Linux Audio

Check our new training course

Loading...
   1/*
   2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License version 2 as
   6 * published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  11 * GNU General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public Licens
  14 * along with this program; if not, write to the Free Software
  15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
  16 *
  17 */
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/bio.h>
  21#include <linux/blkdev.h>
  22#include <linux/iocontext.h>
  23#include <linux/slab.h>
  24#include <linux/init.h>
  25#include <linux/kernel.h>
  26#include <linux/export.h>
  27#include <linux/mempool.h>
  28#include <linux/workqueue.h>
  29#include <linux/cgroup.h>
  30#include <scsi/sg.h>		/* for struct sg_iovec */
  31
  32#include <trace/events/block.h>
  33
  34/*
  35 * Test patch to inline a certain number of bi_io_vec's inside the bio
  36 * itself, to shrink a bio data allocation from two mempool calls to one
  37 */
  38#define BIO_INLINE_VECS		4
  39
  40static mempool_t *bio_split_pool __read_mostly;
  41
  42/*
  43 * if you change this list, also change bvec_alloc or things will
  44 * break badly! cannot be bigger than what you can fit into an
  45 * unsigned short
  46 */
  47#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
  48static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
  49	BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
  50};
  51#undef BV
  52
  53/*
  54 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
  55 * IO code that does not need private memory pools.
  56 */
  57struct bio_set *fs_bio_set;
  58
  59/*
  60 * Our slab pool management
  61 */
  62struct bio_slab {
  63	struct kmem_cache *slab;
  64	unsigned int slab_ref;
  65	unsigned int slab_size;
  66	char name[8];
  67};
  68static DEFINE_MUTEX(bio_slab_lock);
  69static struct bio_slab *bio_slabs;
  70static unsigned int bio_slab_nr, bio_slab_max;
  71
  72static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
  73{
  74	unsigned int sz = sizeof(struct bio) + extra_size;
  75	struct kmem_cache *slab = NULL;
  76	struct bio_slab *bslab;
  77	unsigned int i, entry = -1;
  78
  79	mutex_lock(&bio_slab_lock);
  80
  81	i = 0;
  82	while (i < bio_slab_nr) {
  83		bslab = &bio_slabs[i];
  84
  85		if (!bslab->slab && entry == -1)
  86			entry = i;
  87		else if (bslab->slab_size == sz) {
  88			slab = bslab->slab;
  89			bslab->slab_ref++;
  90			break;
  91		}
  92		i++;
  93	}
  94
  95	if (slab)
  96		goto out_unlock;
  97
  98	if (bio_slab_nr == bio_slab_max && entry == -1) {
  99		bio_slab_max <<= 1;
 100		bio_slabs = krealloc(bio_slabs,
 101				     bio_slab_max * sizeof(struct bio_slab),
 102				     GFP_KERNEL);
 103		if (!bio_slabs)
 104			goto out_unlock;
 105	}
 106	if (entry == -1)
 107		entry = bio_slab_nr++;
 108
 109	bslab = &bio_slabs[entry];
 110
 111	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
 112	slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
 113	if (!slab)
 114		goto out_unlock;
 115
 116	printk(KERN_INFO "bio: create slab <%s> at %d\n", bslab->name, entry);
 117	bslab->slab = slab;
 118	bslab->slab_ref = 1;
 119	bslab->slab_size = sz;
 120out_unlock:
 121	mutex_unlock(&bio_slab_lock);
 122	return slab;
 123}
 124
 125static void bio_put_slab(struct bio_set *bs)
 126{
 127	struct bio_slab *bslab = NULL;
 128	unsigned int i;
 129
 130	mutex_lock(&bio_slab_lock);
 131
 132	for (i = 0; i < bio_slab_nr; i++) {
 133		if (bs->bio_slab == bio_slabs[i].slab) {
 134			bslab = &bio_slabs[i];
 135			break;
 136		}
 137	}
 138
 139	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
 140		goto out;
 141
 142	WARN_ON(!bslab->slab_ref);
 143
 144	if (--bslab->slab_ref)
 145		goto out;
 146
 147	kmem_cache_destroy(bslab->slab);
 148	bslab->slab = NULL;
 149
 150out:
 151	mutex_unlock(&bio_slab_lock);
 152}
 153
 154unsigned int bvec_nr_vecs(unsigned short idx)
 155{
 156	return bvec_slabs[idx].nr_vecs;
 157}
 158
 159void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx)
 160{
 161	BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
 162
 163	if (idx == BIOVEC_MAX_IDX)
 164		mempool_free(bv, bs->bvec_pool);
 165	else {
 166		struct biovec_slab *bvs = bvec_slabs + idx;
 167
 168		kmem_cache_free(bvs->slab, bv);
 169	}
 170}
 171
 172struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx,
 173			      struct bio_set *bs)
 174{
 175	struct bio_vec *bvl;
 176
 177	/*
 178	 * see comment near bvec_array define!
 179	 */
 180	switch (nr) {
 181	case 1:
 182		*idx = 0;
 183		break;
 184	case 2 ... 4:
 185		*idx = 1;
 186		break;
 187	case 5 ... 16:
 188		*idx = 2;
 189		break;
 190	case 17 ... 64:
 191		*idx = 3;
 192		break;
 193	case 65 ... 128:
 194		*idx = 4;
 195		break;
 196	case 129 ... BIO_MAX_PAGES:
 197		*idx = 5;
 198		break;
 199	default:
 200		return NULL;
 201	}
 202
 203	/*
 204	 * idx now points to the pool we want to allocate from. only the
 205	 * 1-vec entry pool is mempool backed.
 206	 */
 207	if (*idx == BIOVEC_MAX_IDX) {
 208fallback:
 209		bvl = mempool_alloc(bs->bvec_pool, gfp_mask);
 210	} else {
 211		struct biovec_slab *bvs = bvec_slabs + *idx;
 212		gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
 213
 214		/*
 215		 * Make this allocation restricted and don't dump info on
 216		 * allocation failures, since we'll fallback to the mempool
 217		 * in case of failure.
 218		 */
 219		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
 220
 221		/*
 222		 * Try a slab allocation. If this fails and __GFP_WAIT
 223		 * is set, retry with the 1-entry mempool
 224		 */
 225		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
 226		if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
 227			*idx = BIOVEC_MAX_IDX;
 228			goto fallback;
 229		}
 230	}
 231
 232	return bvl;
 233}
 234
 235void bio_free(struct bio *bio, struct bio_set *bs)
 236{
 237	void *p;
 238
 239	if (bio_has_allocated_vec(bio))
 240		bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio));
 241
 242	if (bio_integrity(bio))
 243		bio_integrity_free(bio, bs);
 244
 245	/*
 246	 * If we have front padding, adjust the bio pointer before freeing
 247	 */
 248	p = bio;
 249	if (bs->front_pad)
 250		p -= bs->front_pad;
 251
 252	mempool_free(p, bs->bio_pool);
 253}
 254EXPORT_SYMBOL(bio_free);
 255
 256void bio_init(struct bio *bio)
 257{
 258	memset(bio, 0, sizeof(*bio));
 259	bio->bi_flags = 1 << BIO_UPTODATE;
 260	atomic_set(&bio->bi_cnt, 1);
 261}
 262EXPORT_SYMBOL(bio_init);
 263
 264/**
 265 * bio_alloc_bioset - allocate a bio for I/O
 266 * @gfp_mask:   the GFP_ mask given to the slab allocator
 267 * @nr_iovecs:	number of iovecs to pre-allocate
 268 * @bs:		the bio_set to allocate from.
 269 *
 270 * Description:
 271 *   bio_alloc_bioset will try its own mempool to satisfy the allocation.
 272 *   If %__GFP_WAIT is set then we will block on the internal pool waiting
 273 *   for a &struct bio to become free.
 274 *
 275 *   Note that the caller must set ->bi_destructor on successful return
 276 *   of a bio, to do the appropriate freeing of the bio once the reference
 277 *   count drops to zero.
 278 **/
 279struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
 280{
 281	unsigned long idx = BIO_POOL_NONE;
 282	struct bio_vec *bvl = NULL;
 283	struct bio *bio;
 284	void *p;
 285
 286	p = mempool_alloc(bs->bio_pool, gfp_mask);
 287	if (unlikely(!p))
 288		return NULL;
 289	bio = p + bs->front_pad;
 290
 291	bio_init(bio);
 292
 293	if (unlikely(!nr_iovecs))
 294		goto out_set;
 295
 296	if (nr_iovecs <= BIO_INLINE_VECS) {
 297		bvl = bio->bi_inline_vecs;
 298		nr_iovecs = BIO_INLINE_VECS;
 299	} else {
 300		bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
 301		if (unlikely(!bvl))
 302			goto err_free;
 303
 304		nr_iovecs = bvec_nr_vecs(idx);
 305	}
 306out_set:
 307	bio->bi_flags |= idx << BIO_POOL_OFFSET;
 308	bio->bi_max_vecs = nr_iovecs;
 309	bio->bi_io_vec = bvl;
 310	return bio;
 311
 312err_free:
 313	mempool_free(p, bs->bio_pool);
 314	return NULL;
 315}
 316EXPORT_SYMBOL(bio_alloc_bioset);
 317
 318static void bio_fs_destructor(struct bio *bio)
 319{
 320	bio_free(bio, fs_bio_set);
 321}
 322
 323/**
 324 *	bio_alloc - allocate a new bio, memory pool backed
 325 *	@gfp_mask: allocation mask to use
 326 *	@nr_iovecs: number of iovecs
 327 *
 328 *	bio_alloc will allocate a bio and associated bio_vec array that can hold
 329 *	at least @nr_iovecs entries. Allocations will be done from the
 330 *	fs_bio_set. Also see @bio_alloc_bioset and @bio_kmalloc.
 331 *
 332 *	If %__GFP_WAIT is set, then bio_alloc will always be able to allocate
 333 *	a bio. This is due to the mempool guarantees. To make this work, callers
 334 *	must never allocate more than 1 bio at a time from this pool. Callers
 335 *	that need to allocate more than 1 bio must always submit the previously
 336 *	allocated bio for IO before attempting to allocate a new one. Failure to
 337 *	do so can cause livelocks under memory pressure.
 338 *
 339 *	RETURNS:
 340 *	Pointer to new bio on success, NULL on failure.
 341 */
 342struct bio *bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
 343{
 344	struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
 345
 346	if (bio)
 347		bio->bi_destructor = bio_fs_destructor;
 348
 349	return bio;
 350}
 351EXPORT_SYMBOL(bio_alloc);
 352
 353static void bio_kmalloc_destructor(struct bio *bio)
 354{
 355	if (bio_integrity(bio))
 356		bio_integrity_free(bio, fs_bio_set);
 357	kfree(bio);
 358}
 359
 360/**
 361 * bio_kmalloc - allocate a bio for I/O using kmalloc()
 362 * @gfp_mask:   the GFP_ mask given to the slab allocator
 363 * @nr_iovecs:	number of iovecs to pre-allocate
 364 *
 365 * Description:
 366 *   Allocate a new bio with @nr_iovecs bvecs.  If @gfp_mask contains
 367 *   %__GFP_WAIT, the allocation is guaranteed to succeed.
 368 *
 369 **/
 370struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned int nr_iovecs)
 371{
 372	struct bio *bio;
 373
 374	if (nr_iovecs > UIO_MAXIOV)
 375		return NULL;
 376
 377	bio = kmalloc(sizeof(struct bio) + nr_iovecs * sizeof(struct bio_vec),
 378		      gfp_mask);
 379	if (unlikely(!bio))
 380		return NULL;
 381
 382	bio_init(bio);
 383	bio->bi_flags |= BIO_POOL_NONE << BIO_POOL_OFFSET;
 384	bio->bi_max_vecs = nr_iovecs;
 385	bio->bi_io_vec = bio->bi_inline_vecs;
 386	bio->bi_destructor = bio_kmalloc_destructor;
 387
 388	return bio;
 389}
 390EXPORT_SYMBOL(bio_kmalloc);
 391
 392void zero_fill_bio(struct bio *bio)
 393{
 394	unsigned long flags;
 395	struct bio_vec *bv;
 396	int i;
 397
 398	bio_for_each_segment(bv, bio, i) {
 399		char *data = bvec_kmap_irq(bv, &flags);
 400		memset(data, 0, bv->bv_len);
 401		flush_dcache_page(bv->bv_page);
 402		bvec_kunmap_irq(data, &flags);
 403	}
 404}
 405EXPORT_SYMBOL(zero_fill_bio);
 406
 407/**
 408 * bio_put - release a reference to a bio
 409 * @bio:   bio to release reference to
 410 *
 411 * Description:
 412 *   Put a reference to a &struct bio, either one you have gotten with
 413 *   bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
 414 **/
 415void bio_put(struct bio *bio)
 416{
 417	BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
 418
 419	/*
 420	 * last put frees it
 421	 */
 422	if (atomic_dec_and_test(&bio->bi_cnt)) {
 423		bio_disassociate_task(bio);
 424		bio->bi_next = NULL;
 425		bio->bi_destructor(bio);
 426	}
 427}
 428EXPORT_SYMBOL(bio_put);
 429
 430inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
 431{
 432	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
 433		blk_recount_segments(q, bio);
 434
 435	return bio->bi_phys_segments;
 436}
 437EXPORT_SYMBOL(bio_phys_segments);
 438
 439/**
 440 * 	__bio_clone	-	clone a bio
 441 * 	@bio: destination bio
 442 * 	@bio_src: bio to clone
 443 *
 444 *	Clone a &bio. Caller will own the returned bio, but not
 445 *	the actual data it points to. Reference count of returned
 446 * 	bio will be one.
 447 */
 448void __bio_clone(struct bio *bio, struct bio *bio_src)
 449{
 450	memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
 451		bio_src->bi_max_vecs * sizeof(struct bio_vec));
 452
 453	/*
 454	 * most users will be overriding ->bi_bdev with a new target,
 455	 * so we don't set nor calculate new physical/hw segment counts here
 456	 */
 457	bio->bi_sector = bio_src->bi_sector;
 458	bio->bi_bdev = bio_src->bi_bdev;
 459	bio->bi_flags |= 1 << BIO_CLONED;
 460	bio->bi_rw = bio_src->bi_rw;
 461	bio->bi_vcnt = bio_src->bi_vcnt;
 462	bio->bi_size = bio_src->bi_size;
 463	bio->bi_idx = bio_src->bi_idx;
 464}
 465EXPORT_SYMBOL(__bio_clone);
 466
 467/**
 468 *	bio_clone	-	clone a bio
 469 *	@bio: bio to clone
 470 *	@gfp_mask: allocation priority
 471 *
 472 * 	Like __bio_clone, only also allocates the returned bio
 473 */
 474struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
 475{
 476	struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
 477
 478	if (!b)
 479		return NULL;
 480
 481	b->bi_destructor = bio_fs_destructor;
 482	__bio_clone(b, bio);
 483
 484	if (bio_integrity(bio)) {
 485		int ret;
 486
 487		ret = bio_integrity_clone(b, bio, gfp_mask, fs_bio_set);
 488
 489		if (ret < 0) {
 490			bio_put(b);
 491			return NULL;
 492		}
 493	}
 494
 495	return b;
 496}
 497EXPORT_SYMBOL(bio_clone);
 498
 499/**
 500 *	bio_get_nr_vecs		- return approx number of vecs
 501 *	@bdev:  I/O target
 502 *
 503 *	Return the approximate number of pages we can send to this target.
 504 *	There's no guarantee that you will be able to fit this number of pages
 505 *	into a bio, it does not account for dynamic restrictions that vary
 506 *	on offset.
 507 */
 508int bio_get_nr_vecs(struct block_device *bdev)
 509{
 510	struct request_queue *q = bdev_get_queue(bdev);
 511	int nr_pages;
 512
 513	nr_pages = min_t(unsigned,
 514		     queue_max_segments(q),
 515		     queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
 516
 517	return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
 518
 519}
 520EXPORT_SYMBOL(bio_get_nr_vecs);
 521
 522static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
 523			  *page, unsigned int len, unsigned int offset,
 524			  unsigned short max_sectors)
 525{
 526	int retried_segments = 0;
 527	struct bio_vec *bvec;
 528
 529	/*
 530	 * cloned bio must not modify vec list
 531	 */
 532	if (unlikely(bio_flagged(bio, BIO_CLONED)))
 533		return 0;
 534
 535	if (((bio->bi_size + len) >> 9) > max_sectors)
 536		return 0;
 537
 538	/*
 539	 * For filesystems with a blocksize smaller than the pagesize
 540	 * we will often be called with the same page as last time and
 541	 * a consecutive offset.  Optimize this special case.
 542	 */
 543	if (bio->bi_vcnt > 0) {
 544		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
 545
 546		if (page == prev->bv_page &&
 547		    offset == prev->bv_offset + prev->bv_len) {
 548			unsigned int prev_bv_len = prev->bv_len;
 549			prev->bv_len += len;
 550
 551			if (q->merge_bvec_fn) {
 552				struct bvec_merge_data bvm = {
 553					/* prev_bvec is already charged in
 554					   bi_size, discharge it in order to
 555					   simulate merging updated prev_bvec
 556					   as new bvec. */
 557					.bi_bdev = bio->bi_bdev,
 558					.bi_sector = bio->bi_sector,
 559					.bi_size = bio->bi_size - prev_bv_len,
 560					.bi_rw = bio->bi_rw,
 561				};
 562
 563				if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
 564					prev->bv_len -= len;
 565					return 0;
 566				}
 567			}
 568
 569			goto done;
 570		}
 571	}
 572
 573	if (bio->bi_vcnt >= bio->bi_max_vecs)
 574		return 0;
 575
 576	/*
 577	 * we might lose a segment or two here, but rather that than
 578	 * make this too complex.
 579	 */
 580
 581	while (bio->bi_phys_segments >= queue_max_segments(q)) {
 582
 583		if (retried_segments)
 584			return 0;
 585
 586		retried_segments = 1;
 587		blk_recount_segments(q, bio);
 588	}
 589
 590	/*
 591	 * setup the new entry, we might clear it again later if we
 592	 * cannot add the page
 593	 */
 594	bvec = &bio->bi_io_vec[bio->bi_vcnt];
 595	bvec->bv_page = page;
 596	bvec->bv_len = len;
 597	bvec->bv_offset = offset;
 598
 599	/*
 600	 * if queue has other restrictions (eg varying max sector size
 601	 * depending on offset), it can specify a merge_bvec_fn in the
 602	 * queue to get further control
 603	 */
 604	if (q->merge_bvec_fn) {
 605		struct bvec_merge_data bvm = {
 606			.bi_bdev = bio->bi_bdev,
 607			.bi_sector = bio->bi_sector,
 608			.bi_size = bio->bi_size,
 609			.bi_rw = bio->bi_rw,
 610		};
 611
 612		/*
 613		 * merge_bvec_fn() returns number of bytes it can accept
 614		 * at this offset
 615		 */
 616		if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
 617			bvec->bv_page = NULL;
 618			bvec->bv_len = 0;
 619			bvec->bv_offset = 0;
 620			return 0;
 621		}
 622	}
 623
 624	/* If we may be able to merge these biovecs, force a recount */
 625	if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
 626		bio->bi_flags &= ~(1 << BIO_SEG_VALID);
 627
 628	bio->bi_vcnt++;
 629	bio->bi_phys_segments++;
 630 done:
 631	bio->bi_size += len;
 632	return len;
 633}
 634
 635/**
 636 *	bio_add_pc_page	-	attempt to add page to bio
 637 *	@q: the target queue
 638 *	@bio: destination bio
 639 *	@page: page to add
 640 *	@len: vec entry length
 641 *	@offset: vec entry offset
 642 *
 643 *	Attempt to add a page to the bio_vec maplist. This can fail for a
 644 *	number of reasons, such as the bio being full or target block device
 645 *	limitations. The target block device must allow bio's up to PAGE_SIZE,
 646 *	so it is always possible to add a single page to an empty bio.
 647 *
 648 *	This should only be used by REQ_PC bios.
 649 */
 650int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
 651		    unsigned int len, unsigned int offset)
 652{
 653	return __bio_add_page(q, bio, page, len, offset,
 654			      queue_max_hw_sectors(q));
 655}
 656EXPORT_SYMBOL(bio_add_pc_page);
 657
 658/**
 659 *	bio_add_page	-	attempt to add page to bio
 660 *	@bio: destination bio
 661 *	@page: page to add
 662 *	@len: vec entry length
 663 *	@offset: vec entry offset
 664 *
 665 *	Attempt to add a page to the bio_vec maplist. This can fail for a
 666 *	number of reasons, such as the bio being full or target block device
 667 *	limitations. The target block device must allow bio's up to PAGE_SIZE,
 668 *	so it is always possible to add a single page to an empty bio.
 669 */
 670int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
 671		 unsigned int offset)
 672{
 673	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
 674	return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
 675}
 676EXPORT_SYMBOL(bio_add_page);
 677
 678struct bio_map_data {
 679	struct bio_vec *iovecs;
 680	struct sg_iovec *sgvecs;
 681	int nr_sgvecs;
 682	int is_our_pages;
 683};
 684
 685static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
 686			     struct sg_iovec *iov, int iov_count,
 687			     int is_our_pages)
 688{
 689	memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
 690	memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
 691	bmd->nr_sgvecs = iov_count;
 692	bmd->is_our_pages = is_our_pages;
 693	bio->bi_private = bmd;
 694}
 695
 696static void bio_free_map_data(struct bio_map_data *bmd)
 697{
 698	kfree(bmd->iovecs);
 699	kfree(bmd->sgvecs);
 700	kfree(bmd);
 701}
 702
 703static struct bio_map_data *bio_alloc_map_data(int nr_segs,
 704					       unsigned int iov_count,
 705					       gfp_t gfp_mask)
 706{
 707	struct bio_map_data *bmd;
 708
 709	if (iov_count > UIO_MAXIOV)
 710		return NULL;
 711
 712	bmd = kmalloc(sizeof(*bmd), gfp_mask);
 713	if (!bmd)
 714		return NULL;
 715
 716	bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
 717	if (!bmd->iovecs) {
 718		kfree(bmd);
 719		return NULL;
 720	}
 721
 722	bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
 723	if (bmd->sgvecs)
 724		return bmd;
 725
 726	kfree(bmd->iovecs);
 727	kfree(bmd);
 728	return NULL;
 729}
 730
 731static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
 732			  struct sg_iovec *iov, int iov_count,
 733			  int to_user, int from_user, int do_free_page)
 734{
 735	int ret = 0, i;
 736	struct bio_vec *bvec;
 737	int iov_idx = 0;
 738	unsigned int iov_off = 0;
 739
 740	__bio_for_each_segment(bvec, bio, i, 0) {
 741		char *bv_addr = page_address(bvec->bv_page);
 742		unsigned int bv_len = iovecs[i].bv_len;
 743
 744		while (bv_len && iov_idx < iov_count) {
 745			unsigned int bytes;
 746			char __user *iov_addr;
 747
 748			bytes = min_t(unsigned int,
 749				      iov[iov_idx].iov_len - iov_off, bv_len);
 750			iov_addr = iov[iov_idx].iov_base + iov_off;
 751
 752			if (!ret) {
 753				if (to_user)
 754					ret = copy_to_user(iov_addr, bv_addr,
 755							   bytes);
 756
 757				if (from_user)
 758					ret = copy_from_user(bv_addr, iov_addr,
 759							     bytes);
 760
 761				if (ret)
 762					ret = -EFAULT;
 763			}
 764
 765			bv_len -= bytes;
 766			bv_addr += bytes;
 767			iov_addr += bytes;
 768			iov_off += bytes;
 769
 770			if (iov[iov_idx].iov_len == iov_off) {
 771				iov_idx++;
 772				iov_off = 0;
 773			}
 774		}
 775
 776		if (do_free_page)
 777			__free_page(bvec->bv_page);
 778	}
 779
 780	return ret;
 781}
 782
 783/**
 784 *	bio_uncopy_user	-	finish previously mapped bio
 785 *	@bio: bio being terminated
 786 *
 787 *	Free pages allocated from bio_copy_user() and write back data
 788 *	to user space in case of a read.
 789 */
 790int bio_uncopy_user(struct bio *bio)
 791{
 792	struct bio_map_data *bmd = bio->bi_private;
 793	int ret = 0;
 794
 795	if (!bio_flagged(bio, BIO_NULL_MAPPED))
 796		ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
 797				     bmd->nr_sgvecs, bio_data_dir(bio) == READ,
 798				     0, bmd->is_our_pages);
 799	bio_free_map_data(bmd);
 800	bio_put(bio);
 801	return ret;
 802}
 803EXPORT_SYMBOL(bio_uncopy_user);
 804
 805/**
 806 *	bio_copy_user_iov	-	copy user data to bio
 807 *	@q: destination block queue
 808 *	@map_data: pointer to the rq_map_data holding pages (if necessary)
 809 *	@iov:	the iovec.
 810 *	@iov_count: number of elements in the iovec
 811 *	@write_to_vm: bool indicating writing to pages or not
 812 *	@gfp_mask: memory allocation flags
 813 *
 814 *	Prepares and returns a bio for indirect user io, bouncing data
 815 *	to/from kernel pages as necessary. Must be paired with
 816 *	call bio_uncopy_user() on io completion.
 817 */
 818struct bio *bio_copy_user_iov(struct request_queue *q,
 819			      struct rq_map_data *map_data,
 820			      struct sg_iovec *iov, int iov_count,
 821			      int write_to_vm, gfp_t gfp_mask)
 822{
 823	struct bio_map_data *bmd;
 824	struct bio_vec *bvec;
 825	struct page *page;
 826	struct bio *bio;
 827	int i, ret;
 828	int nr_pages = 0;
 829	unsigned int len = 0;
 830	unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
 831
 832	for (i = 0; i < iov_count; i++) {
 833		unsigned long uaddr;
 834		unsigned long end;
 835		unsigned long start;
 836
 837		uaddr = (unsigned long)iov[i].iov_base;
 838		end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
 839		start = uaddr >> PAGE_SHIFT;
 840
 841		/*
 842		 * Overflow, abort
 843		 */
 844		if (end < start)
 845			return ERR_PTR(-EINVAL);
 846
 847		nr_pages += end - start;
 848		len += iov[i].iov_len;
 849	}
 850
 851	if (offset)
 852		nr_pages++;
 853
 854	bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
 855	if (!bmd)
 856		return ERR_PTR(-ENOMEM);
 857
 858	ret = -ENOMEM;
 859	bio = bio_kmalloc(gfp_mask, nr_pages);
 860	if (!bio)
 861		goto out_bmd;
 862
 863	if (!write_to_vm)
 864		bio->bi_rw |= REQ_WRITE;
 865
 866	ret = 0;
 867
 868	if (map_data) {
 869		nr_pages = 1 << map_data->page_order;
 870		i = map_data->offset / PAGE_SIZE;
 871	}
 872	while (len) {
 873		unsigned int bytes = PAGE_SIZE;
 874
 875		bytes -= offset;
 876
 877		if (bytes > len)
 878			bytes = len;
 879
 880		if (map_data) {
 881			if (i == map_data->nr_entries * nr_pages) {
 882				ret = -ENOMEM;
 883				break;
 884			}
 885
 886			page = map_data->pages[i / nr_pages];
 887			page += (i % nr_pages);
 888
 889			i++;
 890		} else {
 891			page = alloc_page(q->bounce_gfp | gfp_mask);
 892			if (!page) {
 893				ret = -ENOMEM;
 894				break;
 895			}
 896		}
 897
 898		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
 899			break;
 900
 901		len -= bytes;
 902		offset = 0;
 903	}
 904
 905	if (ret)
 906		goto cleanup;
 907
 908	/*
 909	 * success
 910	 */
 911	if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
 912	    (map_data && map_data->from_user)) {
 913		ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
 914		if (ret)
 915			goto cleanup;
 916	}
 917
 918	bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
 919	return bio;
 920cleanup:
 921	if (!map_data)
 922		bio_for_each_segment(bvec, bio, i)
 923			__free_page(bvec->bv_page);
 924
 925	bio_put(bio);
 926out_bmd:
 927	bio_free_map_data(bmd);
 928	return ERR_PTR(ret);
 929}
 930
 931/**
 932 *	bio_copy_user	-	copy user data to bio
 933 *	@q: destination block queue
 934 *	@map_data: pointer to the rq_map_data holding pages (if necessary)
 935 *	@uaddr: start of user address
 936 *	@len: length in bytes
 937 *	@write_to_vm: bool indicating writing to pages or not
 938 *	@gfp_mask: memory allocation flags
 939 *
 940 *	Prepares and returns a bio for indirect user io, bouncing data
 941 *	to/from kernel pages as necessary. Must be paired with
 942 *	call bio_uncopy_user() on io completion.
 943 */
 944struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
 945			  unsigned long uaddr, unsigned int len,
 946			  int write_to_vm, gfp_t gfp_mask)
 947{
 948	struct sg_iovec iov;
 949
 950	iov.iov_base = (void __user *)uaddr;
 951	iov.iov_len = len;
 952
 953	return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
 954}
 955EXPORT_SYMBOL(bio_copy_user);
 956
 957static struct bio *__bio_map_user_iov(struct request_queue *q,
 958				      struct block_device *bdev,
 959				      struct sg_iovec *iov, int iov_count,
 960				      int write_to_vm, gfp_t gfp_mask)
 961{
 962	int i, j;
 963	int nr_pages = 0;
 964	struct page **pages;
 965	struct bio *bio;
 966	int cur_page = 0;
 967	int ret, offset;
 968
 969	for (i = 0; i < iov_count; i++) {
 970		unsigned long uaddr = (unsigned long)iov[i].iov_base;
 971		unsigned long len = iov[i].iov_len;
 972		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
 973		unsigned long start = uaddr >> PAGE_SHIFT;
 974
 975		/*
 976		 * Overflow, abort
 977		 */
 978		if (end < start)
 979			return ERR_PTR(-EINVAL);
 980
 981		nr_pages += end - start;
 982		/*
 983		 * buffer must be aligned to at least hardsector size for now
 984		 */
 985		if (uaddr & queue_dma_alignment(q))
 986			return ERR_PTR(-EINVAL);
 987	}
 988
 989	if (!nr_pages)
 990		return ERR_PTR(-EINVAL);
 991
 992	bio = bio_kmalloc(gfp_mask, nr_pages);
 993	if (!bio)
 994		return ERR_PTR(-ENOMEM);
 995
 996	ret = -ENOMEM;
 997	pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
 998	if (!pages)
 999		goto out;
1000
1001	for (i = 0; i < iov_count; i++) {
1002		unsigned long uaddr = (unsigned long)iov[i].iov_base;
1003		unsigned long len = iov[i].iov_len;
1004		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1005		unsigned long start = uaddr >> PAGE_SHIFT;
1006		const int local_nr_pages = end - start;
1007		const int page_limit = cur_page + local_nr_pages;
1008
1009		ret = get_user_pages_fast(uaddr, local_nr_pages,
1010				write_to_vm, &pages[cur_page]);
1011		if (ret < local_nr_pages) {
1012			ret = -EFAULT;
1013			goto out_unmap;
1014		}
1015
1016		offset = uaddr & ~PAGE_MASK;
1017		for (j = cur_page; j < page_limit; j++) {
1018			unsigned int bytes = PAGE_SIZE - offset;
1019
1020			if (len <= 0)
1021				break;
1022			
1023			if (bytes > len)
1024				bytes = len;
1025
1026			/*
1027			 * sorry...
1028			 */
1029			if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1030					    bytes)
1031				break;
1032
1033			len -= bytes;
1034			offset = 0;
1035		}
1036
1037		cur_page = j;
1038		/*
1039		 * release the pages we didn't map into the bio, if any
1040		 */
1041		while (j < page_limit)
1042			page_cache_release(pages[j++]);
1043	}
1044
1045	kfree(pages);
1046
1047	/*
1048	 * set data direction, and check if mapped pages need bouncing
1049	 */
1050	if (!write_to_vm)
1051		bio->bi_rw |= REQ_WRITE;
1052
1053	bio->bi_bdev = bdev;
1054	bio->bi_flags |= (1 << BIO_USER_MAPPED);
1055	return bio;
1056
1057 out_unmap:
1058	for (i = 0; i < nr_pages; i++) {
1059		if(!pages[i])
1060			break;
1061		page_cache_release(pages[i]);
1062	}
1063 out:
1064	kfree(pages);
1065	bio_put(bio);
1066	return ERR_PTR(ret);
1067}
1068
1069/**
1070 *	bio_map_user	-	map user address into bio
1071 *	@q: the struct request_queue for the bio
1072 *	@bdev: destination block device
1073 *	@uaddr: start of user address
1074 *	@len: length in bytes
1075 *	@write_to_vm: bool indicating writing to pages or not
1076 *	@gfp_mask: memory allocation flags
1077 *
1078 *	Map the user space address into a bio suitable for io to a block
1079 *	device. Returns an error pointer in case of error.
1080 */
1081struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
1082			 unsigned long uaddr, unsigned int len, int write_to_vm,
1083			 gfp_t gfp_mask)
1084{
1085	struct sg_iovec iov;
1086
1087	iov.iov_base = (void __user *)uaddr;
1088	iov.iov_len = len;
1089
1090	return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
1091}
1092EXPORT_SYMBOL(bio_map_user);
1093
1094/**
1095 *	bio_map_user_iov - map user sg_iovec table into bio
1096 *	@q: the struct request_queue for the bio
1097 *	@bdev: destination block device
1098 *	@iov:	the iovec.
1099 *	@iov_count: number of elements in the iovec
1100 *	@write_to_vm: bool indicating writing to pages or not
1101 *	@gfp_mask: memory allocation flags
1102 *
1103 *	Map the user space address into a bio suitable for io to a block
1104 *	device. Returns an error pointer in case of error.
1105 */
1106struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
1107			     struct sg_iovec *iov, int iov_count,
1108			     int write_to_vm, gfp_t gfp_mask)
1109{
1110	struct bio *bio;
1111
1112	bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1113				 gfp_mask);
1114	if (IS_ERR(bio))
1115		return bio;
1116
1117	/*
1118	 * subtle -- if __bio_map_user() ended up bouncing a bio,
1119	 * it would normally disappear when its bi_end_io is run.
1120	 * however, we need it for the unmap, so grab an extra
1121	 * reference to it
1122	 */
1123	bio_get(bio);
1124
1125	return bio;
1126}
1127
1128static void __bio_unmap_user(struct bio *bio)
1129{
1130	struct bio_vec *bvec;
1131	int i;
1132
1133	/*
1134	 * make sure we dirty pages we wrote to
1135	 */
1136	__bio_for_each_segment(bvec, bio, i, 0) {
1137		if (bio_data_dir(bio) == READ)
1138			set_page_dirty_lock(bvec->bv_page);
1139
1140		page_cache_release(bvec->bv_page);
1141	}
1142
1143	bio_put(bio);
1144}
1145
1146/**
1147 *	bio_unmap_user	-	unmap a bio
1148 *	@bio:		the bio being unmapped
1149 *
1150 *	Unmap a bio previously mapped by bio_map_user(). Must be called with
1151 *	a process context.
1152 *
1153 *	bio_unmap_user() may sleep.
1154 */
1155void bio_unmap_user(struct bio *bio)
1156{
1157	__bio_unmap_user(bio);
1158	bio_put(bio);
1159}
1160EXPORT_SYMBOL(bio_unmap_user);
1161
1162static void bio_map_kern_endio(struct bio *bio, int err)
1163{
1164	bio_put(bio);
1165}
1166
1167static struct bio *__bio_map_kern(struct request_queue *q, void *data,
1168				  unsigned int len, gfp_t gfp_mask)
1169{
1170	unsigned long kaddr = (unsigned long)data;
1171	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1172	unsigned long start = kaddr >> PAGE_SHIFT;
1173	const int nr_pages = end - start;
1174	int offset, i;
1175	struct bio *bio;
1176
1177	bio = bio_kmalloc(gfp_mask, nr_pages);
1178	if (!bio)
1179		return ERR_PTR(-ENOMEM);
1180
1181	offset = offset_in_page(kaddr);
1182	for (i = 0; i < nr_pages; i++) {
1183		unsigned int bytes = PAGE_SIZE - offset;
1184
1185		if (len <= 0)
1186			break;
1187
1188		if (bytes > len)
1189			bytes = len;
1190
1191		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1192				    offset) < bytes)
1193			break;
1194
1195		data += bytes;
1196		len -= bytes;
1197		offset = 0;
1198	}
1199
1200	bio->bi_end_io = bio_map_kern_endio;
1201	return bio;
1202}
1203
1204/**
1205 *	bio_map_kern	-	map kernel address into bio
1206 *	@q: the struct request_queue for the bio
1207 *	@data: pointer to buffer to map
1208 *	@len: length in bytes
1209 *	@gfp_mask: allocation flags for bio allocation
1210 *
1211 *	Map the kernel address into a bio suitable for io to a block
1212 *	device. Returns an error pointer in case of error.
1213 */
1214struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1215			 gfp_t gfp_mask)
1216{
1217	struct bio *bio;
1218
1219	bio = __bio_map_kern(q, data, len, gfp_mask);
1220	if (IS_ERR(bio))
1221		return bio;
1222
1223	if (bio->bi_size == len)
1224		return bio;
1225
1226	/*
1227	 * Don't support partial mappings.
1228	 */
1229	bio_put(bio);
1230	return ERR_PTR(-EINVAL);
1231}
1232EXPORT_SYMBOL(bio_map_kern);
1233
1234static void bio_copy_kern_endio(struct bio *bio, int err)
1235{
1236	struct bio_vec *bvec;
1237	const int read = bio_data_dir(bio) == READ;
1238	struct bio_map_data *bmd = bio->bi_private;
1239	int i;
1240	char *p = bmd->sgvecs[0].iov_base;
1241
1242	__bio_for_each_segment(bvec, bio, i, 0) {
1243		char *addr = page_address(bvec->bv_page);
1244		int len = bmd->iovecs[i].bv_len;
1245
1246		if (read)
1247			memcpy(p, addr, len);
1248
1249		__free_page(bvec->bv_page);
1250		p += len;
1251	}
1252
1253	bio_free_map_data(bmd);
1254	bio_put(bio);
1255}
1256
1257/**
1258 *	bio_copy_kern	-	copy kernel address into bio
1259 *	@q: the struct request_queue for the bio
1260 *	@data: pointer to buffer to copy
1261 *	@len: length in bytes
1262 *	@gfp_mask: allocation flags for bio and page allocation
1263 *	@reading: data direction is READ
1264 *
1265 *	copy the kernel address into a bio suitable for io to a block
1266 *	device. Returns an error pointer in case of error.
1267 */
1268struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1269			  gfp_t gfp_mask, int reading)
1270{
1271	struct bio *bio;
1272	struct bio_vec *bvec;
1273	int i;
1274
1275	bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1276	if (IS_ERR(bio))
1277		return bio;
1278
1279	if (!reading) {
1280		void *p = data;
1281
1282		bio_for_each_segment(bvec, bio, i) {
1283			char *addr = page_address(bvec->bv_page);
1284
1285			memcpy(addr, p, bvec->bv_len);
1286			p += bvec->bv_len;
1287		}
1288	}
1289
1290	bio->bi_end_io = bio_copy_kern_endio;
1291
1292	return bio;
1293}
1294EXPORT_SYMBOL(bio_copy_kern);
1295
1296/*
1297 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1298 * for performing direct-IO in BIOs.
1299 *
1300 * The problem is that we cannot run set_page_dirty() from interrupt context
1301 * because the required locks are not interrupt-safe.  So what we can do is to
1302 * mark the pages dirty _before_ performing IO.  And in interrupt context,
1303 * check that the pages are still dirty.   If so, fine.  If not, redirty them
1304 * in process context.
1305 *
1306 * We special-case compound pages here: normally this means reads into hugetlb
1307 * pages.  The logic in here doesn't really work right for compound pages
1308 * because the VM does not uniformly chase down the head page in all cases.
1309 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1310 * handle them at all.  So we skip compound pages here at an early stage.
1311 *
1312 * Note that this code is very hard to test under normal circumstances because
1313 * direct-io pins the pages with get_user_pages().  This makes
1314 * is_page_cache_freeable return false, and the VM will not clean the pages.
1315 * But other code (eg, pdflush) could clean the pages if they are mapped
1316 * pagecache.
1317 *
1318 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1319 * deferred bio dirtying paths.
1320 */
1321
1322/*
1323 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1324 */
1325void bio_set_pages_dirty(struct bio *bio)
1326{
1327	struct bio_vec *bvec = bio->bi_io_vec;
1328	int i;
1329
1330	for (i = 0; i < bio->bi_vcnt; i++) {
1331		struct page *page = bvec[i].bv_page;
1332
1333		if (page && !PageCompound(page))
1334			set_page_dirty_lock(page);
1335	}
1336}
1337
1338static void bio_release_pages(struct bio *bio)
1339{
1340	struct bio_vec *bvec = bio->bi_io_vec;
1341	int i;
1342
1343	for (i = 0; i < bio->bi_vcnt; i++) {
1344		struct page *page = bvec[i].bv_page;
1345
1346		if (page)
1347			put_page(page);
1348	}
1349}
1350
1351/*
1352 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1353 * If they are, then fine.  If, however, some pages are clean then they must
1354 * have been written out during the direct-IO read.  So we take another ref on
1355 * the BIO and the offending pages and re-dirty the pages in process context.
1356 *
1357 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1358 * here on.  It will run one page_cache_release() against each page and will
1359 * run one bio_put() against the BIO.
1360 */
1361
1362static void bio_dirty_fn(struct work_struct *work);
1363
1364static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1365static DEFINE_SPINLOCK(bio_dirty_lock);
1366static struct bio *bio_dirty_list;
1367
1368/*
1369 * This runs in process context
1370 */
1371static void bio_dirty_fn(struct work_struct *work)
1372{
1373	unsigned long flags;
1374	struct bio *bio;
1375
1376	spin_lock_irqsave(&bio_dirty_lock, flags);
1377	bio = bio_dirty_list;
1378	bio_dirty_list = NULL;
1379	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1380
1381	while (bio) {
1382		struct bio *next = bio->bi_private;
1383
1384		bio_set_pages_dirty(bio);
1385		bio_release_pages(bio);
1386		bio_put(bio);
1387		bio = next;
1388	}
1389}
1390
1391void bio_check_pages_dirty(struct bio *bio)
1392{
1393	struct bio_vec *bvec = bio->bi_io_vec;
1394	int nr_clean_pages = 0;
1395	int i;
1396
1397	for (i = 0; i < bio->bi_vcnt; i++) {
1398		struct page *page = bvec[i].bv_page;
1399
1400		if (PageDirty(page) || PageCompound(page)) {
1401			page_cache_release(page);
1402			bvec[i].bv_page = NULL;
1403		} else {
1404			nr_clean_pages++;
1405		}
1406	}
1407
1408	if (nr_clean_pages) {
1409		unsigned long flags;
1410
1411		spin_lock_irqsave(&bio_dirty_lock, flags);
1412		bio->bi_private = bio_dirty_list;
1413		bio_dirty_list = bio;
1414		spin_unlock_irqrestore(&bio_dirty_lock, flags);
1415		schedule_work(&bio_dirty_work);
1416	} else {
1417		bio_put(bio);
1418	}
1419}
1420
1421#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1422void bio_flush_dcache_pages(struct bio *bi)
1423{
1424	int i;
1425	struct bio_vec *bvec;
1426
1427	bio_for_each_segment(bvec, bi, i)
1428		flush_dcache_page(bvec->bv_page);
1429}
1430EXPORT_SYMBOL(bio_flush_dcache_pages);
1431#endif
1432
1433/**
1434 * bio_endio - end I/O on a bio
1435 * @bio:	bio
1436 * @error:	error, if any
1437 *
1438 * Description:
1439 *   bio_endio() will end I/O on the whole bio. bio_endio() is the
1440 *   preferred way to end I/O on a bio, it takes care of clearing
1441 *   BIO_UPTODATE on error. @error is 0 on success, and and one of the
1442 *   established -Exxxx (-EIO, for instance) error values in case
1443 *   something went wrong. No one should call bi_end_io() directly on a
1444 *   bio unless they own it and thus know that it has an end_io
1445 *   function.
1446 **/
1447void bio_endio(struct bio *bio, int error)
1448{
1449	if (error)
1450		clear_bit(BIO_UPTODATE, &bio->bi_flags);
1451	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1452		error = -EIO;
1453
1454	if (bio->bi_end_io)
1455		bio->bi_end_io(bio, error);
1456}
1457EXPORT_SYMBOL(bio_endio);
1458
1459void bio_pair_release(struct bio_pair *bp)
1460{
1461	if (atomic_dec_and_test(&bp->cnt)) {
1462		struct bio *master = bp->bio1.bi_private;
1463
1464		bio_endio(master, bp->error);
1465		mempool_free(bp, bp->bio2.bi_private);
1466	}
1467}
1468EXPORT_SYMBOL(bio_pair_release);
1469
1470static void bio_pair_end_1(struct bio *bi, int err)
1471{
1472	struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1473
1474	if (err)
1475		bp->error = err;
1476
1477	bio_pair_release(bp);
1478}
1479
1480static void bio_pair_end_2(struct bio *bi, int err)
1481{
1482	struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1483
1484	if (err)
1485		bp->error = err;
1486
1487	bio_pair_release(bp);
1488}
1489
1490/*
1491 * split a bio - only worry about a bio with a single page in its iovec
1492 */
1493struct bio_pair *bio_split(struct bio *bi, int first_sectors)
1494{
1495	struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
1496
1497	if (!bp)
1498		return bp;
1499
1500	trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
1501				bi->bi_sector + first_sectors);
1502
1503	BUG_ON(bi->bi_vcnt != 1);
1504	BUG_ON(bi->bi_idx != 0);
1505	atomic_set(&bp->cnt, 3);
1506	bp->error = 0;
1507	bp->bio1 = *bi;
1508	bp->bio2 = *bi;
1509	bp->bio2.bi_sector += first_sectors;
1510	bp->bio2.bi_size -= first_sectors << 9;
1511	bp->bio1.bi_size = first_sectors << 9;
1512
1513	bp->bv1 = bi->bi_io_vec[0];
1514	bp->bv2 = bi->bi_io_vec[0];
1515	bp->bv2.bv_offset += first_sectors << 9;
1516	bp->bv2.bv_len -= first_sectors << 9;
1517	bp->bv1.bv_len = first_sectors << 9;
1518
1519	bp->bio1.bi_io_vec = &bp->bv1;
1520	bp->bio2.bi_io_vec = &bp->bv2;
1521
1522	bp->bio1.bi_max_vecs = 1;
1523	bp->bio2.bi_max_vecs = 1;
1524
1525	bp->bio1.bi_end_io = bio_pair_end_1;
1526	bp->bio2.bi_end_io = bio_pair_end_2;
1527
1528	bp->bio1.bi_private = bi;
1529	bp->bio2.bi_private = bio_split_pool;
1530
1531	if (bio_integrity(bi))
1532		bio_integrity_split(bi, bp, first_sectors);
1533
1534	return bp;
1535}
1536EXPORT_SYMBOL(bio_split);
1537
1538/**
1539 *      bio_sector_offset - Find hardware sector offset in bio
1540 *      @bio:           bio to inspect
1541 *      @index:         bio_vec index
1542 *      @offset:        offset in bv_page
1543 *
1544 *      Return the number of hardware sectors between beginning of bio
1545 *      and an end point indicated by a bio_vec index and an offset
1546 *      within that vector's page.
1547 */
1548sector_t bio_sector_offset(struct bio *bio, unsigned short index,
1549			   unsigned int offset)
1550{
1551	unsigned int sector_sz;
1552	struct bio_vec *bv;
1553	sector_t sectors;
1554	int i;
1555
1556	sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
1557	sectors = 0;
1558
1559	if (index >= bio->bi_idx)
1560		index = bio->bi_vcnt - 1;
1561
1562	__bio_for_each_segment(bv, bio, i, 0) {
1563		if (i == index) {
1564			if (offset > bv->bv_offset)
1565				sectors += (offset - bv->bv_offset) / sector_sz;
1566			break;
1567		}
1568
1569		sectors += bv->bv_len / sector_sz;
1570	}
1571
1572	return sectors;
1573}
1574EXPORT_SYMBOL(bio_sector_offset);
1575
1576/*
1577 * create memory pools for biovec's in a bio_set.
1578 * use the global biovec slabs created for general use.
1579 */
1580static int biovec_create_pools(struct bio_set *bs, int pool_entries)
1581{
1582	struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1583
1584	bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab);
1585	if (!bs->bvec_pool)
1586		return -ENOMEM;
1587
1588	return 0;
1589}
1590
1591static void biovec_free_pools(struct bio_set *bs)
1592{
1593	mempool_destroy(bs->bvec_pool);
1594}
1595
1596void bioset_free(struct bio_set *bs)
1597{
1598	if (bs->bio_pool)
1599		mempool_destroy(bs->bio_pool);
1600
1601	bioset_integrity_free(bs);
1602	biovec_free_pools(bs);
1603	bio_put_slab(bs);
1604
1605	kfree(bs);
1606}
1607EXPORT_SYMBOL(bioset_free);
1608
1609/**
1610 * bioset_create  - Create a bio_set
1611 * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1612 * @front_pad:	Number of bytes to allocate in front of the returned bio
1613 *
1614 * Description:
1615 *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1616 *    to ask for a number of bytes to be allocated in front of the bio.
1617 *    Front pad allocation is useful for embedding the bio inside
1618 *    another structure, to avoid allocating extra data to go with the bio.
1619 *    Note that the bio must be embedded at the END of that structure always,
1620 *    or things will break badly.
1621 */
1622struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1623{
1624	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1625	struct bio_set *bs;
1626
1627	bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1628	if (!bs)
1629		return NULL;
1630
1631	bs->front_pad = front_pad;
1632
1633	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1634	if (!bs->bio_slab) {
1635		kfree(bs);
1636		return NULL;
1637	}
1638
1639	bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1640	if (!bs->bio_pool)
1641		goto bad;
1642
1643	if (!biovec_create_pools(bs, pool_size))
1644		return bs;
1645
1646bad:
1647	bioset_free(bs);
1648	return NULL;
1649}
1650EXPORT_SYMBOL(bioset_create);
1651
1652#ifdef CONFIG_BLK_CGROUP
1653/**
1654 * bio_associate_current - associate a bio with %current
1655 * @bio: target bio
1656 *
1657 * Associate @bio with %current if it hasn't been associated yet.  Block
1658 * layer will treat @bio as if it were issued by %current no matter which
1659 * task actually issues it.
1660 *
1661 * This function takes an extra reference of @task's io_context and blkcg
1662 * which will be put when @bio is released.  The caller must own @bio,
1663 * ensure %current->io_context exists, and is responsible for synchronizing
1664 * calls to this function.
1665 */
1666int bio_associate_current(struct bio *bio)
1667{
1668	struct io_context *ioc;
1669	struct cgroup_subsys_state *css;
1670
1671	if (bio->bi_ioc)
1672		return -EBUSY;
1673
1674	ioc = current->io_context;
1675	if (!ioc)
1676		return -ENOENT;
1677
1678	/* acquire active ref on @ioc and associate */
1679	get_io_context_active(ioc);
1680	bio->bi_ioc = ioc;
1681
1682	/* associate blkcg if exists */
1683	rcu_read_lock();
1684	css = task_subsys_state(current, blkio_subsys_id);
1685	if (css && css_tryget(css))
1686		bio->bi_css = css;
1687	rcu_read_unlock();
1688
1689	return 0;
1690}
1691
1692/**
1693 * bio_disassociate_task - undo bio_associate_current()
1694 * @bio: target bio
1695 */
1696void bio_disassociate_task(struct bio *bio)
1697{
1698	if (bio->bi_ioc) {
1699		put_io_context(bio->bi_ioc);
1700		bio->bi_ioc = NULL;
1701	}
1702	if (bio->bi_css) {
1703		css_put(bio->bi_css);
1704		bio->bi_css = NULL;
1705	}
1706}
1707
1708#endif /* CONFIG_BLK_CGROUP */
1709
1710static void __init biovec_init_slabs(void)
1711{
1712	int i;
1713
1714	for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1715		int size;
1716		struct biovec_slab *bvs = bvec_slabs + i;
1717
1718		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1719			bvs->slab = NULL;
1720			continue;
1721		}
1722
1723		size = bvs->nr_vecs * sizeof(struct bio_vec);
1724		bvs->slab = kmem_cache_create(bvs->name, size, 0,
1725                                SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1726	}
1727}
1728
1729static int __init init_bio(void)
1730{
1731	bio_slab_max = 2;
1732	bio_slab_nr = 0;
1733	bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
1734	if (!bio_slabs)
1735		panic("bio: can't allocate bios\n");
1736
1737	bio_integrity_init();
1738	biovec_init_slabs();
1739
1740	fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
1741	if (!fs_bio_set)
1742		panic("bio: can't allocate bios\n");
1743
1744	if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
1745		panic("bio: can't create integrity pool\n");
1746
1747	bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
1748						     sizeof(struct bio_pair));
1749	if (!bio_split_pool)
1750		panic("bio: can't create split pool\n");
1751
1752	return 0;
1753}
1754subsys_initcall(init_bio);