Loading...
1/* tulip_core.c: A DEC 21x4x-family ethernet driver for Linux.
2
3 Copyright 2000,2001 The Linux Kernel Team
4 Written/copyright 1994-2001 by Donald Becker.
5
6 This software may be used and distributed according to the terms
7 of the GNU General Public License, incorporated herein by reference.
8
9 Please submit bugs to http://bugzilla.kernel.org/ .
10*/
11
12#define pr_fmt(fmt) "tulip: " fmt
13
14#define DRV_NAME "tulip"
15#ifdef CONFIG_TULIP_NAPI
16#define DRV_VERSION "1.1.15-NAPI" /* Keep at least for test */
17#else
18#define DRV_VERSION "1.1.15"
19#endif
20#define DRV_RELDATE "Feb 27, 2007"
21
22
23#include <linux/module.h>
24#include <linux/pci.h>
25#include <linux/slab.h>
26#include "tulip.h"
27#include <linux/init.h>
28#include <linux/interrupt.h>
29#include <linux/etherdevice.h>
30#include <linux/delay.h>
31#include <linux/mii.h>
32#include <linux/crc32.h>
33#include <asm/unaligned.h>
34#include <asm/uaccess.h>
35
36#ifdef CONFIG_SPARC
37#include <asm/prom.h>
38#endif
39
40static char version[] __devinitdata =
41 "Linux Tulip driver version " DRV_VERSION " (" DRV_RELDATE ")\n";
42
43/* A few user-configurable values. */
44
45/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
46static unsigned int max_interrupt_work = 25;
47
48#define MAX_UNITS 8
49/* Used to pass the full-duplex flag, etc. */
50static int full_duplex[MAX_UNITS];
51static int options[MAX_UNITS];
52static int mtu[MAX_UNITS]; /* Jumbo MTU for interfaces. */
53
54/* The possible media types that can be set in options[] are: */
55const char * const medianame[32] = {
56 "10baseT", "10base2", "AUI", "100baseTx",
57 "10baseT-FDX", "100baseTx-FDX", "100baseT4", "100baseFx",
58 "100baseFx-FDX", "MII 10baseT", "MII 10baseT-FDX", "MII",
59 "10baseT(forced)", "MII 100baseTx", "MII 100baseTx-FDX", "MII 100baseT4",
60 "MII 100baseFx-HDX", "MII 100baseFx-FDX", "Home-PNA 1Mbps", "Invalid-19",
61 "","","","", "","","","", "","","","Transceiver reset",
62};
63
64/* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */
65#if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
66 defined(CONFIG_SPARC) || defined(__ia64__) || \
67 defined(__sh__) || defined(__mips__)
68static int rx_copybreak = 1518;
69#else
70static int rx_copybreak = 100;
71#endif
72
73/*
74 Set the bus performance register.
75 Typical: Set 16 longword cache alignment, no burst limit.
76 Cache alignment bits 15:14 Burst length 13:8
77 0000 No alignment 0x00000000 unlimited 0800 8 longwords
78 4000 8 longwords 0100 1 longword 1000 16 longwords
79 8000 16 longwords 0200 2 longwords 2000 32 longwords
80 C000 32 longwords 0400 4 longwords
81 Warning: many older 486 systems are broken and require setting 0x00A04800
82 8 longword cache alignment, 8 longword burst.
83 ToDo: Non-Intel setting could be better.
84*/
85
86#if defined(__alpha__) || defined(__ia64__)
87static int csr0 = 0x01A00000 | 0xE000;
88#elif defined(__i386__) || defined(__powerpc__) || defined(__x86_64__)
89static int csr0 = 0x01A00000 | 0x8000;
90#elif defined(CONFIG_SPARC) || defined(__hppa__)
91/* The UltraSparc PCI controllers will disconnect at every 64-byte
92 * crossing anyways so it makes no sense to tell Tulip to burst
93 * any more than that.
94 */
95static int csr0 = 0x01A00000 | 0x9000;
96#elif defined(__arm__) || defined(__sh__)
97static int csr0 = 0x01A00000 | 0x4800;
98#elif defined(__mips__)
99static int csr0 = 0x00200000 | 0x4000;
100#else
101#warning Processor architecture undefined!
102static int csr0 = 0x00A00000 | 0x4800;
103#endif
104
105/* Operational parameters that usually are not changed. */
106/* Time in jiffies before concluding the transmitter is hung. */
107#define TX_TIMEOUT (4*HZ)
108
109
110MODULE_AUTHOR("The Linux Kernel Team");
111MODULE_DESCRIPTION("Digital 21*4* Tulip ethernet driver");
112MODULE_LICENSE("GPL");
113MODULE_VERSION(DRV_VERSION);
114module_param(tulip_debug, int, 0);
115module_param(max_interrupt_work, int, 0);
116module_param(rx_copybreak, int, 0);
117module_param(csr0, int, 0);
118module_param_array(options, int, NULL, 0);
119module_param_array(full_duplex, int, NULL, 0);
120
121#ifdef TULIP_DEBUG
122int tulip_debug = TULIP_DEBUG;
123#else
124int tulip_debug = 1;
125#endif
126
127static void tulip_timer(unsigned long data)
128{
129 struct net_device *dev = (struct net_device *)data;
130 struct tulip_private *tp = netdev_priv(dev);
131
132 if (netif_running(dev))
133 schedule_work(&tp->media_work);
134}
135
136/*
137 * This table use during operation for capabilities and media timer.
138 *
139 * It is indexed via the values in 'enum chips'
140 */
141
142struct tulip_chip_table tulip_tbl[] = {
143 { }, /* placeholder for array, slot unused currently */
144 { }, /* placeholder for array, slot unused currently */
145
146 /* DC21140 */
147 { "Digital DS21140 Tulip", 128, 0x0001ebef,
148 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_PCI_MWI, tulip_timer,
149 tulip_media_task },
150
151 /* DC21142, DC21143 */
152 { "Digital DS21142/43 Tulip", 128, 0x0801fbff,
153 HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI | HAS_NWAY
154 | HAS_INTR_MITIGATION | HAS_PCI_MWI, tulip_timer, t21142_media_task },
155
156 /* LC82C168 */
157 { "Lite-On 82c168 PNIC", 256, 0x0001fbef,
158 HAS_MII | HAS_PNICNWAY, pnic_timer, },
159
160 /* MX98713 */
161 { "Macronix 98713 PMAC", 128, 0x0001ebef,
162 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer, },
163
164 /* MX98715 */
165 { "Macronix 98715 PMAC", 256, 0x0001ebef,
166 HAS_MEDIA_TABLE, mxic_timer, },
167
168 /* MX98725 */
169 { "Macronix 98725 PMAC", 256, 0x0001ebef,
170 HAS_MEDIA_TABLE, mxic_timer, },
171
172 /* AX88140 */
173 { "ASIX AX88140", 128, 0x0001fbff,
174 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | MC_HASH_ONLY
175 | IS_ASIX, tulip_timer, tulip_media_task },
176
177 /* PNIC2 */
178 { "Lite-On PNIC-II", 256, 0x0801fbff,
179 HAS_MII | HAS_NWAY | HAS_8023X | HAS_PCI_MWI, pnic2_timer, },
180
181 /* COMET */
182 { "ADMtek Comet", 256, 0x0001abef,
183 HAS_MII | MC_HASH_ONLY | COMET_MAC_ADDR, comet_timer, },
184
185 /* COMPEX9881 */
186 { "Compex 9881 PMAC", 128, 0x0001ebef,
187 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer, },
188
189 /* I21145 */
190 { "Intel DS21145 Tulip", 128, 0x0801fbff,
191 HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI
192 | HAS_NWAY | HAS_PCI_MWI, tulip_timer, tulip_media_task },
193
194 /* DM910X */
195#ifdef CONFIG_TULIP_DM910X
196 { "Davicom DM9102/DM9102A", 128, 0x0001ebef,
197 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_ACPI,
198 tulip_timer, tulip_media_task },
199#else
200 { NULL },
201#endif
202
203 /* RS7112 */
204 { "Conexant LANfinity", 256, 0x0001ebef,
205 HAS_MII | HAS_ACPI, tulip_timer, tulip_media_task },
206
207};
208
209
210static DEFINE_PCI_DEVICE_TABLE(tulip_pci_tbl) = {
211 { 0x1011, 0x0009, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21140 },
212 { 0x1011, 0x0019, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21143 },
213 { 0x11AD, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, LC82C168 },
214 { 0x10d9, 0x0512, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98713 },
215 { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
216/* { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98725 },*/
217 { 0x125B, 0x1400, PCI_ANY_ID, PCI_ANY_ID, 0, 0, AX88140 },
218 { 0x11AD, 0xc115, PCI_ANY_ID, PCI_ANY_ID, 0, 0, PNIC2 },
219 { 0x1317, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
220 { 0x1317, 0x0985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
221 { 0x1317, 0x1985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
222 { 0x1317, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
223 { 0x13D1, 0xAB02, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
224 { 0x13D1, 0xAB03, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
225 { 0x13D1, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
226 { 0x104A, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
227 { 0x104A, 0x2774, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
228 { 0x1259, 0xa120, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
229 { 0x11F6, 0x9881, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMPEX9881 },
230 { 0x8086, 0x0039, PCI_ANY_ID, PCI_ANY_ID, 0, 0, I21145 },
231#ifdef CONFIG_TULIP_DM910X
232 { 0x1282, 0x9100, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
233 { 0x1282, 0x9102, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
234#endif
235 { 0x1113, 0x1216, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
236 { 0x1113, 0x1217, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
237 { 0x1113, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
238 { 0x1186, 0x1541, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
239 { 0x1186, 0x1561, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
240 { 0x1186, 0x1591, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
241 { 0x14f1, 0x1803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CONEXANT },
242 { 0x1626, 0x8410, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
243 { 0x1737, 0xAB09, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
244 { 0x1737, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
245 { 0x17B3, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
246 { 0x10b7, 0x9300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* 3Com 3CSOHO100B-TX */
247 { 0x14ea, 0xab08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* Planex FNW-3602-TX */
248 { 0x1414, 0x0001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* Microsoft MN-120 */
249 { 0x1414, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
250 { } /* terminate list */
251};
252MODULE_DEVICE_TABLE(pci, tulip_pci_tbl);
253
254
255/* A full-duplex map for media types. */
256const char tulip_media_cap[32] =
257{0,0,0,16, 3,19,16,24, 27,4,7,5, 0,20,23,20, 28,31,0,0, };
258
259static void tulip_tx_timeout(struct net_device *dev);
260static void tulip_init_ring(struct net_device *dev);
261static void tulip_free_ring(struct net_device *dev);
262static netdev_tx_t tulip_start_xmit(struct sk_buff *skb,
263 struct net_device *dev);
264static int tulip_open(struct net_device *dev);
265static int tulip_close(struct net_device *dev);
266static void tulip_up(struct net_device *dev);
267static void tulip_down(struct net_device *dev);
268static struct net_device_stats *tulip_get_stats(struct net_device *dev);
269static int private_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
270static void set_rx_mode(struct net_device *dev);
271static void tulip_set_wolopts(struct pci_dev *pdev, u32 wolopts);
272#ifdef CONFIG_NET_POLL_CONTROLLER
273static void poll_tulip(struct net_device *dev);
274#endif
275
276static void tulip_set_power_state (struct tulip_private *tp,
277 int sleep, int snooze)
278{
279 if (tp->flags & HAS_ACPI) {
280 u32 tmp, newtmp;
281 pci_read_config_dword (tp->pdev, CFDD, &tmp);
282 newtmp = tmp & ~(CFDD_Sleep | CFDD_Snooze);
283 if (sleep)
284 newtmp |= CFDD_Sleep;
285 else if (snooze)
286 newtmp |= CFDD_Snooze;
287 if (tmp != newtmp)
288 pci_write_config_dword (tp->pdev, CFDD, newtmp);
289 }
290
291}
292
293
294static void tulip_up(struct net_device *dev)
295{
296 struct tulip_private *tp = netdev_priv(dev);
297 void __iomem *ioaddr = tp->base_addr;
298 int next_tick = 3*HZ;
299 u32 reg;
300 int i;
301
302#ifdef CONFIG_TULIP_NAPI
303 napi_enable(&tp->napi);
304#endif
305
306 /* Wake the chip from sleep/snooze mode. */
307 tulip_set_power_state (tp, 0, 0);
308
309 /* Disable all WOL events */
310 pci_enable_wake(tp->pdev, PCI_D3hot, 0);
311 pci_enable_wake(tp->pdev, PCI_D3cold, 0);
312 tulip_set_wolopts(tp->pdev, 0);
313
314 /* On some chip revs we must set the MII/SYM port before the reset!? */
315 if (tp->mii_cnt || (tp->mtable && tp->mtable->has_mii))
316 iowrite32(0x00040000, ioaddr + CSR6);
317
318 /* Reset the chip, holding bit 0 set at least 50 PCI cycles. */
319 iowrite32(0x00000001, ioaddr + CSR0);
320 pci_read_config_dword(tp->pdev, PCI_COMMAND, ®); /* flush write */
321 udelay(100);
322
323 /* Deassert reset.
324 Wait the specified 50 PCI cycles after a reset by initializing
325 Tx and Rx queues and the address filter list. */
326 iowrite32(tp->csr0, ioaddr + CSR0);
327 pci_read_config_dword(tp->pdev, PCI_COMMAND, ®); /* flush write */
328 udelay(100);
329
330 if (tulip_debug > 1)
331 netdev_dbg(dev, "tulip_up(), irq==%d\n", tp->pdev->irq);
332
333 iowrite32(tp->rx_ring_dma, ioaddr + CSR3);
334 iowrite32(tp->tx_ring_dma, ioaddr + CSR4);
335 tp->cur_rx = tp->cur_tx = 0;
336 tp->dirty_rx = tp->dirty_tx = 0;
337
338 if (tp->flags & MC_HASH_ONLY) {
339 u32 addr_low = get_unaligned_le32(dev->dev_addr);
340 u32 addr_high = get_unaligned_le16(dev->dev_addr + 4);
341 if (tp->chip_id == AX88140) {
342 iowrite32(0, ioaddr + CSR13);
343 iowrite32(addr_low, ioaddr + CSR14);
344 iowrite32(1, ioaddr + CSR13);
345 iowrite32(addr_high, ioaddr + CSR14);
346 } else if (tp->flags & COMET_MAC_ADDR) {
347 iowrite32(addr_low, ioaddr + 0xA4);
348 iowrite32(addr_high, ioaddr + 0xA8);
349 iowrite32(0, ioaddr + CSR27);
350 iowrite32(0, ioaddr + CSR28);
351 }
352 } else {
353 /* This is set_rx_mode(), but without starting the transmitter. */
354 u16 *eaddrs = (u16 *)dev->dev_addr;
355 u16 *setup_frm = &tp->setup_frame[15*6];
356 dma_addr_t mapping;
357
358 /* 21140 bug: you must add the broadcast address. */
359 memset(tp->setup_frame, 0xff, sizeof(tp->setup_frame));
360 /* Fill the final entry of the table with our physical address. */
361 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
362 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
363 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
364
365 mapping = pci_map_single(tp->pdev, tp->setup_frame,
366 sizeof(tp->setup_frame),
367 PCI_DMA_TODEVICE);
368 tp->tx_buffers[tp->cur_tx].skb = NULL;
369 tp->tx_buffers[tp->cur_tx].mapping = mapping;
370
371 /* Put the setup frame on the Tx list. */
372 tp->tx_ring[tp->cur_tx].length = cpu_to_le32(0x08000000 | 192);
373 tp->tx_ring[tp->cur_tx].buffer1 = cpu_to_le32(mapping);
374 tp->tx_ring[tp->cur_tx].status = cpu_to_le32(DescOwned);
375
376 tp->cur_tx++;
377 }
378
379 tp->saved_if_port = dev->if_port;
380 if (dev->if_port == 0)
381 dev->if_port = tp->default_port;
382
383 /* Allow selecting a default media. */
384 i = 0;
385 if (tp->mtable == NULL)
386 goto media_picked;
387 if (dev->if_port) {
388 int looking_for = tulip_media_cap[dev->if_port] & MediaIsMII ? 11 :
389 (dev->if_port == 12 ? 0 : dev->if_port);
390 for (i = 0; i < tp->mtable->leafcount; i++)
391 if (tp->mtable->mleaf[i].media == looking_for) {
392 dev_info(&dev->dev,
393 "Using user-specified media %s\n",
394 medianame[dev->if_port]);
395 goto media_picked;
396 }
397 }
398 if ((tp->mtable->defaultmedia & 0x0800) == 0) {
399 int looking_for = tp->mtable->defaultmedia & MEDIA_MASK;
400 for (i = 0; i < tp->mtable->leafcount; i++)
401 if (tp->mtable->mleaf[i].media == looking_for) {
402 dev_info(&dev->dev,
403 "Using EEPROM-set media %s\n",
404 medianame[looking_for]);
405 goto media_picked;
406 }
407 }
408 /* Start sensing first non-full-duplex media. */
409 for (i = tp->mtable->leafcount - 1;
410 (tulip_media_cap[tp->mtable->mleaf[i].media] & MediaAlwaysFD) && i > 0; i--)
411 ;
412media_picked:
413
414 tp->csr6 = 0;
415 tp->cur_index = i;
416 tp->nwayset = 0;
417
418 if (dev->if_port) {
419 if (tp->chip_id == DC21143 &&
420 (tulip_media_cap[dev->if_port] & MediaIsMII)) {
421 /* We must reset the media CSRs when we force-select MII mode. */
422 iowrite32(0x0000, ioaddr + CSR13);
423 iowrite32(0x0000, ioaddr + CSR14);
424 iowrite32(0x0008, ioaddr + CSR15);
425 }
426 tulip_select_media(dev, 1);
427 } else if (tp->chip_id == DC21142) {
428 if (tp->mii_cnt) {
429 tulip_select_media(dev, 1);
430 if (tulip_debug > 1)
431 dev_info(&dev->dev,
432 "Using MII transceiver %d, status %04x\n",
433 tp->phys[0],
434 tulip_mdio_read(dev, tp->phys[0], 1));
435 iowrite32(csr6_mask_defstate, ioaddr + CSR6);
436 tp->csr6 = csr6_mask_hdcap;
437 dev->if_port = 11;
438 iowrite32(0x0000, ioaddr + CSR13);
439 iowrite32(0x0000, ioaddr + CSR14);
440 } else
441 t21142_start_nway(dev);
442 } else if (tp->chip_id == PNIC2) {
443 /* for initial startup advertise 10/100 Full and Half */
444 tp->sym_advertise = 0x01E0;
445 /* enable autonegotiate end interrupt */
446 iowrite32(ioread32(ioaddr+CSR5)| 0x00008010, ioaddr + CSR5);
447 iowrite32(ioread32(ioaddr+CSR7)| 0x00008010, ioaddr + CSR7);
448 pnic2_start_nway(dev);
449 } else if (tp->chip_id == LC82C168 && ! tp->medialock) {
450 if (tp->mii_cnt) {
451 dev->if_port = 11;
452 tp->csr6 = 0x814C0000 | (tp->full_duplex ? 0x0200 : 0);
453 iowrite32(0x0001, ioaddr + CSR15);
454 } else if (ioread32(ioaddr + CSR5) & TPLnkPass)
455 pnic_do_nway(dev);
456 else {
457 /* Start with 10mbps to do autonegotiation. */
458 iowrite32(0x32, ioaddr + CSR12);
459 tp->csr6 = 0x00420000;
460 iowrite32(0x0001B078, ioaddr + 0xB8);
461 iowrite32(0x0201B078, ioaddr + 0xB8);
462 next_tick = 1*HZ;
463 }
464 } else if ((tp->chip_id == MX98713 || tp->chip_id == COMPEX9881) &&
465 ! tp->medialock) {
466 dev->if_port = 0;
467 tp->csr6 = 0x01880000 | (tp->full_duplex ? 0x0200 : 0);
468 iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80);
469 } else if (tp->chip_id == MX98715 || tp->chip_id == MX98725) {
470 /* Provided by BOLO, Macronix - 12/10/1998. */
471 dev->if_port = 0;
472 tp->csr6 = 0x01a80200;
473 iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80);
474 iowrite32(0x11000 | ioread16(ioaddr + 0xa0), ioaddr + 0xa0);
475 } else if (tp->chip_id == COMET || tp->chip_id == CONEXANT) {
476 /* Enable automatic Tx underrun recovery. */
477 iowrite32(ioread32(ioaddr + 0x88) | 1, ioaddr + 0x88);
478 dev->if_port = tp->mii_cnt ? 11 : 0;
479 tp->csr6 = 0x00040000;
480 } else if (tp->chip_id == AX88140) {
481 tp->csr6 = tp->mii_cnt ? 0x00040100 : 0x00000100;
482 } else
483 tulip_select_media(dev, 1);
484
485 /* Start the chip's Tx to process setup frame. */
486 tulip_stop_rxtx(tp);
487 barrier();
488 udelay(5);
489 iowrite32(tp->csr6 | TxOn, ioaddr + CSR6);
490
491 /* Enable interrupts by setting the interrupt mask. */
492 iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR5);
493 iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR7);
494 tulip_start_rxtx(tp);
495 iowrite32(0, ioaddr + CSR2); /* Rx poll demand */
496
497 if (tulip_debug > 2) {
498 netdev_dbg(dev, "Done tulip_up(), CSR0 %08x, CSR5 %08x CSR6 %08x\n",
499 ioread32(ioaddr + CSR0),
500 ioread32(ioaddr + CSR5),
501 ioread32(ioaddr + CSR6));
502 }
503
504 /* Set the timer to switch to check for link beat and perhaps switch
505 to an alternate media type. */
506 tp->timer.expires = RUN_AT(next_tick);
507 add_timer(&tp->timer);
508#ifdef CONFIG_TULIP_NAPI
509 init_timer(&tp->oom_timer);
510 tp->oom_timer.data = (unsigned long)dev;
511 tp->oom_timer.function = oom_timer;
512#endif
513}
514
515static int
516tulip_open(struct net_device *dev)
517{
518 struct tulip_private *tp = netdev_priv(dev);
519 int retval;
520
521 tulip_init_ring (dev);
522
523 retval = request_irq(tp->pdev->irq, tulip_interrupt, IRQF_SHARED,
524 dev->name, dev);
525 if (retval)
526 goto free_ring;
527
528 tulip_up (dev);
529
530 netif_start_queue (dev);
531
532 return 0;
533
534free_ring:
535 tulip_free_ring (dev);
536 return retval;
537}
538
539
540static void tulip_tx_timeout(struct net_device *dev)
541{
542 struct tulip_private *tp = netdev_priv(dev);
543 void __iomem *ioaddr = tp->base_addr;
544 unsigned long flags;
545
546 spin_lock_irqsave (&tp->lock, flags);
547
548 if (tulip_media_cap[dev->if_port] & MediaIsMII) {
549 /* Do nothing -- the media monitor should handle this. */
550 if (tulip_debug > 1)
551 dev_warn(&dev->dev,
552 "Transmit timeout using MII device\n");
553 } else if (tp->chip_id == DC21140 || tp->chip_id == DC21142 ||
554 tp->chip_id == MX98713 || tp->chip_id == COMPEX9881 ||
555 tp->chip_id == DM910X) {
556 dev_warn(&dev->dev,
557 "21140 transmit timed out, status %08x, SIA %08x %08x %08x %08x, resetting...\n",
558 ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12),
559 ioread32(ioaddr + CSR13), ioread32(ioaddr + CSR14),
560 ioread32(ioaddr + CSR15));
561 tp->timeout_recovery = 1;
562 schedule_work(&tp->media_work);
563 goto out_unlock;
564 } else if (tp->chip_id == PNIC2) {
565 dev_warn(&dev->dev,
566 "PNIC2 transmit timed out, status %08x, CSR6/7 %08x / %08x CSR12 %08x, resetting...\n",
567 (int)ioread32(ioaddr + CSR5),
568 (int)ioread32(ioaddr + CSR6),
569 (int)ioread32(ioaddr + CSR7),
570 (int)ioread32(ioaddr + CSR12));
571 } else {
572 dev_warn(&dev->dev,
573 "Transmit timed out, status %08x, CSR12 %08x, resetting...\n",
574 ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12));
575 dev->if_port = 0;
576 }
577
578#if defined(way_too_many_messages)
579 if (tulip_debug > 3) {
580 int i;
581 for (i = 0; i < RX_RING_SIZE; i++) {
582 u8 *buf = (u8 *)(tp->rx_ring[i].buffer1);
583 int j;
584 printk(KERN_DEBUG
585 "%2d: %08x %08x %08x %08x %02x %02x %02x\n",
586 i,
587 (unsigned int)tp->rx_ring[i].status,
588 (unsigned int)tp->rx_ring[i].length,
589 (unsigned int)tp->rx_ring[i].buffer1,
590 (unsigned int)tp->rx_ring[i].buffer2,
591 buf[0], buf[1], buf[2]);
592 for (j = 0; buf[j] != 0xee && j < 1600; j++)
593 if (j < 100)
594 pr_cont(" %02x", buf[j]);
595 pr_cont(" j=%d\n", j);
596 }
597 printk(KERN_DEBUG " Rx ring %p: ", tp->rx_ring);
598 for (i = 0; i < RX_RING_SIZE; i++)
599 pr_cont(" %08x", (unsigned int)tp->rx_ring[i].status);
600 printk(KERN_DEBUG " Tx ring %p: ", tp->tx_ring);
601 for (i = 0; i < TX_RING_SIZE; i++)
602 pr_cont(" %08x", (unsigned int)tp->tx_ring[i].status);
603 pr_cont("\n");
604 }
605#endif
606
607 tulip_tx_timeout_complete(tp, ioaddr);
608
609out_unlock:
610 spin_unlock_irqrestore (&tp->lock, flags);
611 dev->trans_start = jiffies; /* prevent tx timeout */
612 netif_wake_queue (dev);
613}
614
615
616/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
617static void tulip_init_ring(struct net_device *dev)
618{
619 struct tulip_private *tp = netdev_priv(dev);
620 int i;
621
622 tp->susp_rx = 0;
623 tp->ttimer = 0;
624 tp->nir = 0;
625
626 for (i = 0; i < RX_RING_SIZE; i++) {
627 tp->rx_ring[i].status = 0x00000000;
628 tp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ);
629 tp->rx_ring[i].buffer2 = cpu_to_le32(tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * (i + 1));
630 tp->rx_buffers[i].skb = NULL;
631 tp->rx_buffers[i].mapping = 0;
632 }
633 /* Mark the last entry as wrapping the ring. */
634 tp->rx_ring[i-1].length = cpu_to_le32(PKT_BUF_SZ | DESC_RING_WRAP);
635 tp->rx_ring[i-1].buffer2 = cpu_to_le32(tp->rx_ring_dma);
636
637 for (i = 0; i < RX_RING_SIZE; i++) {
638 dma_addr_t mapping;
639
640 /* Note the receive buffer must be longword aligned.
641 netdev_alloc_skb() provides 16 byte alignment. But do *not*
642 use skb_reserve() to align the IP header! */
643 struct sk_buff *skb = netdev_alloc_skb(dev, PKT_BUF_SZ);
644 tp->rx_buffers[i].skb = skb;
645 if (skb == NULL)
646 break;
647 mapping = pci_map_single(tp->pdev, skb->data,
648 PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
649 tp->rx_buffers[i].mapping = mapping;
650 tp->rx_ring[i].status = cpu_to_le32(DescOwned); /* Owned by Tulip chip */
651 tp->rx_ring[i].buffer1 = cpu_to_le32(mapping);
652 }
653 tp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
654
655 /* The Tx buffer descriptor is filled in as needed, but we
656 do need to clear the ownership bit. */
657 for (i = 0; i < TX_RING_SIZE; i++) {
658 tp->tx_buffers[i].skb = NULL;
659 tp->tx_buffers[i].mapping = 0;
660 tp->tx_ring[i].status = 0x00000000;
661 tp->tx_ring[i].buffer2 = cpu_to_le32(tp->tx_ring_dma + sizeof(struct tulip_tx_desc) * (i + 1));
662 }
663 tp->tx_ring[i-1].buffer2 = cpu_to_le32(tp->tx_ring_dma);
664}
665
666static netdev_tx_t
667tulip_start_xmit(struct sk_buff *skb, struct net_device *dev)
668{
669 struct tulip_private *tp = netdev_priv(dev);
670 int entry;
671 u32 flag;
672 dma_addr_t mapping;
673 unsigned long flags;
674
675 spin_lock_irqsave(&tp->lock, flags);
676
677 /* Calculate the next Tx descriptor entry. */
678 entry = tp->cur_tx % TX_RING_SIZE;
679
680 tp->tx_buffers[entry].skb = skb;
681 mapping = pci_map_single(tp->pdev, skb->data,
682 skb->len, PCI_DMA_TODEVICE);
683 tp->tx_buffers[entry].mapping = mapping;
684 tp->tx_ring[entry].buffer1 = cpu_to_le32(mapping);
685
686 if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE/2) {/* Typical path */
687 flag = 0x60000000; /* No interrupt */
688 } else if (tp->cur_tx - tp->dirty_tx == TX_RING_SIZE/2) {
689 flag = 0xe0000000; /* Tx-done intr. */
690 } else if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE - 2) {
691 flag = 0x60000000; /* No Tx-done intr. */
692 } else { /* Leave room for set_rx_mode() to fill entries. */
693 flag = 0xe0000000; /* Tx-done intr. */
694 netif_stop_queue(dev);
695 }
696 if (entry == TX_RING_SIZE-1)
697 flag = 0xe0000000 | DESC_RING_WRAP;
698
699 tp->tx_ring[entry].length = cpu_to_le32(skb->len | flag);
700 /* if we were using Transmit Automatic Polling, we would need a
701 * wmb() here. */
702 tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
703 wmb();
704
705 tp->cur_tx++;
706
707 /* Trigger an immediate transmit demand. */
708 iowrite32(0, tp->base_addr + CSR1);
709
710 spin_unlock_irqrestore(&tp->lock, flags);
711
712 return NETDEV_TX_OK;
713}
714
715static void tulip_clean_tx_ring(struct tulip_private *tp)
716{
717 unsigned int dirty_tx;
718
719 for (dirty_tx = tp->dirty_tx ; tp->cur_tx - dirty_tx > 0;
720 dirty_tx++) {
721 int entry = dirty_tx % TX_RING_SIZE;
722 int status = le32_to_cpu(tp->tx_ring[entry].status);
723
724 if (status < 0) {
725 tp->dev->stats.tx_errors++; /* It wasn't Txed */
726 tp->tx_ring[entry].status = 0;
727 }
728
729 /* Check for Tx filter setup frames. */
730 if (tp->tx_buffers[entry].skb == NULL) {
731 /* test because dummy frames not mapped */
732 if (tp->tx_buffers[entry].mapping)
733 pci_unmap_single(tp->pdev,
734 tp->tx_buffers[entry].mapping,
735 sizeof(tp->setup_frame),
736 PCI_DMA_TODEVICE);
737 continue;
738 }
739
740 pci_unmap_single(tp->pdev, tp->tx_buffers[entry].mapping,
741 tp->tx_buffers[entry].skb->len,
742 PCI_DMA_TODEVICE);
743
744 /* Free the original skb. */
745 dev_kfree_skb_irq(tp->tx_buffers[entry].skb);
746 tp->tx_buffers[entry].skb = NULL;
747 tp->tx_buffers[entry].mapping = 0;
748 }
749}
750
751static void tulip_down (struct net_device *dev)
752{
753 struct tulip_private *tp = netdev_priv(dev);
754 void __iomem *ioaddr = tp->base_addr;
755 unsigned long flags;
756
757 cancel_work_sync(&tp->media_work);
758
759#ifdef CONFIG_TULIP_NAPI
760 napi_disable(&tp->napi);
761#endif
762
763 del_timer_sync (&tp->timer);
764#ifdef CONFIG_TULIP_NAPI
765 del_timer_sync (&tp->oom_timer);
766#endif
767 spin_lock_irqsave (&tp->lock, flags);
768
769 /* Disable interrupts by clearing the interrupt mask. */
770 iowrite32 (0x00000000, ioaddr + CSR7);
771
772 /* Stop the Tx and Rx processes. */
773 tulip_stop_rxtx(tp);
774
775 /* prepare receive buffers */
776 tulip_refill_rx(dev);
777
778 /* release any unconsumed transmit buffers */
779 tulip_clean_tx_ring(tp);
780
781 if (ioread32(ioaddr + CSR6) != 0xffffffff)
782 dev->stats.rx_missed_errors += ioread32(ioaddr + CSR8) & 0xffff;
783
784 spin_unlock_irqrestore (&tp->lock, flags);
785
786 init_timer(&tp->timer);
787 tp->timer.data = (unsigned long)dev;
788 tp->timer.function = tulip_tbl[tp->chip_id].media_timer;
789
790 dev->if_port = tp->saved_if_port;
791
792 /* Leave the driver in snooze, not sleep, mode. */
793 tulip_set_power_state (tp, 0, 1);
794}
795
796static void tulip_free_ring (struct net_device *dev)
797{
798 struct tulip_private *tp = netdev_priv(dev);
799 int i;
800
801 /* Free all the skbuffs in the Rx queue. */
802 for (i = 0; i < RX_RING_SIZE; i++) {
803 struct sk_buff *skb = tp->rx_buffers[i].skb;
804 dma_addr_t mapping = tp->rx_buffers[i].mapping;
805
806 tp->rx_buffers[i].skb = NULL;
807 tp->rx_buffers[i].mapping = 0;
808
809 tp->rx_ring[i].status = 0; /* Not owned by Tulip chip. */
810 tp->rx_ring[i].length = 0;
811 /* An invalid address. */
812 tp->rx_ring[i].buffer1 = cpu_to_le32(0xBADF00D0);
813 if (skb) {
814 pci_unmap_single(tp->pdev, mapping, PKT_BUF_SZ,
815 PCI_DMA_FROMDEVICE);
816 dev_kfree_skb (skb);
817 }
818 }
819
820 for (i = 0; i < TX_RING_SIZE; i++) {
821 struct sk_buff *skb = tp->tx_buffers[i].skb;
822
823 if (skb != NULL) {
824 pci_unmap_single(tp->pdev, tp->tx_buffers[i].mapping,
825 skb->len, PCI_DMA_TODEVICE);
826 dev_kfree_skb (skb);
827 }
828 tp->tx_buffers[i].skb = NULL;
829 tp->tx_buffers[i].mapping = 0;
830 }
831}
832
833static int tulip_close (struct net_device *dev)
834{
835 struct tulip_private *tp = netdev_priv(dev);
836 void __iomem *ioaddr = tp->base_addr;
837
838 netif_stop_queue (dev);
839
840 tulip_down (dev);
841
842 if (tulip_debug > 1)
843 netdev_dbg(dev, "Shutting down ethercard, status was %02x\n",
844 ioread32 (ioaddr + CSR5));
845
846 free_irq (tp->pdev->irq, dev);
847
848 tulip_free_ring (dev);
849
850 return 0;
851}
852
853static struct net_device_stats *tulip_get_stats(struct net_device *dev)
854{
855 struct tulip_private *tp = netdev_priv(dev);
856 void __iomem *ioaddr = tp->base_addr;
857
858 if (netif_running(dev)) {
859 unsigned long flags;
860
861 spin_lock_irqsave (&tp->lock, flags);
862
863 dev->stats.rx_missed_errors += ioread32(ioaddr + CSR8) & 0xffff;
864
865 spin_unlock_irqrestore(&tp->lock, flags);
866 }
867
868 return &dev->stats;
869}
870
871
872static void tulip_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
873{
874 struct tulip_private *np = netdev_priv(dev);
875 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
876 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
877 strlcpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
878}
879
880
881static int tulip_ethtool_set_wol(struct net_device *dev,
882 struct ethtool_wolinfo *wolinfo)
883{
884 struct tulip_private *tp = netdev_priv(dev);
885
886 if (wolinfo->wolopts & (~tp->wolinfo.supported))
887 return -EOPNOTSUPP;
888
889 tp->wolinfo.wolopts = wolinfo->wolopts;
890 device_set_wakeup_enable(&tp->pdev->dev, tp->wolinfo.wolopts);
891 return 0;
892}
893
894static void tulip_ethtool_get_wol(struct net_device *dev,
895 struct ethtool_wolinfo *wolinfo)
896{
897 struct tulip_private *tp = netdev_priv(dev);
898
899 wolinfo->supported = tp->wolinfo.supported;
900 wolinfo->wolopts = tp->wolinfo.wolopts;
901 return;
902}
903
904
905static const struct ethtool_ops ops = {
906 .get_drvinfo = tulip_get_drvinfo,
907 .set_wol = tulip_ethtool_set_wol,
908 .get_wol = tulip_ethtool_get_wol,
909};
910
911/* Provide ioctl() calls to examine the MII xcvr state. */
912static int private_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
913{
914 struct tulip_private *tp = netdev_priv(dev);
915 void __iomem *ioaddr = tp->base_addr;
916 struct mii_ioctl_data *data = if_mii(rq);
917 const unsigned int phy_idx = 0;
918 int phy = tp->phys[phy_idx] & 0x1f;
919 unsigned int regnum = data->reg_num;
920
921 switch (cmd) {
922 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
923 if (tp->mii_cnt)
924 data->phy_id = phy;
925 else if (tp->flags & HAS_NWAY)
926 data->phy_id = 32;
927 else if (tp->chip_id == COMET)
928 data->phy_id = 1;
929 else
930 return -ENODEV;
931
932 case SIOCGMIIREG: /* Read MII PHY register. */
933 if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
934 int csr12 = ioread32 (ioaddr + CSR12);
935 int csr14 = ioread32 (ioaddr + CSR14);
936 switch (regnum) {
937 case 0:
938 if (((csr14<<5) & 0x1000) ||
939 (dev->if_port == 5 && tp->nwayset))
940 data->val_out = 0x1000;
941 else
942 data->val_out = (tulip_media_cap[dev->if_port]&MediaIs100 ? 0x2000 : 0)
943 | (tulip_media_cap[dev->if_port]&MediaIsFD ? 0x0100 : 0);
944 break;
945 case 1:
946 data->val_out =
947 0x1848 +
948 ((csr12&0x7000) == 0x5000 ? 0x20 : 0) +
949 ((csr12&0x06) == 6 ? 0 : 4);
950 data->val_out |= 0x6048;
951 break;
952 case 4:
953 /* Advertised value, bogus 10baseTx-FD value from CSR6. */
954 data->val_out =
955 ((ioread32(ioaddr + CSR6) >> 3) & 0x0040) +
956 ((csr14 >> 1) & 0x20) + 1;
957 data->val_out |= ((csr14 >> 9) & 0x03C0);
958 break;
959 case 5: data->val_out = tp->lpar; break;
960 default: data->val_out = 0; break;
961 }
962 } else {
963 data->val_out = tulip_mdio_read (dev, data->phy_id & 0x1f, regnum);
964 }
965 return 0;
966
967 case SIOCSMIIREG: /* Write MII PHY register. */
968 if (regnum & ~0x1f)
969 return -EINVAL;
970 if (data->phy_id == phy) {
971 u16 value = data->val_in;
972 switch (regnum) {
973 case 0: /* Check for autonegotiation on or reset. */
974 tp->full_duplex_lock = (value & 0x9000) ? 0 : 1;
975 if (tp->full_duplex_lock)
976 tp->full_duplex = (value & 0x0100) ? 1 : 0;
977 break;
978 case 4:
979 tp->advertising[phy_idx] =
980 tp->mii_advertise = data->val_in;
981 break;
982 }
983 }
984 if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
985 u16 value = data->val_in;
986 if (regnum == 0) {
987 if ((value & 0x1200) == 0x1200) {
988 if (tp->chip_id == PNIC2) {
989 pnic2_start_nway (dev);
990 } else {
991 t21142_start_nway (dev);
992 }
993 }
994 } else if (regnum == 4)
995 tp->sym_advertise = value;
996 } else {
997 tulip_mdio_write (dev, data->phy_id & 0x1f, regnum, data->val_in);
998 }
999 return 0;
1000 default:
1001 return -EOPNOTSUPP;
1002 }
1003
1004 return -EOPNOTSUPP;
1005}
1006
1007
1008/* Set or clear the multicast filter for this adaptor.
1009 Note that we only use exclusion around actually queueing the
1010 new frame, not around filling tp->setup_frame. This is non-deterministic
1011 when re-entered but still correct. */
1012
1013#undef set_bit_le
1014#define set_bit_le(i,p) do { ((char *)(p))[(i)/8] |= (1<<((i)%8)); } while(0)
1015
1016static void build_setup_frame_hash(u16 *setup_frm, struct net_device *dev)
1017{
1018 struct tulip_private *tp = netdev_priv(dev);
1019 u16 hash_table[32];
1020 struct netdev_hw_addr *ha;
1021 int i;
1022 u16 *eaddrs;
1023
1024 memset(hash_table, 0, sizeof(hash_table));
1025 set_bit_le(255, hash_table); /* Broadcast entry */
1026 /* This should work on big-endian machines as well. */
1027 netdev_for_each_mc_addr(ha, dev) {
1028 int index = ether_crc_le(ETH_ALEN, ha->addr) & 0x1ff;
1029
1030 set_bit_le(index, hash_table);
1031 }
1032 for (i = 0; i < 32; i++) {
1033 *setup_frm++ = hash_table[i];
1034 *setup_frm++ = hash_table[i];
1035 }
1036 setup_frm = &tp->setup_frame[13*6];
1037
1038 /* Fill the final entry with our physical address. */
1039 eaddrs = (u16 *)dev->dev_addr;
1040 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
1041 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
1042 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
1043}
1044
1045static void build_setup_frame_perfect(u16 *setup_frm, struct net_device *dev)
1046{
1047 struct tulip_private *tp = netdev_priv(dev);
1048 struct netdev_hw_addr *ha;
1049 u16 *eaddrs;
1050
1051 /* We have <= 14 addresses so we can use the wonderful
1052 16 address perfect filtering of the Tulip. */
1053 netdev_for_each_mc_addr(ha, dev) {
1054 eaddrs = (u16 *) ha->addr;
1055 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1056 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1057 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1058 }
1059 /* Fill the unused entries with the broadcast address. */
1060 memset(setup_frm, 0xff, (15 - netdev_mc_count(dev)) * 12);
1061 setup_frm = &tp->setup_frame[15*6];
1062
1063 /* Fill the final entry with our physical address. */
1064 eaddrs = (u16 *)dev->dev_addr;
1065 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
1066 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
1067 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
1068}
1069
1070
1071static void set_rx_mode(struct net_device *dev)
1072{
1073 struct tulip_private *tp = netdev_priv(dev);
1074 void __iomem *ioaddr = tp->base_addr;
1075 int csr6;
1076
1077 csr6 = ioread32(ioaddr + CSR6) & ~0x00D5;
1078
1079 tp->csr6 &= ~0x00D5;
1080 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1081 tp->csr6 |= AcceptAllMulticast | AcceptAllPhys;
1082 csr6 |= AcceptAllMulticast | AcceptAllPhys;
1083 } else if ((netdev_mc_count(dev) > 1000) ||
1084 (dev->flags & IFF_ALLMULTI)) {
1085 /* Too many to filter well -- accept all multicasts. */
1086 tp->csr6 |= AcceptAllMulticast;
1087 csr6 |= AcceptAllMulticast;
1088 } else if (tp->flags & MC_HASH_ONLY) {
1089 /* Some work-alikes have only a 64-entry hash filter table. */
1090 /* Should verify correctness on big-endian/__powerpc__ */
1091 struct netdev_hw_addr *ha;
1092 if (netdev_mc_count(dev) > 64) {
1093 /* Arbitrary non-effective limit. */
1094 tp->csr6 |= AcceptAllMulticast;
1095 csr6 |= AcceptAllMulticast;
1096 } else {
1097 u32 mc_filter[2] = {0, 0}; /* Multicast hash filter */
1098 int filterbit;
1099 netdev_for_each_mc_addr(ha, dev) {
1100 if (tp->flags & COMET_MAC_ADDR)
1101 filterbit = ether_crc_le(ETH_ALEN,
1102 ha->addr);
1103 else
1104 filterbit = ether_crc(ETH_ALEN,
1105 ha->addr) >> 26;
1106 filterbit &= 0x3f;
1107 mc_filter[filterbit >> 5] |= 1 << (filterbit & 31);
1108 if (tulip_debug > 2)
1109 dev_info(&dev->dev,
1110 "Added filter for %pM %08x bit %d\n",
1111 ha->addr,
1112 ether_crc(ETH_ALEN, ha->addr),
1113 filterbit);
1114 }
1115 if (mc_filter[0] == tp->mc_filter[0] &&
1116 mc_filter[1] == tp->mc_filter[1])
1117 ; /* No change. */
1118 else if (tp->flags & IS_ASIX) {
1119 iowrite32(2, ioaddr + CSR13);
1120 iowrite32(mc_filter[0], ioaddr + CSR14);
1121 iowrite32(3, ioaddr + CSR13);
1122 iowrite32(mc_filter[1], ioaddr + CSR14);
1123 } else if (tp->flags & COMET_MAC_ADDR) {
1124 iowrite32(mc_filter[0], ioaddr + CSR27);
1125 iowrite32(mc_filter[1], ioaddr + CSR28);
1126 }
1127 tp->mc_filter[0] = mc_filter[0];
1128 tp->mc_filter[1] = mc_filter[1];
1129 }
1130 } else {
1131 unsigned long flags;
1132 u32 tx_flags = 0x08000000 | 192;
1133
1134 /* Note that only the low-address shortword of setup_frame is valid!
1135 The values are doubled for big-endian architectures. */
1136 if (netdev_mc_count(dev) > 14) {
1137 /* Must use a multicast hash table. */
1138 build_setup_frame_hash(tp->setup_frame, dev);
1139 tx_flags = 0x08400000 | 192;
1140 } else {
1141 build_setup_frame_perfect(tp->setup_frame, dev);
1142 }
1143
1144 spin_lock_irqsave(&tp->lock, flags);
1145
1146 if (tp->cur_tx - tp->dirty_tx > TX_RING_SIZE - 2) {
1147 /* Same setup recently queued, we need not add it. */
1148 } else {
1149 unsigned int entry;
1150 int dummy = -1;
1151
1152 /* Now add this frame to the Tx list. */
1153
1154 entry = tp->cur_tx++ % TX_RING_SIZE;
1155
1156 if (entry != 0) {
1157 /* Avoid a chip errata by prefixing a dummy entry. */
1158 tp->tx_buffers[entry].skb = NULL;
1159 tp->tx_buffers[entry].mapping = 0;
1160 tp->tx_ring[entry].length =
1161 (entry == TX_RING_SIZE-1) ? cpu_to_le32(DESC_RING_WRAP) : 0;
1162 tp->tx_ring[entry].buffer1 = 0;
1163 /* Must set DescOwned later to avoid race with chip */
1164 dummy = entry;
1165 entry = tp->cur_tx++ % TX_RING_SIZE;
1166
1167 }
1168
1169 tp->tx_buffers[entry].skb = NULL;
1170 tp->tx_buffers[entry].mapping =
1171 pci_map_single(tp->pdev, tp->setup_frame,
1172 sizeof(tp->setup_frame),
1173 PCI_DMA_TODEVICE);
1174 /* Put the setup frame on the Tx list. */
1175 if (entry == TX_RING_SIZE-1)
1176 tx_flags |= DESC_RING_WRAP; /* Wrap ring. */
1177 tp->tx_ring[entry].length = cpu_to_le32(tx_flags);
1178 tp->tx_ring[entry].buffer1 =
1179 cpu_to_le32(tp->tx_buffers[entry].mapping);
1180 tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
1181 if (dummy >= 0)
1182 tp->tx_ring[dummy].status = cpu_to_le32(DescOwned);
1183 if (tp->cur_tx - tp->dirty_tx >= TX_RING_SIZE - 2)
1184 netif_stop_queue(dev);
1185
1186 /* Trigger an immediate transmit demand. */
1187 iowrite32(0, ioaddr + CSR1);
1188 }
1189
1190 spin_unlock_irqrestore(&tp->lock, flags);
1191 }
1192
1193 iowrite32(csr6, ioaddr + CSR6);
1194}
1195
1196#ifdef CONFIG_TULIP_MWI
1197static void __devinit tulip_mwi_config (struct pci_dev *pdev,
1198 struct net_device *dev)
1199{
1200 struct tulip_private *tp = netdev_priv(dev);
1201 u8 cache;
1202 u16 pci_command;
1203 u32 csr0;
1204
1205 if (tulip_debug > 3)
1206 netdev_dbg(dev, "tulip_mwi_config()\n");
1207
1208 tp->csr0 = csr0 = 0;
1209
1210 /* if we have any cache line size at all, we can do MRM and MWI */
1211 csr0 |= MRM | MWI;
1212
1213 /* Enable MWI in the standard PCI command bit.
1214 * Check for the case where MWI is desired but not available
1215 */
1216 pci_try_set_mwi(pdev);
1217
1218 /* read result from hardware (in case bit refused to enable) */
1219 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
1220 if ((csr0 & MWI) && (!(pci_command & PCI_COMMAND_INVALIDATE)))
1221 csr0 &= ~MWI;
1222
1223 /* if cache line size hardwired to zero, no MWI */
1224 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache);
1225 if ((csr0 & MWI) && (cache == 0)) {
1226 csr0 &= ~MWI;
1227 pci_clear_mwi(pdev);
1228 }
1229
1230 /* assign per-cacheline-size cache alignment and
1231 * burst length values
1232 */
1233 switch (cache) {
1234 case 8:
1235 csr0 |= MRL | (1 << CALShift) | (16 << BurstLenShift);
1236 break;
1237 case 16:
1238 csr0 |= MRL | (2 << CALShift) | (16 << BurstLenShift);
1239 break;
1240 case 32:
1241 csr0 |= MRL | (3 << CALShift) | (32 << BurstLenShift);
1242 break;
1243 default:
1244 cache = 0;
1245 break;
1246 }
1247
1248 /* if we have a good cache line size, we by now have a good
1249 * csr0, so save it and exit
1250 */
1251 if (cache)
1252 goto out;
1253
1254 /* we don't have a good csr0 or cache line size, disable MWI */
1255 if (csr0 & MWI) {
1256 pci_clear_mwi(pdev);
1257 csr0 &= ~MWI;
1258 }
1259
1260 /* sane defaults for burst length and cache alignment
1261 * originally from de4x5 driver
1262 */
1263 csr0 |= (8 << BurstLenShift) | (1 << CALShift);
1264
1265out:
1266 tp->csr0 = csr0;
1267 if (tulip_debug > 2)
1268 netdev_dbg(dev, "MWI config cacheline=%d, csr0=%08x\n",
1269 cache, csr0);
1270}
1271#endif
1272
1273/*
1274 * Chips that have the MRM/reserved bit quirk and the burst quirk. That
1275 * is the DM910X and the on chip ULi devices
1276 */
1277
1278static int tulip_uli_dm_quirk(struct pci_dev *pdev)
1279{
1280 if (pdev->vendor == 0x1282 && pdev->device == 0x9102)
1281 return 1;
1282 return 0;
1283}
1284
1285static const struct net_device_ops tulip_netdev_ops = {
1286 .ndo_open = tulip_open,
1287 .ndo_start_xmit = tulip_start_xmit,
1288 .ndo_tx_timeout = tulip_tx_timeout,
1289 .ndo_stop = tulip_close,
1290 .ndo_get_stats = tulip_get_stats,
1291 .ndo_do_ioctl = private_ioctl,
1292 .ndo_set_rx_mode = set_rx_mode,
1293 .ndo_change_mtu = eth_change_mtu,
1294 .ndo_set_mac_address = eth_mac_addr,
1295 .ndo_validate_addr = eth_validate_addr,
1296#ifdef CONFIG_NET_POLL_CONTROLLER
1297 .ndo_poll_controller = poll_tulip,
1298#endif
1299};
1300
1301DEFINE_PCI_DEVICE_TABLE(early_486_chipsets) = {
1302 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82424) },
1303 { PCI_DEVICE(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_496) },
1304 { },
1305};
1306
1307static int __devinit tulip_init_one (struct pci_dev *pdev,
1308 const struct pci_device_id *ent)
1309{
1310 struct tulip_private *tp;
1311 /* See note below on the multiport cards. */
1312 static unsigned char last_phys_addr[6] = {0x00, 'L', 'i', 'n', 'u', 'x'};
1313 static int last_irq;
1314 static int multiport_cnt; /* For four-port boards w/one EEPROM */
1315 int i, irq;
1316 unsigned short sum;
1317 unsigned char *ee_data;
1318 struct net_device *dev;
1319 void __iomem *ioaddr;
1320 static int board_idx = -1;
1321 int chip_idx = ent->driver_data;
1322 const char *chip_name = tulip_tbl[chip_idx].chip_name;
1323 unsigned int eeprom_missing = 0;
1324 unsigned int force_csr0 = 0;
1325
1326#ifndef MODULE
1327 if (tulip_debug > 0)
1328 printk_once(KERN_INFO "%s", version);
1329#endif
1330
1331 board_idx++;
1332
1333 /*
1334 * Lan media wire a tulip chip to a wan interface. Needs a very
1335 * different driver (lmc driver)
1336 */
1337
1338 if (pdev->subsystem_vendor == PCI_VENDOR_ID_LMC) {
1339 pr_err("skipping LMC card\n");
1340 return -ENODEV;
1341 } else if (pdev->subsystem_vendor == PCI_VENDOR_ID_SBE &&
1342 (pdev->subsystem_device == PCI_SUBDEVICE_ID_SBE_T3E3 ||
1343 pdev->subsystem_device == PCI_SUBDEVICE_ID_SBE_2T3E3_P0 ||
1344 pdev->subsystem_device == PCI_SUBDEVICE_ID_SBE_2T3E3_P1)) {
1345 pr_err("skipping SBE T3E3 port\n");
1346 return -ENODEV;
1347 }
1348
1349 /*
1350 * DM910x chips should be handled by the dmfe driver, except
1351 * on-board chips on SPARC systems. Also, early DM9100s need
1352 * software CRC which only the dmfe driver supports.
1353 */
1354
1355#ifdef CONFIG_TULIP_DM910X
1356 if (chip_idx == DM910X) {
1357 struct device_node *dp;
1358
1359 if (pdev->vendor == 0x1282 && pdev->device == 0x9100 &&
1360 pdev->revision < 0x30) {
1361 pr_info("skipping early DM9100 with Crc bug (use dmfe)\n");
1362 return -ENODEV;
1363 }
1364
1365 dp = pci_device_to_OF_node(pdev);
1366 if (!(dp && of_get_property(dp, "local-mac-address", NULL))) {
1367 pr_info("skipping DM910x expansion card (use dmfe)\n");
1368 return -ENODEV;
1369 }
1370 }
1371#endif
1372
1373 /*
1374 * Looks for early PCI chipsets where people report hangs
1375 * without the workarounds being on.
1376 */
1377
1378 /* 1. Intel Saturn. Switch to 8 long words burst, 8 long word cache
1379 aligned. Aries might need this too. The Saturn errata are not
1380 pretty reading but thankfully it's an old 486 chipset.
1381
1382 2. The dreaded SiS496 486 chipset. Same workaround as Intel
1383 Saturn.
1384 */
1385
1386 if (pci_dev_present(early_486_chipsets)) {
1387 csr0 = MRL | MRM | (8 << BurstLenShift) | (1 << CALShift);
1388 force_csr0 = 1;
1389 }
1390
1391 /* bugfix: the ASIX must have a burst limit or horrible things happen. */
1392 if (chip_idx == AX88140) {
1393 if ((csr0 & 0x3f00) == 0)
1394 csr0 |= 0x2000;
1395 }
1396
1397 /* PNIC doesn't have MWI/MRL/MRM... */
1398 if (chip_idx == LC82C168)
1399 csr0 &= ~0xfff10000; /* zero reserved bits 31:20, 16 */
1400
1401 /* DM9102A has troubles with MRM & clear reserved bits 24:22, 20, 16, 7:1 */
1402 if (tulip_uli_dm_quirk(pdev)) {
1403 csr0 &= ~0x01f100ff;
1404#if defined(CONFIG_SPARC)
1405 csr0 = (csr0 & ~0xff00) | 0xe000;
1406#endif
1407 }
1408 /*
1409 * And back to business
1410 */
1411
1412 i = pci_enable_device(pdev);
1413 if (i) {
1414 pr_err("Cannot enable tulip board #%d, aborting\n", board_idx);
1415 return i;
1416 }
1417
1418 /* The chip will fail to enter a low-power state later unless
1419 * first explicitly commanded into D0 */
1420 if (pci_set_power_state(pdev, PCI_D0)) {
1421 pr_notice("Failed to set power state to D0\n");
1422 }
1423
1424 irq = pdev->irq;
1425
1426 /* alloc_etherdev ensures aligned and zeroed private structures */
1427 dev = alloc_etherdev (sizeof (*tp));
1428 if (!dev)
1429 return -ENOMEM;
1430
1431 SET_NETDEV_DEV(dev, &pdev->dev);
1432 if (pci_resource_len (pdev, 0) < tulip_tbl[chip_idx].io_size) {
1433 pr_err("%s: I/O region (0x%llx@0x%llx) too small, aborting\n",
1434 pci_name(pdev),
1435 (unsigned long long)pci_resource_len (pdev, 0),
1436 (unsigned long long)pci_resource_start (pdev, 0));
1437 goto err_out_free_netdev;
1438 }
1439
1440 /* grab all resources from both PIO and MMIO regions, as we
1441 * don't want anyone else messing around with our hardware */
1442 if (pci_request_regions (pdev, DRV_NAME))
1443 goto err_out_free_netdev;
1444
1445 ioaddr = pci_iomap(pdev, TULIP_BAR, tulip_tbl[chip_idx].io_size);
1446
1447 if (!ioaddr)
1448 goto err_out_free_res;
1449
1450 /*
1451 * initialize private data structure 'tp'
1452 * it is zeroed and aligned in alloc_etherdev
1453 */
1454 tp = netdev_priv(dev);
1455 tp->dev = dev;
1456
1457 tp->rx_ring = pci_alloc_consistent(pdev,
1458 sizeof(struct tulip_rx_desc) * RX_RING_SIZE +
1459 sizeof(struct tulip_tx_desc) * TX_RING_SIZE,
1460 &tp->rx_ring_dma);
1461 if (!tp->rx_ring)
1462 goto err_out_mtable;
1463 tp->tx_ring = (struct tulip_tx_desc *)(tp->rx_ring + RX_RING_SIZE);
1464 tp->tx_ring_dma = tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * RX_RING_SIZE;
1465
1466 tp->chip_id = chip_idx;
1467 tp->flags = tulip_tbl[chip_idx].flags;
1468
1469 tp->wolinfo.supported = 0;
1470 tp->wolinfo.wolopts = 0;
1471 /* COMET: Enable power management only for AN983B */
1472 if (chip_idx == COMET ) {
1473 u32 sig;
1474 pci_read_config_dword (pdev, 0x80, &sig);
1475 if (sig == 0x09811317) {
1476 tp->flags |= COMET_PM;
1477 tp->wolinfo.supported = WAKE_PHY | WAKE_MAGIC;
1478 pr_info("%s: Enabled WOL support for AN983B\n",
1479 __func__);
1480 }
1481 }
1482 tp->pdev = pdev;
1483 tp->base_addr = ioaddr;
1484 tp->revision = pdev->revision;
1485 tp->csr0 = csr0;
1486 spin_lock_init(&tp->lock);
1487 spin_lock_init(&tp->mii_lock);
1488 init_timer(&tp->timer);
1489 tp->timer.data = (unsigned long)dev;
1490 tp->timer.function = tulip_tbl[tp->chip_id].media_timer;
1491
1492 INIT_WORK(&tp->media_work, tulip_tbl[tp->chip_id].media_task);
1493
1494#ifdef CONFIG_TULIP_MWI
1495 if (!force_csr0 && (tp->flags & HAS_PCI_MWI))
1496 tulip_mwi_config (pdev, dev);
1497#endif
1498
1499 /* Stop the chip's Tx and Rx processes. */
1500 tulip_stop_rxtx(tp);
1501
1502 pci_set_master(pdev);
1503
1504#ifdef CONFIG_GSC
1505 if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP) {
1506 switch (pdev->subsystem_device) {
1507 default:
1508 break;
1509 case 0x1061:
1510 case 0x1062:
1511 case 0x1063:
1512 case 0x1098:
1513 case 0x1099:
1514 case 0x10EE:
1515 tp->flags |= HAS_SWAPPED_SEEPROM | NEEDS_FAKE_MEDIA_TABLE;
1516 chip_name = "GSC DS21140 Tulip";
1517 }
1518 }
1519#endif
1520
1521 /* Clear the missed-packet counter. */
1522 ioread32(ioaddr + CSR8);
1523
1524 /* The station address ROM is read byte serially. The register must
1525 be polled, waiting for the value to be read bit serially from the
1526 EEPROM.
1527 */
1528 ee_data = tp->eeprom;
1529 memset(ee_data, 0, sizeof(tp->eeprom));
1530 sum = 0;
1531 if (chip_idx == LC82C168) {
1532 for (i = 0; i < 3; i++) {
1533 int value, boguscnt = 100000;
1534 iowrite32(0x600 | i, ioaddr + 0x98);
1535 do {
1536 value = ioread32(ioaddr + CSR9);
1537 } while (value < 0 && --boguscnt > 0);
1538 put_unaligned_le16(value, ((__le16 *)dev->dev_addr) + i);
1539 sum += value & 0xffff;
1540 }
1541 } else if (chip_idx == COMET) {
1542 /* No need to read the EEPROM. */
1543 put_unaligned_le32(ioread32(ioaddr + 0xA4), dev->dev_addr);
1544 put_unaligned_le16(ioread32(ioaddr + 0xA8), dev->dev_addr + 4);
1545 for (i = 0; i < 6; i ++)
1546 sum += dev->dev_addr[i];
1547 } else {
1548 /* A serial EEPROM interface, we read now and sort it out later. */
1549 int sa_offset = 0;
1550 int ee_addr_size = tulip_read_eeprom(dev, 0xff, 8) & 0x40000 ? 8 : 6;
1551 int ee_max_addr = ((1 << ee_addr_size) - 1) * sizeof(u16);
1552
1553 if (ee_max_addr > sizeof(tp->eeprom))
1554 ee_max_addr = sizeof(tp->eeprom);
1555
1556 for (i = 0; i < ee_max_addr ; i += sizeof(u16)) {
1557 u16 data = tulip_read_eeprom(dev, i/2, ee_addr_size);
1558 ee_data[i] = data & 0xff;
1559 ee_data[i + 1] = data >> 8;
1560 }
1561
1562 /* DEC now has a specification (see Notes) but early board makers
1563 just put the address in the first EEPROM locations. */
1564 /* This does memcmp(ee_data, ee_data+16, 8) */
1565 for (i = 0; i < 8; i ++)
1566 if (ee_data[i] != ee_data[16+i])
1567 sa_offset = 20;
1568 if (chip_idx == CONEXANT) {
1569 /* Check that the tuple type and length is correct. */
1570 if (ee_data[0x198] == 0x04 && ee_data[0x199] == 6)
1571 sa_offset = 0x19A;
1572 } else if (ee_data[0] == 0xff && ee_data[1] == 0xff &&
1573 ee_data[2] == 0) {
1574 sa_offset = 2; /* Grrr, damn Matrox boards. */
1575 multiport_cnt = 4;
1576 }
1577#ifdef CONFIG_MIPS_COBALT
1578 if ((pdev->bus->number == 0) &&
1579 ((PCI_SLOT(pdev->devfn) == 7) ||
1580 (PCI_SLOT(pdev->devfn) == 12))) {
1581 /* Cobalt MAC address in first EEPROM locations. */
1582 sa_offset = 0;
1583 /* Ensure our media table fixup get's applied */
1584 memcpy(ee_data + 16, ee_data, 8);
1585 }
1586#endif
1587#ifdef CONFIG_GSC
1588 /* Check to see if we have a broken srom */
1589 if (ee_data[0] == 0x61 && ee_data[1] == 0x10) {
1590 /* pci_vendor_id and subsystem_id are swapped */
1591 ee_data[0] = ee_data[2];
1592 ee_data[1] = ee_data[3];
1593 ee_data[2] = 0x61;
1594 ee_data[3] = 0x10;
1595
1596 /* HSC-PCI boards need to be byte-swaped and shifted
1597 * up 1 word. This shift needs to happen at the end
1598 * of the MAC first because of the 2 byte overlap.
1599 */
1600 for (i = 4; i >= 0; i -= 2) {
1601 ee_data[17 + i + 3] = ee_data[17 + i];
1602 ee_data[16 + i + 5] = ee_data[16 + i];
1603 }
1604 }
1605#endif
1606
1607 for (i = 0; i < 6; i ++) {
1608 dev->dev_addr[i] = ee_data[i + sa_offset];
1609 sum += ee_data[i + sa_offset];
1610 }
1611 }
1612 /* Lite-On boards have the address byte-swapped. */
1613 if ((dev->dev_addr[0] == 0xA0 ||
1614 dev->dev_addr[0] == 0xC0 ||
1615 dev->dev_addr[0] == 0x02) &&
1616 dev->dev_addr[1] == 0x00)
1617 for (i = 0; i < 6; i+=2) {
1618 char tmp = dev->dev_addr[i];
1619 dev->dev_addr[i] = dev->dev_addr[i+1];
1620 dev->dev_addr[i+1] = tmp;
1621 }
1622 /* On the Zynx 315 Etherarray and other multiport boards only the
1623 first Tulip has an EEPROM.
1624 On Sparc systems the mac address is held in the OBP property
1625 "local-mac-address".
1626 The addresses of the subsequent ports are derived from the first.
1627 Many PCI BIOSes also incorrectly report the IRQ line, so we correct
1628 that here as well. */
1629 if (sum == 0 || sum == 6*0xff) {
1630#if defined(CONFIG_SPARC)
1631 struct device_node *dp = pci_device_to_OF_node(pdev);
1632 const unsigned char *addr;
1633 int len;
1634#endif
1635 eeprom_missing = 1;
1636 for (i = 0; i < 5; i++)
1637 dev->dev_addr[i] = last_phys_addr[i];
1638 dev->dev_addr[i] = last_phys_addr[i] + 1;
1639#if defined(CONFIG_SPARC)
1640 addr = of_get_property(dp, "local-mac-address", &len);
1641 if (addr && len == 6)
1642 memcpy(dev->dev_addr, addr, 6);
1643#endif
1644#if defined(__i386__) || defined(__x86_64__) /* Patch up x86 BIOS bug. */
1645 if (last_irq)
1646 irq = last_irq;
1647#endif
1648 }
1649
1650 for (i = 0; i < 6; i++)
1651 last_phys_addr[i] = dev->dev_addr[i];
1652 last_irq = irq;
1653
1654 /* The lower four bits are the media type. */
1655 if (board_idx >= 0 && board_idx < MAX_UNITS) {
1656 if (options[board_idx] & MEDIA_MASK)
1657 tp->default_port = options[board_idx] & MEDIA_MASK;
1658 if ((options[board_idx] & FullDuplex) || full_duplex[board_idx] > 0)
1659 tp->full_duplex = 1;
1660 if (mtu[board_idx] > 0)
1661 dev->mtu = mtu[board_idx];
1662 }
1663 if (dev->mem_start & MEDIA_MASK)
1664 tp->default_port = dev->mem_start & MEDIA_MASK;
1665 if (tp->default_port) {
1666 pr_info(DRV_NAME "%d: Transceiver selection forced to %s\n",
1667 board_idx, medianame[tp->default_port & MEDIA_MASK]);
1668 tp->medialock = 1;
1669 if (tulip_media_cap[tp->default_port] & MediaAlwaysFD)
1670 tp->full_duplex = 1;
1671 }
1672 if (tp->full_duplex)
1673 tp->full_duplex_lock = 1;
1674
1675 if (tulip_media_cap[tp->default_port] & MediaIsMII) {
1676 static const u16 media2advert[] = {
1677 0x20, 0x40, 0x03e0, 0x60, 0x80, 0x100, 0x200
1678 };
1679 tp->mii_advertise = media2advert[tp->default_port - 9];
1680 tp->mii_advertise |= (tp->flags & HAS_8023X); /* Matching bits! */
1681 }
1682
1683 if (tp->flags & HAS_MEDIA_TABLE) {
1684 sprintf(dev->name, DRV_NAME "%d", board_idx); /* hack */
1685 tulip_parse_eeprom(dev);
1686 strcpy(dev->name, "eth%d"); /* un-hack */
1687 }
1688
1689 if ((tp->flags & ALWAYS_CHECK_MII) ||
1690 (tp->mtable && tp->mtable->has_mii) ||
1691 ( ! tp->mtable && (tp->flags & HAS_MII))) {
1692 if (tp->mtable && tp->mtable->has_mii) {
1693 for (i = 0; i < tp->mtable->leafcount; i++)
1694 if (tp->mtable->mleaf[i].media == 11) {
1695 tp->cur_index = i;
1696 tp->saved_if_port = dev->if_port;
1697 tulip_select_media(dev, 2);
1698 dev->if_port = tp->saved_if_port;
1699 break;
1700 }
1701 }
1702
1703 /* Find the connected MII xcvrs.
1704 Doing this in open() would allow detecting external xcvrs
1705 later, but takes much time. */
1706 tulip_find_mii (dev, board_idx);
1707 }
1708
1709 /* The Tulip-specific entries in the device structure. */
1710 dev->netdev_ops = &tulip_netdev_ops;
1711 dev->watchdog_timeo = TX_TIMEOUT;
1712#ifdef CONFIG_TULIP_NAPI
1713 netif_napi_add(dev, &tp->napi, tulip_poll, 16);
1714#endif
1715 SET_ETHTOOL_OPS(dev, &ops);
1716
1717 if (register_netdev(dev))
1718 goto err_out_free_ring;
1719
1720 pci_set_drvdata(pdev, dev);
1721
1722 dev_info(&dev->dev,
1723#ifdef CONFIG_TULIP_MMIO
1724 "%s rev %d at MMIO %#llx,%s %pM, IRQ %d\n",
1725#else
1726 "%s rev %d at Port %#llx,%s %pM, IRQ %d\n",
1727#endif
1728 chip_name, pdev->revision,
1729 (unsigned long long)pci_resource_start(pdev, TULIP_BAR),
1730 eeprom_missing ? " EEPROM not present," : "",
1731 dev->dev_addr, irq);
1732
1733 if (tp->chip_id == PNIC2)
1734 tp->link_change = pnic2_lnk_change;
1735 else if (tp->flags & HAS_NWAY)
1736 tp->link_change = t21142_lnk_change;
1737 else if (tp->flags & HAS_PNICNWAY)
1738 tp->link_change = pnic_lnk_change;
1739
1740 /* Reset the xcvr interface and turn on heartbeat. */
1741 switch (chip_idx) {
1742 case DC21140:
1743 case DM910X:
1744 default:
1745 if (tp->mtable)
1746 iowrite32(tp->mtable->csr12dir | 0x100, ioaddr + CSR12);
1747 break;
1748 case DC21142:
1749 if (tp->mii_cnt || tulip_media_cap[dev->if_port] & MediaIsMII) {
1750 iowrite32(csr6_mask_defstate, ioaddr + CSR6);
1751 iowrite32(0x0000, ioaddr + CSR13);
1752 iowrite32(0x0000, ioaddr + CSR14);
1753 iowrite32(csr6_mask_hdcap, ioaddr + CSR6);
1754 } else
1755 t21142_start_nway(dev);
1756 break;
1757 case PNIC2:
1758 /* just do a reset for sanity sake */
1759 iowrite32(0x0000, ioaddr + CSR13);
1760 iowrite32(0x0000, ioaddr + CSR14);
1761 break;
1762 case LC82C168:
1763 if ( ! tp->mii_cnt) {
1764 tp->nway = 1;
1765 tp->nwayset = 0;
1766 iowrite32(csr6_ttm | csr6_ca, ioaddr + CSR6);
1767 iowrite32(0x30, ioaddr + CSR12);
1768 iowrite32(0x0001F078, ioaddr + CSR6);
1769 iowrite32(0x0201F078, ioaddr + CSR6); /* Turn on autonegotiation. */
1770 }
1771 break;
1772 case MX98713:
1773 case COMPEX9881:
1774 iowrite32(0x00000000, ioaddr + CSR6);
1775 iowrite32(0x000711C0, ioaddr + CSR14); /* Turn on NWay. */
1776 iowrite32(0x00000001, ioaddr + CSR13);
1777 break;
1778 case MX98715:
1779 case MX98725:
1780 iowrite32(0x01a80000, ioaddr + CSR6);
1781 iowrite32(0xFFFFFFFF, ioaddr + CSR14);
1782 iowrite32(0x00001000, ioaddr + CSR12);
1783 break;
1784 case COMET:
1785 /* No initialization necessary. */
1786 break;
1787 }
1788
1789 /* put the chip in snooze mode until opened */
1790 tulip_set_power_state (tp, 0, 1);
1791
1792 return 0;
1793
1794err_out_free_ring:
1795 pci_free_consistent (pdev,
1796 sizeof (struct tulip_rx_desc) * RX_RING_SIZE +
1797 sizeof (struct tulip_tx_desc) * TX_RING_SIZE,
1798 tp->rx_ring, tp->rx_ring_dma);
1799
1800err_out_mtable:
1801 kfree (tp->mtable);
1802 pci_iounmap(pdev, ioaddr);
1803
1804err_out_free_res:
1805 pci_release_regions (pdev);
1806
1807err_out_free_netdev:
1808 free_netdev (dev);
1809 return -ENODEV;
1810}
1811
1812
1813/* set the registers according to the given wolopts */
1814static void tulip_set_wolopts (struct pci_dev *pdev, u32 wolopts)
1815{
1816 struct net_device *dev = pci_get_drvdata(pdev);
1817 struct tulip_private *tp = netdev_priv(dev);
1818 void __iomem *ioaddr = tp->base_addr;
1819
1820 if (tp->flags & COMET_PM) {
1821
1822 unsigned int tmp;
1823
1824 tmp = ioread32(ioaddr + CSR18);
1825 tmp &= ~(comet_csr18_pmes_sticky | comet_csr18_apm_mode | comet_csr18_d3a);
1826 tmp |= comet_csr18_pm_mode;
1827 iowrite32(tmp, ioaddr + CSR18);
1828
1829 /* Set the Wake-up Control/Status Register to the given WOL options*/
1830 tmp = ioread32(ioaddr + CSR13);
1831 tmp &= ~(comet_csr13_linkoffe | comet_csr13_linkone | comet_csr13_wfre | comet_csr13_lsce | comet_csr13_mpre);
1832 if (wolopts & WAKE_MAGIC)
1833 tmp |= comet_csr13_mpre;
1834 if (wolopts & WAKE_PHY)
1835 tmp |= comet_csr13_linkoffe | comet_csr13_linkone | comet_csr13_lsce;
1836 /* Clear the event flags */
1837 tmp |= comet_csr13_wfr | comet_csr13_mpr | comet_csr13_lsc;
1838 iowrite32(tmp, ioaddr + CSR13);
1839 }
1840}
1841
1842#ifdef CONFIG_PM
1843
1844
1845static int tulip_suspend (struct pci_dev *pdev, pm_message_t state)
1846{
1847 pci_power_t pstate;
1848 struct net_device *dev = pci_get_drvdata(pdev);
1849 struct tulip_private *tp = netdev_priv(dev);
1850
1851 if (!dev)
1852 return -EINVAL;
1853
1854 if (!netif_running(dev))
1855 goto save_state;
1856
1857 tulip_down(dev);
1858
1859 netif_device_detach(dev);
1860 /* FIXME: it needlessly adds an error path. */
1861 free_irq(tp->pdev->irq, dev);
1862
1863save_state:
1864 pci_save_state(pdev);
1865 pci_disable_device(pdev);
1866 pstate = pci_choose_state(pdev, state);
1867 if (state.event == PM_EVENT_SUSPEND && pstate != PCI_D0) {
1868 int rc;
1869
1870 tulip_set_wolopts(pdev, tp->wolinfo.wolopts);
1871 rc = pci_enable_wake(pdev, pstate, tp->wolinfo.wolopts);
1872 if (rc)
1873 pr_err("pci_enable_wake failed (%d)\n", rc);
1874 }
1875 pci_set_power_state(pdev, pstate);
1876
1877 return 0;
1878}
1879
1880
1881static int tulip_resume(struct pci_dev *pdev)
1882{
1883 struct net_device *dev = pci_get_drvdata(pdev);
1884 struct tulip_private *tp = netdev_priv(dev);
1885 void __iomem *ioaddr = tp->base_addr;
1886 int retval;
1887 unsigned int tmp;
1888
1889 if (!dev)
1890 return -EINVAL;
1891
1892 pci_set_power_state(pdev, PCI_D0);
1893 pci_restore_state(pdev);
1894
1895 if (!netif_running(dev))
1896 return 0;
1897
1898 if ((retval = pci_enable_device(pdev))) {
1899 pr_err("pci_enable_device failed in resume\n");
1900 return retval;
1901 }
1902
1903 retval = request_irq(pdev->irq, tulip_interrupt, IRQF_SHARED,
1904 dev->name, dev);
1905 if (retval) {
1906 pr_err("request_irq failed in resume\n");
1907 return retval;
1908 }
1909
1910 if (tp->flags & COMET_PM) {
1911 pci_enable_wake(pdev, PCI_D3hot, 0);
1912 pci_enable_wake(pdev, PCI_D3cold, 0);
1913
1914 /* Clear the PMES flag */
1915 tmp = ioread32(ioaddr + CSR20);
1916 tmp |= comet_csr20_pmes;
1917 iowrite32(tmp, ioaddr + CSR20);
1918
1919 /* Disable all wake-up events */
1920 tulip_set_wolopts(pdev, 0);
1921 }
1922 netif_device_attach(dev);
1923
1924 if (netif_running(dev))
1925 tulip_up(dev);
1926
1927 return 0;
1928}
1929
1930#endif /* CONFIG_PM */
1931
1932
1933static void __devexit tulip_remove_one (struct pci_dev *pdev)
1934{
1935 struct net_device *dev = pci_get_drvdata (pdev);
1936 struct tulip_private *tp;
1937
1938 if (!dev)
1939 return;
1940
1941 tp = netdev_priv(dev);
1942 unregister_netdev(dev);
1943 pci_free_consistent (pdev,
1944 sizeof (struct tulip_rx_desc) * RX_RING_SIZE +
1945 sizeof (struct tulip_tx_desc) * TX_RING_SIZE,
1946 tp->rx_ring, tp->rx_ring_dma);
1947 kfree (tp->mtable);
1948 pci_iounmap(pdev, tp->base_addr);
1949 free_netdev (dev);
1950 pci_release_regions (pdev);
1951 pci_set_drvdata (pdev, NULL);
1952
1953 /* pci_power_off (pdev, -1); */
1954}
1955
1956#ifdef CONFIG_NET_POLL_CONTROLLER
1957/*
1958 * Polling 'interrupt' - used by things like netconsole to send skbs
1959 * without having to re-enable interrupts. It's not called while
1960 * the interrupt routine is executing.
1961 */
1962
1963static void poll_tulip (struct net_device *dev)
1964{
1965 struct tulip_private *tp = netdev_priv(dev);
1966 const int irq = tp->pdev->irq;
1967
1968 /* disable_irq here is not very nice, but with the lockless
1969 interrupt handler we have no other choice. */
1970 disable_irq(irq);
1971 tulip_interrupt (irq, dev);
1972 enable_irq(irq);
1973}
1974#endif
1975
1976static struct pci_driver tulip_driver = {
1977 .name = DRV_NAME,
1978 .id_table = tulip_pci_tbl,
1979 .probe = tulip_init_one,
1980 .remove = __devexit_p(tulip_remove_one),
1981#ifdef CONFIG_PM
1982 .suspend = tulip_suspend,
1983 .resume = tulip_resume,
1984#endif /* CONFIG_PM */
1985};
1986
1987
1988static int __init tulip_init (void)
1989{
1990#ifdef MODULE
1991 pr_info("%s", version);
1992#endif
1993
1994 /* copy module parms into globals */
1995 tulip_rx_copybreak = rx_copybreak;
1996 tulip_max_interrupt_work = max_interrupt_work;
1997
1998 /* probe for and init boards */
1999 return pci_register_driver(&tulip_driver);
2000}
2001
2002
2003static void __exit tulip_cleanup (void)
2004{
2005 pci_unregister_driver (&tulip_driver);
2006}
2007
2008
2009module_init(tulip_init);
2010module_exit(tulip_cleanup);