Linux Audio

Check our new training course

Loading...
   1/*
   2	Written 1998-2000 by Donald Becker.
   3
   4	This software may be used and distributed according to the terms of
   5	the GNU General Public License (GPL), incorporated herein by reference.
   6	Drivers based on or derived from this code fall under the GPL and must
   7	retain the authorship, copyright and license notice.  This file is not
   8	a complete program and may only be used when the entire operating
   9	system is licensed under the GPL.
  10
  11	The author may be reached as becker@scyld.com, or C/O
  12	Scyld Computing Corporation
  13	410 Severn Ave., Suite 210
  14	Annapolis MD 21403
  15
  16	Support information and updates available at
  17	http://www.scyld.com/network/pci-skeleton.html
  18
  19	Linux kernel updates:
  20
  21	Version 2.51, Nov 17, 2001 (jgarzik):
  22	- Add ethtool support
  23	- Replace some MII-related magic numbers with constants
  24
  25*/
  26
  27#define DRV_NAME	"fealnx"
  28#define DRV_VERSION	"2.52"
  29#define DRV_RELDATE	"Sep-11-2006"
  30
  31static int debug;		/* 1-> print debug message */
  32static int max_interrupt_work = 20;
  33
  34/* Maximum number of multicast addresses to filter (vs. Rx-all-multicast). */
  35static int multicast_filter_limit = 32;
  36
  37/* Set the copy breakpoint for the copy-only-tiny-frames scheme. */
  38/* Setting to > 1518 effectively disables this feature.          */
  39static int rx_copybreak;
  40
  41/* Used to pass the media type, etc.                            */
  42/* Both 'options[]' and 'full_duplex[]' should exist for driver */
  43/* interoperability.                                            */
  44/* The media type is usually passed in 'options[]'.             */
  45#define MAX_UNITS 8		/* More are supported, limit only on options */
  46static int options[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 };
  47static int full_duplex[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 };
  48
  49/* Operational parameters that are set at compile time.                 */
  50/* Keep the ring sizes a power of two for compile efficiency.           */
  51/* The compiler will convert <unsigned>'%'<2^N> into a bit mask.        */
  52/* Making the Tx ring too large decreases the effectiveness of channel  */
  53/* bonding and packet priority.                                         */
  54/* There are no ill effects from too-large receive rings.               */
  55// 88-12-9 modify,
  56// #define TX_RING_SIZE    16
  57// #define RX_RING_SIZE    32
  58#define TX_RING_SIZE    6
  59#define RX_RING_SIZE    12
  60#define TX_TOTAL_SIZE	TX_RING_SIZE*sizeof(struct fealnx_desc)
  61#define RX_TOTAL_SIZE	RX_RING_SIZE*sizeof(struct fealnx_desc)
  62
  63/* Operational parameters that usually are not changed. */
  64/* Time in jiffies before concluding the transmitter is hung. */
  65#define TX_TIMEOUT      (2*HZ)
  66
  67#define PKT_BUF_SZ      1536	/* Size of each temporary Rx buffer. */
  68
  69
  70/* Include files, designed to support most kernel versions 2.0.0 and later. */
  71#include <linux/module.h>
  72#include <linux/kernel.h>
  73#include <linux/string.h>
  74#include <linux/timer.h>
  75#include <linux/errno.h>
  76#include <linux/ioport.h>
  77#include <linux/interrupt.h>
  78#include <linux/pci.h>
  79#include <linux/netdevice.h>
  80#include <linux/etherdevice.h>
  81#include <linux/skbuff.h>
  82#include <linux/init.h>
  83#include <linux/mii.h>
  84#include <linux/ethtool.h>
  85#include <linux/crc32.h>
  86#include <linux/delay.h>
  87#include <linux/bitops.h>
  88
  89#include <asm/processor.h>	/* Processor type for cache alignment. */
  90#include <asm/io.h>
  91#include <asm/uaccess.h>
  92#include <asm/byteorder.h>
  93
  94/* These identify the driver base version and may not be removed. */
  95static const char version[] __devinitconst =
  96	KERN_INFO DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE "\n";
  97
  98
  99/* This driver was written to use PCI memory space, however some x86 systems
 100   work only with I/O space accesses. */
 101#ifndef __alpha__
 102#define USE_IO_OPS
 103#endif
 104
 105/* Kernel compatibility defines, some common to David Hinds' PCMCIA package. */
 106/* This is only in the support-all-kernels source code. */
 107
 108#define RUN_AT(x) (jiffies + (x))
 109
 110MODULE_AUTHOR("Myson or whoever");
 111MODULE_DESCRIPTION("Myson MTD-8xx 100/10M Ethernet PCI Adapter Driver");
 112MODULE_LICENSE("GPL");
 113module_param(max_interrupt_work, int, 0);
 114module_param(debug, int, 0);
 115module_param(rx_copybreak, int, 0);
 116module_param(multicast_filter_limit, int, 0);
 117module_param_array(options, int, NULL, 0);
 118module_param_array(full_duplex, int, NULL, 0);
 119MODULE_PARM_DESC(max_interrupt_work, "fealnx maximum events handled per interrupt");
 120MODULE_PARM_DESC(debug, "fealnx enable debugging (0-1)");
 121MODULE_PARM_DESC(rx_copybreak, "fealnx copy breakpoint for copy-only-tiny-frames");
 122MODULE_PARM_DESC(multicast_filter_limit, "fealnx maximum number of filtered multicast addresses");
 123MODULE_PARM_DESC(options, "fealnx: Bits 0-3: media type, bit 17: full duplex");
 124MODULE_PARM_DESC(full_duplex, "fealnx full duplex setting(s) (1)");
 125
 126enum {
 127	MIN_REGION_SIZE		= 136,
 128};
 129
 130/* A chip capabilities table, matching the entries in pci_tbl[] above. */
 131enum chip_capability_flags {
 132	HAS_MII_XCVR,
 133	HAS_CHIP_XCVR,
 134};
 135
 136/* 89/6/13 add, */
 137/* for different PHY */
 138enum phy_type_flags {
 139	MysonPHY = 1,
 140	AhdocPHY = 2,
 141	SeeqPHY = 3,
 142	MarvellPHY = 4,
 143	Myson981 = 5,
 144	LevelOnePHY = 6,
 145	OtherPHY = 10,
 146};
 147
 148struct chip_info {
 149	char *chip_name;
 150	int flags;
 151};
 152
 153static const struct chip_info skel_netdrv_tbl[] __devinitdata = {
 154 	{ "100/10M Ethernet PCI Adapter",	HAS_MII_XCVR },
 155	{ "100/10M Ethernet PCI Adapter",	HAS_CHIP_XCVR },
 156	{ "1000/100/10M Ethernet PCI Adapter",	HAS_MII_XCVR },
 157};
 158
 159/* Offsets to the Command and Status Registers. */
 160enum fealnx_offsets {
 161	PAR0 = 0x0,		/* physical address 0-3 */
 162	PAR1 = 0x04,		/* physical address 4-5 */
 163	MAR0 = 0x08,		/* multicast address 0-3 */
 164	MAR1 = 0x0C,		/* multicast address 4-7 */
 165	FAR0 = 0x10,		/* flow-control address 0-3 */
 166	FAR1 = 0x14,		/* flow-control address 4-5 */
 167	TCRRCR = 0x18,		/* receive & transmit configuration */
 168	BCR = 0x1C,		/* bus command */
 169	TXPDR = 0x20,		/* transmit polling demand */
 170	RXPDR = 0x24,		/* receive polling demand */
 171	RXCWP = 0x28,		/* receive current word pointer */
 172	TXLBA = 0x2C,		/* transmit list base address */
 173	RXLBA = 0x30,		/* receive list base address */
 174	ISR = 0x34,		/* interrupt status */
 175	IMR = 0x38,		/* interrupt mask */
 176	FTH = 0x3C,		/* flow control high/low threshold */
 177	MANAGEMENT = 0x40,	/* bootrom/eeprom and mii management */
 178	TALLY = 0x44,		/* tally counters for crc and mpa */
 179	TSR = 0x48,		/* tally counter for transmit status */
 180	BMCRSR = 0x4c,		/* basic mode control and status */
 181	PHYIDENTIFIER = 0x50,	/* phy identifier */
 182	ANARANLPAR = 0x54,	/* auto-negotiation advertisement and link
 183				   partner ability */
 184	ANEROCR = 0x58,		/* auto-negotiation expansion and pci conf. */
 185	BPREMRPSR = 0x5c,	/* bypass & receive error mask and phy status */
 186};
 187
 188/* Bits in the interrupt status/enable registers. */
 189/* The bits in the Intr Status/Enable registers, mostly interrupt sources. */
 190enum intr_status_bits {
 191	RFCON = 0x00020000,	/* receive flow control xon packet */
 192	RFCOFF = 0x00010000,	/* receive flow control xoff packet */
 193	LSCStatus = 0x00008000,	/* link status change */
 194	ANCStatus = 0x00004000,	/* autonegotiation completed */
 195	FBE = 0x00002000,	/* fatal bus error */
 196	FBEMask = 0x00001800,	/* mask bit12-11 */
 197	ParityErr = 0x00000000,	/* parity error */
 198	TargetErr = 0x00001000,	/* target abort */
 199	MasterErr = 0x00000800,	/* master error */
 200	TUNF = 0x00000400,	/* transmit underflow */
 201	ROVF = 0x00000200,	/* receive overflow */
 202	ETI = 0x00000100,	/* transmit early int */
 203	ERI = 0x00000080,	/* receive early int */
 204	CNTOVF = 0x00000040,	/* counter overflow */
 205	RBU = 0x00000020,	/* receive buffer unavailable */
 206	TBU = 0x00000010,	/* transmit buffer unavilable */
 207	TI = 0x00000008,	/* transmit interrupt */
 208	RI = 0x00000004,	/* receive interrupt */
 209	RxErr = 0x00000002,	/* receive error */
 210};
 211
 212/* Bits in the NetworkConfig register, W for writing, R for reading */
 213/* FIXME: some names are invented by me. Marked with (name?) */
 214/* If you have docs and know bit names, please fix 'em */
 215enum rx_mode_bits {
 216	CR_W_ENH	= 0x02000000,	/* enhanced mode (name?) */
 217	CR_W_FD		= 0x00100000,	/* full duplex */
 218	CR_W_PS10	= 0x00080000,	/* 10 mbit */
 219	CR_W_TXEN	= 0x00040000,	/* tx enable (name?) */
 220	CR_W_PS1000	= 0x00010000,	/* 1000 mbit */
 221     /* CR_W_RXBURSTMASK= 0x00000e00, Im unsure about this */
 222	CR_W_RXMODEMASK	= 0x000000e0,
 223	CR_W_PROM	= 0x00000080,	/* promiscuous mode */
 224	CR_W_AB		= 0x00000040,	/* accept broadcast */
 225	CR_W_AM		= 0x00000020,	/* accept mutlicast */
 226	CR_W_ARP	= 0x00000008,	/* receive runt pkt */
 227	CR_W_ALP	= 0x00000004,	/* receive long pkt */
 228	CR_W_SEP	= 0x00000002,	/* receive error pkt */
 229	CR_W_RXEN	= 0x00000001,	/* rx enable (unicast?) (name?) */
 230
 231	CR_R_TXSTOP	= 0x04000000,	/* tx stopped (name?) */
 232	CR_R_FD		= 0x00100000,	/* full duplex detected */
 233	CR_R_PS10	= 0x00080000,	/* 10 mbit detected */
 234	CR_R_RXSTOP	= 0x00008000,	/* rx stopped (name?) */
 235};
 236
 237/* The Tulip Rx and Tx buffer descriptors. */
 238struct fealnx_desc {
 239	s32 status;
 240	s32 control;
 241	u32 buffer;
 242	u32 next_desc;
 243	struct fealnx_desc *next_desc_logical;
 244	struct sk_buff *skbuff;
 245	u32 reserved1;
 246	u32 reserved2;
 247};
 248
 249/* Bits in network_desc.status */
 250enum rx_desc_status_bits {
 251	RXOWN = 0x80000000,	/* own bit */
 252	FLNGMASK = 0x0fff0000,	/* frame length */
 253	FLNGShift = 16,
 254	MARSTATUS = 0x00004000,	/* multicast address received */
 255	BARSTATUS = 0x00002000,	/* broadcast address received */
 256	PHYSTATUS = 0x00001000,	/* physical address received */
 257	RXFSD = 0x00000800,	/* first descriptor */
 258	RXLSD = 0x00000400,	/* last descriptor */
 259	ErrorSummary = 0x80,	/* error summary */
 260	RUNT = 0x40,		/* runt packet received */
 261	LONG = 0x20,		/* long packet received */
 262	FAE = 0x10,		/* frame align error */
 263	CRC = 0x08,		/* crc error */
 264	RXER = 0x04,		/* receive error */
 265};
 266
 267enum rx_desc_control_bits {
 268	RXIC = 0x00800000,	/* interrupt control */
 269	RBSShift = 0,
 270};
 271
 272enum tx_desc_status_bits {
 273	TXOWN = 0x80000000,	/* own bit */
 274	JABTO = 0x00004000,	/* jabber timeout */
 275	CSL = 0x00002000,	/* carrier sense lost */
 276	LC = 0x00001000,	/* late collision */
 277	EC = 0x00000800,	/* excessive collision */
 278	UDF = 0x00000400,	/* fifo underflow */
 279	DFR = 0x00000200,	/* deferred */
 280	HF = 0x00000100,	/* heartbeat fail */
 281	NCRMask = 0x000000ff,	/* collision retry count */
 282	NCRShift = 0,
 283};
 284
 285enum tx_desc_control_bits {
 286	TXIC = 0x80000000,	/* interrupt control */
 287	ETIControl = 0x40000000,	/* early transmit interrupt */
 288	TXLD = 0x20000000,	/* last descriptor */
 289	TXFD = 0x10000000,	/* first descriptor */
 290	CRCEnable = 0x08000000,	/* crc control */
 291	PADEnable = 0x04000000,	/* padding control */
 292	RetryTxLC = 0x02000000,	/* retry late collision */
 293	PKTSMask = 0x3ff800,	/* packet size bit21-11 */
 294	PKTSShift = 11,
 295	TBSMask = 0x000007ff,	/* transmit buffer bit 10-0 */
 296	TBSShift = 0,
 297};
 298
 299/* BootROM/EEPROM/MII Management Register */
 300#define MASK_MIIR_MII_READ       0x00000000
 301#define MASK_MIIR_MII_WRITE      0x00000008
 302#define MASK_MIIR_MII_MDO        0x00000004
 303#define MASK_MIIR_MII_MDI        0x00000002
 304#define MASK_MIIR_MII_MDC        0x00000001
 305
 306/* ST+OP+PHYAD+REGAD+TA */
 307#define OP_READ             0x6000	/* ST:01+OP:10+PHYAD+REGAD+TA:Z0 */
 308#define OP_WRITE            0x5002	/* ST:01+OP:01+PHYAD+REGAD+TA:10 */
 309
 310/* ------------------------------------------------------------------------- */
 311/*      Constants for Myson PHY                                              */
 312/* ------------------------------------------------------------------------- */
 313#define MysonPHYID      0xd0000302
 314/* 89-7-27 add, (begin) */
 315#define MysonPHYID0     0x0302
 316#define StatusRegister  18
 317#define SPEED100        0x0400	// bit10
 318#define FULLMODE        0x0800	// bit11
 319/* 89-7-27 add, (end) */
 320
 321/* ------------------------------------------------------------------------- */
 322/*      Constants for Seeq 80225 PHY                                         */
 323/* ------------------------------------------------------------------------- */
 324#define SeeqPHYID0      0x0016
 325
 326#define MIIRegister18   18
 327#define SPD_DET_100     0x80
 328#define DPLX_DET_FULL   0x40
 329
 330/* ------------------------------------------------------------------------- */
 331/*      Constants for Ahdoc 101 PHY                                          */
 332/* ------------------------------------------------------------------------- */
 333#define AhdocPHYID0     0x0022
 334
 335#define DiagnosticReg   18
 336#define DPLX_FULL       0x0800
 337#define Speed_100       0x0400
 338
 339/* 89/6/13 add, */
 340/* -------------------------------------------------------------------------- */
 341/*      Constants                                                             */
 342/* -------------------------------------------------------------------------- */
 343#define MarvellPHYID0           0x0141
 344#define LevelOnePHYID0		0x0013
 345
 346#define MII1000BaseTControlReg  9
 347#define MII1000BaseTStatusReg   10
 348#define SpecificReg		17
 349
 350/* for 1000BaseT Control Register */
 351#define PHYAbletoPerform1000FullDuplex  0x0200
 352#define PHYAbletoPerform1000HalfDuplex  0x0100
 353#define PHY1000AbilityMask              0x300
 354
 355// for phy specific status register, marvell phy.
 356#define SpeedMask       0x0c000
 357#define Speed_1000M     0x08000
 358#define Speed_100M      0x4000
 359#define Speed_10M       0
 360#define Full_Duplex     0x2000
 361
 362// 89/12/29 add, for phy specific status register, levelone phy, (begin)
 363#define LXT1000_100M    0x08000
 364#define LXT1000_1000M   0x0c000
 365#define LXT1000_Full    0x200
 366// 89/12/29 add, for phy specific status register, levelone phy, (end)
 367
 368/* for 3-in-1 case, BMCRSR register */
 369#define LinkIsUp2	0x00040000
 370
 371/* for PHY */
 372#define LinkIsUp        0x0004
 373
 374
 375struct netdev_private {
 376	/* Descriptor rings first for alignment. */
 377	struct fealnx_desc *rx_ring;
 378	struct fealnx_desc *tx_ring;
 379
 380	dma_addr_t rx_ring_dma;
 381	dma_addr_t tx_ring_dma;
 382
 383	spinlock_t lock;
 384
 385	/* Media monitoring timer. */
 386	struct timer_list timer;
 387
 388	/* Reset timer */
 389	struct timer_list reset_timer;
 390	int reset_timer_armed;
 391	unsigned long crvalue_sv;
 392	unsigned long imrvalue_sv;
 393
 394	/* Frequently used values: keep some adjacent for cache effect. */
 395	int flags;
 396	struct pci_dev *pci_dev;
 397	unsigned long crvalue;
 398	unsigned long bcrvalue;
 399	unsigned long imrvalue;
 400	struct fealnx_desc *cur_rx;
 401	struct fealnx_desc *lack_rxbuf;
 402	int really_rx_count;
 403	struct fealnx_desc *cur_tx;
 404	struct fealnx_desc *cur_tx_copy;
 405	int really_tx_count;
 406	int free_tx_count;
 407	unsigned int rx_buf_sz;	/* Based on MTU+slack. */
 408
 409	/* These values are keep track of the transceiver/media in use. */
 410	unsigned int linkok;
 411	unsigned int line_speed;
 412	unsigned int duplexmode;
 413	unsigned int default_port:4;	/* Last dev->if_port value. */
 414	unsigned int PHYType;
 415
 416	/* MII transceiver section. */
 417	int mii_cnt;		/* MII device addresses. */
 418	unsigned char phys[2];	/* MII device addresses. */
 419	struct mii_if_info mii;
 420	void __iomem *mem;
 421};
 422
 423
 424static int mdio_read(struct net_device *dev, int phy_id, int location);
 425static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
 426static int netdev_open(struct net_device *dev);
 427static void getlinktype(struct net_device *dev);
 428static void getlinkstatus(struct net_device *dev);
 429static void netdev_timer(unsigned long data);
 430static void reset_timer(unsigned long data);
 431static void fealnx_tx_timeout(struct net_device *dev);
 432static void init_ring(struct net_device *dev);
 433static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
 434static irqreturn_t intr_handler(int irq, void *dev_instance);
 435static int netdev_rx(struct net_device *dev);
 436static void set_rx_mode(struct net_device *dev);
 437static void __set_rx_mode(struct net_device *dev);
 438static struct net_device_stats *get_stats(struct net_device *dev);
 439static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 440static const struct ethtool_ops netdev_ethtool_ops;
 441static int netdev_close(struct net_device *dev);
 442static void reset_rx_descriptors(struct net_device *dev);
 443static void reset_tx_descriptors(struct net_device *dev);
 444
 445static void stop_nic_rx(void __iomem *ioaddr, long crvalue)
 446{
 447	int delay = 0x1000;
 448	iowrite32(crvalue & ~(CR_W_RXEN), ioaddr + TCRRCR);
 449	while (--delay) {
 450		if ( (ioread32(ioaddr + TCRRCR) & CR_R_RXSTOP) == CR_R_RXSTOP)
 451			break;
 452	}
 453}
 454
 455
 456static void stop_nic_rxtx(void __iomem *ioaddr, long crvalue)
 457{
 458	int delay = 0x1000;
 459	iowrite32(crvalue & ~(CR_W_RXEN+CR_W_TXEN), ioaddr + TCRRCR);
 460	while (--delay) {
 461		if ( (ioread32(ioaddr + TCRRCR) & (CR_R_RXSTOP+CR_R_TXSTOP))
 462					    == (CR_R_RXSTOP+CR_R_TXSTOP) )
 463			break;
 464	}
 465}
 466
 467static const struct net_device_ops netdev_ops = {
 468	.ndo_open		= netdev_open,
 469	.ndo_stop		= netdev_close,
 470	.ndo_start_xmit		= start_tx,
 471	.ndo_get_stats 		= get_stats,
 472	.ndo_set_rx_mode	= set_rx_mode,
 473	.ndo_do_ioctl		= mii_ioctl,
 474	.ndo_tx_timeout		= fealnx_tx_timeout,
 475	.ndo_change_mtu		= eth_change_mtu,
 476	.ndo_set_mac_address 	= eth_mac_addr,
 477	.ndo_validate_addr	= eth_validate_addr,
 478};
 479
 480static int __devinit fealnx_init_one(struct pci_dev *pdev,
 481				     const struct pci_device_id *ent)
 482{
 483	struct netdev_private *np;
 484	int i, option, err, irq;
 485	static int card_idx = -1;
 486	char boardname[12];
 487	void __iomem *ioaddr;
 488	unsigned long len;
 489	unsigned int chip_id = ent->driver_data;
 490	struct net_device *dev;
 491	void *ring_space;
 492	dma_addr_t ring_dma;
 493#ifdef USE_IO_OPS
 494	int bar = 0;
 495#else
 496	int bar = 1;
 497#endif
 498
 499/* when built into the kernel, we only print version if device is found */
 500#ifndef MODULE
 501	static int printed_version;
 502	if (!printed_version++)
 503		printk(version);
 504#endif
 505
 506	card_idx++;
 507	sprintf(boardname, "fealnx%d", card_idx);
 508
 509	option = card_idx < MAX_UNITS ? options[card_idx] : 0;
 510
 511	i = pci_enable_device(pdev);
 512	if (i) return i;
 513	pci_set_master(pdev);
 514
 515	len = pci_resource_len(pdev, bar);
 516	if (len < MIN_REGION_SIZE) {
 517		dev_err(&pdev->dev,
 518			   "region size %ld too small, aborting\n", len);
 519		return -ENODEV;
 520	}
 521
 522	i = pci_request_regions(pdev, boardname);
 523	if (i)
 524		return i;
 525
 526	irq = pdev->irq;
 527
 528	ioaddr = pci_iomap(pdev, bar, len);
 529	if (!ioaddr) {
 530		err = -ENOMEM;
 531		goto err_out_res;
 532	}
 533
 534	dev = alloc_etherdev(sizeof(struct netdev_private));
 535	if (!dev) {
 536		err = -ENOMEM;
 537		goto err_out_unmap;
 538	}
 539	SET_NETDEV_DEV(dev, &pdev->dev);
 540
 541	/* read ethernet id */
 542	for (i = 0; i < 6; ++i)
 543		dev->dev_addr[i] = ioread8(ioaddr + PAR0 + i);
 544
 545	/* Reset the chip to erase previous misconfiguration. */
 546	iowrite32(0x00000001, ioaddr + BCR);
 547
 548	/* Make certain the descriptor lists are aligned. */
 549	np = netdev_priv(dev);
 550	np->mem = ioaddr;
 551	spin_lock_init(&np->lock);
 552	np->pci_dev = pdev;
 553	np->flags = skel_netdrv_tbl[chip_id].flags;
 554	pci_set_drvdata(pdev, dev);
 555	np->mii.dev = dev;
 556	np->mii.mdio_read = mdio_read;
 557	np->mii.mdio_write = mdio_write;
 558	np->mii.phy_id_mask = 0x1f;
 559	np->mii.reg_num_mask = 0x1f;
 560
 561	ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
 562	if (!ring_space) {
 563		err = -ENOMEM;
 564		goto err_out_free_dev;
 565	}
 566	np->rx_ring = ring_space;
 567	np->rx_ring_dma = ring_dma;
 568
 569	ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
 570	if (!ring_space) {
 571		err = -ENOMEM;
 572		goto err_out_free_rx;
 573	}
 574	np->tx_ring = ring_space;
 575	np->tx_ring_dma = ring_dma;
 576
 577	/* find the connected MII xcvrs */
 578	if (np->flags == HAS_MII_XCVR) {
 579		int phy, phy_idx = 0;
 580
 581		for (phy = 1; phy < 32 && phy_idx < ARRAY_SIZE(np->phys);
 582			       phy++) {
 583			int mii_status = mdio_read(dev, phy, 1);
 584
 585			if (mii_status != 0xffff && mii_status != 0x0000) {
 586				np->phys[phy_idx++] = phy;
 587				dev_info(&pdev->dev,
 588				       "MII PHY found at address %d, status "
 589				       "0x%4.4x.\n", phy, mii_status);
 590				/* get phy type */
 591				{
 592					unsigned int data;
 593
 594					data = mdio_read(dev, np->phys[0], 2);
 595					if (data == SeeqPHYID0)
 596						np->PHYType = SeeqPHY;
 597					else if (data == AhdocPHYID0)
 598						np->PHYType = AhdocPHY;
 599					else if (data == MarvellPHYID0)
 600						np->PHYType = MarvellPHY;
 601					else if (data == MysonPHYID0)
 602						np->PHYType = Myson981;
 603					else if (data == LevelOnePHYID0)
 604						np->PHYType = LevelOnePHY;
 605					else
 606						np->PHYType = OtherPHY;
 607				}
 608			}
 609		}
 610
 611		np->mii_cnt = phy_idx;
 612		if (phy_idx == 0)
 613			dev_warn(&pdev->dev,
 614				"MII PHY not found -- this device may "
 615			       "not operate correctly.\n");
 616	} else {
 617		np->phys[0] = 32;
 618/* 89/6/23 add, (begin) */
 619		/* get phy type */
 620		if (ioread32(ioaddr + PHYIDENTIFIER) == MysonPHYID)
 621			np->PHYType = MysonPHY;
 622		else
 623			np->PHYType = OtherPHY;
 624	}
 625	np->mii.phy_id = np->phys[0];
 626
 627	if (dev->mem_start)
 628		option = dev->mem_start;
 629
 630	/* The lower four bits are the media type. */
 631	if (option > 0) {
 632		if (option & 0x200)
 633			np->mii.full_duplex = 1;
 634		np->default_port = option & 15;
 635	}
 636
 637	if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
 638		np->mii.full_duplex = full_duplex[card_idx];
 639
 640	if (np->mii.full_duplex) {
 641		dev_info(&pdev->dev, "Media type forced to Full Duplex.\n");
 642/* 89/6/13 add, (begin) */
 643//      if (np->PHYType==MarvellPHY)
 644		if ((np->PHYType == MarvellPHY) || (np->PHYType == LevelOnePHY)) {
 645			unsigned int data;
 646
 647			data = mdio_read(dev, np->phys[0], 9);
 648			data = (data & 0xfcff) | 0x0200;
 649			mdio_write(dev, np->phys[0], 9, data);
 650		}
 651/* 89/6/13 add, (end) */
 652		if (np->flags == HAS_MII_XCVR)
 653			mdio_write(dev, np->phys[0], MII_ADVERTISE, ADVERTISE_FULL);
 654		else
 655			iowrite32(ADVERTISE_FULL, ioaddr + ANARANLPAR);
 656		np->mii.force_media = 1;
 657	}
 658
 659	dev->netdev_ops = &netdev_ops;
 660	dev->ethtool_ops = &netdev_ethtool_ops;
 661	dev->watchdog_timeo = TX_TIMEOUT;
 662
 663	err = register_netdev(dev);
 664	if (err)
 665		goto err_out_free_tx;
 666
 667	printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
 668	       dev->name, skel_netdrv_tbl[chip_id].chip_name, ioaddr,
 669	       dev->dev_addr, irq);
 670
 671	return 0;
 672
 673err_out_free_tx:
 674	pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
 675err_out_free_rx:
 676	pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
 677err_out_free_dev:
 678	free_netdev(dev);
 679err_out_unmap:
 680	pci_iounmap(pdev, ioaddr);
 681err_out_res:
 682	pci_release_regions(pdev);
 683	return err;
 684}
 685
 686
 687static void __devexit fealnx_remove_one(struct pci_dev *pdev)
 688{
 689	struct net_device *dev = pci_get_drvdata(pdev);
 690
 691	if (dev) {
 692		struct netdev_private *np = netdev_priv(dev);
 693
 694		pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring,
 695			np->tx_ring_dma);
 696		pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring,
 697			np->rx_ring_dma);
 698		unregister_netdev(dev);
 699		pci_iounmap(pdev, np->mem);
 700		free_netdev(dev);
 701		pci_release_regions(pdev);
 702		pci_set_drvdata(pdev, NULL);
 703	} else
 704		printk(KERN_ERR "fealnx: remove for unknown device\n");
 705}
 706
 707
 708static ulong m80x_send_cmd_to_phy(void __iomem *miiport, int opcode, int phyad, int regad)
 709{
 710	ulong miir;
 711	int i;
 712	unsigned int mask, data;
 713
 714	/* enable MII output */
 715	miir = (ulong) ioread32(miiport);
 716	miir &= 0xfffffff0;
 717
 718	miir |= MASK_MIIR_MII_WRITE + MASK_MIIR_MII_MDO;
 719
 720	/* send 32 1's preamble */
 721	for (i = 0; i < 32; i++) {
 722		/* low MDC; MDO is already high (miir) */
 723		miir &= ~MASK_MIIR_MII_MDC;
 724		iowrite32(miir, miiport);
 725
 726		/* high MDC */
 727		miir |= MASK_MIIR_MII_MDC;
 728		iowrite32(miir, miiport);
 729	}
 730
 731	/* calculate ST+OP+PHYAD+REGAD+TA */
 732	data = opcode | (phyad << 7) | (regad << 2);
 733
 734	/* sent out */
 735	mask = 0x8000;
 736	while (mask) {
 737		/* low MDC, prepare MDO */
 738		miir &= ~(MASK_MIIR_MII_MDC + MASK_MIIR_MII_MDO);
 739		if (mask & data)
 740			miir |= MASK_MIIR_MII_MDO;
 741
 742		iowrite32(miir, miiport);
 743		/* high MDC */
 744		miir |= MASK_MIIR_MII_MDC;
 745		iowrite32(miir, miiport);
 746		udelay(30);
 747
 748		/* next */
 749		mask >>= 1;
 750		if (mask == 0x2 && opcode == OP_READ)
 751			miir &= ~MASK_MIIR_MII_WRITE;
 752	}
 753	return miir;
 754}
 755
 756
 757static int mdio_read(struct net_device *dev, int phyad, int regad)
 758{
 759	struct netdev_private *np = netdev_priv(dev);
 760	void __iomem *miiport = np->mem + MANAGEMENT;
 761	ulong miir;
 762	unsigned int mask, data;
 763
 764	miir = m80x_send_cmd_to_phy(miiport, OP_READ, phyad, regad);
 765
 766	/* read data */
 767	mask = 0x8000;
 768	data = 0;
 769	while (mask) {
 770		/* low MDC */
 771		miir &= ~MASK_MIIR_MII_MDC;
 772		iowrite32(miir, miiport);
 773
 774		/* read MDI */
 775		miir = ioread32(miiport);
 776		if (miir & MASK_MIIR_MII_MDI)
 777			data |= mask;
 778
 779		/* high MDC, and wait */
 780		miir |= MASK_MIIR_MII_MDC;
 781		iowrite32(miir, miiport);
 782		udelay(30);
 783
 784		/* next */
 785		mask >>= 1;
 786	}
 787
 788	/* low MDC */
 789	miir &= ~MASK_MIIR_MII_MDC;
 790	iowrite32(miir, miiport);
 791
 792	return data & 0xffff;
 793}
 794
 795
 796static void mdio_write(struct net_device *dev, int phyad, int regad, int data)
 797{
 798	struct netdev_private *np = netdev_priv(dev);
 799	void __iomem *miiport = np->mem + MANAGEMENT;
 800	ulong miir;
 801	unsigned int mask;
 802
 803	miir = m80x_send_cmd_to_phy(miiport, OP_WRITE, phyad, regad);
 804
 805	/* write data */
 806	mask = 0x8000;
 807	while (mask) {
 808		/* low MDC, prepare MDO */
 809		miir &= ~(MASK_MIIR_MII_MDC + MASK_MIIR_MII_MDO);
 810		if (mask & data)
 811			miir |= MASK_MIIR_MII_MDO;
 812		iowrite32(miir, miiport);
 813
 814		/* high MDC */
 815		miir |= MASK_MIIR_MII_MDC;
 816		iowrite32(miir, miiport);
 817
 818		/* next */
 819		mask >>= 1;
 820	}
 821
 822	/* low MDC */
 823	miir &= ~MASK_MIIR_MII_MDC;
 824	iowrite32(miir, miiport);
 825}
 826
 827
 828static int netdev_open(struct net_device *dev)
 829{
 830	struct netdev_private *np = netdev_priv(dev);
 831	void __iomem *ioaddr = np->mem;
 832	const int irq = np->pci_dev->irq;
 833	int rc, i;
 834
 835	iowrite32(0x00000001, ioaddr + BCR);	/* Reset */
 836
 837	rc = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
 838	if (rc)
 839		return -EAGAIN;
 840
 841	for (i = 0; i < 3; i++)
 842		iowrite16(((unsigned short*)dev->dev_addr)[i],
 843				ioaddr + PAR0 + i*2);
 844
 845	init_ring(dev);
 846
 847	iowrite32(np->rx_ring_dma, ioaddr + RXLBA);
 848	iowrite32(np->tx_ring_dma, ioaddr + TXLBA);
 849
 850	/* Initialize other registers. */
 851	/* Configure the PCI bus bursts and FIFO thresholds.
 852	   486: Set 8 longword burst.
 853	   586: no burst limit.
 854	   Burst length 5:3
 855	   0 0 0   1
 856	   0 0 1   4
 857	   0 1 0   8
 858	   0 1 1   16
 859	   1 0 0   32
 860	   1 0 1   64
 861	   1 1 0   128
 862	   1 1 1   256
 863	   Wait the specified 50 PCI cycles after a reset by initializing
 864	   Tx and Rx queues and the address filter list.
 865	   FIXME (Ueimor): optimistic for alpha + posted writes ? */
 866
 867	np->bcrvalue = 0x10;	/* little-endian, 8 burst length */
 868#ifdef __BIG_ENDIAN
 869	np->bcrvalue |= 0x04;	/* big-endian */
 870#endif
 871
 872#if defined(__i386__) && !defined(MODULE)
 873	if (boot_cpu_data.x86 <= 4)
 874		np->crvalue = 0xa00;
 875	else
 876#endif
 877		np->crvalue = 0xe00;	/* rx 128 burst length */
 878
 879
 880// 89/12/29 add,
 881// 90/1/16 modify,
 882//   np->imrvalue=FBE|TUNF|CNTOVF|RBU|TI|RI;
 883	np->imrvalue = TUNF | CNTOVF | RBU | TI | RI;
 884	if (np->pci_dev->device == 0x891) {
 885		np->bcrvalue |= 0x200;	/* set PROG bit */
 886		np->crvalue |= CR_W_ENH;	/* set enhanced bit */
 887		np->imrvalue |= ETI;
 888	}
 889	iowrite32(np->bcrvalue, ioaddr + BCR);
 890
 891	if (dev->if_port == 0)
 892		dev->if_port = np->default_port;
 893
 894	iowrite32(0, ioaddr + RXPDR);
 895// 89/9/1 modify,
 896//   np->crvalue = 0x00e40001;    /* tx store and forward, tx/rx enable */
 897	np->crvalue |= 0x00e40001;	/* tx store and forward, tx/rx enable */
 898	np->mii.full_duplex = np->mii.force_media;
 899	getlinkstatus(dev);
 900	if (np->linkok)
 901		getlinktype(dev);
 902	__set_rx_mode(dev);
 903
 904	netif_start_queue(dev);
 905
 906	/* Clear and Enable interrupts by setting the interrupt mask. */
 907	iowrite32(FBE | TUNF | CNTOVF | RBU | TI | RI, ioaddr + ISR);
 908	iowrite32(np->imrvalue, ioaddr + IMR);
 909
 910	if (debug)
 911		printk(KERN_DEBUG "%s: Done netdev_open().\n", dev->name);
 912
 913	/* Set the timer to check for link beat. */
 914	init_timer(&np->timer);
 915	np->timer.expires = RUN_AT(3 * HZ);
 916	np->timer.data = (unsigned long) dev;
 917	np->timer.function = netdev_timer;
 918
 919	/* timer handler */
 920	add_timer(&np->timer);
 921
 922	init_timer(&np->reset_timer);
 923	np->reset_timer.data = (unsigned long) dev;
 924	np->reset_timer.function = reset_timer;
 925	np->reset_timer_armed = 0;
 926	return rc;
 927}
 928
 929
 930static void getlinkstatus(struct net_device *dev)
 931/* function: Routine will read MII Status Register to get link status.       */
 932/* input   : dev... pointer to the adapter block.                            */
 933/* output  : none.                                                           */
 934{
 935	struct netdev_private *np = netdev_priv(dev);
 936	unsigned int i, DelayTime = 0x1000;
 937
 938	np->linkok = 0;
 939
 940	if (np->PHYType == MysonPHY) {
 941		for (i = 0; i < DelayTime; ++i) {
 942			if (ioread32(np->mem + BMCRSR) & LinkIsUp2) {
 943				np->linkok = 1;
 944				return;
 945			}
 946			udelay(100);
 947		}
 948	} else {
 949		for (i = 0; i < DelayTime; ++i) {
 950			if (mdio_read(dev, np->phys[0], MII_BMSR) & BMSR_LSTATUS) {
 951				np->linkok = 1;
 952				return;
 953			}
 954			udelay(100);
 955		}
 956	}
 957}
 958
 959
 960static void getlinktype(struct net_device *dev)
 961{
 962	struct netdev_private *np = netdev_priv(dev);
 963
 964	if (np->PHYType == MysonPHY) {	/* 3-in-1 case */
 965		if (ioread32(np->mem + TCRRCR) & CR_R_FD)
 966			np->duplexmode = 2;	/* full duplex */
 967		else
 968			np->duplexmode = 1;	/* half duplex */
 969		if (ioread32(np->mem + TCRRCR) & CR_R_PS10)
 970			np->line_speed = 1;	/* 10M */
 971		else
 972			np->line_speed = 2;	/* 100M */
 973	} else {
 974		if (np->PHYType == SeeqPHY) {	/* this PHY is SEEQ 80225 */
 975			unsigned int data;
 976
 977			data = mdio_read(dev, np->phys[0], MIIRegister18);
 978			if (data & SPD_DET_100)
 979				np->line_speed = 2;	/* 100M */
 980			else
 981				np->line_speed = 1;	/* 10M */
 982			if (data & DPLX_DET_FULL)
 983				np->duplexmode = 2;	/* full duplex mode */
 984			else
 985				np->duplexmode = 1;	/* half duplex mode */
 986		} else if (np->PHYType == AhdocPHY) {
 987			unsigned int data;
 988
 989			data = mdio_read(dev, np->phys[0], DiagnosticReg);
 990			if (data & Speed_100)
 991				np->line_speed = 2;	/* 100M */
 992			else
 993				np->line_speed = 1;	/* 10M */
 994			if (data & DPLX_FULL)
 995				np->duplexmode = 2;	/* full duplex mode */
 996			else
 997				np->duplexmode = 1;	/* half duplex mode */
 998		}
 999/* 89/6/13 add, (begin) */
1000		else if (np->PHYType == MarvellPHY) {
1001			unsigned int data;
1002
1003			data = mdio_read(dev, np->phys[0], SpecificReg);
1004			if (data & Full_Duplex)
1005				np->duplexmode = 2;	/* full duplex mode */
1006			else
1007				np->duplexmode = 1;	/* half duplex mode */
1008			data &= SpeedMask;
1009			if (data == Speed_1000M)
1010				np->line_speed = 3;	/* 1000M */
1011			else if (data == Speed_100M)
1012				np->line_speed = 2;	/* 100M */
1013			else
1014				np->line_speed = 1;	/* 10M */
1015		}
1016/* 89/6/13 add, (end) */
1017/* 89/7/27 add, (begin) */
1018		else if (np->PHYType == Myson981) {
1019			unsigned int data;
1020
1021			data = mdio_read(dev, np->phys[0], StatusRegister);
1022
1023			if (data & SPEED100)
1024				np->line_speed = 2;
1025			else
1026				np->line_speed = 1;
1027
1028			if (data & FULLMODE)
1029				np->duplexmode = 2;
1030			else
1031				np->duplexmode = 1;
1032		}
1033/* 89/7/27 add, (end) */
1034/* 89/12/29 add */
1035		else if (np->PHYType == LevelOnePHY) {
1036			unsigned int data;
1037
1038			data = mdio_read(dev, np->phys[0], SpecificReg);
1039			if (data & LXT1000_Full)
1040				np->duplexmode = 2;	/* full duplex mode */
1041			else
1042				np->duplexmode = 1;	/* half duplex mode */
1043			data &= SpeedMask;
1044			if (data == LXT1000_1000M)
1045				np->line_speed = 3;	/* 1000M */
1046			else if (data == LXT1000_100M)
1047				np->line_speed = 2;	/* 100M */
1048			else
1049				np->line_speed = 1;	/* 10M */
1050		}
1051		np->crvalue &= (~CR_W_PS10) & (~CR_W_FD) & (~CR_W_PS1000);
1052		if (np->line_speed == 1)
1053			np->crvalue |= CR_W_PS10;
1054		else if (np->line_speed == 3)
1055			np->crvalue |= CR_W_PS1000;
1056		if (np->duplexmode == 2)
1057			np->crvalue |= CR_W_FD;
1058	}
1059}
1060
1061
1062/* Take lock before calling this */
1063static void allocate_rx_buffers(struct net_device *dev)
1064{
1065	struct netdev_private *np = netdev_priv(dev);
1066
1067	/*  allocate skb for rx buffers */
1068	while (np->really_rx_count != RX_RING_SIZE) {
1069		struct sk_buff *skb;
1070
1071		skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1072		if (skb == NULL)
1073			break;	/* Better luck next round. */
1074
1075		while (np->lack_rxbuf->skbuff)
1076			np->lack_rxbuf = np->lack_rxbuf->next_desc_logical;
1077
1078		np->lack_rxbuf->skbuff = skb;
1079		np->lack_rxbuf->buffer = pci_map_single(np->pci_dev, skb->data,
1080			np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1081		np->lack_rxbuf->status = RXOWN;
1082		++np->really_rx_count;
1083	}
1084}
1085
1086
1087static void netdev_timer(unsigned long data)
1088{
1089	struct net_device *dev = (struct net_device *) data;
1090	struct netdev_private *np = netdev_priv(dev);
1091	void __iomem *ioaddr = np->mem;
1092	int old_crvalue = np->crvalue;
1093	unsigned int old_linkok = np->linkok;
1094	unsigned long flags;
1095
1096	if (debug)
1097		printk(KERN_DEBUG "%s: Media selection timer tick, status %8.8x "
1098		       "config %8.8x.\n", dev->name, ioread32(ioaddr + ISR),
1099		       ioread32(ioaddr + TCRRCR));
1100
1101	spin_lock_irqsave(&np->lock, flags);
1102
1103	if (np->flags == HAS_MII_XCVR) {
1104		getlinkstatus(dev);
1105		if ((old_linkok == 0) && (np->linkok == 1)) {	/* we need to detect the media type again */
1106			getlinktype(dev);
1107			if (np->crvalue != old_crvalue) {
1108				stop_nic_rxtx(ioaddr, np->crvalue);
1109				iowrite32(np->crvalue, ioaddr + TCRRCR);
1110			}
1111		}
1112	}
1113
1114	allocate_rx_buffers(dev);
1115
1116	spin_unlock_irqrestore(&np->lock, flags);
1117
1118	np->timer.expires = RUN_AT(10 * HZ);
1119	add_timer(&np->timer);
1120}
1121
1122
1123/* Take lock before calling */
1124/* Reset chip and disable rx, tx and interrupts */
1125static void reset_and_disable_rxtx(struct net_device *dev)
1126{
1127	struct netdev_private *np = netdev_priv(dev);
1128	void __iomem *ioaddr = np->mem;
1129	int delay=51;
1130
1131	/* Reset the chip's Tx and Rx processes. */
1132	stop_nic_rxtx(ioaddr, 0);
1133
1134	/* Disable interrupts by clearing the interrupt mask. */
1135	iowrite32(0, ioaddr + IMR);
1136
1137	/* Reset the chip to erase previous misconfiguration. */
1138	iowrite32(0x00000001, ioaddr + BCR);
1139
1140	/* Ueimor: wait for 50 PCI cycles (and flush posted writes btw).
1141	   We surely wait too long (address+data phase). Who cares? */
1142	while (--delay) {
1143		ioread32(ioaddr + BCR);
1144		rmb();
1145	}
1146}
1147
1148
1149/* Take lock before calling */
1150/* Restore chip after reset */
1151static void enable_rxtx(struct net_device *dev)
1152{
1153	struct netdev_private *np = netdev_priv(dev);
1154	void __iomem *ioaddr = np->mem;
1155
1156	reset_rx_descriptors(dev);
1157
1158	iowrite32(np->tx_ring_dma + ((char*)np->cur_tx - (char*)np->tx_ring),
1159		ioaddr + TXLBA);
1160	iowrite32(np->rx_ring_dma + ((char*)np->cur_rx - (char*)np->rx_ring),
1161		ioaddr + RXLBA);
1162
1163	iowrite32(np->bcrvalue, ioaddr + BCR);
1164
1165	iowrite32(0, ioaddr + RXPDR);
1166	__set_rx_mode(dev); /* changes np->crvalue, writes it into TCRRCR */
1167
1168	/* Clear and Enable interrupts by setting the interrupt mask. */
1169	iowrite32(FBE | TUNF | CNTOVF | RBU | TI | RI, ioaddr + ISR);
1170	iowrite32(np->imrvalue, ioaddr + IMR);
1171
1172	iowrite32(0, ioaddr + TXPDR);
1173}
1174
1175
1176static void reset_timer(unsigned long data)
1177{
1178	struct net_device *dev = (struct net_device *) data;
1179	struct netdev_private *np = netdev_priv(dev);
1180	unsigned long flags;
1181
1182	printk(KERN_WARNING "%s: resetting tx and rx machinery\n", dev->name);
1183
1184	spin_lock_irqsave(&np->lock, flags);
1185	np->crvalue = np->crvalue_sv;
1186	np->imrvalue = np->imrvalue_sv;
1187
1188	reset_and_disable_rxtx(dev);
1189	/* works for me without this:
1190	reset_tx_descriptors(dev); */
1191	enable_rxtx(dev);
1192	netif_start_queue(dev); /* FIXME: or netif_wake_queue(dev); ? */
1193
1194	np->reset_timer_armed = 0;
1195
1196	spin_unlock_irqrestore(&np->lock, flags);
1197}
1198
1199
1200static void fealnx_tx_timeout(struct net_device *dev)
1201{
1202	struct netdev_private *np = netdev_priv(dev);
1203	void __iomem *ioaddr = np->mem;
1204	unsigned long flags;
1205	int i;
1206
1207	printk(KERN_WARNING
1208	       "%s: Transmit timed out, status %8.8x, resetting...\n",
1209	       dev->name, ioread32(ioaddr + ISR));
1210
1211	{
1212		printk(KERN_DEBUG "  Rx ring %p: ", np->rx_ring);
1213		for (i = 0; i < RX_RING_SIZE; i++)
1214			printk(KERN_CONT " %8.8x",
1215			       (unsigned int) np->rx_ring[i].status);
1216		printk(KERN_CONT "\n");
1217		printk(KERN_DEBUG "  Tx ring %p: ", np->tx_ring);
1218		for (i = 0; i < TX_RING_SIZE; i++)
1219			printk(KERN_CONT " %4.4x", np->tx_ring[i].status);
1220		printk(KERN_CONT "\n");
1221	}
1222
1223	spin_lock_irqsave(&np->lock, flags);
1224
1225	reset_and_disable_rxtx(dev);
1226	reset_tx_descriptors(dev);
1227	enable_rxtx(dev);
1228
1229	spin_unlock_irqrestore(&np->lock, flags);
1230
1231	dev->trans_start = jiffies; /* prevent tx timeout */
1232	dev->stats.tx_errors++;
1233	netif_wake_queue(dev); /* or .._start_.. ?? */
1234}
1235
1236
1237/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1238static void init_ring(struct net_device *dev)
1239{
1240	struct netdev_private *np = netdev_priv(dev);
1241	int i;
1242
1243	/* initialize rx variables */
1244	np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1245	np->cur_rx = &np->rx_ring[0];
1246	np->lack_rxbuf = np->rx_ring;
1247	np->really_rx_count = 0;
1248
1249	/* initial rx descriptors. */
1250	for (i = 0; i < RX_RING_SIZE; i++) {
1251		np->rx_ring[i].status = 0;
1252		np->rx_ring[i].control = np->rx_buf_sz << RBSShift;
1253		np->rx_ring[i].next_desc = np->rx_ring_dma +
1254			(i + 1)*sizeof(struct fealnx_desc);
1255		np->rx_ring[i].next_desc_logical = &np->rx_ring[i + 1];
1256		np->rx_ring[i].skbuff = NULL;
1257	}
1258
1259	/* for the last rx descriptor */
1260	np->rx_ring[i - 1].next_desc = np->rx_ring_dma;
1261	np->rx_ring[i - 1].next_desc_logical = np->rx_ring;
1262
1263	/* allocate skb for rx buffers */
1264	for (i = 0; i < RX_RING_SIZE; i++) {
1265		struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1266
1267		if (skb == NULL) {
1268			np->lack_rxbuf = &np->rx_ring[i];
1269			break;
1270		}
1271
1272		++np->really_rx_count;
1273		np->rx_ring[i].skbuff = skb;
1274		np->rx_ring[i].buffer = pci_map_single(np->pci_dev, skb->data,
1275			np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1276		np->rx_ring[i].status = RXOWN;
1277		np->rx_ring[i].control |= RXIC;
1278	}
1279
1280	/* initialize tx variables */
1281	np->cur_tx = &np->tx_ring[0];
1282	np->cur_tx_copy = &np->tx_ring[0];
1283	np->really_tx_count = 0;
1284	np->free_tx_count = TX_RING_SIZE;
1285
1286	for (i = 0; i < TX_RING_SIZE; i++) {
1287		np->tx_ring[i].status = 0;
1288		/* do we need np->tx_ring[i].control = XXX; ?? */
1289		np->tx_ring[i].next_desc = np->tx_ring_dma +
1290			(i + 1)*sizeof(struct fealnx_desc);
1291		np->tx_ring[i].next_desc_logical = &np->tx_ring[i + 1];
1292		np->tx_ring[i].skbuff = NULL;
1293	}
1294
1295	/* for the last tx descriptor */
1296	np->tx_ring[i - 1].next_desc = np->tx_ring_dma;
1297	np->tx_ring[i - 1].next_desc_logical = &np->tx_ring[0];
1298}
1299
1300
1301static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1302{
1303	struct netdev_private *np = netdev_priv(dev);
1304	unsigned long flags;
1305
1306	spin_lock_irqsave(&np->lock, flags);
1307
1308	np->cur_tx_copy->skbuff = skb;
1309
1310#define one_buffer
1311#define BPT 1022
1312#if defined(one_buffer)
1313	np->cur_tx_copy->buffer = pci_map_single(np->pci_dev, skb->data,
1314		skb->len, PCI_DMA_TODEVICE);
1315	np->cur_tx_copy->control = TXIC | TXLD | TXFD | CRCEnable | PADEnable;
1316	np->cur_tx_copy->control |= (skb->len << PKTSShift);	/* pkt size */
1317	np->cur_tx_copy->control |= (skb->len << TBSShift);	/* buffer size */
1318// 89/12/29 add,
1319	if (np->pci_dev->device == 0x891)
1320		np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1321	np->cur_tx_copy->status = TXOWN;
1322	np->cur_tx_copy = np->cur_tx_copy->next_desc_logical;
1323	--np->free_tx_count;
1324#elif defined(two_buffer)
1325	if (skb->len > BPT) {
1326		struct fealnx_desc *next;
1327
1328		/* for the first descriptor */
1329		np->cur_tx_copy->buffer = pci_map_single(np->pci_dev, skb->data,
1330			BPT, PCI_DMA_TODEVICE);
1331		np->cur_tx_copy->control = TXIC | TXFD | CRCEnable | PADEnable;
1332		np->cur_tx_copy->control |= (skb->len << PKTSShift);	/* pkt size */
1333		np->cur_tx_copy->control |= (BPT << TBSShift);	/* buffer size */
1334
1335		/* for the last descriptor */
1336		next = np->cur_tx_copy->next_desc_logical;
1337		next->skbuff = skb;
1338		next->control = TXIC | TXLD | CRCEnable | PADEnable;
1339		next->control |= (skb->len << PKTSShift);	/* pkt size */
1340		next->control |= ((skb->len - BPT) << TBSShift);	/* buf size */
1341// 89/12/29 add,
1342		if (np->pci_dev->device == 0x891)
1343			np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1344		next->buffer = pci_map_single(ep->pci_dev, skb->data + BPT,
1345                                skb->len - BPT, PCI_DMA_TODEVICE);
1346
1347		next->status = TXOWN;
1348		np->cur_tx_copy->status = TXOWN;
1349
1350		np->cur_tx_copy = next->next_desc_logical;
1351		np->free_tx_count -= 2;
1352	} else {
1353		np->cur_tx_copy->buffer = pci_map_single(np->pci_dev, skb->data,
1354			skb->len, PCI_DMA_TODEVICE);
1355		np->cur_tx_copy->control = TXIC | TXLD | TXFD | CRCEnable | PADEnable;
1356		np->cur_tx_copy->control |= (skb->len << PKTSShift);	/* pkt size */
1357		np->cur_tx_copy->control |= (skb->len << TBSShift);	/* buffer size */
1358// 89/12/29 add,
1359		if (np->pci_dev->device == 0x891)
1360			np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1361		np->cur_tx_copy->status = TXOWN;
1362		np->cur_tx_copy = np->cur_tx_copy->next_desc_logical;
1363		--np->free_tx_count;
1364	}
1365#endif
1366
1367	if (np->free_tx_count < 2)
1368		netif_stop_queue(dev);
1369	++np->really_tx_count;
1370	iowrite32(0, np->mem + TXPDR);
1371
1372	spin_unlock_irqrestore(&np->lock, flags);
1373	return NETDEV_TX_OK;
1374}
1375
1376
1377/* Take lock before calling */
1378/* Chip probably hosed tx ring. Clean up. */
1379static void reset_tx_descriptors(struct net_device *dev)
1380{
1381	struct netdev_private *np = netdev_priv(dev);
1382	struct fealnx_desc *cur;
1383	int i;
1384
1385	/* initialize tx variables */
1386	np->cur_tx = &np->tx_ring[0];
1387	np->cur_tx_copy = &np->tx_ring[0];
1388	np->really_tx_count = 0;
1389	np->free_tx_count = TX_RING_SIZE;
1390
1391	for (i = 0; i < TX_RING_SIZE; i++) {
1392		cur = &np->tx_ring[i];
1393		if (cur->skbuff) {
1394			pci_unmap_single(np->pci_dev, cur->buffer,
1395				cur->skbuff->len, PCI_DMA_TODEVICE);
1396			dev_kfree_skb_any(cur->skbuff);
1397			cur->skbuff = NULL;
1398		}
1399		cur->status = 0;
1400		cur->control = 0;	/* needed? */
1401		/* probably not needed. We do it for purely paranoid reasons */
1402		cur->next_desc = np->tx_ring_dma +
1403			(i + 1)*sizeof(struct fealnx_desc);
1404		cur->next_desc_logical = &np->tx_ring[i + 1];
1405	}
1406	/* for the last tx descriptor */
1407	np->tx_ring[TX_RING_SIZE - 1].next_desc = np->tx_ring_dma;
1408	np->tx_ring[TX_RING_SIZE - 1].next_desc_logical = &np->tx_ring[0];
1409}
1410
1411
1412/* Take lock and stop rx before calling this */
1413static void reset_rx_descriptors(struct net_device *dev)
1414{
1415	struct netdev_private *np = netdev_priv(dev);
1416	struct fealnx_desc *cur = np->cur_rx;
1417	int i;
1418
1419	allocate_rx_buffers(dev);
1420
1421	for (i = 0; i < RX_RING_SIZE; i++) {
1422		if (cur->skbuff)
1423			cur->status = RXOWN;
1424		cur = cur->next_desc_logical;
1425	}
1426
1427	iowrite32(np->rx_ring_dma + ((char*)np->cur_rx - (char*)np->rx_ring),
1428		np->mem + RXLBA);
1429}
1430
1431
1432/* The interrupt handler does all of the Rx thread work and cleans up
1433   after the Tx thread. */
1434static irqreturn_t intr_handler(int irq, void *dev_instance)
1435{
1436	struct net_device *dev = (struct net_device *) dev_instance;
1437	struct netdev_private *np = netdev_priv(dev);
1438	void __iomem *ioaddr = np->mem;
1439	long boguscnt = max_interrupt_work;
1440	unsigned int num_tx = 0;
1441	int handled = 0;
1442
1443	spin_lock(&np->lock);
1444
1445	iowrite32(0, ioaddr + IMR);
1446
1447	do {
1448		u32 intr_status = ioread32(ioaddr + ISR);
1449
1450		/* Acknowledge all of the current interrupt sources ASAP. */
1451		iowrite32(intr_status, ioaddr + ISR);
1452
1453		if (debug)
1454			printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n", dev->name,
1455			       intr_status);
1456
1457		if (!(intr_status & np->imrvalue))
1458			break;
1459
1460		handled = 1;
1461
1462// 90/1/16 delete,
1463//
1464//      if (intr_status & FBE)
1465//      {   /* fatal error */
1466//          stop_nic_tx(ioaddr, 0);
1467//          stop_nic_rx(ioaddr, 0);
1468//          break;
1469//      };
1470
1471		if (intr_status & TUNF)
1472			iowrite32(0, ioaddr + TXPDR);
1473
1474		if (intr_status & CNTOVF) {
1475			/* missed pkts */
1476			dev->stats.rx_missed_errors +=
1477				ioread32(ioaddr + TALLY) & 0x7fff;
1478
1479			/* crc error */
1480			dev->stats.rx_crc_errors +=
1481			    (ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1482		}
1483
1484		if (intr_status & (RI | RBU)) {
1485			if (intr_status & RI)
1486				netdev_rx(dev);
1487			else {
1488				stop_nic_rx(ioaddr, np->crvalue);
1489				reset_rx_descriptors(dev);
1490				iowrite32(np->crvalue, ioaddr + TCRRCR);
1491			}
1492		}
1493
1494		while (np->really_tx_count) {
1495			long tx_status = np->cur_tx->status;
1496			long tx_control = np->cur_tx->control;
1497
1498			if (!(tx_control & TXLD)) {	/* this pkt is combined by two tx descriptors */
1499				struct fealnx_desc *next;
1500
1501				next = np->cur_tx->next_desc_logical;
1502				tx_status = next->status;
1503				tx_control = next->control;
1504			}
1505
1506			if (tx_status & TXOWN)
1507				break;
1508
1509			if (!(np->crvalue & CR_W_ENH)) {
1510				if (tx_status & (CSL | LC | EC | UDF | HF)) {
1511					dev->stats.tx_errors++;
1512					if (tx_status & EC)
1513						dev->stats.tx_aborted_errors++;
1514					if (tx_status & CSL)
1515						dev->stats.tx_carrier_errors++;
1516					if (tx_status & LC)
1517						dev->stats.tx_window_errors++;
1518					if (tx_status & UDF)
1519						dev->stats.tx_fifo_errors++;
1520					if ((tx_status & HF) && np->mii.full_duplex == 0)
1521						dev->stats.tx_heartbeat_errors++;
1522
1523				} else {
1524					dev->stats.tx_bytes +=
1525					    ((tx_control & PKTSMask) >> PKTSShift);
1526
1527					dev->stats.collisions +=
1528					    ((tx_status & NCRMask) >> NCRShift);
1529					dev->stats.tx_packets++;
1530				}
1531			} else {
1532				dev->stats.tx_bytes +=
1533				    ((tx_control & PKTSMask) >> PKTSShift);
1534				dev->stats.tx_packets++;
1535			}
1536
1537			/* Free the original skb. */
1538			pci_unmap_single(np->pci_dev, np->cur_tx->buffer,
1539				np->cur_tx->skbuff->len, PCI_DMA_TODEVICE);
1540			dev_kfree_skb_irq(np->cur_tx->skbuff);
1541			np->cur_tx->skbuff = NULL;
1542			--np->really_tx_count;
1543			if (np->cur_tx->control & TXLD) {
1544				np->cur_tx = np->cur_tx->next_desc_logical;
1545				++np->free_tx_count;
1546			} else {
1547				np->cur_tx = np->cur_tx->next_desc_logical;
1548				np->cur_tx = np->cur_tx->next_desc_logical;
1549				np->free_tx_count += 2;
1550			}
1551			num_tx++;
1552		}		/* end of for loop */
1553
1554		if (num_tx && np->free_tx_count >= 2)
1555			netif_wake_queue(dev);
1556
1557		/* read transmit status for enhanced mode only */
1558		if (np->crvalue & CR_W_ENH) {
1559			long data;
1560
1561			data = ioread32(ioaddr + TSR);
1562			dev->stats.tx_errors += (data & 0xff000000) >> 24;
1563			dev->stats.tx_aborted_errors +=
1564				(data & 0xff000000) >> 24;
1565			dev->stats.tx_window_errors +=
1566				(data & 0x00ff0000) >> 16;
1567			dev->stats.collisions += (data & 0x0000ffff);
1568		}
1569
1570		if (--boguscnt < 0) {
1571			printk(KERN_WARNING "%s: Too much work at interrupt, "
1572			       "status=0x%4.4x.\n", dev->name, intr_status);
1573			if (!np->reset_timer_armed) {
1574				np->reset_timer_armed = 1;
1575				np->reset_timer.expires = RUN_AT(HZ/2);
1576				add_timer(&np->reset_timer);
1577				stop_nic_rxtx(ioaddr, 0);
1578				netif_stop_queue(dev);
1579				/* or netif_tx_disable(dev); ?? */
1580				/* Prevent other paths from enabling tx,rx,intrs */
1581				np->crvalue_sv = np->crvalue;
1582				np->imrvalue_sv = np->imrvalue;
1583				np->crvalue &= ~(CR_W_TXEN | CR_W_RXEN); /* or simply = 0? */
1584				np->imrvalue = 0;
1585			}
1586
1587			break;
1588		}
1589	} while (1);
1590
1591	/* read the tally counters */
1592	/* missed pkts */
1593	dev->stats.rx_missed_errors += ioread32(ioaddr + TALLY) & 0x7fff;
1594
1595	/* crc error */
1596	dev->stats.rx_crc_errors +=
1597		(ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1598
1599	if (debug)
1600		printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1601		       dev->name, ioread32(ioaddr + ISR));
1602
1603	iowrite32(np->imrvalue, ioaddr + IMR);
1604
1605	spin_unlock(&np->lock);
1606
1607	return IRQ_RETVAL(handled);
1608}
1609
1610
1611/* This routine is logically part of the interrupt handler, but separated
1612   for clarity and better register allocation. */
1613static int netdev_rx(struct net_device *dev)
1614{
1615	struct netdev_private *np = netdev_priv(dev);
1616	void __iomem *ioaddr = np->mem;
1617
1618	/* If EOP is set on the next entry, it's a new packet. Send it up. */
1619	while (!(np->cur_rx->status & RXOWN) && np->cur_rx->skbuff) {
1620		s32 rx_status = np->cur_rx->status;
1621
1622		if (np->really_rx_count == 0)
1623			break;
1624
1625		if (debug)
1626			printk(KERN_DEBUG "  netdev_rx() status was %8.8x.\n", rx_status);
1627
1628		if ((!((rx_status & RXFSD) && (rx_status & RXLSD))) ||
1629		    (rx_status & ErrorSummary)) {
1630			if (rx_status & ErrorSummary) {	/* there was a fatal error */
1631				if (debug)
1632					printk(KERN_DEBUG
1633					       "%s: Receive error, Rx status %8.8x.\n",
1634					       dev->name, rx_status);
1635
1636				dev->stats.rx_errors++;	/* end of a packet. */
1637				if (rx_status & (LONG | RUNT))
1638					dev->stats.rx_length_errors++;
1639				if (rx_status & RXER)
1640					dev->stats.rx_frame_errors++;
1641				if (rx_status & CRC)
1642					dev->stats.rx_crc_errors++;
1643			} else {
1644				int need_to_reset = 0;
1645				int desno = 0;
1646
1647				if (rx_status & RXFSD) {	/* this pkt is too long, over one rx buffer */
1648					struct fealnx_desc *cur;
1649
1650					/* check this packet is received completely? */
1651					cur = np->cur_rx;
1652					while (desno <= np->really_rx_count) {
1653						++desno;
1654						if ((!(cur->status & RXOWN)) &&
1655						    (cur->status & RXLSD))
1656							break;
1657						/* goto next rx descriptor */
1658						cur = cur->next_desc_logical;
1659					}
1660					if (desno > np->really_rx_count)
1661						need_to_reset = 1;
1662				} else	/* RXLSD did not find, something error */
1663					need_to_reset = 1;
1664
1665				if (need_to_reset == 0) {
1666					int i;
1667
1668					dev->stats.rx_length_errors++;
1669
1670					/* free all rx descriptors related this long pkt */
1671					for (i = 0; i < desno; ++i) {
1672						if (!np->cur_rx->skbuff) {
1673							printk(KERN_DEBUG
1674								"%s: I'm scared\n", dev->name);
1675							break;
1676						}
1677						np->cur_rx->status = RXOWN;
1678						np->cur_rx = np->cur_rx->next_desc_logical;
1679					}
1680					continue;
1681				} else {        /* rx error, need to reset this chip */
1682					stop_nic_rx(ioaddr, np->crvalue);
1683					reset_rx_descriptors(dev);
1684					iowrite32(np->crvalue, ioaddr + TCRRCR);
1685				}
1686				break;	/* exit the while loop */
1687			}
1688		} else {	/* this received pkt is ok */
1689
1690			struct sk_buff *skb;
1691			/* Omit the four octet CRC from the length. */
1692			short pkt_len = ((rx_status & FLNGMASK) >> FLNGShift) - 4;
1693
1694#ifndef final_version
1695			if (debug)
1696				printk(KERN_DEBUG "  netdev_rx() normal Rx pkt length %d"
1697				       " status %x.\n", pkt_len, rx_status);
1698#endif
1699
1700			/* Check if the packet is long enough to accept without copying
1701			   to a minimally-sized skbuff. */
1702			if (pkt_len < rx_copybreak &&
1703			    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1704				skb_reserve(skb, 2);	/* 16 byte align the IP header */
1705				pci_dma_sync_single_for_cpu(np->pci_dev,
1706							    np->cur_rx->buffer,
1707							    np->rx_buf_sz,
1708							    PCI_DMA_FROMDEVICE);
1709				/* Call copy + cksum if available. */
1710
1711#if ! defined(__alpha__)
1712				skb_copy_to_linear_data(skb,
1713					np->cur_rx->skbuff->data, pkt_len);
1714				skb_put(skb, pkt_len);
1715#else
1716				memcpy(skb_put(skb, pkt_len),
1717					np->cur_rx->skbuff->data, pkt_len);
1718#endif
1719				pci_dma_sync_single_for_device(np->pci_dev,
1720							       np->cur_rx->buffer,
1721							       np->rx_buf_sz,
1722							       PCI_DMA_FROMDEVICE);
1723			} else {
1724				pci_unmap_single(np->pci_dev,
1725						 np->cur_rx->buffer,
1726						 np->rx_buf_sz,
1727						 PCI_DMA_FROMDEVICE);
1728				skb_put(skb = np->cur_rx->skbuff, pkt_len);
1729				np->cur_rx->skbuff = NULL;
1730				--np->really_rx_count;
1731			}
1732			skb->protocol = eth_type_trans(skb, dev);
1733			netif_rx(skb);
1734			dev->stats.rx_packets++;
1735			dev->stats.rx_bytes += pkt_len;
1736		}
1737
1738		np->cur_rx = np->cur_rx->next_desc_logical;
1739	}			/* end of while loop */
1740
1741	/*  allocate skb for rx buffers */
1742	allocate_rx_buffers(dev);
1743
1744	return 0;
1745}
1746
1747
1748static struct net_device_stats *get_stats(struct net_device *dev)
1749{
1750	struct netdev_private *np = netdev_priv(dev);
1751	void __iomem *ioaddr = np->mem;
1752
1753	/* The chip only need report frame silently dropped. */
1754	if (netif_running(dev)) {
1755		dev->stats.rx_missed_errors +=
1756			ioread32(ioaddr + TALLY) & 0x7fff;
1757		dev->stats.rx_crc_errors +=
1758			(ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1759	}
1760
1761	return &dev->stats;
1762}
1763
1764
1765/* for dev->set_multicast_list */
1766static void set_rx_mode(struct net_device *dev)
1767{
1768	spinlock_t *lp = &((struct netdev_private *)netdev_priv(dev))->lock;
1769	unsigned long flags;
1770	spin_lock_irqsave(lp, flags);
1771	__set_rx_mode(dev);
1772	spin_unlock_irqrestore(lp, flags);
1773}
1774
1775
1776/* Take lock before calling */
1777static void __set_rx_mode(struct net_device *dev)
1778{
1779	struct netdev_private *np = netdev_priv(dev);
1780	void __iomem *ioaddr = np->mem;
1781	u32 mc_filter[2];	/* Multicast hash filter */
1782	u32 rx_mode;
1783
1784	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
1785		memset(mc_filter, 0xff, sizeof(mc_filter));
1786		rx_mode = CR_W_PROM | CR_W_AB | CR_W_AM;
1787	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1788		   (dev->flags & IFF_ALLMULTI)) {
1789		/* Too many to match, or accept all multicasts. */
1790		memset(mc_filter, 0xff, sizeof(mc_filter));
1791		rx_mode = CR_W_AB | CR_W_AM;
1792	} else {
1793		struct netdev_hw_addr *ha;
1794
1795		memset(mc_filter, 0, sizeof(mc_filter));
1796		netdev_for_each_mc_addr(ha, dev) {
1797			unsigned int bit;
1798			bit = (ether_crc(ETH_ALEN, ha->addr) >> 26) ^ 0x3F;
1799			mc_filter[bit >> 5] |= (1 << bit);
1800		}
1801		rx_mode = CR_W_AB | CR_W_AM;
1802	}
1803
1804	stop_nic_rxtx(ioaddr, np->crvalue);
1805
1806	iowrite32(mc_filter[0], ioaddr + MAR0);
1807	iowrite32(mc_filter[1], ioaddr + MAR1);
1808	np->crvalue &= ~CR_W_RXMODEMASK;
1809	np->crvalue |= rx_mode;
1810	iowrite32(np->crvalue, ioaddr + TCRRCR);
1811}
1812
1813static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1814{
1815	struct netdev_private *np = netdev_priv(dev);
1816
1817	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1818	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1819	strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1820}
1821
1822static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1823{
1824	struct netdev_private *np = netdev_priv(dev);
1825	int rc;
1826
1827	spin_lock_irq(&np->lock);
1828	rc = mii_ethtool_gset(&np->mii, cmd);
1829	spin_unlock_irq(&np->lock);
1830
1831	return rc;
1832}
1833
1834static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1835{
1836	struct netdev_private *np = netdev_priv(dev);
1837	int rc;
1838
1839	spin_lock_irq(&np->lock);
1840	rc = mii_ethtool_sset(&np->mii, cmd);
1841	spin_unlock_irq(&np->lock);
1842
1843	return rc;
1844}
1845
1846static int netdev_nway_reset(struct net_device *dev)
1847{
1848	struct netdev_private *np = netdev_priv(dev);
1849	return mii_nway_restart(&np->mii);
1850}
1851
1852static u32 netdev_get_link(struct net_device *dev)
1853{
1854	struct netdev_private *np = netdev_priv(dev);
1855	return mii_link_ok(&np->mii);
1856}
1857
1858static u32 netdev_get_msglevel(struct net_device *dev)
1859{
1860	return debug;
1861}
1862
1863static void netdev_set_msglevel(struct net_device *dev, u32 value)
1864{
1865	debug = value;
1866}
1867
1868static const struct ethtool_ops netdev_ethtool_ops = {
1869	.get_drvinfo		= netdev_get_drvinfo,
1870	.get_settings		= netdev_get_settings,
1871	.set_settings		= netdev_set_settings,
1872	.nway_reset		= netdev_nway_reset,
1873	.get_link		= netdev_get_link,
1874	.get_msglevel		= netdev_get_msglevel,
1875	.set_msglevel		= netdev_set_msglevel,
1876};
1877
1878static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1879{
1880	struct netdev_private *np = netdev_priv(dev);
1881	int rc;
1882
1883	if (!netif_running(dev))
1884		return -EINVAL;
1885
1886	spin_lock_irq(&np->lock);
1887	rc = generic_mii_ioctl(&np->mii, if_mii(rq), cmd, NULL);
1888	spin_unlock_irq(&np->lock);
1889
1890	return rc;
1891}
1892
1893
1894static int netdev_close(struct net_device *dev)
1895{
1896	struct netdev_private *np = netdev_priv(dev);
1897	void __iomem *ioaddr = np->mem;
1898	int i;
1899
1900	netif_stop_queue(dev);
1901
1902	/* Disable interrupts by clearing the interrupt mask. */
1903	iowrite32(0x0000, ioaddr + IMR);
1904
1905	/* Stop the chip's Tx and Rx processes. */
1906	stop_nic_rxtx(ioaddr, 0);
1907
1908	del_timer_sync(&np->timer);
1909	del_timer_sync(&np->reset_timer);
1910
1911	free_irq(np->pci_dev->irq, dev);
1912
1913	/* Free all the skbuffs in the Rx queue. */
1914	for (i = 0; i < RX_RING_SIZE; i++) {
1915		struct sk_buff *skb = np->rx_ring[i].skbuff;
1916
1917		np->rx_ring[i].status = 0;
1918		if (skb) {
1919			pci_unmap_single(np->pci_dev, np->rx_ring[i].buffer,
1920				np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1921			dev_kfree_skb(skb);
1922			np->rx_ring[i].skbuff = NULL;
1923		}
1924	}
1925
1926	for (i = 0; i < TX_RING_SIZE; i++) {
1927		struct sk_buff *skb = np->tx_ring[i].skbuff;
1928
1929		if (skb) {
1930			pci_unmap_single(np->pci_dev, np->tx_ring[i].buffer,
1931				skb->len, PCI_DMA_TODEVICE);
1932			dev_kfree_skb(skb);
1933			np->tx_ring[i].skbuff = NULL;
1934		}
1935	}
1936
1937	return 0;
1938}
1939
1940static DEFINE_PCI_DEVICE_TABLE(fealnx_pci_tbl) = {
1941	{0x1516, 0x0800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
1942	{0x1516, 0x0803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1},
1943	{0x1516, 0x0891, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2},
1944	{} /* terminate list */
1945};
1946MODULE_DEVICE_TABLE(pci, fealnx_pci_tbl);
1947
1948
1949static struct pci_driver fealnx_driver = {
1950	.name		= "fealnx",
1951	.id_table	= fealnx_pci_tbl,
1952	.probe		= fealnx_init_one,
1953	.remove		= __devexit_p(fealnx_remove_one),
1954};
1955
1956static int __init fealnx_init(void)
1957{
1958/* when a module, this is printed whether or not devices are found in probe */
1959#ifdef MODULE
1960	printk(version);
1961#endif
1962
1963	return pci_register_driver(&fealnx_driver);
1964}
1965
1966static void __exit fealnx_exit(void)
1967{
1968	pci_unregister_driver(&fealnx_driver);
1969}
1970
1971module_init(fealnx_init);
1972module_exit(fealnx_exit);