Linux Audio

Check our new training course

Loading...
  1/*
  2 * Compressed RAM block device
  3 *
  4 * Copyright (C) 2008, 2009, 2010  Nitin Gupta
  5 *
  6 * This code is released using a dual license strategy: BSD/GPL
  7 * You can choose the licence that better fits your requirements.
  8 *
  9 * Released under the terms of 3-clause BSD License
 10 * Released under the terms of GNU General Public License Version 2.0
 11 *
 12 * Project home: http://compcache.googlecode.com
 13 */
 14
 15#define KMSG_COMPONENT "zram"
 16#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
 17
 18#ifdef CONFIG_ZRAM_DEBUG
 19#define DEBUG
 20#endif
 21
 22#include <linux/module.h>
 23#include <linux/kernel.h>
 24#include <linux/bio.h>
 25#include <linux/bitops.h>
 26#include <linux/blkdev.h>
 27#include <linux/buffer_head.h>
 28#include <linux/device.h>
 29#include <linux/genhd.h>
 30#include <linux/highmem.h>
 31#include <linux/slab.h>
 32#include <linux/lzo.h>
 33#include <linux/string.h>
 34#include <linux/vmalloc.h>
 35
 36#include "zram_drv.h"
 37
 38/* Globals */
 39static int zram_major;
 40struct zram *zram_devices;
 41
 42/* Module params (documentation at end) */
 43static unsigned int num_devices;
 44
 45static void zram_stat_inc(u32 *v)
 46{
 47	*v = *v + 1;
 48}
 49
 50static void zram_stat_dec(u32 *v)
 51{
 52	*v = *v - 1;
 53}
 54
 55static void zram_stat64_add(struct zram *zram, u64 *v, u64 inc)
 56{
 57	spin_lock(&zram->stat64_lock);
 58	*v = *v + inc;
 59	spin_unlock(&zram->stat64_lock);
 60}
 61
 62static void zram_stat64_sub(struct zram *zram, u64 *v, u64 dec)
 63{
 64	spin_lock(&zram->stat64_lock);
 65	*v = *v - dec;
 66	spin_unlock(&zram->stat64_lock);
 67}
 68
 69static void zram_stat64_inc(struct zram *zram, u64 *v)
 70{
 71	zram_stat64_add(zram, v, 1);
 72}
 73
 74static int zram_test_flag(struct zram *zram, u32 index,
 75			enum zram_pageflags flag)
 76{
 77	return zram->table[index].flags & BIT(flag);
 78}
 79
 80static void zram_set_flag(struct zram *zram, u32 index,
 81			enum zram_pageflags flag)
 82{
 83	zram->table[index].flags |= BIT(flag);
 84}
 85
 86static void zram_clear_flag(struct zram *zram, u32 index,
 87			enum zram_pageflags flag)
 88{
 89	zram->table[index].flags &= ~BIT(flag);
 90}
 91
 92static int page_zero_filled(void *ptr)
 93{
 94	unsigned int pos;
 95	unsigned long *page;
 96
 97	page = (unsigned long *)ptr;
 98
 99	for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
100		if (page[pos])
101			return 0;
102	}
103
104	return 1;
105}
106
107static void zram_set_disksize(struct zram *zram, size_t totalram_bytes)
108{
109	if (!zram->disksize) {
110		pr_info(
111		"disk size not provided. You can use disksize_kb module "
112		"param to specify size.\nUsing default: (%u%% of RAM).\n",
113		default_disksize_perc_ram
114		);
115		zram->disksize = default_disksize_perc_ram *
116					(totalram_bytes / 100);
117	}
118
119	if (zram->disksize > 2 * (totalram_bytes)) {
120		pr_info(
121		"There is little point creating a zram of greater than "
122		"twice the size of memory since we expect a 2:1 compression "
123		"ratio. Note that zram uses about 0.1%% of the size of "
124		"the disk when not in use so a huge zram is "
125		"wasteful.\n"
126		"\tMemory Size: %zu kB\n"
127		"\tSize you selected: %llu kB\n"
128		"Continuing anyway ...\n",
129		totalram_bytes >> 10, zram->disksize
130		);
131	}
132
133	zram->disksize &= PAGE_MASK;
134}
135
136static void zram_free_page(struct zram *zram, size_t index)
137{
138	void *handle = zram->table[index].handle;
139
140	if (unlikely(!handle)) {
141		/*
142		 * No memory is allocated for zero filled pages.
143		 * Simply clear zero page flag.
144		 */
145		if (zram_test_flag(zram, index, ZRAM_ZERO)) {
146			zram_clear_flag(zram, index, ZRAM_ZERO);
147			zram_stat_dec(&zram->stats.pages_zero);
148		}
149		return;
150	}
151
152	if (unlikely(zram_test_flag(zram, index, ZRAM_UNCOMPRESSED))) {
153		__free_page(handle);
154		zram_clear_flag(zram, index, ZRAM_UNCOMPRESSED);
155		zram_stat_dec(&zram->stats.pages_expand);
156		goto out;
157	}
158
159	zs_free(zram->mem_pool, handle);
160
161	if (zram->table[index].size <= PAGE_SIZE / 2)
162		zram_stat_dec(&zram->stats.good_compress);
163
164out:
165	zram_stat64_sub(zram, &zram->stats.compr_size,
166			zram->table[index].size);
167	zram_stat_dec(&zram->stats.pages_stored);
168
169	zram->table[index].handle = NULL;
170	zram->table[index].size = 0;
171}
172
173static void handle_zero_page(struct bio_vec *bvec)
174{
175	struct page *page = bvec->bv_page;
176	void *user_mem;
177
178	user_mem = kmap_atomic(page);
179	memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
180	kunmap_atomic(user_mem);
181
182	flush_dcache_page(page);
183}
184
185static void handle_uncompressed_page(struct zram *zram, struct bio_vec *bvec,
186				     u32 index, int offset)
187{
188	struct page *page = bvec->bv_page;
189	unsigned char *user_mem, *cmem;
190
191	user_mem = kmap_atomic(page);
192	cmem = kmap_atomic(zram->table[index].handle);
193
194	memcpy(user_mem + bvec->bv_offset, cmem + offset, bvec->bv_len);
195	kunmap_atomic(cmem);
196	kunmap_atomic(user_mem);
197
198	flush_dcache_page(page);
199}
200
201static inline int is_partial_io(struct bio_vec *bvec)
202{
203	return bvec->bv_len != PAGE_SIZE;
204}
205
206static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
207			  u32 index, int offset, struct bio *bio)
208{
209	int ret;
210	size_t clen;
211	struct page *page;
212	struct zobj_header *zheader;
213	unsigned char *user_mem, *cmem, *uncmem = NULL;
214
215	page = bvec->bv_page;
216
217	if (zram_test_flag(zram, index, ZRAM_ZERO)) {
218		handle_zero_page(bvec);
219		return 0;
220	}
221
222	/* Requested page is not present in compressed area */
223	if (unlikely(!zram->table[index].handle)) {
224		pr_debug("Read before write: sector=%lu, size=%u",
225			 (ulong)(bio->bi_sector), bio->bi_size);
226		handle_zero_page(bvec);
227		return 0;
228	}
229
230	/* Page is stored uncompressed since it's incompressible */
231	if (unlikely(zram_test_flag(zram, index, ZRAM_UNCOMPRESSED))) {
232		handle_uncompressed_page(zram, bvec, index, offset);
233		return 0;
234	}
235
236	if (is_partial_io(bvec)) {
237		/* Use  a temporary buffer to decompress the page */
238		uncmem = kmalloc(PAGE_SIZE, GFP_KERNEL);
239		if (!uncmem) {
240			pr_info("Error allocating temp memory!\n");
241			return -ENOMEM;
242		}
243	}
244
245	user_mem = kmap_atomic(page);
246	if (!is_partial_io(bvec))
247		uncmem = user_mem;
248	clen = PAGE_SIZE;
249
250	cmem = zs_map_object(zram->mem_pool, zram->table[index].handle);
251
252	ret = lzo1x_decompress_safe(cmem + sizeof(*zheader),
253				    zram->table[index].size,
254				    uncmem, &clen);
255
256	if (is_partial_io(bvec)) {
257		memcpy(user_mem + bvec->bv_offset, uncmem + offset,
258		       bvec->bv_len);
259		kfree(uncmem);
260	}
261
262	zs_unmap_object(zram->mem_pool, zram->table[index].handle);
263	kunmap_atomic(user_mem);
264
265	/* Should NEVER happen. Return bio error if it does. */
266	if (unlikely(ret != LZO_E_OK)) {
267		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
268		zram_stat64_inc(zram, &zram->stats.failed_reads);
269		return ret;
270	}
271
272	flush_dcache_page(page);
273
274	return 0;
275}
276
277static int zram_read_before_write(struct zram *zram, char *mem, u32 index)
278{
279	int ret;
280	size_t clen = PAGE_SIZE;
281	struct zobj_header *zheader;
282	unsigned char *cmem;
283
284	if (zram_test_flag(zram, index, ZRAM_ZERO) ||
285	    !zram->table[index].handle) {
286		memset(mem, 0, PAGE_SIZE);
287		return 0;
288	}
289
290	cmem = zs_map_object(zram->mem_pool, zram->table[index].handle);
291
292	/* Page is stored uncompressed since it's incompressible */
293	if (unlikely(zram_test_flag(zram, index, ZRAM_UNCOMPRESSED))) {
294		memcpy(mem, cmem, PAGE_SIZE);
295		kunmap_atomic(cmem);
296		return 0;
297	}
298
299	ret = lzo1x_decompress_safe(cmem + sizeof(*zheader),
300				    zram->table[index].size,
301				    mem, &clen);
302	zs_unmap_object(zram->mem_pool, zram->table[index].handle);
303
304	/* Should NEVER happen. Return bio error if it does. */
305	if (unlikely(ret != LZO_E_OK)) {
306		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
307		zram_stat64_inc(zram, &zram->stats.failed_reads);
308		return ret;
309	}
310
311	return 0;
312}
313
314static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
315			   int offset)
316{
317	int ret;
318	u32 store_offset;
319	size_t clen;
320	void *handle;
321	struct zobj_header *zheader;
322	struct page *page, *page_store;
323	unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
324
325	page = bvec->bv_page;
326	src = zram->compress_buffer;
327
328	if (is_partial_io(bvec)) {
329		/*
330		 * This is a partial IO. We need to read the full page
331		 * before to write the changes.
332		 */
333		uncmem = kmalloc(PAGE_SIZE, GFP_KERNEL);
334		if (!uncmem) {
335			pr_info("Error allocating temp memory!\n");
336			ret = -ENOMEM;
337			goto out;
338		}
339		ret = zram_read_before_write(zram, uncmem, index);
340		if (ret) {
341			kfree(uncmem);
342			goto out;
343		}
344	}
345
346	/*
347	 * System overwrites unused sectors. Free memory associated
348	 * with this sector now.
349	 */
350	if (zram->table[index].handle ||
351	    zram_test_flag(zram, index, ZRAM_ZERO))
352		zram_free_page(zram, index);
353
354	user_mem = kmap_atomic(page);
355
356	if (is_partial_io(bvec))
357		memcpy(uncmem + offset, user_mem + bvec->bv_offset,
358		       bvec->bv_len);
359	else
360		uncmem = user_mem;
361
362	if (page_zero_filled(uncmem)) {
363		kunmap_atomic(user_mem);
364		if (is_partial_io(bvec))
365			kfree(uncmem);
366		zram_stat_inc(&zram->stats.pages_zero);
367		zram_set_flag(zram, index, ZRAM_ZERO);
368		ret = 0;
369		goto out;
370	}
371
372	ret = lzo1x_1_compress(uncmem, PAGE_SIZE, src, &clen,
373			       zram->compress_workmem);
374
375	kunmap_atomic(user_mem);
376	if (is_partial_io(bvec))
377			kfree(uncmem);
378
379	if (unlikely(ret != LZO_E_OK)) {
380		pr_err("Compression failed! err=%d\n", ret);
381		goto out;
382	}
383
384	/*
385	 * Page is incompressible. Store it as-is (uncompressed)
386	 * since we do not want to return too many disk write
387	 * errors which has side effect of hanging the system.
388	 */
389	if (unlikely(clen > max_zpage_size)) {
390		clen = PAGE_SIZE;
391		page_store = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
392		if (unlikely(!page_store)) {
393			pr_info("Error allocating memory for "
394				"incompressible page: %u\n", index);
395			ret = -ENOMEM;
396			goto out;
397		}
398
399		store_offset = 0;
400		zram_set_flag(zram, index, ZRAM_UNCOMPRESSED);
401		zram_stat_inc(&zram->stats.pages_expand);
402		handle = page_store;
403		src = kmap_atomic(page);
404		cmem = kmap_atomic(page_store);
405		goto memstore;
406	}
407
408	handle = zs_malloc(zram->mem_pool, clen + sizeof(*zheader));
409	if (!handle) {
410		pr_info("Error allocating memory for compressed "
411			"page: %u, size=%zu\n", index, clen);
412		ret = -ENOMEM;
413		goto out;
414	}
415	cmem = zs_map_object(zram->mem_pool, handle);
416
417memstore:
418#if 0
419	/* Back-reference needed for memory defragmentation */
420	if (!zram_test_flag(zram, index, ZRAM_UNCOMPRESSED)) {
421		zheader = (struct zobj_header *)cmem;
422		zheader->table_idx = index;
423		cmem += sizeof(*zheader);
424	}
425#endif
426
427	memcpy(cmem, src, clen);
428
429	if (unlikely(zram_test_flag(zram, index, ZRAM_UNCOMPRESSED))) {
430		kunmap_atomic(cmem);
431		kunmap_atomic(src);
432	} else {
433		zs_unmap_object(zram->mem_pool, handle);
434	}
435
436	zram->table[index].handle = handle;
437	zram->table[index].size = clen;
438
439	/* Update stats */
440	zram_stat64_add(zram, &zram->stats.compr_size, clen);
441	zram_stat_inc(&zram->stats.pages_stored);
442	if (clen <= PAGE_SIZE / 2)
443		zram_stat_inc(&zram->stats.good_compress);
444
445	return 0;
446
447out:
448	if (ret)
449		zram_stat64_inc(zram, &zram->stats.failed_writes);
450	return ret;
451}
452
453static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
454			int offset, struct bio *bio, int rw)
455{
456	int ret;
457
458	if (rw == READ) {
459		down_read(&zram->lock);
460		ret = zram_bvec_read(zram, bvec, index, offset, bio);
461		up_read(&zram->lock);
462	} else {
463		down_write(&zram->lock);
464		ret = zram_bvec_write(zram, bvec, index, offset);
465		up_write(&zram->lock);
466	}
467
468	return ret;
469}
470
471static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
472{
473	if (*offset + bvec->bv_len >= PAGE_SIZE)
474		(*index)++;
475	*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
476}
477
478static void __zram_make_request(struct zram *zram, struct bio *bio, int rw)
479{
480	int i, offset;
481	u32 index;
482	struct bio_vec *bvec;
483
484	switch (rw) {
485	case READ:
486		zram_stat64_inc(zram, &zram->stats.num_reads);
487		break;
488	case WRITE:
489		zram_stat64_inc(zram, &zram->stats.num_writes);
490		break;
491	}
492
493	index = bio->bi_sector >> SECTORS_PER_PAGE_SHIFT;
494	offset = (bio->bi_sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
495
496	bio_for_each_segment(bvec, bio, i) {
497		int max_transfer_size = PAGE_SIZE - offset;
498
499		if (bvec->bv_len > max_transfer_size) {
500			/*
501			 * zram_bvec_rw() can only make operation on a single
502			 * zram page. Split the bio vector.
503			 */
504			struct bio_vec bv;
505
506			bv.bv_page = bvec->bv_page;
507			bv.bv_len = max_transfer_size;
508			bv.bv_offset = bvec->bv_offset;
509
510			if (zram_bvec_rw(zram, &bv, index, offset, bio, rw) < 0)
511				goto out;
512
513			bv.bv_len = bvec->bv_len - max_transfer_size;
514			bv.bv_offset += max_transfer_size;
515			if (zram_bvec_rw(zram, &bv, index+1, 0, bio, rw) < 0)
516				goto out;
517		} else
518			if (zram_bvec_rw(zram, bvec, index, offset, bio, rw)
519			    < 0)
520				goto out;
521
522		update_position(&index, &offset, bvec);
523	}
524
525	set_bit(BIO_UPTODATE, &bio->bi_flags);
526	bio_endio(bio, 0);
527	return;
528
529out:
530	bio_io_error(bio);
531}
532
533/*
534 * Check if request is within bounds and aligned on zram logical blocks.
535 */
536static inline int valid_io_request(struct zram *zram, struct bio *bio)
537{
538	if (unlikely(
539		(bio->bi_sector >= (zram->disksize >> SECTOR_SHIFT)) ||
540		(bio->bi_sector & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)) ||
541		(bio->bi_size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))) {
542
543		return 0;
544	}
545
546	/* I/O request is valid */
547	return 1;
548}
549
550/*
551 * Handler function for all zram I/O requests.
552 */
553static void zram_make_request(struct request_queue *queue, struct bio *bio)
554{
555	struct zram *zram = queue->queuedata;
556
557	if (unlikely(!zram->init_done) && zram_init_device(zram))
558		goto error;
559
560	down_read(&zram->init_lock);
561	if (unlikely(!zram->init_done))
562		goto error_unlock;
563
564	if (!valid_io_request(zram, bio)) {
565		zram_stat64_inc(zram, &zram->stats.invalid_io);
566		goto error_unlock;
567	}
568
569	__zram_make_request(zram, bio, bio_data_dir(bio));
570	up_read(&zram->init_lock);
571
572	return;
573
574error_unlock:
575	up_read(&zram->init_lock);
576error:
577	bio_io_error(bio);
578}
579
580void __zram_reset_device(struct zram *zram)
581{
582	size_t index;
583
584	zram->init_done = 0;
585
586	/* Free various per-device buffers */
587	kfree(zram->compress_workmem);
588	free_pages((unsigned long)zram->compress_buffer, 1);
589
590	zram->compress_workmem = NULL;
591	zram->compress_buffer = NULL;
592
593	/* Free all pages that are still in this zram device */
594	for (index = 0; index < zram->disksize >> PAGE_SHIFT; index++) {
595		void *handle = zram->table[index].handle;
596		if (!handle)
597			continue;
598
599		if (unlikely(zram_test_flag(zram, index, ZRAM_UNCOMPRESSED)))
600			__free_page(handle);
601		else
602			zs_free(zram->mem_pool, handle);
603	}
604
605	vfree(zram->table);
606	zram->table = NULL;
607
608	zs_destroy_pool(zram->mem_pool);
609	zram->mem_pool = NULL;
610
611	/* Reset stats */
612	memset(&zram->stats, 0, sizeof(zram->stats));
613
614	zram->disksize = 0;
615}
616
617void zram_reset_device(struct zram *zram)
618{
619	down_write(&zram->init_lock);
620	__zram_reset_device(zram);
621	up_write(&zram->init_lock);
622}
623
624int zram_init_device(struct zram *zram)
625{
626	int ret;
627	size_t num_pages;
628
629	down_write(&zram->init_lock);
630
631	if (zram->init_done) {
632		up_write(&zram->init_lock);
633		return 0;
634	}
635
636	zram_set_disksize(zram, totalram_pages << PAGE_SHIFT);
637
638	zram->compress_workmem = kzalloc(LZO1X_MEM_COMPRESS, GFP_KERNEL);
639	if (!zram->compress_workmem) {
640		pr_err("Error allocating compressor working memory!\n");
641		ret = -ENOMEM;
642		goto fail_no_table;
643	}
644
645	zram->compress_buffer =
646		(void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
647	if (!zram->compress_buffer) {
648		pr_err("Error allocating compressor buffer space\n");
649		ret = -ENOMEM;
650		goto fail_no_table;
651	}
652
653	num_pages = zram->disksize >> PAGE_SHIFT;
654	zram->table = vzalloc(num_pages * sizeof(*zram->table));
655	if (!zram->table) {
656		pr_err("Error allocating zram address table\n");
657		ret = -ENOMEM;
658		goto fail_no_table;
659	}
660
661	set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
662
663	/* zram devices sort of resembles non-rotational disks */
664	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
665
666	zram->mem_pool = zs_create_pool("zram", GFP_NOIO | __GFP_HIGHMEM);
667	if (!zram->mem_pool) {
668		pr_err("Error creating memory pool\n");
669		ret = -ENOMEM;
670		goto fail;
671	}
672
673	zram->init_done = 1;
674	up_write(&zram->init_lock);
675
676	pr_debug("Initialization done!\n");
677	return 0;
678
679fail_no_table:
680	/* To prevent accessing table entries during cleanup */
681	zram->disksize = 0;
682fail:
683	__zram_reset_device(zram);
684	up_write(&zram->init_lock);
685	pr_err("Initialization failed: err=%d\n", ret);
686	return ret;
687}
688
689static void zram_slot_free_notify(struct block_device *bdev,
690				unsigned long index)
691{
692	struct zram *zram;
693
694	zram = bdev->bd_disk->private_data;
695	zram_free_page(zram, index);
696	zram_stat64_inc(zram, &zram->stats.notify_free);
697}
698
699static const struct block_device_operations zram_devops = {
700	.swap_slot_free_notify = zram_slot_free_notify,
701	.owner = THIS_MODULE
702};
703
704static int create_device(struct zram *zram, int device_id)
705{
706	int ret = 0;
707
708	init_rwsem(&zram->lock);
709	init_rwsem(&zram->init_lock);
710	spin_lock_init(&zram->stat64_lock);
711
712	zram->queue = blk_alloc_queue(GFP_KERNEL);
713	if (!zram->queue) {
714		pr_err("Error allocating disk queue for device %d\n",
715			device_id);
716		ret = -ENOMEM;
717		goto out;
718	}
719
720	blk_queue_make_request(zram->queue, zram_make_request);
721	zram->queue->queuedata = zram;
722
723	 /* gendisk structure */
724	zram->disk = alloc_disk(1);
725	if (!zram->disk) {
726		blk_cleanup_queue(zram->queue);
727		pr_warning("Error allocating disk structure for device %d\n",
728			device_id);
729		ret = -ENOMEM;
730		goto out;
731	}
732
733	zram->disk->major = zram_major;
734	zram->disk->first_minor = device_id;
735	zram->disk->fops = &zram_devops;
736	zram->disk->queue = zram->queue;
737	zram->disk->private_data = zram;
738	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
739
740	/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
741	set_capacity(zram->disk, 0);
742
743	/*
744	 * To ensure that we always get PAGE_SIZE aligned
745	 * and n*PAGE_SIZED sized I/O requests.
746	 */
747	blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
748	blk_queue_logical_block_size(zram->disk->queue,
749					ZRAM_LOGICAL_BLOCK_SIZE);
750	blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
751	blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
752
753	add_disk(zram->disk);
754
755	ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
756				&zram_disk_attr_group);
757	if (ret < 0) {
758		pr_warning("Error creating sysfs group");
759		goto out;
760	}
761
762	zram->init_done = 0;
763
764out:
765	return ret;
766}
767
768static void destroy_device(struct zram *zram)
769{
770	sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
771			&zram_disk_attr_group);
772
773	if (zram->disk) {
774		del_gendisk(zram->disk);
775		put_disk(zram->disk);
776	}
777
778	if (zram->queue)
779		blk_cleanup_queue(zram->queue);
780}
781
782unsigned int zram_get_num_devices(void)
783{
784	return num_devices;
785}
786
787static int __init zram_init(void)
788{
789	int ret, dev_id;
790
791	if (num_devices > max_num_devices) {
792		pr_warning("Invalid value for num_devices: %u\n",
793				num_devices);
794		ret = -EINVAL;
795		goto out;
796	}
797
798	zram_major = register_blkdev(0, "zram");
799	if (zram_major <= 0) {
800		pr_warning("Unable to get major number\n");
801		ret = -EBUSY;
802		goto out;
803	}
804
805	if (!num_devices) {
806		pr_info("num_devices not specified. Using default: 1\n");
807		num_devices = 1;
808	}
809
810	/* Allocate the device array and initialize each one */
811	pr_info("Creating %u devices ...\n", num_devices);
812	zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL);
813	if (!zram_devices) {
814		ret = -ENOMEM;
815		goto unregister;
816	}
817
818	for (dev_id = 0; dev_id < num_devices; dev_id++) {
819		ret = create_device(&zram_devices[dev_id], dev_id);
820		if (ret)
821			goto free_devices;
822	}
823
824	return 0;
825
826free_devices:
827	while (dev_id)
828		destroy_device(&zram_devices[--dev_id]);
829	kfree(zram_devices);
830unregister:
831	unregister_blkdev(zram_major, "zram");
832out:
833	return ret;
834}
835
836static void __exit zram_exit(void)
837{
838	int i;
839	struct zram *zram;
840
841	for (i = 0; i < num_devices; i++) {
842		zram = &zram_devices[i];
843
844		destroy_device(zram);
845		if (zram->init_done)
846			zram_reset_device(zram);
847	}
848
849	unregister_blkdev(zram_major, "zram");
850
851	kfree(zram_devices);
852	pr_debug("Cleanup done!\n");
853}
854
855module_param(num_devices, uint, 0);
856MODULE_PARM_DESC(num_devices, "Number of zram devices");
857
858module_init(zram_init);
859module_exit(zram_exit);
860
861MODULE_LICENSE("Dual BSD/GPL");
862MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
863MODULE_DESCRIPTION("Compressed RAM Block Device");