Linux Audio

Check our new training course

Loading...
  1/*
  2 * zsmalloc memory allocator
  3 *
  4 * Copyright (C) 2011  Nitin Gupta
  5 *
  6 * This code is released using a dual license strategy: BSD/GPL
  7 * You can choose the license that better fits your requirements.
  8 *
  9 * Released under the terms of 3-clause BSD License
 10 * Released under the terms of GNU General Public License Version 2.0
 11 */
 12
 13#ifdef CONFIG_ZSMALLOC_DEBUG
 14#define DEBUG
 15#endif
 16
 17#include <linux/module.h>
 18#include <linux/kernel.h>
 19#include <linux/bitops.h>
 20#include <linux/errno.h>
 21#include <linux/highmem.h>
 22#include <linux/init.h>
 23#include <linux/string.h>
 24#include <linux/slab.h>
 25#include <asm/tlbflush.h>
 26#include <asm/pgtable.h>
 27#include <linux/cpumask.h>
 28#include <linux/cpu.h>
 29#include <linux/vmalloc.h>
 30
 31#include "zsmalloc.h"
 32#include "zsmalloc_int.h"
 33
 34/*
 35 * A zspage's class index and fullness group
 36 * are encoded in its (first)page->mapping
 37 */
 38#define CLASS_IDX_BITS	28
 39#define FULLNESS_BITS	4
 40#define CLASS_IDX_MASK	((1 << CLASS_IDX_BITS) - 1)
 41#define FULLNESS_MASK	((1 << FULLNESS_BITS) - 1)
 42
 43/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
 44static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
 45
 46static int is_first_page(struct page *page)
 47{
 48	return PagePrivate(page);
 49}
 50
 51static int is_last_page(struct page *page)
 52{
 53	return PagePrivate2(page);
 54}
 55
 56static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
 57				enum fullness_group *fullness)
 58{
 59	unsigned long m;
 60	BUG_ON(!is_first_page(page));
 61
 62	m = (unsigned long)page->mapping;
 63	*fullness = m & FULLNESS_MASK;
 64	*class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
 65}
 66
 67static void set_zspage_mapping(struct page *page, unsigned int class_idx,
 68				enum fullness_group fullness)
 69{
 70	unsigned long m;
 71	BUG_ON(!is_first_page(page));
 72
 73	m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
 74			(fullness & FULLNESS_MASK);
 75	page->mapping = (struct address_space *)m;
 76}
 77
 78static int get_size_class_index(int size)
 79{
 80	int idx = 0;
 81
 82	if (likely(size > ZS_MIN_ALLOC_SIZE))
 83		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
 84				ZS_SIZE_CLASS_DELTA);
 85
 86	return idx;
 87}
 88
 89static enum fullness_group get_fullness_group(struct page *page)
 90{
 91	int inuse, max_objects;
 92	enum fullness_group fg;
 93	BUG_ON(!is_first_page(page));
 94
 95	inuse = page->inuse;
 96	max_objects = page->objects;
 97
 98	if (inuse == 0)
 99		fg = ZS_EMPTY;
100	else if (inuse == max_objects)
101		fg = ZS_FULL;
102	else if (inuse <= max_objects / fullness_threshold_frac)
103		fg = ZS_ALMOST_EMPTY;
104	else
105		fg = ZS_ALMOST_FULL;
106
107	return fg;
108}
109
110static void insert_zspage(struct page *page, struct size_class *class,
111				enum fullness_group fullness)
112{
113	struct page **head;
114
115	BUG_ON(!is_first_page(page));
116
117	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
118		return;
119
120	head = &class->fullness_list[fullness];
121	if (*head)
122		list_add_tail(&page->lru, &(*head)->lru);
123
124	*head = page;
125}
126
127static void remove_zspage(struct page *page, struct size_class *class,
128				enum fullness_group fullness)
129{
130	struct page **head;
131
132	BUG_ON(!is_first_page(page));
133
134	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
135		return;
136
137	head = &class->fullness_list[fullness];
138	BUG_ON(!*head);
139	if (list_empty(&(*head)->lru))
140		*head = NULL;
141	else if (*head == page)
142		*head = (struct page *)list_entry((*head)->lru.next,
143					struct page, lru);
144
145	list_del_init(&page->lru);
146}
147
148static enum fullness_group fix_fullness_group(struct zs_pool *pool,
149						struct page *page)
150{
151	int class_idx;
152	struct size_class *class;
153	enum fullness_group currfg, newfg;
154
155	BUG_ON(!is_first_page(page));
156
157	get_zspage_mapping(page, &class_idx, &currfg);
158	newfg = get_fullness_group(page);
159	if (newfg == currfg)
160		goto out;
161
162	class = &pool->size_class[class_idx];
163	remove_zspage(page, class, currfg);
164	insert_zspage(page, class, newfg);
165	set_zspage_mapping(page, class_idx, newfg);
166
167out:
168	return newfg;
169}
170
171/*
172 * We have to decide on how many pages to link together
173 * to form a zspage for each size class. This is important
174 * to reduce wastage due to unusable space left at end of
175 * each zspage which is given as:
176 *	wastage = Zp - Zp % size_class
177 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
178 *
179 * For example, for size class of 3/8 * PAGE_SIZE, we should
180 * link together 3 PAGE_SIZE sized pages to form a zspage
181 * since then we can perfectly fit in 8 such objects.
182 */
183static int get_pages_per_zspage(int class_size)
184{
185	int i, max_usedpc = 0;
186	/* zspage order which gives maximum used size per KB */
187	int max_usedpc_order = 1;
188
189	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
190		int zspage_size;
191		int waste, usedpc;
192
193		zspage_size = i * PAGE_SIZE;
194		waste = zspage_size % class_size;
195		usedpc = (zspage_size - waste) * 100 / zspage_size;
196
197		if (usedpc > max_usedpc) {
198			max_usedpc = usedpc;
199			max_usedpc_order = i;
200		}
201	}
202
203	return max_usedpc_order;
204}
205
206/*
207 * A single 'zspage' is composed of many system pages which are
208 * linked together using fields in struct page. This function finds
209 * the first/head page, given any component page of a zspage.
210 */
211static struct page *get_first_page(struct page *page)
212{
213	if (is_first_page(page))
214		return page;
215	else
216		return page->first_page;
217}
218
219static struct page *get_next_page(struct page *page)
220{
221	struct page *next;
222
223	if (is_last_page(page))
224		next = NULL;
225	else if (is_first_page(page))
226		next = (struct page *)page->private;
227	else
228		next = list_entry(page->lru.next, struct page, lru);
229
230	return next;
231}
232
233/* Encode <page, obj_idx> as a single handle value */
234static void *obj_location_to_handle(struct page *page, unsigned long obj_idx)
235{
236	unsigned long handle;
237
238	if (!page) {
239		BUG_ON(obj_idx);
240		return NULL;
241	}
242
243	handle = page_to_pfn(page) << OBJ_INDEX_BITS;
244	handle |= (obj_idx & OBJ_INDEX_MASK);
245
246	return (void *)handle;
247}
248
249/* Decode <page, obj_idx> pair from the given object handle */
250static void obj_handle_to_location(void *handle, struct page **page,
251				unsigned long *obj_idx)
252{
253	unsigned long hval = (unsigned long)handle;
254
255	*page = pfn_to_page(hval >> OBJ_INDEX_BITS);
256	*obj_idx = hval & OBJ_INDEX_MASK;
257}
258
259static unsigned long obj_idx_to_offset(struct page *page,
260				unsigned long obj_idx, int class_size)
261{
262	unsigned long off = 0;
263
264	if (!is_first_page(page))
265		off = page->index;
266
267	return off + obj_idx * class_size;
268}
269
270static void reset_page(struct page *page)
271{
272	clear_bit(PG_private, &page->flags);
273	clear_bit(PG_private_2, &page->flags);
274	set_page_private(page, 0);
275	page->mapping = NULL;
276	page->freelist = NULL;
277	reset_page_mapcount(page);
278}
279
280static void free_zspage(struct page *first_page)
281{
282	struct page *nextp, *tmp, *head_extra;
283
284	BUG_ON(!is_first_page(first_page));
285	BUG_ON(first_page->inuse);
286
287	head_extra = (struct page *)page_private(first_page);
288
289	reset_page(first_page);
290	__free_page(first_page);
291
292	/* zspage with only 1 system page */
293	if (!head_extra)
294		return;
295
296	list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
297		list_del(&nextp->lru);
298		reset_page(nextp);
299		__free_page(nextp);
300	}
301	reset_page(head_extra);
302	__free_page(head_extra);
303}
304
305/* Initialize a newly allocated zspage */
306static void init_zspage(struct page *first_page, struct size_class *class)
307{
308	unsigned long off = 0;
309	struct page *page = first_page;
310
311	BUG_ON(!is_first_page(first_page));
312	while (page) {
313		struct page *next_page;
314		struct link_free *link;
315		unsigned int i, objs_on_page;
316
317		/*
318		 * page->index stores offset of first object starting
319		 * in the page. For the first page, this is always 0,
320		 * so we use first_page->index (aka ->freelist) to store
321		 * head of corresponding zspage's freelist.
322		 */
323		if (page != first_page)
324			page->index = off;
325
326		link = (struct link_free *)kmap_atomic(page) +
327						off / sizeof(*link);
328		objs_on_page = (PAGE_SIZE - off) / class->size;
329
330		for (i = 1; i <= objs_on_page; i++) {
331			off += class->size;
332			if (off < PAGE_SIZE) {
333				link->next = obj_location_to_handle(page, i);
334				link += class->size / sizeof(*link);
335			}
336		}
337
338		/*
339		 * We now come to the last (full or partial) object on this
340		 * page, which must point to the first object on the next
341		 * page (if present)
342		 */
343		next_page = get_next_page(page);
344		link->next = obj_location_to_handle(next_page, 0);
345		kunmap_atomic(link);
346		page = next_page;
347		off = (off + class->size) % PAGE_SIZE;
348	}
349}
350
351/*
352 * Allocate a zspage for the given size class
353 */
354static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
355{
356	int i, error;
357	struct page *first_page = NULL;
358
359	/*
360	 * Allocate individual pages and link them together as:
361	 * 1. first page->private = first sub-page
362	 * 2. all sub-pages are linked together using page->lru
363	 * 3. each sub-page is linked to the first page using page->first_page
364	 *
365	 * For each size class, First/Head pages are linked together using
366	 * page->lru. Also, we set PG_private to identify the first page
367	 * (i.e. no other sub-page has this flag set) and PG_private_2 to
368	 * identify the last page.
369	 */
370	error = -ENOMEM;
371	for (i = 0; i < class->pages_per_zspage; i++) {
372		struct page *page, *prev_page;
373
374		page = alloc_page(flags);
375		if (!page)
376			goto cleanup;
377
378		INIT_LIST_HEAD(&page->lru);
379		if (i == 0) {	/* first page */
380			SetPagePrivate(page);
381			set_page_private(page, 0);
382			first_page = page;
383			first_page->inuse = 0;
384		}
385		if (i == 1)
386			first_page->private = (unsigned long)page;
387		if (i >= 1)
388			page->first_page = first_page;
389		if (i >= 2)
390			list_add(&page->lru, &prev_page->lru);
391		if (i == class->pages_per_zspage - 1)	/* last page */
392			SetPagePrivate2(page);
393		prev_page = page;
394	}
395
396	init_zspage(first_page, class);
397
398	first_page->freelist = obj_location_to_handle(first_page, 0);
399	/* Maximum number of objects we can store in this zspage */
400	first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
401
402	error = 0; /* Success */
403
404cleanup:
405	if (unlikely(error) && first_page) {
406		free_zspage(first_page);
407		first_page = NULL;
408	}
409
410	return first_page;
411}
412
413static struct page *find_get_zspage(struct size_class *class)
414{
415	int i;
416	struct page *page;
417
418	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
419		page = class->fullness_list[i];
420		if (page)
421			break;
422	}
423
424	return page;
425}
426
427
428static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
429				void *pcpu)
430{
431	int cpu = (long)pcpu;
432	struct mapping_area *area;
433
434	switch (action) {
435	case CPU_UP_PREPARE:
436		area = &per_cpu(zs_map_area, cpu);
437		if (area->vm)
438			break;
439		area->vm = alloc_vm_area(2 * PAGE_SIZE, area->vm_ptes);
440		if (!area->vm)
441			return notifier_from_errno(-ENOMEM);
442		break;
443	case CPU_DEAD:
444	case CPU_UP_CANCELED:
445		area = &per_cpu(zs_map_area, cpu);
446		if (area->vm)
447			free_vm_area(area->vm);
448		area->vm = NULL;
449		break;
450	}
451
452	return NOTIFY_OK;
453}
454
455static struct notifier_block zs_cpu_nb = {
456	.notifier_call = zs_cpu_notifier
457};
458
459static void zs_exit(void)
460{
461	int cpu;
462
463	for_each_online_cpu(cpu)
464		zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
465	unregister_cpu_notifier(&zs_cpu_nb);
466}
467
468static int zs_init(void)
469{
470	int cpu, ret;
471
472	register_cpu_notifier(&zs_cpu_nb);
473	for_each_online_cpu(cpu) {
474		ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
475		if (notifier_to_errno(ret))
476			goto fail;
477	}
478	return 0;
479fail:
480	zs_exit();
481	return notifier_to_errno(ret);
482}
483
484struct zs_pool *zs_create_pool(const char *name, gfp_t flags)
485{
486	int i, ovhd_size;
487	struct zs_pool *pool;
488
489	if (!name)
490		return NULL;
491
492	ovhd_size = roundup(sizeof(*pool), PAGE_SIZE);
493	pool = kzalloc(ovhd_size, GFP_KERNEL);
494	if (!pool)
495		return NULL;
496
497	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
498		int size;
499		struct size_class *class;
500
501		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
502		if (size > ZS_MAX_ALLOC_SIZE)
503			size = ZS_MAX_ALLOC_SIZE;
504
505		class = &pool->size_class[i];
506		class->size = size;
507		class->index = i;
508		spin_lock_init(&class->lock);
509		class->pages_per_zspage = get_pages_per_zspage(size);
510
511	}
512
513	pool->flags = flags;
514	pool->name = name;
515
516	return pool;
517}
518EXPORT_SYMBOL_GPL(zs_create_pool);
519
520void zs_destroy_pool(struct zs_pool *pool)
521{
522	int i;
523
524	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
525		int fg;
526		struct size_class *class = &pool->size_class[i];
527
528		for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
529			if (class->fullness_list[fg]) {
530				pr_info("Freeing non-empty class with size "
531					"%db, fullness group %d\n",
532					class->size, fg);
533			}
534		}
535	}
536	kfree(pool);
537}
538EXPORT_SYMBOL_GPL(zs_destroy_pool);
539
540/**
541 * zs_malloc - Allocate block of given size from pool.
542 * @pool: pool to allocate from
543 * @size: size of block to allocate
544 *
545 * On success, handle to the allocated object is returned,
546 * otherwise NULL.
547 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
548 */
549void *zs_malloc(struct zs_pool *pool, size_t size)
550{
551	void *obj;
552	struct link_free *link;
553	int class_idx;
554	struct size_class *class;
555
556	struct page *first_page, *m_page;
557	unsigned long m_objidx, m_offset;
558
559	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
560		return NULL;
561
562	class_idx = get_size_class_index(size);
563	class = &pool->size_class[class_idx];
564	BUG_ON(class_idx != class->index);
565
566	spin_lock(&class->lock);
567	first_page = find_get_zspage(class);
568
569	if (!first_page) {
570		spin_unlock(&class->lock);
571		first_page = alloc_zspage(class, pool->flags);
572		if (unlikely(!first_page))
573			return NULL;
574
575		set_zspage_mapping(first_page, class->index, ZS_EMPTY);
576		spin_lock(&class->lock);
577		class->pages_allocated += class->pages_per_zspage;
578	}
579
580	obj = first_page->freelist;
581	obj_handle_to_location(obj, &m_page, &m_objidx);
582	m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
583
584	link = (struct link_free *)kmap_atomic(m_page) +
585					m_offset / sizeof(*link);
586	first_page->freelist = link->next;
587	memset(link, POISON_INUSE, sizeof(*link));
588	kunmap_atomic(link);
589
590	first_page->inuse++;
591	/* Now move the zspage to another fullness group, if required */
592	fix_fullness_group(pool, first_page);
593	spin_unlock(&class->lock);
594
595	return obj;
596}
597EXPORT_SYMBOL_GPL(zs_malloc);
598
599void zs_free(struct zs_pool *pool, void *obj)
600{
601	struct link_free *link;
602	struct page *first_page, *f_page;
603	unsigned long f_objidx, f_offset;
604
605	int class_idx;
606	struct size_class *class;
607	enum fullness_group fullness;
608
609	if (unlikely(!obj))
610		return;
611
612	obj_handle_to_location(obj, &f_page, &f_objidx);
613	first_page = get_first_page(f_page);
614
615	get_zspage_mapping(first_page, &class_idx, &fullness);
616	class = &pool->size_class[class_idx];
617	f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
618
619	spin_lock(&class->lock);
620
621	/* Insert this object in containing zspage's freelist */
622	link = (struct link_free *)((unsigned char *)kmap_atomic(f_page)
623							+ f_offset);
624	link->next = first_page->freelist;
625	kunmap_atomic(link);
626	first_page->freelist = obj;
627
628	first_page->inuse--;
629	fullness = fix_fullness_group(pool, first_page);
630
631	if (fullness == ZS_EMPTY)
632		class->pages_allocated -= class->pages_per_zspage;
633
634	spin_unlock(&class->lock);
635
636	if (fullness == ZS_EMPTY)
637		free_zspage(first_page);
638}
639EXPORT_SYMBOL_GPL(zs_free);
640
641/**
642 * zs_map_object - get address of allocated object from handle.
643 * @pool: pool from which the object was allocated
644 * @handle: handle returned from zs_malloc
645 *
646 * Before using an object allocated from zs_malloc, it must be mapped using
647 * this function. When done with the object, it must be unmapped using
648 * zs_unmap_object
649*/
650void *zs_map_object(struct zs_pool *pool, void *handle)
651{
652	struct page *page;
653	unsigned long obj_idx, off;
654
655	unsigned int class_idx;
656	enum fullness_group fg;
657	struct size_class *class;
658	struct mapping_area *area;
659
660	BUG_ON(!handle);
661
662	obj_handle_to_location(handle, &page, &obj_idx);
663	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
664	class = &pool->size_class[class_idx];
665	off = obj_idx_to_offset(page, obj_idx, class->size);
666
667	area = &get_cpu_var(zs_map_area);
668	if (off + class->size <= PAGE_SIZE) {
669		/* this object is contained entirely within a page */
670		area->vm_addr = kmap_atomic(page);
671	} else {
672		/* this object spans two pages */
673		struct page *nextp;
674
675		nextp = get_next_page(page);
676		BUG_ON(!nextp);
677
678
679		set_pte(area->vm_ptes[0], mk_pte(page, PAGE_KERNEL));
680		set_pte(area->vm_ptes[1], mk_pte(nextp, PAGE_KERNEL));
681
682		/* We pre-allocated VM area so mapping can never fail */
683		area->vm_addr = area->vm->addr;
684	}
685
686	return area->vm_addr + off;
687}
688EXPORT_SYMBOL_GPL(zs_map_object);
689
690void zs_unmap_object(struct zs_pool *pool, void *handle)
691{
692	struct page *page;
693	unsigned long obj_idx, off;
694
695	unsigned int class_idx;
696	enum fullness_group fg;
697	struct size_class *class;
698	struct mapping_area *area;
699
700	BUG_ON(!handle);
701
702	obj_handle_to_location(handle, &page, &obj_idx);
703	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
704	class = &pool->size_class[class_idx];
705	off = obj_idx_to_offset(page, obj_idx, class->size);
706
707	area = &__get_cpu_var(zs_map_area);
708	if (off + class->size <= PAGE_SIZE) {
709		kunmap_atomic(area->vm_addr);
710	} else {
711		set_pte(area->vm_ptes[0], __pte(0));
712		set_pte(area->vm_ptes[1], __pte(0));
713		__flush_tlb_one((unsigned long)area->vm_addr);
714		__flush_tlb_one((unsigned long)area->vm_addr + PAGE_SIZE);
715	}
716	put_cpu_var(zs_map_area);
717}
718EXPORT_SYMBOL_GPL(zs_unmap_object);
719
720u64 zs_get_total_size_bytes(struct zs_pool *pool)
721{
722	int i;
723	u64 npages = 0;
724
725	for (i = 0; i < ZS_SIZE_CLASSES; i++)
726		npages += pool->size_class[i].pages_allocated;
727
728	return npages << PAGE_SHIFT;
729}
730EXPORT_SYMBOL_GPL(zs_get_total_size_bytes);
731
732module_init(zs_init);
733module_exit(zs_exit);
734
735MODULE_LICENSE("Dual BSD/GPL");
736MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");