Linux Audio

Check our new training course

Loading...
   1/*
   2 *  drivers/video/imsttfb.c -- frame buffer device for IMS TwinTurbo
   3 *
   4 *  This file is derived from the powermac console "imstt" driver:
   5 *  Copyright (C) 1997 Sigurdur Asgeirsson
   6 *  With additional hacking by Jeffrey Kuskin (jsk@mojave.stanford.edu)
   7 *  Modified by Danilo Beuche 1998
   8 *  Some register values added by Damien Doligez, INRIA Rocquencourt
   9 *  Various cleanups by Paul Mundt (lethal@chaoticdreams.org)
  10 *
  11 *  This file was written by Ryan Nielsen (ran@krazynet.com)
  12 *  Most of the frame buffer device stuff was copied from atyfb.c
  13 *
  14 *  This file is subject to the terms and conditions of the GNU General Public
  15 *  License. See the file COPYING in the main directory of this archive for
  16 *  more details.
  17 */
  18
  19#include <linux/module.h>
  20#include <linux/kernel.h>
  21#include <linux/errno.h>
  22#include <linux/string.h>
  23#include <linux/mm.h>
  24#include <linux/vmalloc.h>
  25#include <linux/delay.h>
  26#include <linux/interrupt.h>
  27#include <linux/fb.h>
  28#include <linux/init.h>
  29#include <linux/pci.h>
  30#include <asm/io.h>
  31#include <linux/uaccess.h>
  32
  33#if defined(CONFIG_PPC)
  34#include <linux/nvram.h>
  35#include <asm/prom.h>
  36#include <asm/pci-bridge.h>
  37#include "macmodes.h"
  38#endif
  39
  40#ifndef __powerpc__
  41#define eieio()		/* Enforce In-order Execution of I/O */
  42#endif
  43
  44/* TwinTurbo (Cosmo) registers */
  45enum {
  46	S1SA	=  0, /* 0x00 */
  47	S2SA	=  1, /* 0x04 */
  48	SP	=  2, /* 0x08 */
  49	DSA	=  3, /* 0x0C */
  50	CNT	=  4, /* 0x10 */
  51	DP_OCTL	=  5, /* 0x14 */
  52	CLR	=  6, /* 0x18 */
  53	BI	=  8, /* 0x20 */
  54	MBC	=  9, /* 0x24 */
  55	BLTCTL	= 10, /* 0x28 */
  56
  57	/* Scan Timing Generator Registers */
  58	HES	= 12, /* 0x30 */
  59	HEB	= 13, /* 0x34 */
  60	HSB	= 14, /* 0x38 */
  61	HT	= 15, /* 0x3C */
  62	VES	= 16, /* 0x40 */
  63	VEB	= 17, /* 0x44 */
  64	VSB	= 18, /* 0x48 */
  65	VT	= 19, /* 0x4C */
  66	HCIV	= 20, /* 0x50 */
  67	VCIV	= 21, /* 0x54 */
  68	TCDR	= 22, /* 0x58 */
  69	VIL	= 23, /* 0x5C */
  70	STGCTL	= 24, /* 0x60 */
  71
  72	/* Screen Refresh Generator Registers */
  73	SSR	= 25, /* 0x64 */
  74	HRIR	= 26, /* 0x68 */
  75	SPR	= 27, /* 0x6C */
  76	CMR	= 28, /* 0x70 */
  77	SRGCTL	= 29, /* 0x74 */
  78
  79	/* RAM Refresh Generator Registers */
  80	RRCIV	= 30, /* 0x78 */
  81	RRSC	= 31, /* 0x7C */
  82	RRCR	= 34, /* 0x88 */
  83
  84	/* System Registers */
  85	GIOE	= 32, /* 0x80 */
  86	GIO	= 33, /* 0x84 */
  87	SCR	= 35, /* 0x8C */
  88	SSTATUS	= 36, /* 0x90 */
  89	PRC	= 37, /* 0x94 */
  90
  91#if 0	
  92	/* PCI Registers */
  93	DVID	= 0x00000000L,
  94	SC	= 0x00000004L,
  95	CCR	= 0x00000008L,
  96	OG	= 0x0000000CL,
  97	BARM	= 0x00000010L,
  98	BARER	= 0x00000030L,
  99#endif
 100};
 101
 102/* IBM 624 RAMDAC Direct Registers */
 103enum {
 104	PADDRW	= 0x00,
 105	PDATA	= 0x04,
 106	PPMASK	= 0x08,
 107	PADDRR	= 0x0c,
 108	PIDXLO	= 0x10,	
 109	PIDXHI	= 0x14,	
 110	PIDXDATA= 0x18,
 111	PIDXCTL	= 0x1c
 112};
 113
 114/* IBM 624 RAMDAC Indirect Registers */
 115enum {
 116	CLKCTL		= 0x02,	/* (0x01) Miscellaneous Clock Control */
 117	SYNCCTL		= 0x03,	/* (0x00) Sync Control */
 118	HSYNCPOS	= 0x04,	/* (0x00) Horizontal Sync Position */
 119	PWRMNGMT	= 0x05,	/* (0x00) Power Management */
 120	DACOP		= 0x06,	/* (0x02) DAC Operation */
 121	PALETCTL	= 0x07,	/* (0x00) Palette Control */
 122	SYSCLKCTL	= 0x08,	/* (0x01) System Clock Control */
 123	PIXFMT		= 0x0a,	/* () Pixel Format  [bpp >> 3 + 2] */
 124	BPP8		= 0x0b,	/* () 8 Bits/Pixel Control */
 125	BPP16		= 0x0c, /* () 16 Bits/Pixel Control  [bit 1=1 for 565] */
 126	BPP24		= 0x0d,	/* () 24 Bits/Pixel Control */
 127	BPP32		= 0x0e,	/* () 32 Bits/Pixel Control */
 128	PIXCTL1		= 0x10, /* (0x05) Pixel PLL Control 1 */
 129	PIXCTL2		= 0x11,	/* (0x00) Pixel PLL Control 2 */
 130	SYSCLKN		= 0x15,	/* () System Clock N (System PLL Reference Divider) */
 131	SYSCLKM		= 0x16,	/* () System Clock M (System PLL VCO Divider) */
 132	SYSCLKP		= 0x17,	/* () System Clock P */
 133	SYSCLKC		= 0x18,	/* () System Clock C */
 134	/*
 135	 * Dot clock rate is 20MHz * (m + 1) / ((n + 1) * (p ? 2 * p : 1)
 136	 * c is charge pump bias which depends on the VCO frequency  
 137	 */
 138	PIXM0		= 0x20,	/* () Pixel M 0 */
 139	PIXN0		= 0x21,	/* () Pixel N 0 */
 140	PIXP0		= 0x22,	/* () Pixel P 0 */
 141	PIXC0		= 0x23,	/* () Pixel C 0 */
 142	CURSCTL		= 0x30,	/* (0x00) Cursor Control */
 143	CURSXLO		= 0x31,	/* () Cursor X position, low 8 bits */
 144	CURSXHI		= 0x32,	/* () Cursor X position, high 8 bits */
 145	CURSYLO		= 0x33,	/* () Cursor Y position, low 8 bits */
 146	CURSYHI		= 0x34,	/* () Cursor Y position, high 8 bits */
 147	CURSHOTX	= 0x35,	/* () Cursor Hot Spot X */
 148	CURSHOTY	= 0x36,	/* () Cursor Hot Spot Y */
 149	CURSACCTL	= 0x37,	/* () Advanced Cursor Control Enable */
 150	CURSACATTR	= 0x38,	/* () Advanced Cursor Attribute */
 151	CURS1R		= 0x40,	/* () Cursor 1 Red */
 152	CURS1G		= 0x41,	/* () Cursor 1 Green */
 153	CURS1B		= 0x42,	/* () Cursor 1 Blue */
 154	CURS2R		= 0x43,	/* () Cursor 2 Red */
 155	CURS2G		= 0x44,	/* () Cursor 2 Green */
 156	CURS2B		= 0x45,	/* () Cursor 2 Blue */
 157	CURS3R		= 0x46,	/* () Cursor 3 Red */
 158	CURS3G		= 0x47,	/* () Cursor 3 Green */
 159	CURS3B		= 0x48,	/* () Cursor 3 Blue */
 160	BORDR		= 0x60,	/* () Border Color Red */
 161	BORDG		= 0x61,	/* () Border Color Green */
 162	BORDB		= 0x62,	/* () Border Color Blue */
 163	MISCTL1		= 0x70,	/* (0x00) Miscellaneous Control 1 */
 164	MISCTL2		= 0x71,	/* (0x00) Miscellaneous Control 2 */
 165	MISCTL3		= 0x72,	/* (0x00) Miscellaneous Control 3 */
 166	KEYCTL		= 0x78	/* (0x00) Key Control/DB Operation */
 167};
 168
 169/* TI TVP 3030 RAMDAC Direct Registers */
 170enum {
 171	TVPADDRW = 0x00,	/* 0  Palette/Cursor RAM Write Address/Index */
 172	TVPPDATA = 0x04,	/* 1  Palette Data RAM Data */
 173	TVPPMASK = 0x08,	/* 2  Pixel Read-Mask */
 174	TVPPADRR = 0x0c,	/* 3  Palette/Cursor RAM Read Address */
 175	TVPCADRW = 0x10,	/* 4  Cursor/Overscan Color Write Address */
 176	TVPCDATA = 0x14,	/* 5  Cursor/Overscan Color Data */
 177				/* 6  reserved */
 178	TVPCADRR = 0x1c,	/* 7  Cursor/Overscan Color Read Address */
 179				/* 8  reserved */
 180	TVPDCCTL = 0x24,	/* 9  Direct Cursor Control */
 181	TVPIDATA = 0x28,	/* 10 Index Data */
 182	TVPCRDAT = 0x2c,	/* 11 Cursor RAM Data */
 183	TVPCXPOL = 0x30,	/* 12 Cursor-Position X LSB */
 184	TVPCXPOH = 0x34,	/* 13 Cursor-Position X MSB */
 185	TVPCYPOL = 0x38,	/* 14 Cursor-Position Y LSB */
 186	TVPCYPOH = 0x3c,	/* 15 Cursor-Position Y MSB */
 187};
 188
 189/* TI TVP 3030 RAMDAC Indirect Registers */
 190enum {
 191	TVPIRREV = 0x01,	/* Silicon Revision [RO] */
 192	TVPIRICC = 0x06,	/* Indirect Cursor Control 	(0x00) */
 193	TVPIRBRC = 0x07,	/* Byte Router Control 	(0xe4) */
 194	TVPIRLAC = 0x0f,	/* Latch Control 		(0x06) */
 195	TVPIRTCC = 0x18,	/* True Color Control  	(0x80) */
 196	TVPIRMXC = 0x19,	/* Multiplex Control		(0x98) */
 197	TVPIRCLS = 0x1a,	/* Clock Selection		(0x07) */
 198	TVPIRPPG = 0x1c,	/* Palette Page		(0x00) */
 199	TVPIRGEC = 0x1d,	/* General Control 		(0x00) */
 200	TVPIRMIC = 0x1e,	/* Miscellaneous Control	(0x00) */
 201	TVPIRPLA = 0x2c,	/* PLL Address */
 202	TVPIRPPD = 0x2d,	/* Pixel Clock PLL Data */
 203	TVPIRMPD = 0x2e,	/* Memory Clock PLL Data */
 204	TVPIRLPD = 0x2f,	/* Loop Clock PLL Data */
 205	TVPIRCKL = 0x30,	/* Color-Key Overlay Low */
 206	TVPIRCKH = 0x31,	/* Color-Key Overlay High */
 207	TVPIRCRL = 0x32,	/* Color-Key Red Low */
 208	TVPIRCRH = 0x33,	/* Color-Key Red High */
 209	TVPIRCGL = 0x34,	/* Color-Key Green Low */
 210	TVPIRCGH = 0x35,	/* Color-Key Green High */
 211	TVPIRCBL = 0x36,	/* Color-Key Blue Low */
 212	TVPIRCBH = 0x37,	/* Color-Key Blue High */
 213	TVPIRCKC = 0x38,	/* Color-Key Control 		(0x00) */
 214	TVPIRMLC = 0x39,	/* MCLK/Loop Clock Control	(0x18) */
 215	TVPIRSEN = 0x3a,	/* Sense Test			(0x00) */
 216	TVPIRTMD = 0x3b,	/* Test Mode Data */
 217	TVPIRRML = 0x3c,	/* CRC Remainder LSB [RO] */
 218	TVPIRRMM = 0x3d,	/* CRC Remainder MSB [RO] */
 219	TVPIRRMS = 0x3e,	/* CRC  Bit Select [WO] */
 220	TVPIRDID = 0x3f,	/* Device ID [RO] 		(0x30) */
 221	TVPIRRES = 0xff		/* Software Reset [WO] */
 222};
 223
 224struct initvalues {
 225	__u8 addr, value;
 226};
 227
 228static struct initvalues ibm_initregs[] __devinitdata = {
 229	{ CLKCTL,	0x21 },
 230	{ SYNCCTL,	0x00 },
 231	{ HSYNCPOS,	0x00 },
 232	{ PWRMNGMT,	0x00 },
 233	{ DACOP,	0x02 },
 234	{ PALETCTL,	0x00 },
 235	{ SYSCLKCTL,	0x01 },
 236
 237	/*
 238	 * Note that colors in X are correct only if all video data is
 239	 * passed through the palette in the DAC.  That is, "indirect
 240	 * color" must be configured.  This is the case for the IBM DAC
 241	 * used in the 2MB and 4MB cards, at least.
 242	 */
 243	{ BPP8,		0x00 },
 244	{ BPP16,	0x01 },
 245	{ BPP24,	0x00 },
 246	{ BPP32,	0x00 },
 247
 248	{ PIXCTL1,	0x05 },
 249	{ PIXCTL2,	0x00 },
 250	{ SYSCLKN,	0x08 },
 251	{ SYSCLKM,	0x4f },
 252	{ SYSCLKP,	0x00 },
 253	{ SYSCLKC,	0x00 },
 254	{ CURSCTL,	0x00 },
 255	{ CURSACCTL,	0x01 },
 256	{ CURSACATTR,	0xa8 },
 257	{ CURS1R,	0xff },
 258	{ CURS1G,	0xff },
 259	{ CURS1B,	0xff },
 260	{ CURS2R,	0xff },
 261	{ CURS2G,	0xff },
 262	{ CURS2B,	0xff },
 263	{ CURS3R,	0xff },
 264	{ CURS3G,	0xff },
 265	{ CURS3B,	0xff },
 266	{ BORDR,	0xff },
 267	{ BORDG,	0xff },
 268	{ BORDB,	0xff },
 269	{ MISCTL1,	0x01 },
 270	{ MISCTL2,	0x45 },
 271	{ MISCTL3,	0x00 },
 272	{ KEYCTL,	0x00 }
 273};
 274
 275static struct initvalues tvp_initregs[] __devinitdata = {
 276	{ TVPIRICC,	0x00 },
 277	{ TVPIRBRC,	0xe4 },
 278	{ TVPIRLAC,	0x06 },
 279	{ TVPIRTCC,	0x80 },
 280	{ TVPIRMXC,	0x4d },
 281	{ TVPIRCLS,	0x05 },
 282	{ TVPIRPPG,	0x00 },
 283	{ TVPIRGEC,	0x00 },
 284	{ TVPIRMIC,	0x08 },
 285	{ TVPIRCKL,	0xff },
 286	{ TVPIRCKH,	0xff },
 287	{ TVPIRCRL,	0xff },
 288	{ TVPIRCRH,	0xff },
 289	{ TVPIRCGL,	0xff },
 290	{ TVPIRCGH,	0xff },
 291	{ TVPIRCBL,	0xff },
 292	{ TVPIRCBH,	0xff },
 293	{ TVPIRCKC,	0x00 },
 294	{ TVPIRPLA,	0x00 },
 295	{ TVPIRPPD,	0xc0 },
 296	{ TVPIRPPD,	0xd5 },
 297	{ TVPIRPPD,	0xea },
 298	{ TVPIRPLA,	0x00 },
 299	{ TVPIRMPD,	0xb9 },
 300	{ TVPIRMPD,	0x3a },
 301	{ TVPIRMPD,	0xb1 },
 302	{ TVPIRPLA,	0x00 },
 303	{ TVPIRLPD,	0xc1 },
 304	{ TVPIRLPD,	0x3d },
 305	{ TVPIRLPD,	0xf3 },
 306};
 307
 308struct imstt_regvals {
 309	__u32 pitch;
 310	__u16 hes, heb, hsb, ht, ves, veb, vsb, vt, vil;
 311	__u8 pclk_m, pclk_n, pclk_p;
 312	/* Values of the tvp which change depending on colormode x resolution */
 313	__u8 mlc[3];	/* Memory Loop Config 0x39 */
 314	__u8 lckl_p[3];	/* P value of LCKL PLL */
 315};
 316
 317struct imstt_par {
 318	struct imstt_regvals init;
 319	__u32 __iomem *dc_regs;
 320	unsigned long cmap_regs_phys;
 321	__u8 *cmap_regs;
 322	__u32 ramdac;
 323	__u32 palette[16];
 324};
 325 
 326enum {
 327	IBM = 0,
 328	TVP = 1
 329};
 330
 331#define USE_NV_MODES		1
 332#define INIT_BPP		8
 333#define INIT_XRES		640
 334#define INIT_YRES		480
 335
 336static int inverse = 0;
 337static char fontname[40] __initdata = { 0 };
 338#if defined(CONFIG_PPC)
 339static signed char init_vmode __devinitdata = -1, init_cmode __devinitdata = -1;
 340#endif
 341
 342static struct imstt_regvals tvp_reg_init_2 = {
 343	512,
 344	0x0002, 0x0006, 0x0026, 0x0028, 0x0003, 0x0016, 0x0196, 0x0197, 0x0196,
 345	0xec, 0x2a, 0xf3,
 346	{ 0x3c, 0x3b, 0x39 }, { 0xf3, 0xf3, 0xf3 }
 347};
 348
 349static struct imstt_regvals tvp_reg_init_6 = {
 350	640,
 351	0x0004, 0x0009, 0x0031, 0x0036, 0x0003, 0x002a, 0x020a, 0x020d, 0x020a,
 352	0xef, 0x2e, 0xb2,
 353	{ 0x39, 0x39, 0x38 }, { 0xf3, 0xf3, 0xf3 }
 354};
 355
 356static struct imstt_regvals tvp_reg_init_12 = {
 357	800,
 358	0x0005, 0x000e, 0x0040, 0x0042, 0x0003, 0x018, 0x270, 0x271, 0x270,
 359	0xf6, 0x2e, 0xf2,
 360	{ 0x3a, 0x39, 0x38 }, { 0xf3, 0xf3, 0xf3 }
 361};
 362
 363static struct imstt_regvals tvp_reg_init_13 = {
 364	832,
 365	0x0004, 0x0011, 0x0045, 0x0048, 0x0003, 0x002a, 0x029a, 0x029b, 0x0000,
 366	0xfe, 0x3e, 0xf1,
 367	{ 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
 368};
 369
 370static struct imstt_regvals tvp_reg_init_17 = {
 371	1024,
 372	0x0006, 0x0210, 0x0250, 0x0053, 0x1003, 0x0021, 0x0321, 0x0324, 0x0000,
 373	0xfc, 0x3a, 0xf1,
 374	{ 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
 375};
 376
 377static struct imstt_regvals tvp_reg_init_18 = {
 378	1152,
 379  	0x0009, 0x0011, 0x059, 0x5b, 0x0003, 0x0031, 0x0397, 0x039a, 0x0000, 
 380	0xfd, 0x3a, 0xf1,
 381	{ 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
 382};
 383
 384static struct imstt_regvals tvp_reg_init_19 = {
 385	1280,
 386	0x0009, 0x0016, 0x0066, 0x0069, 0x0003, 0x0027, 0x03e7, 0x03e8, 0x03e7,
 387	0xf7, 0x36, 0xf0,
 388	{ 0x38, 0x38, 0x38 }, { 0xf3, 0xf2, 0xf1 }
 389};
 390
 391static struct imstt_regvals tvp_reg_init_20 = {
 392	1280,
 393	0x0009, 0x0018, 0x0068, 0x006a, 0x0003, 0x0029, 0x0429, 0x042a, 0x0000,
 394	0xf0, 0x2d, 0xf0,
 395	{ 0x38, 0x38, 0x38 }, { 0xf3, 0xf2, 0xf1 }
 396};
 397
 398/*
 399 * PCI driver prototypes
 400 */
 401static int imsttfb_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
 402static void imsttfb_remove(struct pci_dev *pdev);
 403
 404/*
 405 * Register access
 406 */
 407static inline u32 read_reg_le32(volatile u32 __iomem *base, int regindex)
 408{
 409#ifdef __powerpc__
 410	return in_le32(base + regindex);
 411#else
 412	return readl(base + regindex);
 413#endif
 414}
 415
 416static inline void write_reg_le32(volatile u32 __iomem *base, int regindex, u32 val)
 417{
 418#ifdef __powerpc__
 419	out_le32(base + regindex, val);
 420#else
 421	writel(val, base + regindex);
 422#endif
 423}
 424
 425static __u32
 426getclkMHz(struct imstt_par *par)
 427{
 428	__u32 clk_m, clk_n, clk_p;
 429
 430	clk_m = par->init.pclk_m;
 431	clk_n = par->init.pclk_n;
 432	clk_p = par->init.pclk_p;
 433
 434	return 20 * (clk_m + 1) / ((clk_n + 1) * (clk_p ? 2 * clk_p : 1));
 435}
 436
 437static void
 438setclkMHz(struct imstt_par *par, __u32 MHz)
 439{
 440	__u32 clk_m, clk_n, x, stage, spilled;
 441
 442	clk_m = clk_n = 0;
 443	stage = spilled = 0;
 444	for (;;) {
 445		switch (stage) {
 446			case 0:
 447				clk_m++;
 448				break;
 449			case 1:
 450				clk_n++;
 451				break;
 452		}
 453		x = 20 * (clk_m + 1) / (clk_n + 1);
 454		if (x == MHz)
 455			break;
 456		if (x > MHz) {
 457			spilled = 1;
 458			stage = 1;
 459		} else if (spilled && x < MHz) {
 460			stage = 0;
 461		}
 462	}
 463
 464	par->init.pclk_m = clk_m;
 465	par->init.pclk_n = clk_n;
 466	par->init.pclk_p = 0;
 467}
 468
 469static struct imstt_regvals *
 470compute_imstt_regvals_ibm(struct imstt_par *par, int xres, int yres)
 471{
 472	struct imstt_regvals *init = &par->init;
 473	__u32 MHz, hes, heb, veb, htp, vtp;
 474
 475	switch (xres) {
 476		case 640:
 477			hes = 0x0008; heb = 0x0012; veb = 0x002a; htp = 10; vtp = 2;
 478			MHz = 30 /* .25 */ ;
 479			break;
 480		case 832:
 481			hes = 0x0005; heb = 0x0020; veb = 0x0028; htp = 8; vtp = 3;
 482			MHz = 57 /* .27_ */ ;
 483			break;
 484		case 1024:
 485			hes = 0x000a; heb = 0x001c; veb = 0x0020; htp = 8; vtp = 3;
 486			MHz = 80;
 487			break;
 488		case 1152:
 489			hes = 0x0012; heb = 0x0022; veb = 0x0031; htp = 4; vtp = 3;
 490			MHz = 101 /* .6_ */ ;
 491			break;
 492		case 1280:
 493			hes = 0x0012; heb = 0x002f; veb = 0x0029; htp = 4; vtp = 1;
 494			MHz = yres == 960 ? 126 : 135;
 495			break;
 496		case 1600:
 497			hes = 0x0018; heb = 0x0040; veb = 0x002a; htp = 4; vtp = 3;
 498			MHz = 200;
 499			break;
 500		default:
 501			return NULL;
 502	}
 503
 504	setclkMHz(par, MHz);
 505
 506	init->hes = hes;
 507	init->heb = heb;
 508	init->hsb = init->heb + (xres >> 3);
 509	init->ht = init->hsb + htp;
 510	init->ves = 0x0003;
 511	init->veb = veb;
 512	init->vsb = init->veb + yres;
 513	init->vt = init->vsb + vtp;
 514	init->vil = init->vsb;
 515
 516	init->pitch = xres;
 517	return init;
 518}
 519
 520static struct imstt_regvals *
 521compute_imstt_regvals_tvp(struct imstt_par *par, int xres, int yres)
 522{
 523	struct imstt_regvals *init;
 524
 525	switch (xres) {
 526		case 512:
 527			init = &tvp_reg_init_2;
 528			break;
 529		case 640:
 530			init = &tvp_reg_init_6;
 531			break;
 532		case 800:
 533			init = &tvp_reg_init_12;
 534			break;
 535		case 832:
 536			init = &tvp_reg_init_13;
 537			break;
 538		case 1024:
 539			init = &tvp_reg_init_17;
 540			break;
 541		case 1152:
 542			init = &tvp_reg_init_18;
 543			break;
 544		case 1280:
 545			init = yres == 960 ? &tvp_reg_init_19 : &tvp_reg_init_20;
 546			break;
 547		default:
 548			return NULL;
 549	}
 550	par->init = *init;
 551	return init;
 552}
 553
 554static struct imstt_regvals *
 555compute_imstt_regvals (struct imstt_par *par, u_int xres, u_int yres)
 556{
 557	if (par->ramdac == IBM)
 558		return compute_imstt_regvals_ibm(par, xres, yres);
 559	else
 560		return compute_imstt_regvals_tvp(par, xres, yres);
 561}
 562
 563static void
 564set_imstt_regvals_ibm (struct imstt_par *par, u_int bpp)
 565{
 566	struct imstt_regvals *init = &par->init;
 567	__u8 pformat = (bpp >> 3) + 2;
 568
 569	par->cmap_regs[PIDXHI] = 0;		eieio();
 570	par->cmap_regs[PIDXLO] = PIXM0;		eieio();
 571	par->cmap_regs[PIDXDATA] = init->pclk_m;eieio();
 572	par->cmap_regs[PIDXLO] = PIXN0;		eieio();
 573	par->cmap_regs[PIDXDATA] = init->pclk_n;eieio();
 574	par->cmap_regs[PIDXLO] = PIXP0;		eieio();
 575	par->cmap_regs[PIDXDATA] = init->pclk_p;eieio();
 576	par->cmap_regs[PIDXLO] = PIXC0;		eieio();
 577	par->cmap_regs[PIDXDATA] = 0x02;	eieio();
 578
 579	par->cmap_regs[PIDXLO] = PIXFMT;	eieio();
 580	par->cmap_regs[PIDXDATA] = pformat;	eieio();
 581}
 582
 583static void
 584set_imstt_regvals_tvp (struct imstt_par *par, u_int bpp)
 585{
 586	struct imstt_regvals *init = &par->init;
 587	__u8 tcc, mxc, lckl_n, mic;
 588	__u8 mlc, lckl_p;
 589
 590	switch (bpp) {
 591		default:
 592		case 8:
 593			tcc = 0x80;
 594			mxc = 0x4d;
 595			lckl_n = 0xc1;
 596			mlc = init->mlc[0];
 597			lckl_p = init->lckl_p[0];
 598			break;
 599		case 16:
 600			tcc = 0x44;
 601			mxc = 0x55;
 602			lckl_n = 0xe1;
 603			mlc = init->mlc[1];
 604			lckl_p = init->lckl_p[1];
 605			break;
 606		case 24:
 607			tcc = 0x5e;
 608			mxc = 0x5d;
 609			lckl_n = 0xf1;
 610			mlc = init->mlc[2];
 611			lckl_p = init->lckl_p[2];
 612			break;
 613		case 32:
 614			tcc = 0x46;
 615			mxc = 0x5d;
 616			lckl_n = 0xf1;
 617			mlc = init->mlc[2];
 618			lckl_p = init->lckl_p[2];
 619			break;
 620	}
 621	mic = 0x08;
 622
 623	par->cmap_regs[TVPADDRW] = TVPIRPLA;		eieio();
 624	par->cmap_regs[TVPIDATA] = 0x00;		eieio();
 625	par->cmap_regs[TVPADDRW] = TVPIRPPD;		eieio();
 626	par->cmap_regs[TVPIDATA] = init->pclk_m;	eieio();
 627	par->cmap_regs[TVPADDRW] = TVPIRPPD;		eieio();
 628	par->cmap_regs[TVPIDATA] = init->pclk_n;	eieio();
 629	par->cmap_regs[TVPADDRW] = TVPIRPPD;		eieio();
 630	par->cmap_regs[TVPIDATA] = init->pclk_p;	eieio();
 631
 632	par->cmap_regs[TVPADDRW] = TVPIRTCC;		eieio();
 633	par->cmap_regs[TVPIDATA] = tcc;			eieio();
 634	par->cmap_regs[TVPADDRW] = TVPIRMXC;		eieio();
 635	par->cmap_regs[TVPIDATA] = mxc;			eieio();
 636	par->cmap_regs[TVPADDRW] = TVPIRMIC;		eieio();
 637	par->cmap_regs[TVPIDATA] = mic;			eieio();
 638
 639	par->cmap_regs[TVPADDRW] = TVPIRPLA;		eieio();
 640	par->cmap_regs[TVPIDATA] = 0x00;		eieio();
 641	par->cmap_regs[TVPADDRW] = TVPIRLPD;		eieio();
 642	par->cmap_regs[TVPIDATA] = lckl_n;		eieio();
 643
 644	par->cmap_regs[TVPADDRW] = TVPIRPLA;		eieio();
 645	par->cmap_regs[TVPIDATA] = 0x15;		eieio();
 646	par->cmap_regs[TVPADDRW] = TVPIRMLC;		eieio();
 647	par->cmap_regs[TVPIDATA] = mlc;			eieio();
 648
 649	par->cmap_regs[TVPADDRW] = TVPIRPLA;		eieio();
 650	par->cmap_regs[TVPIDATA] = 0x2a;		eieio();
 651	par->cmap_regs[TVPADDRW] = TVPIRLPD;		eieio();
 652	par->cmap_regs[TVPIDATA] = lckl_p;		eieio();
 653}
 654
 655static void
 656set_imstt_regvals (struct fb_info *info, u_int bpp)
 657{
 658	struct imstt_par *par = info->par;
 659	struct imstt_regvals *init = &par->init;
 660	__u32 ctl, pitch, byteswap, scr;
 661
 662	if (par->ramdac == IBM)
 663		set_imstt_regvals_ibm(par, bpp);
 664	else
 665		set_imstt_regvals_tvp(par, bpp);
 666
 667  /*
 668   * From what I (jsk) can gather poking around with MacsBug,
 669   * bits 8 and 9 in the SCR register control endianness
 670   * correction (byte swapping).  These bits must be set according
 671   * to the color depth as follows:
 672   *     Color depth    Bit 9   Bit 8
 673   *     ==========     =====   =====
 674   *        8bpp          0       0
 675   *       16bpp          0       1
 676   *       32bpp          1       1
 677   */
 678	switch (bpp) {
 679		default:
 680		case 8:
 681			ctl = 0x17b1;
 682			pitch = init->pitch >> 2;
 683			byteswap = 0x000;
 684			break;
 685		case 16:
 686			ctl = 0x17b3;
 687			pitch = init->pitch >> 1;
 688			byteswap = 0x100;
 689			break;
 690		case 24:
 691			ctl = 0x17b9;
 692			pitch = init->pitch - (init->pitch >> 2);
 693			byteswap = 0x200;
 694			break;
 695		case 32:
 696			ctl = 0x17b5;
 697			pitch = init->pitch;
 698			byteswap = 0x300;
 699			break;
 700	}
 701	if (par->ramdac == TVP)
 702		ctl -= 0x30;
 703
 704	write_reg_le32(par->dc_regs, HES, init->hes);
 705	write_reg_le32(par->dc_regs, HEB, init->heb);
 706	write_reg_le32(par->dc_regs, HSB, init->hsb);
 707	write_reg_le32(par->dc_regs, HT, init->ht);
 708	write_reg_le32(par->dc_regs, VES, init->ves);
 709	write_reg_le32(par->dc_regs, VEB, init->veb);
 710	write_reg_le32(par->dc_regs, VSB, init->vsb);
 711	write_reg_le32(par->dc_regs, VT, init->vt);
 712	write_reg_le32(par->dc_regs, VIL, init->vil);
 713	write_reg_le32(par->dc_regs, HCIV, 1);
 714	write_reg_le32(par->dc_regs, VCIV, 1);
 715	write_reg_le32(par->dc_regs, TCDR, 4);
 716	write_reg_le32(par->dc_regs, RRCIV, 1);
 717	write_reg_le32(par->dc_regs, RRSC, 0x980);
 718	write_reg_le32(par->dc_regs, RRCR, 0x11);
 719
 720	if (par->ramdac == IBM) {
 721		write_reg_le32(par->dc_regs, HRIR, 0x0100);
 722		write_reg_le32(par->dc_regs, CMR, 0x00ff);
 723		write_reg_le32(par->dc_regs, SRGCTL, 0x0073);
 724	} else {
 725		write_reg_le32(par->dc_regs, HRIR, 0x0200);
 726		write_reg_le32(par->dc_regs, CMR, 0x01ff);
 727		write_reg_le32(par->dc_regs, SRGCTL, 0x0003);
 728	}
 729
 730	switch (info->fix.smem_len) {
 731		case 0x200000:
 732			scr = 0x059d | byteswap;
 733			break;
 734		/* case 0x400000:
 735		   case 0x800000: */
 736		default:
 737			pitch >>= 1;
 738			scr = 0x150dd | byteswap;
 739			break;
 740	}
 741
 742	write_reg_le32(par->dc_regs, SCR, scr);
 743	write_reg_le32(par->dc_regs, SPR, pitch);
 744	write_reg_le32(par->dc_regs, STGCTL, ctl);
 745}
 746
 747static inline void
 748set_offset (struct fb_var_screeninfo *var, struct fb_info *info)
 749{
 750	struct imstt_par *par = info->par;
 751	__u32 off = var->yoffset * (info->fix.line_length >> 3)
 752		    + ((var->xoffset * (info->var.bits_per_pixel >> 3)) >> 3);
 753	write_reg_le32(par->dc_regs, SSR, off);
 754}
 755
 756static inline void
 757set_555 (struct imstt_par *par)
 758{
 759	if (par->ramdac == IBM) {
 760		par->cmap_regs[PIDXHI] = 0;		eieio();
 761		par->cmap_regs[PIDXLO] = BPP16;		eieio();
 762		par->cmap_regs[PIDXDATA] = 0x01;	eieio();
 763	} else {
 764		par->cmap_regs[TVPADDRW] = TVPIRTCC;	eieio();
 765		par->cmap_regs[TVPIDATA] = 0x44;	eieio();
 766	}
 767}
 768
 769static inline void
 770set_565 (struct imstt_par *par)
 771{
 772	if (par->ramdac == IBM) {
 773		par->cmap_regs[PIDXHI] = 0;		eieio();
 774		par->cmap_regs[PIDXLO] = BPP16;		eieio();
 775		par->cmap_regs[PIDXDATA] = 0x03;	eieio();
 776	} else {
 777		par->cmap_regs[TVPADDRW] = TVPIRTCC;	eieio();
 778		par->cmap_regs[TVPIDATA] = 0x45;	eieio();
 779	}
 780}
 781
 782static int
 783imsttfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
 784{
 785	if ((var->bits_per_pixel != 8 && var->bits_per_pixel != 16
 786	    && var->bits_per_pixel != 24 && var->bits_per_pixel != 32)
 787	    || var->xres_virtual < var->xres || var->yres_virtual < var->yres
 788	    || var->nonstd
 789	    || (var->vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED)
 790		return -EINVAL;
 791
 792	if ((var->xres * var->yres) * (var->bits_per_pixel >> 3) > info->fix.smem_len
 793	    || (var->xres_virtual * var->yres_virtual) * (var->bits_per_pixel >> 3) > info->fix.smem_len)
 794		return -EINVAL;
 795
 796	switch (var->bits_per_pixel) {
 797		case 8:
 798			var->red.offset = 0;
 799			var->red.length = 8;
 800			var->green.offset = 0;
 801			var->green.length = 8;
 802			var->blue.offset = 0;
 803			var->blue.length = 8;
 804			var->transp.offset = 0;
 805			var->transp.length = 0;
 806			break;
 807		case 16:	/* RGB 555 or 565 */
 808			if (var->green.length != 6)
 809				var->red.offset = 10;
 810			var->red.length = 5;
 811			var->green.offset = 5;
 812			if (var->green.length != 6)
 813				var->green.length = 5;
 814			var->blue.offset = 0;
 815			var->blue.length = 5;
 816			var->transp.offset = 0;
 817			var->transp.length = 0;
 818			break;
 819		case 24:	/* RGB 888 */
 820			var->red.offset = 16;
 821			var->red.length = 8;
 822			var->green.offset = 8;
 823			var->green.length = 8;
 824			var->blue.offset = 0;
 825			var->blue.length = 8;
 826			var->transp.offset = 0;
 827			var->transp.length = 0;
 828			break;
 829		case 32:	/* RGBA 8888 */
 830			var->red.offset = 16;
 831			var->red.length = 8;
 832			var->green.offset = 8;
 833			var->green.length = 8;
 834			var->blue.offset = 0;
 835			var->blue.length = 8;
 836			var->transp.offset = 24;
 837			var->transp.length = 8;
 838			break;
 839	}
 840
 841	if (var->yres == var->yres_virtual) {
 842		__u32 vram = (info->fix.smem_len - (PAGE_SIZE << 2));
 843		var->yres_virtual = ((vram << 3) / var->bits_per_pixel) / var->xres_virtual;
 844		if (var->yres_virtual < var->yres)
 845			var->yres_virtual = var->yres;
 846	}
 847
 848	var->red.msb_right = 0;
 849	var->green.msb_right = 0;
 850	var->blue.msb_right = 0;
 851	var->transp.msb_right = 0;
 852	var->height = -1;
 853	var->width = -1;
 854	var->vmode = FB_VMODE_NONINTERLACED;
 855	var->left_margin = var->right_margin = 16;
 856	var->upper_margin = var->lower_margin = 16;
 857	var->hsync_len = var->vsync_len = 8;
 858	return 0;
 859}
 860
 861static int
 862imsttfb_set_par(struct fb_info *info) 
 863{
 864	struct imstt_par *par = info->par;
 865		
 866	if (!compute_imstt_regvals(par, info->var.xres, info->var.yres))
 867		return -EINVAL;
 868
 869	if (info->var.green.length == 6)
 870		set_565(par);
 871	else
 872		set_555(par);
 873	set_imstt_regvals(info, info->var.bits_per_pixel);
 874	info->var.pixclock = 1000000 / getclkMHz(par);
 875	return 0;
 876}
 877
 878static int
 879imsttfb_setcolreg (u_int regno, u_int red, u_int green, u_int blue,
 880		   u_int transp, struct fb_info *info)
 881{
 882	struct imstt_par *par = info->par;
 883	u_int bpp = info->var.bits_per_pixel;
 884
 885	if (regno > 255)
 886		return 1;
 887
 888	red >>= 8;
 889	green >>= 8;
 890	blue >>= 8;
 891
 892	/* PADDRW/PDATA are the same as TVPPADDRW/TVPPDATA */
 893	if (0 && bpp == 16)	/* screws up X */
 894		par->cmap_regs[PADDRW] = regno << 3;
 895	else
 896		par->cmap_regs[PADDRW] = regno;
 897	eieio();
 898
 899	par->cmap_regs[PDATA] = red;	eieio();
 900	par->cmap_regs[PDATA] = green;	eieio();
 901	par->cmap_regs[PDATA] = blue;	eieio();
 902
 903	if (regno < 16)
 904		switch (bpp) {
 905			case 16:
 906				par->palette[regno] =
 907					(regno << (info->var.green.length ==
 908					5 ? 10 : 11)) | (regno << 5) | regno;
 909				break;
 910			case 24:
 911				par->palette[regno] =
 912					(regno << 16) | (regno << 8) | regno;
 913				break;
 914			case 32: {
 915				int i = (regno << 8) | regno;
 916				par->palette[regno] = (i << 16) |i;
 917				break;
 918			}
 919		}
 920	return 0;
 921}
 922
 923static int
 924imsttfb_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
 925{
 926	if (var->xoffset + info->var.xres > info->var.xres_virtual
 927	    || var->yoffset + info->var.yres > info->var.yres_virtual)
 928		return -EINVAL;
 929
 930	info->var.xoffset = var->xoffset;
 931	info->var.yoffset = var->yoffset;
 932	set_offset(var, info);
 933	return 0;
 934}
 935
 936static int 
 937imsttfb_blank(int blank, struct fb_info *info)
 938{
 939	struct imstt_par *par = info->par;
 940	__u32 ctrl;
 941
 942	ctrl = read_reg_le32(par->dc_regs, STGCTL);
 943	if (blank > 0) {
 944		switch (blank) {
 945		case FB_BLANK_NORMAL:
 946		case FB_BLANK_POWERDOWN:
 947			ctrl &= ~0x00000380;
 948			if (par->ramdac == IBM) {
 949				par->cmap_regs[PIDXHI] = 0;		eieio();
 950				par->cmap_regs[PIDXLO] = MISCTL2;	eieio();
 951				par->cmap_regs[PIDXDATA] = 0x55;	eieio();
 952				par->cmap_regs[PIDXLO] = MISCTL1;	eieio();
 953				par->cmap_regs[PIDXDATA] = 0x11;	eieio();
 954				par->cmap_regs[PIDXLO] = SYNCCTL;	eieio();
 955				par->cmap_regs[PIDXDATA] = 0x0f;	eieio();
 956				par->cmap_regs[PIDXLO] = PWRMNGMT;	eieio();
 957				par->cmap_regs[PIDXDATA] = 0x1f;	eieio();
 958				par->cmap_regs[PIDXLO] = CLKCTL;	eieio();
 959				par->cmap_regs[PIDXDATA] = 0xc0;
 960			}
 961			break;
 962		case FB_BLANK_VSYNC_SUSPEND:
 963			ctrl &= ~0x00000020;
 964			break;
 965		case FB_BLANK_HSYNC_SUSPEND:
 966			ctrl &= ~0x00000010;
 967			break;
 968		}
 969	} else {
 970		if (par->ramdac == IBM) {
 971			ctrl |= 0x000017b0;
 972			par->cmap_regs[PIDXHI] = 0;		eieio();
 973			par->cmap_regs[PIDXLO] = CLKCTL;	eieio();
 974			par->cmap_regs[PIDXDATA] = 0x01;	eieio();
 975			par->cmap_regs[PIDXLO] = PWRMNGMT;	eieio();
 976			par->cmap_regs[PIDXDATA] = 0x00;	eieio();
 977			par->cmap_regs[PIDXLO] = SYNCCTL;	eieio();
 978			par->cmap_regs[PIDXDATA] = 0x00;	eieio();
 979			par->cmap_regs[PIDXLO] = MISCTL1;	eieio();
 980			par->cmap_regs[PIDXDATA] = 0x01;	eieio();
 981			par->cmap_regs[PIDXLO] = MISCTL2;	eieio();
 982			par->cmap_regs[PIDXDATA] = 0x45;	eieio();
 983		} else
 984			ctrl |= 0x00001780;
 985	}
 986	write_reg_le32(par->dc_regs, STGCTL, ctrl);
 987	return 0;
 988}
 989
 990static void
 991imsttfb_fillrect(struct fb_info *info, const struct fb_fillrect *rect)
 992{ 
 993	struct imstt_par *par = info->par;
 994	__u32 Bpp, line_pitch, bgc, dx, dy, width, height;
 995
 996	bgc = rect->color;
 997	bgc |= (bgc << 8);
 998	bgc |= (bgc << 16);
 999
1000	Bpp = info->var.bits_per_pixel >> 3,
1001	line_pitch = info->fix.line_length;
1002
1003	dy = rect->dy * line_pitch;
1004	dx = rect->dx * Bpp;
1005	height = rect->height;
1006	height--;
1007	width = rect->width * Bpp;
1008	width--;
1009
1010	if (rect->rop == ROP_COPY) {
1011		while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1012		write_reg_le32(par->dc_regs, DSA, dy + dx);
1013		write_reg_le32(par->dc_regs, CNT, (height << 16) | width);
1014		write_reg_le32(par->dc_regs, DP_OCTL, line_pitch);
1015		write_reg_le32(par->dc_regs, BI, 0xffffffff);
1016		write_reg_le32(par->dc_regs, MBC, 0xffffffff);
1017		write_reg_le32(par->dc_regs, CLR, bgc);
1018		write_reg_le32(par->dc_regs, BLTCTL, 0x840); /* 0x200000 */
1019		while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1020		while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40);
1021	} else {
1022		while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1023		write_reg_le32(par->dc_regs, DSA, dy + dx);
1024		write_reg_le32(par->dc_regs, S1SA, dy + dx);
1025		write_reg_le32(par->dc_regs, CNT, (height << 16) | width);
1026		write_reg_le32(par->dc_regs, DP_OCTL, line_pitch);
1027		write_reg_le32(par->dc_regs, SP, line_pitch);
1028		write_reg_le32(par->dc_regs, BLTCTL, 0x40005);
1029		while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1030		while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40);
1031	}
1032}
1033
1034static void
1035imsttfb_copyarea(struct fb_info *info, const struct fb_copyarea *area)
1036{
1037	struct imstt_par *par = info->par;
1038	__u32 Bpp, line_pitch, fb_offset_old, fb_offset_new, sp, dp_octl;
1039 	__u32 cnt, bltctl, sx, sy, dx, dy, height, width;
1040
1041	Bpp = info->var.bits_per_pixel >> 3,
1042
1043	sx = area->sx * Bpp;
1044	sy = area->sy;
1045	dx = area->dx * Bpp;
1046	dy = area->dy;
1047	height = area->height;
1048	height--;
1049	width = area->width * Bpp;
1050	width--;
1051
1052	line_pitch = info->fix.line_length;
1053	bltctl = 0x05;
1054	sp = line_pitch << 16;
1055	cnt = height << 16;
1056
1057	if (sy < dy) {
1058		sy += height;
1059		dy += height;
1060		sp |= -(line_pitch) & 0xffff;
1061		dp_octl = -(line_pitch) & 0xffff;
1062	} else {
1063		sp |= line_pitch;
1064		dp_octl = line_pitch;
1065	}
1066	if (sx < dx) {
1067		sx += width;
1068		dx += width;
1069		bltctl |= 0x80;
1070		cnt |= -(width) & 0xffff;
1071	} else {
1072		cnt |= width;
1073	}
1074	fb_offset_old = sy * line_pitch + sx;
1075	fb_offset_new = dy * line_pitch + dx;
1076
1077	while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1078	write_reg_le32(par->dc_regs, S1SA, fb_offset_old);
1079	write_reg_le32(par->dc_regs, SP, sp);
1080	write_reg_le32(par->dc_regs, DSA, fb_offset_new);
1081	write_reg_le32(par->dc_regs, CNT, cnt);
1082	write_reg_le32(par->dc_regs, DP_OCTL, dp_octl);
1083	write_reg_le32(par->dc_regs, BLTCTL, bltctl);
1084	while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1085	while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40);
1086}
1087
1088#if 0
1089static int
1090imsttfb_load_cursor_image(struct imstt_par *par, int width, int height, __u8 fgc)
1091{
1092	u_int x, y;
1093
1094	if (width > 32 || height > 32)
1095		return -EINVAL;
1096
1097	if (par->ramdac == IBM) {
1098		par->cmap_regs[PIDXHI] = 1;	eieio();
1099		for (x = 0; x < 0x100; x++) {
1100			par->cmap_regs[PIDXLO] = x;		eieio();
1101			par->cmap_regs[PIDXDATA] = 0x00;	eieio();
1102		}
1103		par->cmap_regs[PIDXHI] = 1;	eieio();
1104		for (y = 0; y < height; y++)
1105			for (x = 0; x < width >> 2; x++) {
1106				par->cmap_regs[PIDXLO] = x + y * 8;	eieio();
1107				par->cmap_regs[PIDXDATA] = 0xff;	eieio();
1108			}
1109		par->cmap_regs[PIDXHI] = 0;		eieio();
1110		par->cmap_regs[PIDXLO] = CURS1R;	eieio();
1111		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1112		par->cmap_regs[PIDXLO] = CURS1G;	eieio();
1113		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1114		par->cmap_regs[PIDXLO] = CURS1B;	eieio();
1115		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1116		par->cmap_regs[PIDXLO] = CURS2R;	eieio();
1117		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1118		par->cmap_regs[PIDXLO] = CURS2G;	eieio();
1119		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1120		par->cmap_regs[PIDXLO] = CURS2B;	eieio();
1121		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1122		par->cmap_regs[PIDXLO] = CURS3R;	eieio();
1123		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1124		par->cmap_regs[PIDXLO] = CURS3G;	eieio();
1125		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1126		par->cmap_regs[PIDXLO] = CURS3B;	eieio();
1127		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1128	} else {
1129		par->cmap_regs[TVPADDRW] = TVPIRICC;	eieio();
1130		par->cmap_regs[TVPIDATA] &= 0x03;	eieio();
1131		par->cmap_regs[TVPADDRW] = 0;		eieio();
1132		for (x = 0; x < 0x200; x++) {
1133			par->cmap_regs[TVPCRDAT] = 0x00;	eieio();
1134		}
1135		for (x = 0; x < 0x200; x++) {
1136			par->cmap_regs[TVPCRDAT] = 0xff;	eieio();
1137		}
1138		par->cmap_regs[TVPADDRW] = TVPIRICC;	eieio();
1139		par->cmap_regs[TVPIDATA] &= 0x03;	eieio();
1140		for (y = 0; y < height; y++)
1141			for (x = 0; x < width >> 3; x++) {
1142				par->cmap_regs[TVPADDRW] = x + y * 8;	eieio();
1143				par->cmap_regs[TVPCRDAT] = 0xff;		eieio();
1144			}
1145		par->cmap_regs[TVPADDRW] = TVPIRICC;	eieio();
1146		par->cmap_regs[TVPIDATA] |= 0x08;	eieio();
1147		for (y = 0; y < height; y++)
1148			for (x = 0; x < width >> 3; x++) {
1149				par->cmap_regs[TVPADDRW] = x + y * 8;	eieio();
1150				par->cmap_regs[TVPCRDAT] = 0xff;		eieio();
1151			}
1152		par->cmap_regs[TVPCADRW] = 0x00;	eieio();
1153		for (x = 0; x < 12; x++) {
1154			par->cmap_regs[TVPCDATA] = fgc;
1155			eieio();
1156		}
1157	}
1158	return 1;
1159}
1160
1161static void
1162imstt_set_cursor(struct imstt_par *par, struct fb_image *d, int on)
1163{
1164	if (par->ramdac == IBM) {
1165		par->cmap_regs[PIDXHI] = 0;	eieio();
1166		if (!on) {
1167			par->cmap_regs[PIDXLO] = CURSCTL;	eieio();
1168			par->cmap_regs[PIDXDATA] = 0x00;	eieio();
1169		} else {
1170			par->cmap_regs[PIDXLO] = CURSXHI;	eieio();
1171			par->cmap_regs[PIDXDATA] = d->dx >> 8;	eieio();
1172			par->cmap_regs[PIDXLO] = CURSXLO;	eieio();
1173			par->cmap_regs[PIDXDATA] = d->dx & 0xff;eieio();
1174			par->cmap_regs[PIDXLO] = CURSYHI;	eieio();
1175			par->cmap_regs[PIDXDATA] = d->dy >> 8;	eieio();
1176			par->cmap_regs[PIDXLO] = CURSYLO;	eieio();
1177			par->cmap_regs[PIDXDATA] = d->dy & 0xff;eieio();
1178			par->cmap_regs[PIDXLO] = CURSCTL;	eieio();
1179			par->cmap_regs[PIDXDATA] = 0x02;	eieio();
1180		}
1181	} else {
1182		if (!on) {
1183			par->cmap_regs[TVPADDRW] = TVPIRICC;	eieio();
1184			par->cmap_regs[TVPIDATA] = 0x00;	eieio();
1185		} else {
1186			__u16 x = d->dx + 0x40, y = d->dy + 0x40;
1187
1188			par->cmap_regs[TVPCXPOH] = x >> 8;	eieio();
1189			par->cmap_regs[TVPCXPOL] = x & 0xff;	eieio();
1190			par->cmap_regs[TVPCYPOH] = y >> 8;	eieio();
1191			par->cmap_regs[TVPCYPOL] = y & 0xff;	eieio();
1192			par->cmap_regs[TVPADDRW] = TVPIRICC;	eieio();
1193			par->cmap_regs[TVPIDATA] = 0x02;	eieio();
1194		}
1195	}
1196}
1197
1198static int 
1199imsttfb_cursor(struct fb_info *info, struct fb_cursor *cursor)
1200{
1201	struct imstt_par *par = info->par;
1202        u32 flags = cursor->set, fg, bg, xx, yy;
1203
1204	if (cursor->dest == NULL && cursor->rop == ROP_XOR)
1205		return 1;
1206	
1207	imstt_set_cursor(info, cursor, 0);
1208
1209	if (flags & FB_CUR_SETPOS) {
1210		xx = cursor->image.dx - info->var.xoffset;
1211		yy = cursor->image.dy - info->var.yoffset;
1212	}
1213
1214	if (flags & FB_CUR_SETSIZE) {
1215        }
1216
1217        if (flags & (FB_CUR_SETSHAPE | FB_CUR_SETCMAP)) {
1218                int fg_idx = cursor->image.fg_color;
1219                int width = (cursor->image.width+7)/8;
1220                u8 *dat = (u8 *) cursor->image.data;
1221                u8 *dst = (u8 *) cursor->dest;
1222                u8 *msk = (u8 *) cursor->mask;
1223
1224                switch (cursor->rop) {
1225                case ROP_XOR:
1226                        for (i = 0; i < cursor->image.height; i++) {
1227                                for (j = 0; j < width; j++) {
1228                                        d_idx = i * MAX_CURS/8  + j;
1229                                        data[d_idx] =  byte_rev[dat[s_idx] ^
1230                                                                dst[s_idx]];
1231                                        mask[d_idx] = byte_rev[msk[s_idx]];
1232                                        s_idx++;
1233                                }
1234                        }
1235                        break;
1236                case ROP_COPY:
1237                default:
1238                        for (i = 0; i < cursor->image.height; i++) {
1239                                for (j = 0; j < width; j++) {
1240                                        d_idx = i * MAX_CURS/8 + j;
1241                                        data[d_idx] = byte_rev[dat[s_idx]];
1242                                        mask[d_idx] = byte_rev[msk[s_idx]];
1243                                        s_idx++;
1244                                }
1245			}
1246			break;
1247		}
1248
1249		fg = ((info->cmap.red[fg_idx] & 0xf8) << 7) |
1250                     ((info->cmap.green[fg_idx] & 0xf8) << 2) |
1251                     ((info->cmap.blue[fg_idx] & 0xf8) >> 3) | 1 << 15;
1252
1253		imsttfb_load_cursor_image(par, xx, yy, fgc);
1254	}
1255	if (cursor->enable)
1256		imstt_set_cursor(info, cursor, 1);
1257	return 0;
1258}
1259#endif
1260
1261#define FBIMSTT_SETREG		0x545401
1262#define FBIMSTT_GETREG		0x545402
1263#define FBIMSTT_SETCMAPREG	0x545403
1264#define FBIMSTT_GETCMAPREG	0x545404
1265#define FBIMSTT_SETIDXREG	0x545405
1266#define FBIMSTT_GETIDXREG	0x545406
1267
1268static int
1269imsttfb_ioctl(struct fb_info *info, u_int cmd, u_long arg)
1270{
1271	struct imstt_par *par = info->par;
1272	void __user *argp = (void __user *)arg;
1273	__u32 reg[2];
1274	__u8 idx[2];
1275
1276	switch (cmd) {
1277		case FBIMSTT_SETREG:
1278			if (copy_from_user(reg, argp, 8) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1279				return -EFAULT;
1280			write_reg_le32(par->dc_regs, reg[0], reg[1]);
1281			return 0;
1282		case FBIMSTT_GETREG:
1283			if (copy_from_user(reg, argp, 4) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1284				return -EFAULT;
1285			reg[1] = read_reg_le32(par->dc_regs, reg[0]);
1286			if (copy_to_user((void __user *)(arg + 4), &reg[1], 4))
1287				return -EFAULT;
1288			return 0;
1289		case FBIMSTT_SETCMAPREG:
1290			if (copy_from_user(reg, argp, 8) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1291				return -EFAULT;
1292			write_reg_le32(((u_int __iomem *)par->cmap_regs), reg[0], reg[1]);
1293			return 0;
1294		case FBIMSTT_GETCMAPREG:
1295			if (copy_from_user(reg, argp, 4) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1296				return -EFAULT;
1297			reg[1] = read_reg_le32(((u_int __iomem *)par->cmap_regs), reg[0]);
1298			if (copy_to_user((void __user *)(arg + 4), &reg[1], 4))
1299				return -EFAULT;
1300			return 0;
1301		case FBIMSTT_SETIDXREG:
1302			if (copy_from_user(idx, argp, 2))
1303				return -EFAULT;
1304			par->cmap_regs[PIDXHI] = 0;		eieio();
1305			par->cmap_regs[PIDXLO] = idx[0];	eieio();
1306			par->cmap_regs[PIDXDATA] = idx[1];	eieio();
1307			return 0;
1308		case FBIMSTT_GETIDXREG:
1309			if (copy_from_user(idx, argp, 1))
1310				return -EFAULT;
1311			par->cmap_regs[PIDXHI] = 0;		eieio();
1312			par->cmap_regs[PIDXLO] = idx[0];	eieio();
1313			idx[1] = par->cmap_regs[PIDXDATA];
1314			if (copy_to_user((void __user *)(arg + 1), &idx[1], 1))
1315				return -EFAULT;
1316			return 0;
1317		default:
1318			return -ENOIOCTLCMD;
1319	}
1320}
1321
1322static struct pci_device_id imsttfb_pci_tbl[] = {
1323	{ PCI_VENDOR_ID_IMS, PCI_DEVICE_ID_IMS_TT128,
1324	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, IBM },
1325	{ PCI_VENDOR_ID_IMS, PCI_DEVICE_ID_IMS_TT3D,
1326	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, TVP },
1327	{ 0, }
1328};
1329
1330MODULE_DEVICE_TABLE(pci, imsttfb_pci_tbl);
1331
1332static struct pci_driver imsttfb_pci_driver = {
1333	.name =		"imsttfb",
1334	.id_table =	imsttfb_pci_tbl,
1335	.probe =	imsttfb_probe,
1336	.remove =	__devexit_p(imsttfb_remove),
1337};
1338
1339static struct fb_ops imsttfb_ops = {
1340	.owner 		= THIS_MODULE,
1341	.fb_check_var	= imsttfb_check_var,
1342	.fb_set_par 	= imsttfb_set_par,
1343	.fb_setcolreg 	= imsttfb_setcolreg,
1344	.fb_pan_display = imsttfb_pan_display,
1345	.fb_blank 	= imsttfb_blank,
1346	.fb_fillrect	= imsttfb_fillrect,
1347	.fb_copyarea	= imsttfb_copyarea,
1348	.fb_imageblit	= cfb_imageblit,
1349	.fb_ioctl 	= imsttfb_ioctl,
1350};
1351
1352static void __devinit
1353init_imstt(struct fb_info *info)
1354{
1355	struct imstt_par *par = info->par;
1356	__u32 i, tmp, *ip, *end;
1357
1358	tmp = read_reg_le32(par->dc_regs, PRC);
1359	if (par->ramdac == IBM)
1360		info->fix.smem_len = (tmp & 0x0004) ? 0x400000 : 0x200000;
1361	else
1362		info->fix.smem_len = 0x800000;
1363
1364	ip = (__u32 *)info->screen_base;
1365	end = (__u32 *)(info->screen_base + info->fix.smem_len);
1366	while (ip < end)
1367		*ip++ = 0;
1368
1369	/* initialize the card */
1370	tmp = read_reg_le32(par->dc_regs, STGCTL);
1371	write_reg_le32(par->dc_regs, STGCTL, tmp & ~0x1);
1372	write_reg_le32(par->dc_regs, SSR, 0);
1373
1374	/* set default values for DAC registers */
1375	if (par->ramdac == IBM) {
1376		par->cmap_regs[PPMASK] = 0xff;
1377		eieio();
1378		par->cmap_regs[PIDXHI] = 0;
1379		eieio();
1380		for (i = 0; i < ARRAY_SIZE(ibm_initregs); i++) {
1381			par->cmap_regs[PIDXLO] = ibm_initregs[i].addr;
1382			eieio();
1383			par->cmap_regs[PIDXDATA] = ibm_initregs[i].value;
1384			eieio();
1385		}
1386	} else {
1387		for (i = 0; i < ARRAY_SIZE(tvp_initregs); i++) {
1388			par->cmap_regs[TVPADDRW] = tvp_initregs[i].addr;
1389			eieio();
1390			par->cmap_regs[TVPIDATA] = tvp_initregs[i].value;
1391			eieio();
1392		}
1393	}
1394
1395#if USE_NV_MODES && defined(CONFIG_PPC32)
1396	{
1397		int vmode = init_vmode, cmode = init_cmode;
1398
1399		if (vmode == -1) {
1400			vmode = nvram_read_byte(NV_VMODE);
1401			if (vmode <= 0 || vmode > VMODE_MAX)
1402				vmode = VMODE_640_480_67;
1403		}
1404		if (cmode == -1) {
1405			cmode = nvram_read_byte(NV_CMODE);
1406			if (cmode < CMODE_8 || cmode > CMODE_32)
1407				cmode = CMODE_8;
1408		}
1409		if (mac_vmode_to_var(vmode, cmode, &info->var)) {
1410			info->var.xres = info->var.xres_virtual = INIT_XRES;
1411			info->var.yres = info->var.yres_virtual = INIT_YRES;
1412			info->var.bits_per_pixel = INIT_BPP;
1413		}
1414	}
1415#else
1416	info->var.xres = info->var.xres_virtual = INIT_XRES;
1417	info->var.yres = info->var.yres_virtual = INIT_YRES;
1418	info->var.bits_per_pixel = INIT_BPP;
1419#endif
1420
1421	if ((info->var.xres * info->var.yres) * (info->var.bits_per_pixel >> 3) > info->fix.smem_len
1422	    || !(compute_imstt_regvals(par, info->var.xres, info->var.yres))) {
1423		printk("imsttfb: %ux%ux%u not supported\n", info->var.xres, info->var.yres, info->var.bits_per_pixel);
1424		framebuffer_release(info);
1425		return;
1426	}
1427
1428	sprintf(info->fix.id, "IMS TT (%s)", par->ramdac == IBM ? "IBM" : "TVP");
1429	info->fix.mmio_len = 0x1000;
1430	info->fix.accel = FB_ACCEL_IMS_TWINTURBO;
1431	info->fix.type = FB_TYPE_PACKED_PIXELS;
1432	info->fix.visual = info->var.bits_per_pixel == 8 ? FB_VISUAL_PSEUDOCOLOR
1433							: FB_VISUAL_DIRECTCOLOR;
1434	info->fix.line_length = info->var.xres * (info->var.bits_per_pixel >> 3);
1435	info->fix.xpanstep = 8;
1436	info->fix.ypanstep = 1;
1437	info->fix.ywrapstep = 0;
1438
1439	info->var.accel_flags = FB_ACCELF_TEXT;
1440
1441//	if (par->ramdac == IBM)
1442//		imstt_cursor_init(info);
1443	if (info->var.green.length == 6)
1444		set_565(par);
1445	else
1446		set_555(par);
1447	set_imstt_regvals(info, info->var.bits_per_pixel);
1448
1449	info->var.pixclock = 1000000 / getclkMHz(par);
1450
1451	info->fbops = &imsttfb_ops;
1452	info->flags = FBINFO_DEFAULT |
1453                      FBINFO_HWACCEL_COPYAREA |
1454	              FBINFO_HWACCEL_FILLRECT |
1455	              FBINFO_HWACCEL_YPAN;
1456
1457	fb_alloc_cmap(&info->cmap, 0, 0);
1458
1459	if (register_framebuffer(info) < 0) {
1460		framebuffer_release(info);
1461		return;
1462	}
1463
1464	tmp = (read_reg_le32(par->dc_regs, SSTATUS) & 0x0f00) >> 8;
1465	printk("fb%u: %s frame buffer; %uMB vram; chip version %u\n",
1466		info->node, info->fix.id, info->fix.smem_len >> 20, tmp);
1467}
1468
1469static int __devinit
1470imsttfb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1471{
1472	unsigned long addr, size;
1473	struct imstt_par *par;
1474	struct fb_info *info;
1475#ifdef CONFIG_PPC_OF
1476	struct device_node *dp;
1477	
1478	dp = pci_device_to_OF_node(pdev);
1479	if(dp)
1480		printk(KERN_INFO "%s: OF name %s\n",__func__, dp->name);
1481	else
1482		printk(KERN_ERR "imsttfb: no OF node for pci device\n");
1483#endif /* CONFIG_PPC_OF */
1484
1485	info = framebuffer_alloc(sizeof(struct imstt_par), &pdev->dev);
1486
1487	if (!info) {
1488		printk(KERN_ERR "imsttfb: Can't allocate memory\n");
1489		return -ENOMEM;
1490	}
1491
1492	par = info->par;
1493
1494	addr = pci_resource_start (pdev, 0);
1495	size = pci_resource_len (pdev, 0);
1496
1497	if (!request_mem_region(addr, size, "imsttfb")) {
1498		printk(KERN_ERR "imsttfb: Can't reserve memory region\n");
1499		framebuffer_release(info);
1500		return -ENODEV;
1501	}
1502
1503	switch (pdev->device) {
1504		case PCI_DEVICE_ID_IMS_TT128: /* IMS,tt128mbA */
1505			par->ramdac = IBM;
1506#ifdef CONFIG_PPC_OF
1507			if (dp && ((strcmp(dp->name, "IMS,tt128mb8") == 0) ||
1508				   (strcmp(dp->name, "IMS,tt128mb8A") == 0)))
1509				par->ramdac = TVP;
1510#endif /* CONFIG_PPC_OF */
1511			break;
1512		case PCI_DEVICE_ID_IMS_TT3D:  /* IMS,tt3d */
1513			par->ramdac = TVP;
1514			break;
1515		default:
1516			printk(KERN_INFO "imsttfb: Device 0x%x unknown, "
1517					 "contact maintainer.\n", pdev->device);
1518			release_mem_region(addr, size);
1519			framebuffer_release(info);
1520			return -ENODEV;
1521	}
1522
1523	info->fix.smem_start = addr;
1524	info->screen_base = (__u8 *)ioremap(addr, par->ramdac == IBM ?
1525					    0x400000 : 0x800000);
1526	info->fix.mmio_start = addr + 0x800000;
1527	par->dc_regs = ioremap(addr + 0x800000, 0x1000);
1528	par->cmap_regs_phys = addr + 0x840000;
1529	par->cmap_regs = (__u8 *)ioremap(addr + 0x840000, 0x1000);
1530	info->pseudo_palette = par->palette;
1531	init_imstt(info);
1532
1533	pci_set_drvdata(pdev, info);
1534	return 0;
1535}
1536
1537static void __devexit
1538imsttfb_remove(struct pci_dev *pdev)
1539{
1540	struct fb_info *info = pci_get_drvdata(pdev);
1541	struct imstt_par *par = info->par;
1542	int size = pci_resource_len(pdev, 0);
1543
1544	unregister_framebuffer(info);
1545	iounmap(par->cmap_regs);
1546	iounmap(par->dc_regs);
1547	iounmap(info->screen_base);
1548	release_mem_region(info->fix.smem_start, size);
1549	framebuffer_release(info);
1550}
1551
1552#ifndef MODULE
1553static int __init
1554imsttfb_setup(char *options)
1555{
1556	char *this_opt;
1557
1558	if (!options || !*options)
1559		return 0;
1560
1561	while ((this_opt = strsep(&options, ",")) != NULL) {
1562		if (!strncmp(this_opt, "font:", 5)) {
1563			char *p;
1564			int i;
1565
1566			p = this_opt + 5;
1567			for (i = 0; i < sizeof(fontname) - 1; i++)
1568				if (!*p || *p == ' ' || *p == ',')
1569					break;
1570			memcpy(fontname, this_opt + 5, i);
1571			fontname[i] = 0;
1572		} else if (!strncmp(this_opt, "inverse", 7)) {
1573			inverse = 1;
1574			fb_invert_cmaps();
1575		}
1576#if defined(CONFIG_PPC)
1577		else if (!strncmp(this_opt, "vmode:", 6)) {
1578			int vmode = simple_strtoul(this_opt+6, NULL, 0);
1579			if (vmode > 0 && vmode <= VMODE_MAX)
1580				init_vmode = vmode;
1581		} else if (!strncmp(this_opt, "cmode:", 6)) {
1582			int cmode = simple_strtoul(this_opt+6, NULL, 0);
1583			switch (cmode) {
1584				case CMODE_8:
1585				case 8:
1586					init_cmode = CMODE_8;
1587					break;
1588				case CMODE_16:
1589				case 15:
1590				case 16:
1591					init_cmode = CMODE_16;
1592					break;
1593				case CMODE_32:
1594				case 24:
1595				case 32:
1596					init_cmode = CMODE_32;
1597					break;
1598			}
1599		}
1600#endif
1601	}
1602	return 0;
1603}
1604
1605#endif /* MODULE */
1606
1607static int __init imsttfb_init(void)
1608{
1609#ifndef MODULE
1610	char *option = NULL;
1611
1612	if (fb_get_options("imsttfb", &option))
1613		return -ENODEV;
1614
1615	imsttfb_setup(option);
1616#endif
1617	return pci_register_driver(&imsttfb_pci_driver);
1618}
1619 
1620static void __exit imsttfb_exit(void)
1621{
1622	pci_unregister_driver(&imsttfb_pci_driver);
1623}
1624
1625MODULE_LICENSE("GPL");
1626
1627module_init(imsttfb_init);
1628module_exit(imsttfb_exit);
1629