140	 * even for AIO, we need to wait for i/o to complete before
1141	 * returning in this case.
1142	 */
1143	dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) &&
1144		(end > i_size_read(inode)));
1145
1146	retval = 0;
1147
1148	dio->inode = inode;
1149	dio->rw = rw;
1150	sdio.blkbits = blkbits;
1151	sdio.blkfactor = inode->i_blkbits - blkbits;
1152	sdio.block_in_file = offset >> blkbits;
1153
1154	sdio.get_block = get_block;
1155	dio->end_io = end_io;
1156	sdio.submit_io = submit_io;
1157	sdio.final_block_in_bio = -1;
1158	sdio.next_block_for_io = -1;
1159
1160	dio->iocb = iocb;
1161	dio->i_size = i_size_read(inode);
1162
1163	spin_lock_init(&dio->bio_lock);
1164	dio->refcount = 1;
1165
1166	/*
1167	 * In case of non-aligned buffers, we may need 2 more
1168	 * pages since we need to zero out first and last block.
1169	 */
1170	if (unlikely(sdio.blkfactor))
1171		sdio.pages_in_io = 2;
1172
1173	for (seg = 0; seg < nr_segs; seg++) {
1174		user_addr = (unsigned long)iov[seg].iov_base;
1175		sdio.pages_in_io +=
1176			((user_addr + iov[seg].iov_len + PAGE_SIZE-1) /
1177				PAGE_SIZE - user_addr / PAGE_SIZE);
1178	}
1179
1180	for (seg = 0; seg < nr_segs; seg++) {
1181		user_addr = (unsigned long)iov[seg].iov_base;
1182		sdio.size += bytes = iov[seg].iov_len;
1183
1184		/* Index into the first page of the first block */
1185		sdio.first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
1186		sdio.final_block_in_request = sdio.block_in_file +
1187						(bytes >> blkbits);
1188		/* Page fetching state */
1189		sdio.head = 0;
1190		sdio.tail = 0;
1191		sdio.curr_page = 0;
1192
1193		sdio.total_pages = 0;
1194		if (user_addr & (PAGE_SIZE-1)) {
1195			sdio.total_pages++;
1196			bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
1197		}
1198		sdio.total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1199		sdio.curr_user_address = user_addr;
1200
1201		retval = do_direct_IO(dio, &sdio, &map_bh);
1202
1203		dio->result += iov[seg].iov_len -
1204			((sdio.final_block_in_request - sdio.block_in_file) <<
1205					blkbits);
1206
1207		if (retval) {
1208			dio_cleanup(dio, &sdio);
1209			break;
1210		}
1211	} /* end iovec loop */
1212
1213	if (retval == -ENOTBLK) {
1214		/*
1215		 * The remaining part of the request will be
1216		 * be handled by buffered I/O when we return
1217		 */
1218		retval = 0;
1219	}
1220	/*
1221	 * There may be some unwritten disk at the end of a part-written
1222	 * fs-block-sized block.  Go zero that now.
1223	 */
1224	dio_zero_block(dio, &sdio, 1, &map_bh);
1225
1226	if (sdio.cur_page) {
1227		ssize_t ret2;
1228
1229		ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1230		if (retval == 0)
1231			retval = ret2;
1232		page_cache_release(sdio.cur_page);
1233		sdio.cur_page = NULL;
1234	}
1235	if (sdio.bio)
1236		dio_bio_submit(dio, &sdio);
1237
1238	/*
1239	 * It is possible that, we return short IO due to end of file.
1240	 * In that case, we need to release all the pages we got hold on.
1241	 */
1242	dio_cleanup(dio, &sdio);
1243
1244	/*
1245	 * All block lookups have been performed. For READ requests
1246	 * we can let i_mutex go now that its achieved its purpose
1247	 * of protecting us from looking up uninitialized blocks.
1248	 */
1249	if (rw == READ && (dio->flags & DIO_LOCKING))
1250		mutex_unlock(&dio->inode->i_mutex);
1251
1252	/*
1253	 * The only time we want to leave bios in flight is when a successful
1254	 * partial aio read or full aio write have been setup.  In that case
1255	 * bio completion will call aio_complete.  The only time it's safe to
1256	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1257	 * This had *better* be the only place that raises -EIOCBQUEUED.
1258	 */
1259	BUG_ON(retval == -EIOCBQUEUED);
1260	if (dio->is_async && retval == 0 && dio->result &&
1261	    ((rw & READ) || (dio->result == sdio.size)))
1262		retval = -EIOCBQUEUED;
1263
1264	if (retval != -EIOCBQUEUED)
1265		dio_await_completion(dio);
1266
1267	if (drop_refcount(dio) == 0) {
1268		retval = dio_complete(dio, offset, retval, false);
1269		kmem_cache_free(dio_cache, dio);
1270	} else
1271		BUG_ON(retval != -EIOCBQUEUED);
1272
1273out:
1274	return retval;
1275}
1276
1277ssize_t
1278__blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1279	struct block_device *bdev, const struct iovec *iov, loff_t offset,
1280	unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1281	dio_submit_t submit_io,	int flags)
1282{
1283	/*
1284	 * The block device state is needed in the end to finally
1285	 * submit everything.  Since it's likely to be cache cold
1286	 * prefetch it here as first thing to hide some of the
1287	 * latency.
1288	 *
1289	 * Attempt to prefetch the pieces we likely need later.
1290	 */
1291	prefetch(&bdev->bd_disk->part_tbl);
1292	prefetch(bdev->bd_queue);
1293	prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1294
1295	return do_blockdev_direct_IO(rw, iocb, inode, bdev, iov, offset,
1296				     nr_segs, get_block, end_io,
1297				     submit_io, flags);
1298}
1299
1300EXPORT_SYMBOL(__blockdev_direct_IO);
1301
1302static __init int dio_init(void)
1303{
1304	dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1305	return 0;
1306}
1307module_init(dio_init)