Linux Audio

Check our new training course

Loading...
  1/*
  2 * Freescale Hypervisor Management Driver
  3
  4 * Copyright (C) 2008-2011 Freescale Semiconductor, Inc.
  5 * Author: Timur Tabi <timur@freescale.com>
  6 *
  7 * This file is licensed under the terms of the GNU General Public License
  8 * version 2.  This program is licensed "as is" without any warranty of any
  9 * kind, whether express or implied.
 10 *
 11 * The Freescale hypervisor management driver provides several services to
 12 * drivers and applications related to the Freescale hypervisor:
 13 *
 14 * 1. An ioctl interface for querying and managing partitions.
 15 *
 16 * 2. A file interface to reading incoming doorbells.
 17 *
 18 * 3. An interrupt handler for shutting down the partition upon receiving the
 19 *    shutdown doorbell from a manager partition.
 20 *
 21 * 4. A kernel interface for receiving callbacks when a managed partition
 22 *    shuts down.
 23 */
 24
 25#include <linux/kernel.h>
 26#include <linux/module.h>
 27#include <linux/init.h>
 28#include <linux/types.h>
 29#include <linux/err.h>
 30#include <linux/fs.h>
 31#include <linux/miscdevice.h>
 32#include <linux/mm.h>
 33#include <linux/pagemap.h>
 34#include <linux/slab.h>
 35#include <linux/poll.h>
 36#include <linux/of.h>
 37#include <linux/reboot.h>
 38#include <linux/uaccess.h>
 39#include <linux/notifier.h>
 40#include <linux/interrupt.h>
 41
 42#include <linux/io.h>
 43#include <asm/fsl_hcalls.h>
 44
 45#include <linux/fsl_hypervisor.h>
 46
 47static BLOCKING_NOTIFIER_HEAD(failover_subscribers);
 48
 49/*
 50 * Ioctl interface for FSL_HV_IOCTL_PARTITION_RESTART
 51 *
 52 * Restart a running partition
 53 */
 54static long ioctl_restart(struct fsl_hv_ioctl_restart __user *p)
 55{
 56	struct fsl_hv_ioctl_restart param;
 57
 58	/* Get the parameters from the user */
 59	if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_restart)))
 60		return -EFAULT;
 61
 62	param.ret = fh_partition_restart(param.partition);
 63
 64	if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
 65		return -EFAULT;
 66
 67	return 0;
 68}
 69
 70/*
 71 * Ioctl interface for FSL_HV_IOCTL_PARTITION_STATUS
 72 *
 73 * Query the status of a partition
 74 */
 75static long ioctl_status(struct fsl_hv_ioctl_status __user *p)
 76{
 77	struct fsl_hv_ioctl_status param;
 78	u32 status;
 79
 80	/* Get the parameters from the user */
 81	if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_status)))
 82		return -EFAULT;
 83
 84	param.ret = fh_partition_get_status(param.partition, &status);
 85	if (!param.ret)
 86		param.status = status;
 87
 88	if (copy_to_user(p, &param, sizeof(struct fsl_hv_ioctl_status)))
 89		return -EFAULT;
 90
 91	return 0;
 92}
 93
 94/*
 95 * Ioctl interface for FSL_HV_IOCTL_PARTITION_START
 96 *
 97 * Start a stopped partition.
 98 */
 99static long ioctl_start(struct fsl_hv_ioctl_start __user *p)
100{
101	struct fsl_hv_ioctl_start param;
102
103	/* Get the parameters from the user */
104	if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_start)))
105		return -EFAULT;
106
107	param.ret = fh_partition_start(param.partition, param.entry_point,
108				       param.load);
109
110	if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
111		return -EFAULT;
112
113	return 0;
114}
115
116/*
117 * Ioctl interface for FSL_HV_IOCTL_PARTITION_STOP
118 *
119 * Stop a running partition
120 */
121static long ioctl_stop(struct fsl_hv_ioctl_stop __user *p)
122{
123	struct fsl_hv_ioctl_stop param;
124
125	/* Get the parameters from the user */
126	if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_stop)))
127		return -EFAULT;
128
129	param.ret = fh_partition_stop(param.partition);
130
131	if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
132		return -EFAULT;
133
134	return 0;
135}
136
137/*
138 * Ioctl interface for FSL_HV_IOCTL_MEMCPY
139 *
140 * The FH_MEMCPY hypercall takes an array of address/address/size structures
141 * to represent the data being copied.  As a convenience to the user, this
142 * ioctl takes a user-create buffer and a pointer to a guest physically
143 * contiguous buffer in the remote partition, and creates the
144 * address/address/size array for the hypercall.
145 */
146static long ioctl_memcpy(struct fsl_hv_ioctl_memcpy __user *p)
147{
148	struct fsl_hv_ioctl_memcpy param;
149
150	struct page **pages = NULL;
151	void *sg_list_unaligned = NULL;
152	struct fh_sg_list *sg_list = NULL;
153
154	unsigned int num_pages;
155	unsigned long lb_offset; /* Offset within a page of the local buffer */
156
157	unsigned int i;
158	long ret = 0;
159	int num_pinned; /* return value from get_user_pages() */
160	phys_addr_t remote_paddr; /* The next address in the remote buffer */
161	uint32_t count; /* The number of bytes left to copy */
162
163	/* Get the parameters from the user */
164	if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_memcpy)))
165		return -EFAULT;
166
167	/*
168	 * One partition must be local, the other must be remote.  In other
169	 * words, if source and target are both -1, or are both not -1, then
170	 * return an error.
171	 */
172	if ((param.source == -1) == (param.target == -1))
173		return -EINVAL;
174
175	/*
176	 * The array of pages returned by get_user_pages() covers only
177	 * page-aligned memory.  Since the user buffer is probably not
178	 * page-aligned, we need to handle the discrepancy.
179	 *
180	 * We calculate the offset within a page of the S/G list, and make
181	 * adjustments accordingly.  This will result in a page list that looks
182	 * like this:
183	 *
184	 *      ----    <-- first page starts before the buffer
185	 *     |    |
186	 *     |////|-> ----
187	 *     |////|  |    |
188	 *      ----   |    |
189	 *             |    |
190	 *      ----   |    |
191	 *     |////|  |    |
192	 *     |////|  |    |
193	 *     |////|  |    |
194	 *      ----   |    |
195	 *             |    |
196	 *      ----   |    |
197	 *     |////|  |    |
198	 *     |////|  |    |
199	 *     |////|  |    |
200	 *      ----   |    |
201	 *             |    |
202	 *      ----   |    |
203	 *     |////|  |    |
204	 *     |////|-> ----
205	 *     |    |   <-- last page ends after the buffer
206	 *      ----
207	 *
208	 * The distance between the start of the first page and the start of the
209	 * buffer is lb_offset.  The hashed (///) areas are the parts of the
210	 * page list that contain the actual buffer.
211	 *
212	 * The advantage of this approach is that the number of pages is
213	 * equal to the number of entries in the S/G list that we give to the
214	 * hypervisor.
215	 */
216	lb_offset = param.local_vaddr & (PAGE_SIZE - 1);
217	num_pages = (param.count + lb_offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
218
219	/* Allocate the buffers we need */
220
221	/*
222	 * 'pages' is an array of struct page pointers that's initialized by
223	 * get_user_pages().
224	 */
225	pages = kzalloc(num_pages * sizeof(struct page *), GFP_KERNEL);
226	if (!pages) {
227		pr_debug("fsl-hv: could not allocate page list\n");
228		return -ENOMEM;
229	}
230
231	/*
232	 * sg_list is the list of fh_sg_list objects that we pass to the
233	 * hypervisor.
234	 */
235	sg_list_unaligned = kmalloc(num_pages * sizeof(struct fh_sg_list) +
236		sizeof(struct fh_sg_list) - 1, GFP_KERNEL);
237	if (!sg_list_unaligned) {
238		pr_debug("fsl-hv: could not allocate S/G list\n");
239		ret = -ENOMEM;
240		goto exit;
241	}
242	sg_list = PTR_ALIGN(sg_list_unaligned, sizeof(struct fh_sg_list));
243
244	/* Get the physical addresses of the source buffer */
245	down_read(&current->mm->mmap_sem);
246	num_pinned = get_user_pages(current, current->mm,
247		param.local_vaddr - lb_offset, num_pages,
248		(param.source == -1) ? READ : WRITE,
249		0, pages, NULL);
250	up_read(&current->mm->mmap_sem);
251
252	if (num_pinned != num_pages) {
253		/* get_user_pages() failed */
254		pr_debug("fsl-hv: could not lock source buffer\n");
255		ret = (num_pinned < 0) ? num_pinned : -EFAULT;
256		goto exit;
257	}
258
259	/*
260	 * Build the fh_sg_list[] array.  The first page is special
261	 * because it's misaligned.
262	 */
263	if (param.source == -1) {
264		sg_list[0].source = page_to_phys(pages[0]) + lb_offset;
265		sg_list[0].target = param.remote_paddr;
266	} else {
267		sg_list[0].source = param.remote_paddr;
268		sg_list[0].target = page_to_phys(pages[0]) + lb_offset;
269	}
270	sg_list[0].size = min_t(uint64_t, param.count, PAGE_SIZE - lb_offset);
271
272	remote_paddr = param.remote_paddr + sg_list[0].size;
273	count = param.count - sg_list[0].size;
274
275	for (i = 1; i < num_pages; i++) {
276		if (param.source == -1) {
277			/* local to remote */
278			sg_list[i].source = page_to_phys(pages[i]);
279			sg_list[i].target = remote_paddr;
280		} else {
281			/* remote to local */
282			sg_list[i].source = remote_paddr;
283			sg_list[i].target = page_to_phys(pages[i]);
284		}
285		sg_list[i].size = min_t(uint64_t, count, PAGE_SIZE);
286
287		remote_paddr += sg_list[i].size;
288		count -= sg_list[i].size;
289	}
290
291	param.ret = fh_partition_memcpy(param.source, param.target,
292		virt_to_phys(sg_list), num_pages);
293
294exit:
295	if (pages) {
296		for (i = 0; i < num_pages; i++)
297			if (pages[i])
298				put_page(pages[i]);
299	}
300
301	kfree(sg_list_unaligned);
302	kfree(pages);
303
304	if (!ret)
305		if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
306			return -EFAULT;
307
308	return ret;
309}
310
311/*
312 * Ioctl interface for FSL_HV_IOCTL_DOORBELL
313 *
314 * Ring a doorbell
315 */
316static long ioctl_doorbell(struct fsl_hv_ioctl_doorbell __user *p)
317{
318	struct fsl_hv_ioctl_doorbell param;
319
320	/* Get the parameters from the user. */
321	if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_doorbell)))
322		return -EFAULT;
323
324	param.ret = ev_doorbell_send(param.doorbell);
325
326	if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
327		return -EFAULT;
328
329	return 0;
330}
331
332static long ioctl_dtprop(struct fsl_hv_ioctl_prop __user *p, int set)
333{
334	struct fsl_hv_ioctl_prop param;
335	char __user *upath, *upropname;
336	void __user *upropval;
337	char *path = NULL, *propname = NULL;
338	void *propval = NULL;
339	int ret = 0;
340
341	/* Get the parameters from the user. */
342	if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_prop)))
343		return -EFAULT;
344
345	upath = (char __user *)(uintptr_t)param.path;
346	upropname = (char __user *)(uintptr_t)param.propname;
347	upropval = (void __user *)(uintptr_t)param.propval;
348
349	path = strndup_user(upath, FH_DTPROP_MAX_PATHLEN);
350	if (IS_ERR(path)) {
351		ret = PTR_ERR(path);
352		goto out;
353	}
354
355	propname = strndup_user(upropname, FH_DTPROP_MAX_PATHLEN);
356	if (IS_ERR(propname)) {
357		ret = PTR_ERR(propname);
358		goto out;
359	}
360
361	if (param.proplen > FH_DTPROP_MAX_PROPLEN) {
362		ret = -EINVAL;
363		goto out;
364	}
365
366	propval = kmalloc(param.proplen, GFP_KERNEL);
367	if (!propval) {
368		ret = -ENOMEM;
369		goto out;
370	}
371
372	if (set) {
373		if (copy_from_user(propval, upropval, param.proplen)) {
374			ret = -EFAULT;
375			goto out;
376		}
377
378		param.ret = fh_partition_set_dtprop(param.handle,
379						    virt_to_phys(path),
380						    virt_to_phys(propname),
381						    virt_to_phys(propval),
382						    param.proplen);
383	} else {
384		param.ret = fh_partition_get_dtprop(param.handle,
385						    virt_to_phys(path),
386						    virt_to_phys(propname),
387						    virt_to_phys(propval),
388						    &param.proplen);
389
390		if (param.ret == 0) {
391			if (copy_to_user(upropval, propval, param.proplen) ||
392			    put_user(param.proplen, &p->proplen)) {
393				ret = -EFAULT;
394				goto out;
395			}
396		}
397	}
398
399	if (put_user(param.ret, &p->ret))
400		ret = -EFAULT;
401
402out:
403	kfree(path);
404	kfree(propval);
405	kfree(propname);
406
407	return ret;
408}
409
410/*
411 * Ioctl main entry point
412 */
413static long fsl_hv_ioctl(struct file *file, unsigned int cmd,
414			 unsigned long argaddr)
415{
416	void __user *arg = (void __user *)argaddr;
417	long ret;
418
419	switch (cmd) {
420	case FSL_HV_IOCTL_PARTITION_RESTART:
421		ret = ioctl_restart(arg);
422		break;
423	case FSL_HV_IOCTL_PARTITION_GET_STATUS:
424		ret = ioctl_status(arg);
425		break;
426	case FSL_HV_IOCTL_PARTITION_START:
427		ret = ioctl_start(arg);
428		break;
429	case FSL_HV_IOCTL_PARTITION_STOP:
430		ret = ioctl_stop(arg);
431		break;
432	case FSL_HV_IOCTL_MEMCPY:
433		ret = ioctl_memcpy(arg);
434		break;
435	case FSL_HV_IOCTL_DOORBELL:
436		ret = ioctl_doorbell(arg);
437		break;
438	case FSL_HV_IOCTL_GETPROP:
439		ret = ioctl_dtprop(arg, 0);
440		break;
441	case FSL_HV_IOCTL_SETPROP:
442		ret = ioctl_dtprop(arg, 1);
443		break;
444	default:
445		pr_debug("fsl-hv: bad ioctl dir=%u type=%u cmd=%u size=%u\n",
446			 _IOC_DIR(cmd), _IOC_TYPE(cmd), _IOC_NR(cmd),
447			 _IOC_SIZE(cmd));
448		return -ENOTTY;
449	}
450
451	return ret;
452}
453
454/* Linked list of processes that have us open */
455static struct list_head db_list;
456
457/* spinlock for db_list */
458static DEFINE_SPINLOCK(db_list_lock);
459
460/* The size of the doorbell event queue.  This must be a power of two. */
461#define QSIZE	16
462
463/* Returns the next head/tail pointer, wrapping around the queue if necessary */
464#define nextp(x) (((x) + 1) & (QSIZE - 1))
465
466/* Per-open data structure */
467struct doorbell_queue {
468	struct list_head list;
469	spinlock_t lock;
470	wait_queue_head_t wait;
471	unsigned int head;
472	unsigned int tail;
473	uint32_t q[QSIZE];
474};
475
476/* Linked list of ISRs that we registered */
477struct list_head isr_list;
478
479/* Per-ISR data structure */
480struct doorbell_isr {
481	struct list_head list;
482	unsigned int irq;
483	uint32_t doorbell;	/* The doorbell handle */
484	uint32_t partition;	/* The partition handle, if used */
485};
486
487/*
488 * Add a doorbell to all of the doorbell queues
489 */
490static void fsl_hv_queue_doorbell(uint32_t doorbell)
491{
492	struct doorbell_queue *dbq;
493	unsigned long flags;
494
495	/* Prevent another core from modifying db_list */
496	spin_lock_irqsave(&db_list_lock, flags);
497
498	list_for_each_entry(dbq, &db_list, list) {
499		if (dbq->head != nextp(dbq->tail)) {
500			dbq->q[dbq->tail] = doorbell;
501			/*
502			 * This memory barrier eliminates the need to grab
503			 * the spinlock for dbq.
504			 */
505			smp_wmb();
506			dbq->tail = nextp(dbq->tail);
507			wake_up_interruptible(&dbq->wait);
508		}
509	}
510
511	spin_unlock_irqrestore(&db_list_lock, flags);
512}
513
514/*
515 * Interrupt handler for all doorbells
516 *
517 * We use the same interrupt handler for all doorbells.  Whenever a doorbell
518 * is rung, and we receive an interrupt, we just put the handle for that
519 * doorbell (passed to us as *data) into all of the queues.
520 */
521static irqreturn_t fsl_hv_isr(int irq, void *data)
522{
523	fsl_hv_queue_doorbell((uintptr_t) data);
524
525	return IRQ_HANDLED;
526}
527
528/*
529 * State change thread function
530 *
531 * The state change notification arrives in an interrupt, but we can't call
532 * blocking_notifier_call_chain() in an interrupt handler.  We could call
533 * atomic_notifier_call_chain(), but that would require the clients' call-back
534 * function to run in interrupt context.  Since we don't want to impose that
535 * restriction on the clients, we use a threaded IRQ to process the
536 * notification in kernel context.
537 */
538static irqreturn_t fsl_hv_state_change_thread(int irq, void *data)
539{
540	struct doorbell_isr *dbisr = data;
541
542	blocking_notifier_call_chain(&failover_subscribers, dbisr->partition,
543				     NULL);
544
545	return IRQ_HANDLED;
546}
547
548/*
549 * Interrupt handler for state-change doorbells
550 */
551static irqreturn_t fsl_hv_state_change_isr(int irq, void *data)
552{
553	unsigned int status;
554	struct doorbell_isr *dbisr = data;
555	int ret;
556
557	/* It's still a doorbell, so add it to all the queues. */
558	fsl_hv_queue_doorbell(dbisr->doorbell);
559
560	/* Determine the new state, and if it's stopped, notify the clients. */
561	ret = fh_partition_get_status(dbisr->partition, &status);
562	if (!ret && (status == FH_PARTITION_STOPPED))
563		return IRQ_WAKE_THREAD;
564
565	return IRQ_HANDLED;
566}
567
568/*
569 * Returns a bitmask indicating whether a read will block
570 */
571static unsigned int fsl_hv_poll(struct file *filp, struct poll_table_struct *p)
572{
573	struct doorbell_queue *dbq = filp->private_data;
574	unsigned long flags;
575	unsigned int mask;
576
577	spin_lock_irqsave(&dbq->lock, flags);
578
579	poll_wait(filp, &dbq->wait, p);
580	mask = (dbq->head == dbq->tail) ? 0 : (POLLIN | POLLRDNORM);
581
582	spin_unlock_irqrestore(&dbq->lock, flags);
583
584	return mask;
585}
586
587/*
588 * Return the handles for any incoming doorbells
589 *
590 * If there are doorbell handles in the queue for this open instance, then
591 * return them to the caller as an array of 32-bit integers.  Otherwise,
592 * block until there is at least one handle to return.
593 */
594static ssize_t fsl_hv_read(struct file *filp, char __user *buf, size_t len,
595			   loff_t *off)
596{
597	struct doorbell_queue *dbq = filp->private_data;
598	uint32_t __user *p = (uint32_t __user *) buf; /* for put_user() */
599	unsigned long flags;
600	ssize_t count = 0;
601
602	/* Make sure we stop when the user buffer is full. */
603	while (len >= sizeof(uint32_t)) {
604		uint32_t dbell;	/* Local copy of doorbell queue data */
605
606		spin_lock_irqsave(&dbq->lock, flags);
607
608		/*
609		 * If the queue is empty, then either we're done or we need
610		 * to block.  If the application specified O_NONBLOCK, then
611		 * we return the appropriate error code.
612		 */
613		if (dbq->head == dbq->tail) {
614			spin_unlock_irqrestore(&dbq->lock, flags);
615			if (count)
616				break;
617			if (filp->f_flags & O_NONBLOCK)
618				return -EAGAIN;
619			if (wait_event_interruptible(dbq->wait,
620						     dbq->head != dbq->tail))
621				return -ERESTARTSYS;
622			continue;
623		}
624
625		/*
626		 * Even though we have an smp_wmb() in the ISR, the core
627		 * might speculatively execute the "dbell = ..." below while
628		 * it's evaluating the if-statement above.  In that case, the
629		 * value put into dbell could be stale if the core accepts the
630		 * speculation. To prevent that, we need a read memory barrier
631		 * here as well.
632		 */
633		smp_rmb();
634
635		/* Copy the data to a temporary local buffer, because
636		 * we can't call copy_to_user() from inside a spinlock
637		 */
638		dbell = dbq->q[dbq->head];
639		dbq->head = nextp(dbq->head);
640
641		spin_unlock_irqrestore(&dbq->lock, flags);
642
643		if (put_user(dbell, p))
644			return -EFAULT;
645		p++;
646		count += sizeof(uint32_t);
647		len -= sizeof(uint32_t);
648	}
649
650	return count;
651}
652
653/*
654 * Open the driver and prepare for reading doorbells.
655 *
656 * Every time an application opens the driver, we create a doorbell queue
657 * for that file handle.  This queue is used for any incoming doorbells.
658 */
659static int fsl_hv_open(struct inode *inode, struct file *filp)
660{
661	struct doorbell_queue *dbq;
662	unsigned long flags;
663	int ret = 0;
664
665	dbq = kzalloc(sizeof(struct doorbell_queue), GFP_KERNEL);
666	if (!dbq) {
667		pr_err("fsl-hv: out of memory\n");
668		return -ENOMEM;
669	}
670
671	spin_lock_init(&dbq->lock);
672	init_waitqueue_head(&dbq->wait);
673
674	spin_lock_irqsave(&db_list_lock, flags);
675	list_add(&dbq->list, &db_list);
676	spin_unlock_irqrestore(&db_list_lock, flags);
677
678	filp->private_data = dbq;
679
680	return ret;
681}
682
683/*
684 * Close the driver
685 */
686static int fsl_hv_close(struct inode *inode, struct file *filp)
687{
688	struct doorbell_queue *dbq = filp->private_data;
689	unsigned long flags;
690
691	int ret = 0;
692
693	spin_lock_irqsave(&db_list_lock, flags);
694	list_del(&dbq->list);
695	spin_unlock_irqrestore(&db_list_lock, flags);
696
697	kfree(dbq);
698
699	return ret;
700}
701
702static const struct file_operations fsl_hv_fops = {
703	.owner = THIS_MODULE,
704	.open = fsl_hv_open,
705	.release = fsl_hv_close,
706	.poll = fsl_hv_poll,
707	.read = fsl_hv_read,
708	.unlocked_ioctl = fsl_hv_ioctl,
709	.compat_ioctl = fsl_hv_ioctl,
710};
711
712static struct miscdevice fsl_hv_misc_dev = {
713	MISC_DYNAMIC_MINOR,
714	"fsl-hv",
715	&fsl_hv_fops
716};
717
718static irqreturn_t fsl_hv_shutdown_isr(int irq, void *data)
719{
720	orderly_poweroff(false);
721
722	return IRQ_HANDLED;
723}
724
725/*
726 * Returns the handle of the parent of the given node
727 *
728 * The handle is the value of the 'hv-handle' property
729 */
730static int get_parent_handle(struct device_node *np)
731{
732	struct device_node *parent;
733	const uint32_t *prop;
734	uint32_t handle;
735	int len;
736
737	parent = of_get_parent(np);
738	if (!parent)
739		/* It's not really possible for this to fail */
740		return -ENODEV;
741
742	/*
743	 * The proper name for the handle property is "hv-handle", but some
744	 * older versions of the hypervisor used "reg".
745	 */
746	prop = of_get_property(parent, "hv-handle", &len);
747	if (!prop)
748		prop = of_get_property(parent, "reg", &len);
749
750	if (!prop || (len != sizeof(uint32_t))) {
751		/* This can happen only if the node is malformed */
752		of_node_put(parent);
753		return -ENODEV;
754	}
755
756	handle = be32_to_cpup(prop);
757	of_node_put(parent);
758
759	return handle;
760}
761
762/*
763 * Register a callback for failover events
764 *
765 * This function is called by device drivers to register their callback
766 * functions for fail-over events.
767 */
768int fsl_hv_failover_register(struct notifier_block *nb)
769{
770	return blocking_notifier_chain_register(&failover_subscribers, nb);
771}
772EXPORT_SYMBOL(fsl_hv_failover_register);
773
774/*
775 * Unregister a callback for failover events
776 */
777int fsl_hv_failover_unregister(struct notifier_block *nb)
778{
779	return blocking_notifier_chain_unregister(&failover_subscribers, nb);
780}
781EXPORT_SYMBOL(fsl_hv_failover_unregister);
782
783/*
784 * Return TRUE if we're running under FSL hypervisor
785 *
786 * This function checks to see if we're running under the Freescale
787 * hypervisor, and returns zero if we're not, or non-zero if we are.
788 *
789 * First, it checks if MSR[GS]==1, which means we're running under some
790 * hypervisor.  Then it checks if there is a hypervisor node in the device
791 * tree.  Currently, that means there needs to be a node in the root called
792 * "hypervisor" and which has a property named "fsl,hv-version".
793 */
794static int has_fsl_hypervisor(void)
795{
796	struct device_node *node;
797	int ret;
798
799	if (!(mfmsr() & MSR_GS))
800		return 0;
801
802	node = of_find_node_by_path("/hypervisor");
803	if (!node)
804		return 0;
805
806	ret = of_find_property(node, "fsl,hv-version", NULL) != NULL;
807
808	of_node_put(node);
809
810	return ret;
811}
812
813/*
814 * Freescale hypervisor management driver init
815 *
816 * This function is called when this module is loaded.
817 *
818 * Register ourselves as a miscellaneous driver.  This will register the
819 * fops structure and create the right sysfs entries for udev.
820 */
821static int __init fsl_hypervisor_init(void)
822{
823	struct device_node *np;
824	struct doorbell_isr *dbisr, *n;
825	int ret;
826
827	pr_info("Freescale hypervisor management driver\n");
828
829	if (!has_fsl_hypervisor()) {
830		pr_info("fsl-hv: no hypervisor found\n");
831		return -ENODEV;
832	}
833
834	ret = misc_register(&fsl_hv_misc_dev);
835	if (ret) {
836		pr_err("fsl-hv: cannot register device\n");
837		return ret;
838	}
839
840	INIT_LIST_HEAD(&db_list);
841	INIT_LIST_HEAD(&isr_list);
842
843	for_each_compatible_node(np, NULL, "epapr,hv-receive-doorbell") {
844		unsigned int irq;
845		const uint32_t *handle;
846
847		handle = of_get_property(np, "interrupts", NULL);
848		irq = irq_of_parse_and_map(np, 0);
849		if (!handle || (irq == NO_IRQ)) {
850			pr_err("fsl-hv: no 'interrupts' property in %s node\n",
851				np->full_name);
852			continue;
853		}
854
855		dbisr = kzalloc(sizeof(*dbisr), GFP_KERNEL);
856		if (!dbisr)
857			goto out_of_memory;
858
859		dbisr->irq = irq;
860		dbisr->doorbell = be32_to_cpup(handle);
861
862		if (of_device_is_compatible(np, "fsl,hv-shutdown-doorbell")) {
863			/* The shutdown doorbell gets its own ISR */
864			ret = request_irq(irq, fsl_hv_shutdown_isr, 0,
865					  np->name, NULL);
866		} else if (of_device_is_compatible(np,
867			"fsl,hv-state-change-doorbell")) {
868			/*
869			 * The state change doorbell triggers a notification if
870			 * the state of the managed partition changes to
871			 * "stopped". We need a separate interrupt handler for
872			 * that, and we also need to know the handle of the
873			 * target partition, not just the handle of the
874			 * doorbell.
875			 */
876			dbisr->partition = ret = get_parent_handle(np);
877			if (ret < 0) {
878				pr_err("fsl-hv: node %s has missing or "
879				       "malformed parent\n", np->full_name);
880				kfree(dbisr);
881				continue;
882			}
883			ret = request_threaded_irq(irq, fsl_hv_state_change_isr,
884						   fsl_hv_state_change_thread,
885						   0, np->name, dbisr);
886		} else
887			ret = request_irq(irq, fsl_hv_isr, 0, np->name, dbisr);
888
889		if (ret < 0) {
890			pr_err("fsl-hv: could not request irq %u for node %s\n",
891			       irq, np->full_name);
892			kfree(dbisr);
893			continue;
894		}
895
896		list_add(&dbisr->list, &isr_list);
897
898		pr_info("fsl-hv: registered handler for doorbell %u\n",
899			dbisr->doorbell);
900	}
901
902	return 0;
903
904out_of_memory:
905	list_for_each_entry_safe(dbisr, n, &isr_list, list) {
906		free_irq(dbisr->irq, dbisr);
907		list_del(&dbisr->list);
908		kfree(dbisr);
909	}
910
911	misc_deregister(&fsl_hv_misc_dev);
912
913	return -ENOMEM;
914}
915
916/*
917 * Freescale hypervisor management driver termination
918 *
919 * This function is called when this driver is unloaded.
920 */
921static void __exit fsl_hypervisor_exit(void)
922{
923	struct doorbell_isr *dbisr, *n;
924
925	list_for_each_entry_safe(dbisr, n, &isr_list, list) {
926		free_irq(dbisr->irq, dbisr);
927		list_del(&dbisr->list);
928		kfree(dbisr);
929	}
930
931	misc_deregister(&fsl_hv_misc_dev);
932}
933
934module_init(fsl_hypervisor_init);
935module_exit(fsl_hypervisor_exit);
936
937MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
938MODULE_DESCRIPTION("Freescale hypervisor management driver");
939MODULE_LICENSE("GPL v2");