Linux Audio

Check our new training course

Loading...
  1/*
  2 * bio-integrity.c - bio data integrity extensions
  3 *
  4 * Copyright (C) 2007, 2008, 2009 Oracle Corporation
  5 * Written by: Martin K. Petersen <martin.petersen@oracle.com>
  6 *
  7 * This program is free software; you can redistribute it and/or
  8 * modify it under the terms of the GNU General Public License version
  9 * 2 as published by the Free Software Foundation.
 10 *
 11 * This program is distributed in the hope that it will be useful, but
 12 * WITHOUT ANY WARRANTY; without even the implied warranty of
 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 14 * General Public License for more details.
 15 *
 16 * You should have received a copy of the GNU General Public License
 17 * along with this program; see the file COPYING.  If not, write to
 18 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139,
 19 * USA.
 20 *
 21 */
 22
 23#include <linux/blkdev.h>
 24#include <linux/mempool.h>
 25#include <linux/export.h>
 26#include <linux/bio.h>
 27#include <linux/workqueue.h>
 28#include <linux/slab.h>
 29
 30struct integrity_slab {
 31	struct kmem_cache *slab;
 32	unsigned short nr_vecs;
 33	char name[8];
 34};
 35
 36#define IS(x) { .nr_vecs = x, .name = "bip-"__stringify(x) }
 37struct integrity_slab bip_slab[BIOVEC_NR_POOLS] __read_mostly = {
 38	IS(1), IS(4), IS(16), IS(64), IS(128), IS(BIO_MAX_PAGES),
 39};
 40#undef IS
 41
 42static struct workqueue_struct *kintegrityd_wq;
 43
 44static inline unsigned int vecs_to_idx(unsigned int nr)
 45{
 46	switch (nr) {
 47	case 1:
 48		return 0;
 49	case 2 ... 4:
 50		return 1;
 51	case 5 ... 16:
 52		return 2;
 53	case 17 ... 64:
 54		return 3;
 55	case 65 ... 128:
 56		return 4;
 57	case 129 ... BIO_MAX_PAGES:
 58		return 5;
 59	default:
 60		BUG();
 61	}
 62}
 63
 64static inline int use_bip_pool(unsigned int idx)
 65{
 66	if (idx == BIOVEC_MAX_IDX)
 67		return 1;
 68
 69	return 0;
 70}
 71
 72/**
 73 * bio_integrity_alloc_bioset - Allocate integrity payload and attach it to bio
 74 * @bio:	bio to attach integrity metadata to
 75 * @gfp_mask:	Memory allocation mask
 76 * @nr_vecs:	Number of integrity metadata scatter-gather elements
 77 * @bs:		bio_set to allocate from
 78 *
 79 * Description: This function prepares a bio for attaching integrity
 80 * metadata.  nr_vecs specifies the maximum number of pages containing
 81 * integrity metadata that can be attached.
 82 */
 83struct bio_integrity_payload *bio_integrity_alloc_bioset(struct bio *bio,
 84							 gfp_t gfp_mask,
 85							 unsigned int nr_vecs,
 86							 struct bio_set *bs)
 87{
 88	struct bio_integrity_payload *bip;
 89	unsigned int idx = vecs_to_idx(nr_vecs);
 90
 91	BUG_ON(bio == NULL);
 92	bip = NULL;
 93
 94	/* Lower order allocations come straight from slab */
 95	if (!use_bip_pool(idx))
 96		bip = kmem_cache_alloc(bip_slab[idx].slab, gfp_mask);
 97
 98	/* Use mempool if lower order alloc failed or max vecs were requested */
 99	if (bip == NULL) {
100		idx = BIOVEC_MAX_IDX;  /* so we free the payload properly later */
101		bip = mempool_alloc(bs->bio_integrity_pool, gfp_mask);
102
103		if (unlikely(bip == NULL)) {
104			printk(KERN_ERR "%s: could not alloc bip\n", __func__);
105			return NULL;
106		}
107	}
108
109	memset(bip, 0, sizeof(*bip));
110
111	bip->bip_slab = idx;
112	bip->bip_bio = bio;
113	bio->bi_integrity = bip;
114
115	return bip;
116}
117EXPORT_SYMBOL(bio_integrity_alloc_bioset);
118
119/**
120 * bio_integrity_alloc - Allocate integrity payload and attach it to bio
121 * @bio:	bio to attach integrity metadata to
122 * @gfp_mask:	Memory allocation mask
123 * @nr_vecs:	Number of integrity metadata scatter-gather elements
124 *
125 * Description: This function prepares a bio for attaching integrity
126 * metadata.  nr_vecs specifies the maximum number of pages containing
127 * integrity metadata that can be attached.
128 */
129struct bio_integrity_payload *bio_integrity_alloc(struct bio *bio,
130						  gfp_t gfp_mask,
131						  unsigned int nr_vecs)
132{
133	return bio_integrity_alloc_bioset(bio, gfp_mask, nr_vecs, fs_bio_set);
134}
135EXPORT_SYMBOL(bio_integrity_alloc);
136
137/**
138 * bio_integrity_free - Free bio integrity payload
139 * @bio:	bio containing bip to be freed
140 * @bs:		bio_set this bio was allocated from
141 *
142 * Description: Used to free the integrity portion of a bio. Usually
143 * called from bio_free().
144 */
145void bio_integrity_free(struct bio *bio, struct bio_set *bs)
146{
147	struct bio_integrity_payload *bip = bio->bi_integrity;
148
149	BUG_ON(bip == NULL);
150
151	/* A cloned bio doesn't own the integrity metadata */
152	if (!bio_flagged(bio, BIO_CLONED) && !bio_flagged(bio, BIO_FS_INTEGRITY)
153	    && bip->bip_buf != NULL)
154		kfree(bip->bip_buf);
155
156	if (use_bip_pool(bip->bip_slab))
157		mempool_free(bip, bs->bio_integrity_pool);
158	else
159		kmem_cache_free(bip_slab[bip->bip_slab].slab, bip);
160
161	bio->bi_integrity = NULL;
162}
163EXPORT_SYMBOL(bio_integrity_free);
164
165/**
166 * bio_integrity_add_page - Attach integrity metadata
167 * @bio:	bio to update
168 * @page:	page containing integrity metadata
169 * @len:	number of bytes of integrity metadata in page
170 * @offset:	start offset within page
171 *
172 * Description: Attach a page containing integrity metadata to bio.
173 */
174int bio_integrity_add_page(struct bio *bio, struct page *page,
175			   unsigned int len, unsigned int offset)
176{
177	struct bio_integrity_payload *bip = bio->bi_integrity;
178	struct bio_vec *iv;
179
180	if (bip->bip_vcnt >= bvec_nr_vecs(bip->bip_slab)) {
181		printk(KERN_ERR "%s: bip_vec full\n", __func__);
182		return 0;
183	}
184
185	iv = bip_vec_idx(bip, bip->bip_vcnt);
186	BUG_ON(iv == NULL);
187
188	iv->bv_page = page;
189	iv->bv_len = len;
190	iv->bv_offset = offset;
191	bip->bip_vcnt++;
192
193	return len;
194}
195EXPORT_SYMBOL(bio_integrity_add_page);
196
197static int bdev_integrity_enabled(struct block_device *bdev, int rw)
198{
199	struct blk_integrity *bi = bdev_get_integrity(bdev);
200
201	if (bi == NULL)
202		return 0;
203
204	if (rw == READ && bi->verify_fn != NULL &&
205	    (bi->flags & INTEGRITY_FLAG_READ))
206		return 1;
207
208	if (rw == WRITE && bi->generate_fn != NULL &&
209	    (bi->flags & INTEGRITY_FLAG_WRITE))
210		return 1;
211
212	return 0;
213}
214
215/**
216 * bio_integrity_enabled - Check whether integrity can be passed
217 * @bio:	bio to check
218 *
219 * Description: Determines whether bio_integrity_prep() can be called
220 * on this bio or not.	bio data direction and target device must be
221 * set prior to calling.  The functions honors the write_generate and
222 * read_verify flags in sysfs.
223 */
224int bio_integrity_enabled(struct bio *bio)
225{
226	/* Already protected? */
227	if (bio_integrity(bio))
228		return 0;
229
230	return bdev_integrity_enabled(bio->bi_bdev, bio_data_dir(bio));
231}
232EXPORT_SYMBOL(bio_integrity_enabled);
233
234/**
235 * bio_integrity_hw_sectors - Convert 512b sectors to hardware ditto
236 * @bi:		blk_integrity profile for device
237 * @sectors:	Number of 512 sectors to convert
238 *
239 * Description: The block layer calculates everything in 512 byte
240 * sectors but integrity metadata is done in terms of the hardware
241 * sector size of the storage device.  Convert the block layer sectors
242 * to physical sectors.
243 */
244static inline unsigned int bio_integrity_hw_sectors(struct blk_integrity *bi,
245						    unsigned int sectors)
246{
247	/* At this point there are only 512b or 4096b DIF/EPP devices */
248	if (bi->sector_size == 4096)
249		return sectors >>= 3;
250
251	return sectors;
252}
253
254/**
255 * bio_integrity_tag_size - Retrieve integrity tag space
256 * @bio:	bio to inspect
257 *
258 * Description: Returns the maximum number of tag bytes that can be
259 * attached to this bio. Filesystems can use this to determine how
260 * much metadata to attach to an I/O.
261 */
262unsigned int bio_integrity_tag_size(struct bio *bio)
263{
264	struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
265
266	BUG_ON(bio->bi_size == 0);
267
268	return bi->tag_size * (bio->bi_size / bi->sector_size);
269}
270EXPORT_SYMBOL(bio_integrity_tag_size);
271
272int bio_integrity_tag(struct bio *bio, void *tag_buf, unsigned int len, int set)
273{
274	struct bio_integrity_payload *bip = bio->bi_integrity;
275	struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
276	unsigned int nr_sectors;
277
278	BUG_ON(bip->bip_buf == NULL);
279
280	if (bi->tag_size == 0)
281		return -1;
282
283	nr_sectors = bio_integrity_hw_sectors(bi,
284					DIV_ROUND_UP(len, bi->tag_size));
285
286	if (nr_sectors * bi->tuple_size > bip->bip_size) {
287		printk(KERN_ERR "%s: tag too big for bio: %u > %u\n",
288		       __func__, nr_sectors * bi->tuple_size, bip->bip_size);
289		return -1;
290	}
291
292	if (set)
293		bi->set_tag_fn(bip->bip_buf, tag_buf, nr_sectors);
294	else
295		bi->get_tag_fn(bip->bip_buf, tag_buf, nr_sectors);
296
297	return 0;
298}
299
300/**
301 * bio_integrity_set_tag - Attach a tag buffer to a bio
302 * @bio:	bio to attach buffer to
303 * @tag_buf:	Pointer to a buffer containing tag data
304 * @len:	Length of the included buffer
305 *
306 * Description: Use this function to tag a bio by leveraging the extra
307 * space provided by devices formatted with integrity protection.  The
308 * size of the integrity buffer must be <= to the size reported by
309 * bio_integrity_tag_size().
310 */
311int bio_integrity_set_tag(struct bio *bio, void *tag_buf, unsigned int len)
312{
313	BUG_ON(bio_data_dir(bio) != WRITE);
314
315	return bio_integrity_tag(bio, tag_buf, len, 1);
316}
317EXPORT_SYMBOL(bio_integrity_set_tag);
318
319/**
320 * bio_integrity_get_tag - Retrieve a tag buffer from a bio
321 * @bio:	bio to retrieve buffer from
322 * @tag_buf:	Pointer to a buffer for the tag data
323 * @len:	Length of the target buffer
324 *
325 * Description: Use this function to retrieve the tag buffer from a
326 * completed I/O. The size of the integrity buffer must be <= to the
327 * size reported by bio_integrity_tag_size().
328 */
329int bio_integrity_get_tag(struct bio *bio, void *tag_buf, unsigned int len)
330{
331	BUG_ON(bio_data_dir(bio) != READ);
332
333	return bio_integrity_tag(bio, tag_buf, len, 0);
334}
335EXPORT_SYMBOL(bio_integrity_get_tag);
336
337/**
338 * bio_integrity_generate - Generate integrity metadata for a bio
339 * @bio:	bio to generate integrity metadata for
340 *
341 * Description: Generates integrity metadata for a bio by calling the
342 * block device's generation callback function.  The bio must have a
343 * bip attached with enough room to accommodate the generated
344 * integrity metadata.
345 */
346static void bio_integrity_generate(struct bio *bio)
347{
348	struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
349	struct blk_integrity_exchg bix;
350	struct bio_vec *bv;
351	sector_t sector = bio->bi_sector;
352	unsigned int i, sectors, total;
353	void *prot_buf = bio->bi_integrity->bip_buf;
354
355	total = 0;
356	bix.disk_name = bio->bi_bdev->bd_disk->disk_name;
357	bix.sector_size = bi->sector_size;
358
359	bio_for_each_segment(bv, bio, i) {
360		void *kaddr = kmap_atomic(bv->bv_page);
361		bix.data_buf = kaddr + bv->bv_offset;
362		bix.data_size = bv->bv_len;
363		bix.prot_buf = prot_buf;
364		bix.sector = sector;
365
366		bi->generate_fn(&bix);
367
368		sectors = bv->bv_len / bi->sector_size;
369		sector += sectors;
370		prot_buf += sectors * bi->tuple_size;
371		total += sectors * bi->tuple_size;
372		BUG_ON(total > bio->bi_integrity->bip_size);
373
374		kunmap_atomic(kaddr);
375	}
376}
377
378static inline unsigned short blk_integrity_tuple_size(struct blk_integrity *bi)
379{
380	if (bi)
381		return bi->tuple_size;
382
383	return 0;
384}
385
386/**
387 * bio_integrity_prep - Prepare bio for integrity I/O
388 * @bio:	bio to prepare
389 *
390 * Description: Allocates a buffer for integrity metadata, maps the
391 * pages and attaches them to a bio.  The bio must have data
392 * direction, target device and start sector set priot to calling.  In
393 * the WRITE case, integrity metadata will be generated using the
394 * block device's integrity function.  In the READ case, the buffer
395 * will be prepared for DMA and a suitable end_io handler set up.
396 */
397int bio_integrity_prep(struct bio *bio)
398{
399	struct bio_integrity_payload *bip;
400	struct blk_integrity *bi;
401	struct request_queue *q;
402	void *buf;
403	unsigned long start, end;
404	unsigned int len, nr_pages;
405	unsigned int bytes, offset, i;
406	unsigned int sectors;
407
408	bi = bdev_get_integrity(bio->bi_bdev);
409	q = bdev_get_queue(bio->bi_bdev);
410	BUG_ON(bi == NULL);
411	BUG_ON(bio_integrity(bio));
412
413	sectors = bio_integrity_hw_sectors(bi, bio_sectors(bio));
414
415	/* Allocate kernel buffer for protection data */
416	len = sectors * blk_integrity_tuple_size(bi);
417	buf = kmalloc(len, GFP_NOIO | q->bounce_gfp);
418	if (unlikely(buf == NULL)) {
419		printk(KERN_ERR "could not allocate integrity buffer\n");
420		return -ENOMEM;
421	}
422
423	end = (((unsigned long) buf) + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
424	start = ((unsigned long) buf) >> PAGE_SHIFT;
425	nr_pages = end - start;
426
427	/* Allocate bio integrity payload and integrity vectors */
428	bip = bio_integrity_alloc(bio, GFP_NOIO, nr_pages);
429	if (unlikely(bip == NULL)) {
430		printk(KERN_ERR "could not allocate data integrity bioset\n");
431		kfree(buf);
432		return -EIO;
433	}
434
435	bip->bip_buf = buf;
436	bip->bip_size = len;
437	bip->bip_sector = bio->bi_sector;
438
439	/* Map it */
440	offset = offset_in_page(buf);
441	for (i = 0 ; i < nr_pages ; i++) {
442		int ret;
443		bytes = PAGE_SIZE - offset;
444
445		if (len <= 0)
446			break;
447
448		if (bytes > len)
449			bytes = len;
450
451		ret = bio_integrity_add_page(bio, virt_to_page(buf),
452					     bytes, offset);
453
454		if (ret == 0)
455			return 0;
456
457		if (ret < bytes)
458			break;
459
460		buf += bytes;
461		len -= bytes;
462		offset = 0;
463	}
464
465	/* Install custom I/O completion handler if read verify is enabled */
466	if (bio_data_dir(bio) == READ) {
467		bip->bip_end_io = bio->bi_end_io;
468		bio->bi_end_io = bio_integrity_endio;
469	}
470
471	/* Auto-generate integrity metadata if this is a write */
472	if (bio_data_dir(bio) == WRITE)
473		bio_integrity_generate(bio);
474
475	return 0;
476}
477EXPORT_SYMBOL(bio_integrity_prep);
478
479/**
480 * bio_integrity_verify - Verify integrity metadata for a bio
481 * @bio:	bio to verify
482 *
483 * Description: This function is called to verify the integrity of a
484 * bio.	 The data in the bio io_vec is compared to the integrity
485 * metadata returned by the HBA.
486 */
487static int bio_integrity_verify(struct bio *bio)
488{
489	struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
490	struct blk_integrity_exchg bix;
491	struct bio_vec *bv;
492	sector_t sector = bio->bi_integrity->bip_sector;
493	unsigned int i, sectors, total, ret;
494	void *prot_buf = bio->bi_integrity->bip_buf;
495
496	ret = total = 0;
497	bix.disk_name = bio->bi_bdev->bd_disk->disk_name;
498	bix.sector_size = bi->sector_size;
499
500	bio_for_each_segment(bv, bio, i) {
501		void *kaddr = kmap_atomic(bv->bv_page);
502		bix.data_buf = kaddr + bv->bv_offset;
503		bix.data_size = bv->bv_len;
504		bix.prot_buf = prot_buf;
505		bix.sector = sector;
506
507		ret = bi->verify_fn(&bix);
508
509		if (ret) {
510			kunmap_atomic(kaddr);
511			return ret;
512		}
513
514		sectors = bv->bv_len / bi->sector_size;
515		sector += sectors;
516		prot_buf += sectors * bi->tuple_size;
517		total += sectors * bi->tuple_size;
518		BUG_ON(total > bio->bi_integrity->bip_size);
519
520		kunmap_atomic(kaddr);
521	}
522
523	return ret;
524}
525
526/**
527 * bio_integrity_verify_fn - Integrity I/O completion worker
528 * @work:	Work struct stored in bio to be verified
529 *
530 * Description: This workqueue function is called to complete a READ
531 * request.  The function verifies the transferred integrity metadata
532 * and then calls the original bio end_io function.
533 */
534static void bio_integrity_verify_fn(struct work_struct *work)
535{
536	struct bio_integrity_payload *bip =
537		container_of(work, struct bio_integrity_payload, bip_work);
538	struct bio *bio = bip->bip_bio;
539	int error;
540
541	error = bio_integrity_verify(bio);
542
543	/* Restore original bio completion handler */
544	bio->bi_end_io = bip->bip_end_io;
545	bio_endio(bio, error);
546}
547
548/**
549 * bio_integrity_endio - Integrity I/O completion function
550 * @bio:	Protected bio
551 * @error:	Pointer to errno
552 *
553 * Description: Completion for integrity I/O
554 *
555 * Normally I/O completion is done in interrupt context.  However,
556 * verifying I/O integrity is a time-consuming task which must be run
557 * in process context.	This function postpones completion
558 * accordingly.
559 */
560void bio_integrity_endio(struct bio *bio, int error)
561{
562	struct bio_integrity_payload *bip = bio->bi_integrity;
563
564	BUG_ON(bip->bip_bio != bio);
565
566	/* In case of an I/O error there is no point in verifying the
567	 * integrity metadata.  Restore original bio end_io handler
568	 * and run it.
569	 */
570	if (error) {
571		bio->bi_end_io = bip->bip_end_io;
572		bio_endio(bio, error);
573
574		return;
575	}
576
577	INIT_WORK(&bip->bip_work, bio_integrity_verify_fn);
578	queue_work(kintegrityd_wq, &bip->bip_work);
579}
580EXPORT_SYMBOL(bio_integrity_endio);
581
582/**
583 * bio_integrity_mark_head - Advance bip_vec skip bytes
584 * @bip:	Integrity vector to advance
585 * @skip:	Number of bytes to advance it
586 */
587void bio_integrity_mark_head(struct bio_integrity_payload *bip,
588			     unsigned int skip)
589{
590	struct bio_vec *iv;
591	unsigned int i;
592
593	bip_for_each_vec(iv, bip, i) {
594		if (skip == 0) {
595			bip->bip_idx = i;
596			return;
597		} else if (skip >= iv->bv_len) {
598			skip -= iv->bv_len;
599		} else { /* skip < iv->bv_len) */
600			iv->bv_offset += skip;
601			iv->bv_len -= skip;
602			bip->bip_idx = i;
603			return;
604		}
605	}
606}
607
608/**
609 * bio_integrity_mark_tail - Truncate bip_vec to be len bytes long
610 * @bip:	Integrity vector to truncate
611 * @len:	New length of integrity vector
612 */
613void bio_integrity_mark_tail(struct bio_integrity_payload *bip,
614			     unsigned int len)
615{
616	struct bio_vec *iv;
617	unsigned int i;
618
619	bip_for_each_vec(iv, bip, i) {
620		if (len == 0) {
621			bip->bip_vcnt = i;
622			return;
623		} else if (len >= iv->bv_len) {
624			len -= iv->bv_len;
625		} else { /* len < iv->bv_len) */
626			iv->bv_len = len;
627			len = 0;
628		}
629	}
630}
631
632/**
633 * bio_integrity_advance - Advance integrity vector
634 * @bio:	bio whose integrity vector to update
635 * @bytes_done:	number of data bytes that have been completed
636 *
637 * Description: This function calculates how many integrity bytes the
638 * number of completed data bytes correspond to and advances the
639 * integrity vector accordingly.
640 */
641void bio_integrity_advance(struct bio *bio, unsigned int bytes_done)
642{
643	struct bio_integrity_payload *bip = bio->bi_integrity;
644	struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
645	unsigned int nr_sectors;
646
647	BUG_ON(bip == NULL);
648	BUG_ON(bi == NULL);
649
650	nr_sectors = bio_integrity_hw_sectors(bi, bytes_done >> 9);
651	bio_integrity_mark_head(bip, nr_sectors * bi->tuple_size);
652}
653EXPORT_SYMBOL(bio_integrity_advance);
654
655/**
656 * bio_integrity_trim - Trim integrity vector
657 * @bio:	bio whose integrity vector to update
658 * @offset:	offset to first data sector
659 * @sectors:	number of data sectors
660 *
661 * Description: Used to trim the integrity vector in a cloned bio.
662 * The ivec will be advanced corresponding to 'offset' data sectors
663 * and the length will be truncated corresponding to 'len' data
664 * sectors.
665 */
666void bio_integrity_trim(struct bio *bio, unsigned int offset,
667			unsigned int sectors)
668{
669	struct bio_integrity_payload *bip = bio->bi_integrity;
670	struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
671	unsigned int nr_sectors;
672
673	BUG_ON(bip == NULL);
674	BUG_ON(bi == NULL);
675	BUG_ON(!bio_flagged(bio, BIO_CLONED));
676
677	nr_sectors = bio_integrity_hw_sectors(bi, sectors);
678	bip->bip_sector = bip->bip_sector + offset;
679	bio_integrity_mark_head(bip, offset * bi->tuple_size);
680	bio_integrity_mark_tail(bip, sectors * bi->tuple_size);
681}
682EXPORT_SYMBOL(bio_integrity_trim);
683
684/**
685 * bio_integrity_split - Split integrity metadata
686 * @bio:	Protected bio
687 * @bp:		Resulting bio_pair
688 * @sectors:	Offset
689 *
690 * Description: Splits an integrity page into a bio_pair.
691 */
692void bio_integrity_split(struct bio *bio, struct bio_pair *bp, int sectors)
693{
694	struct blk_integrity *bi;
695	struct bio_integrity_payload *bip = bio->bi_integrity;
696	unsigned int nr_sectors;
697
698	if (bio_integrity(bio) == 0)
699		return;
700
701	bi = bdev_get_integrity(bio->bi_bdev);
702	BUG_ON(bi == NULL);
703	BUG_ON(bip->bip_vcnt != 1);
704
705	nr_sectors = bio_integrity_hw_sectors(bi, sectors);
706
707	bp->bio1.bi_integrity = &bp->bip1;
708	bp->bio2.bi_integrity = &bp->bip2;
709
710	bp->iv1 = bip->bip_vec[0];
711	bp->iv2 = bip->bip_vec[0];
712
713	bp->bip1.bip_vec[0] = bp->iv1;
714	bp->bip2.bip_vec[0] = bp->iv2;
715
716	bp->iv1.bv_len = sectors * bi->tuple_size;
717	bp->iv2.bv_offset += sectors * bi->tuple_size;
718	bp->iv2.bv_len -= sectors * bi->tuple_size;
719
720	bp->bip1.bip_sector = bio->bi_integrity->bip_sector;
721	bp->bip2.bip_sector = bio->bi_integrity->bip_sector + nr_sectors;
722
723	bp->bip1.bip_vcnt = bp->bip2.bip_vcnt = 1;
724	bp->bip1.bip_idx = bp->bip2.bip_idx = 0;
725}
726EXPORT_SYMBOL(bio_integrity_split);
727
728/**
729 * bio_integrity_clone - Callback for cloning bios with integrity metadata
730 * @bio:	New bio
731 * @bio_src:	Original bio
732 * @gfp_mask:	Memory allocation mask
733 * @bs:		bio_set to allocate bip from
734 *
735 * Description:	Called to allocate a bip when cloning a bio
736 */
737int bio_integrity_clone(struct bio *bio, struct bio *bio_src,
738			gfp_t gfp_mask, struct bio_set *bs)
739{
740	struct bio_integrity_payload *bip_src = bio_src->bi_integrity;
741	struct bio_integrity_payload *bip;
742
743	BUG_ON(bip_src == NULL);
744
745	bip = bio_integrity_alloc_bioset(bio, gfp_mask, bip_src->bip_vcnt, bs);
746
747	if (bip == NULL)
748		return -EIO;
749
750	memcpy(bip->bip_vec, bip_src->bip_vec,
751	       bip_src->bip_vcnt * sizeof(struct bio_vec));
752
753	bip->bip_sector = bip_src->bip_sector;
754	bip->bip_vcnt = bip_src->bip_vcnt;
755	bip->bip_idx = bip_src->bip_idx;
756
757	return 0;
758}
759EXPORT_SYMBOL(bio_integrity_clone);
760
761int bioset_integrity_create(struct bio_set *bs, int pool_size)
762{
763	unsigned int max_slab = vecs_to_idx(BIO_MAX_PAGES);
764
765	if (bs->bio_integrity_pool)
766		return 0;
767
768	bs->bio_integrity_pool =
769		mempool_create_slab_pool(pool_size, bip_slab[max_slab].slab);
770
771	if (!bs->bio_integrity_pool)
772		return -1;
773
774	return 0;
775}
776EXPORT_SYMBOL(bioset_integrity_create);
777
778void bioset_integrity_free(struct bio_set *bs)
779{
780	if (bs->bio_integrity_pool)
781		mempool_destroy(bs->bio_integrity_pool);
782}
783EXPORT_SYMBOL(bioset_integrity_free);
784
785void __init bio_integrity_init(void)
786{
787	unsigned int i;
788
789	/*
790	 * kintegrityd won't block much but may burn a lot of CPU cycles.
791	 * Make it highpri CPU intensive wq with max concurrency of 1.
792	 */
793	kintegrityd_wq = alloc_workqueue("kintegrityd", WQ_MEM_RECLAIM |
794					 WQ_HIGHPRI | WQ_CPU_INTENSIVE, 1);
795	if (!kintegrityd_wq)
796		panic("Failed to create kintegrityd\n");
797
798	for (i = 0 ; i < BIOVEC_NR_POOLS ; i++) {
799		unsigned int size;
800
801		size = sizeof(struct bio_integrity_payload)
802			+ bip_slab[i].nr_vecs * sizeof(struct bio_vec);
803
804		bip_slab[i].slab =
805			kmem_cache_create(bip_slab[i].name, size, 0,
806					  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
807	}
808}