Linux Audio

Check our new training course

Loading...
  1/* bnx2x_init.h: Broadcom Everest network driver.
  2 *               Structures and macroes needed during the initialization.
  3 *
  4 * Copyright (c) 2007-2012 Broadcom Corporation
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License as published by
  8 * the Free Software Foundation.
  9 *
 10 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
 11 * Written by: Eliezer Tamir
 12 * Modified by: Vladislav Zolotarov <vladz@broadcom.com>
 13 */
 14
 15#ifndef BNX2X_INIT_H
 16#define BNX2X_INIT_H
 17
 18/* Init operation types and structures */
 19enum {
 20	OP_RD = 0x1,	/* read a single register */
 21	OP_WR,		/* write a single register */
 22	OP_SW,		/* copy a string to the device */
 23	OP_ZR,		/* clear memory */
 24	OP_ZP,		/* unzip then copy with DMAE */
 25	OP_WR_64,	/* write 64 bit pattern */
 26	OP_WB,		/* copy a string using DMAE */
 27	OP_WB_ZR,	/* Clear a string using DMAE or indirect-wr */
 28	/* Skip the following ops if all of the init modes don't match */
 29	OP_IF_MODE_OR,
 30	/* Skip the following ops if any of the init modes don't match */
 31	OP_IF_MODE_AND,
 32	OP_MAX
 33};
 34
 35enum {
 36	STAGE_START,
 37	STAGE_END,
 38};
 39
 40/* Returns the index of start or end of a specific block stage in ops array*/
 41#define BLOCK_OPS_IDX(block, stage, end) \
 42	(2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
 43
 44
 45/* structs for the various opcodes */
 46struct raw_op {
 47	u32 op:8;
 48	u32 offset:24;
 49	u32 raw_data;
 50};
 51
 52struct op_read {
 53	u32 op:8;
 54	u32 offset:24;
 55	u32 val;
 56};
 57
 58struct op_write {
 59	u32 op:8;
 60	u32 offset:24;
 61	u32 val;
 62};
 63
 64struct op_arr_write {
 65	u32 op:8;
 66	u32 offset:24;
 67#ifdef __BIG_ENDIAN
 68	u16 data_len;
 69	u16 data_off;
 70#else /* __LITTLE_ENDIAN */
 71	u16 data_off;
 72	u16 data_len;
 73#endif
 74};
 75
 76struct op_zero {
 77	u32 op:8;
 78	u32 offset:24;
 79	u32 len;
 80};
 81
 82struct op_if_mode {
 83	u32 op:8;
 84	u32 cmd_offset:24;
 85	u32 mode_bit_map;
 86};
 87
 88
 89union init_op {
 90	struct op_read		read;
 91	struct op_write		write;
 92	struct op_arr_write	arr_wr;
 93	struct op_zero		zero;
 94	struct raw_op		raw;
 95	struct op_if_mode	if_mode;
 96};
 97
 98
 99/* Init Phases */
100enum {
101	PHASE_COMMON,
102	PHASE_PORT0,
103	PHASE_PORT1,
104	PHASE_PF0,
105	PHASE_PF1,
106	PHASE_PF2,
107	PHASE_PF3,
108	PHASE_PF4,
109	PHASE_PF5,
110	PHASE_PF6,
111	PHASE_PF7,
112	NUM_OF_INIT_PHASES
113};
114
115/* Init Modes */
116enum {
117	MODE_ASIC                      = 0x00000001,
118	MODE_FPGA                      = 0x00000002,
119	MODE_EMUL                      = 0x00000004,
120	MODE_E2                        = 0x00000008,
121	MODE_E3                        = 0x00000010,
122	MODE_PORT2                     = 0x00000020,
123	MODE_PORT4                     = 0x00000040,
124	MODE_SF                        = 0x00000080,
125	MODE_MF                        = 0x00000100,
126	MODE_MF_SD                     = 0x00000200,
127	MODE_MF_SI                     = 0x00000400,
128	MODE_MF_AFEX                   = 0x00000800,
129	MODE_E3_A0                     = 0x00001000,
130	MODE_E3_B0                     = 0x00002000,
131	MODE_COS3                      = 0x00004000,
132	MODE_COS6                      = 0x00008000,
133	MODE_LITTLE_ENDIAN             = 0x00010000,
134	MODE_BIG_ENDIAN                = 0x00020000,
135};
136
137/* Init Blocks */
138enum {
139	BLOCK_ATC,
140	BLOCK_BRB1,
141	BLOCK_CCM,
142	BLOCK_CDU,
143	BLOCK_CFC,
144	BLOCK_CSDM,
145	BLOCK_CSEM,
146	BLOCK_DBG,
147	BLOCK_DMAE,
148	BLOCK_DORQ,
149	BLOCK_HC,
150	BLOCK_IGU,
151	BLOCK_MISC,
152	BLOCK_NIG,
153	BLOCK_PBF,
154	BLOCK_PGLUE_B,
155	BLOCK_PRS,
156	BLOCK_PXP2,
157	BLOCK_PXP,
158	BLOCK_QM,
159	BLOCK_SRC,
160	BLOCK_TCM,
161	BLOCK_TM,
162	BLOCK_TSDM,
163	BLOCK_TSEM,
164	BLOCK_UCM,
165	BLOCK_UPB,
166	BLOCK_USDM,
167	BLOCK_USEM,
168	BLOCK_XCM,
169	BLOCK_XPB,
170	BLOCK_XSDM,
171	BLOCK_XSEM,
172	BLOCK_MISC_AEU,
173	NUM_OF_INIT_BLOCKS
174};
175
176/* QM queue numbers */
177#define BNX2X_ETH_Q		0
178#define BNX2X_TOE_Q		3
179#define BNX2X_TOE_ACK_Q		6
180#define BNX2X_ISCSI_Q		9
181#define BNX2X_ISCSI_ACK_Q	11
182#define BNX2X_FCOE_Q		10
183
184/* Vnics per mode */
185#define BNX2X_PORT2_MODE_NUM_VNICS 4
186#define BNX2X_PORT4_MODE_NUM_VNICS 2
187
188/* COS offset for port1 in E3 B0 4port mode */
189#define BNX2X_E3B0_PORT1_COS_OFFSET 3
190
191/* QM Register addresses */
192#define BNX2X_Q_VOQ_REG_ADDR(pf_q_num)\
193	(QM_REG_QVOQIDX_0 + 4 * (pf_q_num))
194#define BNX2X_VOQ_Q_REG_ADDR(cos, pf_q_num)\
195	(QM_REG_VOQQMASK_0_LSB + 4 * ((cos) * 2 + ((pf_q_num) >> 5)))
196#define BNX2X_Q_CMDQ_REG_ADDR(pf_q_num)\
197	(QM_REG_BYTECRDCMDQ_0 + 4 * ((pf_q_num) >> 4))
198
199/* extracts the QM queue number for the specified port and vnic */
200#define BNX2X_PF_Q_NUM(q_num, port, vnic)\
201	((((port) << 1) | (vnic)) * 16 + (q_num))
202
203
204/* Maps the specified queue to the specified COS */
205static inline void bnx2x_map_q_cos(struct bnx2x *bp, u32 q_num, u32 new_cos)
206{
207	/* find current COS mapping */
208	u32 curr_cos = REG_RD(bp, QM_REG_QVOQIDX_0 + q_num * 4);
209
210	/* check if queue->COS mapping has changed */
211	if (curr_cos != new_cos) {
212		u32 num_vnics = BNX2X_PORT2_MODE_NUM_VNICS;
213		u32 reg_addr, reg_bit_map, vnic;
214
215		/* update parameters for 4port mode */
216		if (INIT_MODE_FLAGS(bp) & MODE_PORT4) {
217			num_vnics = BNX2X_PORT4_MODE_NUM_VNICS;
218			if (BP_PORT(bp)) {
219				curr_cos += BNX2X_E3B0_PORT1_COS_OFFSET;
220				new_cos += BNX2X_E3B0_PORT1_COS_OFFSET;
221			}
222		}
223
224		/* change queue mapping for each VNIC */
225		for (vnic = 0; vnic < num_vnics; vnic++) {
226			u32 pf_q_num =
227				BNX2X_PF_Q_NUM(q_num, BP_PORT(bp), vnic);
228			u32 q_bit_map = 1 << (pf_q_num & 0x1f);
229
230			/* overwrite queue->VOQ mapping */
231			REG_WR(bp, BNX2X_Q_VOQ_REG_ADDR(pf_q_num), new_cos);
232
233			/* clear queue bit from current COS bit map */
234			reg_addr = BNX2X_VOQ_Q_REG_ADDR(curr_cos, pf_q_num);
235			reg_bit_map = REG_RD(bp, reg_addr);
236			REG_WR(bp, reg_addr, reg_bit_map & (~q_bit_map));
237
238			/* set queue bit in new COS bit map */
239			reg_addr = BNX2X_VOQ_Q_REG_ADDR(new_cos, pf_q_num);
240			reg_bit_map = REG_RD(bp, reg_addr);
241			REG_WR(bp, reg_addr, reg_bit_map | q_bit_map);
242
243			/* set/clear queue bit in command-queue bit map
244			 * (E2/E3A0 only, valid COS values are 0/1)
245			 */
246			if (!(INIT_MODE_FLAGS(bp) & MODE_E3_B0)) {
247				reg_addr = BNX2X_Q_CMDQ_REG_ADDR(pf_q_num);
248				reg_bit_map = REG_RD(bp, reg_addr);
249				q_bit_map = 1 << (2 * (pf_q_num & 0xf));
250				reg_bit_map = new_cos ?
251					      (reg_bit_map | q_bit_map) :
252					      (reg_bit_map & (~q_bit_map));
253				REG_WR(bp, reg_addr, reg_bit_map);
254			}
255		}
256	}
257}
258
259/* Configures the QM according to the specified per-traffic-type COSes */
260static inline void bnx2x_dcb_config_qm(struct bnx2x *bp, enum cos_mode mode,
261				       struct priority_cos *traffic_cos)
262{
263	bnx2x_map_q_cos(bp, BNX2X_FCOE_Q,
264			traffic_cos[LLFC_TRAFFIC_TYPE_FCOE].cos);
265	bnx2x_map_q_cos(bp, BNX2X_ISCSI_Q,
266			traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
267	bnx2x_map_q_cos(bp, BNX2X_ISCSI_ACK_Q,
268		traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
269	if (mode != STATIC_COS) {
270		/* required only in backward compatible COS mode */
271		bnx2x_map_q_cos(bp, BNX2X_ETH_Q,
272				traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
273		bnx2x_map_q_cos(bp, BNX2X_TOE_Q,
274				traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
275		bnx2x_map_q_cos(bp, BNX2X_TOE_ACK_Q,
276				traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
277	}
278}
279
280
281/* congestion managment port init api description
282 * the api works as follows:
283 * the driver should pass the cmng_init_input struct, the port_init function
284 * will prepare the required internal ram structure which will be passed back
285 * to the driver (cmng_init) that will write it into the internal ram.
286 *
287 * IMPORTANT REMARKS:
288 * 1. the cmng_init struct does not represent the contiguous internal ram
289 *    structure. the driver should use the XSTORM_CMNG_PERPORT_VARS_OFFSET
290 *    offset in order to write the port sub struct and the
291 *    PFID_FROM_PORT_AND_VNIC offset for writing the vnic sub struct (in other
292 *    words - don't use memcpy!).
293 * 2. although the cmng_init struct is filled for the maximal vnic number
294 *    possible, the driver should only write the valid vnics into the internal
295 *    ram according to the appropriate port mode.
296 */
297#define BITS_TO_BYTES(x) ((x)/8)
298
299/* CMNG constants, as derived from system spec calculations */
300
301/* default MIN rate in case VNIC min rate is configured to zero- 100Mbps */
302#define DEF_MIN_RATE 100
303
304/* resolution of the rate shaping timer - 400 usec */
305#define RS_PERIODIC_TIMEOUT_USEC 400
306
307/* number of bytes in single QM arbitration cycle -
308 * coefficient for calculating the fairness timer
309 */
310#define QM_ARB_BYTES 160000
311
312/* resolution of Min algorithm 1:100 */
313#define MIN_RES 100
314
315/* how many bytes above threshold for
316 * the minimal credit of Min algorithm
317 */
318#define MIN_ABOVE_THRESH 32768
319
320/* Fairness algorithm integration time coefficient -
321 * for calculating the actual Tfair
322 */
323#define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)
324
325/* Memory of fairness algorithm - 2 cycles */
326#define FAIR_MEM 2
327#define SAFC_TIMEOUT_USEC 52
328
329#define SDM_TICKS 4
330
331
332static inline void bnx2x_init_max(const struct cmng_init_input *input_data,
333				  u32 r_param, struct cmng_init *ram_data)
334{
335	u32 vnic;
336	struct cmng_vnic *vdata = &ram_data->vnic;
337	struct cmng_struct_per_port *pdata = &ram_data->port;
338	/* rate shaping per-port variables
339	 * 100 micro seconds in SDM ticks = 25
340	 * since each tick is 4 microSeconds
341	 */
342
343	pdata->rs_vars.rs_periodic_timeout =
344	RS_PERIODIC_TIMEOUT_USEC / SDM_TICKS;
345
346	/* this is the threshold below which no timer arming will occur.
347	 * 1.25 coefficient is for the threshold to be a little bigger
348	 * then the real time to compensate for timer in-accuracy
349	 */
350	pdata->rs_vars.rs_threshold =
351	(5 * RS_PERIODIC_TIMEOUT_USEC * r_param)/4;
352
353	/* rate shaping per-vnic variables */
354	for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++) {
355		/* global vnic counter */
356		vdata->vnic_max_rate[vnic].vn_counter.rate =
357		input_data->vnic_max_rate[vnic];
358		/* maximal Mbps for this vnic
359		 * the quota in each timer period - number of bytes
360		 * transmitted in this period
361		 */
362		vdata->vnic_max_rate[vnic].vn_counter.quota =
363			RS_PERIODIC_TIMEOUT_USEC *
364			(u32)vdata->vnic_max_rate[vnic].vn_counter.rate / 8;
365	}
366
367}
368
369static inline void bnx2x_init_min(const struct cmng_init_input *input_data,
370				  u32 r_param, struct cmng_init *ram_data)
371{
372	u32 vnic, fair_periodic_timeout_usec, vnicWeightSum, tFair;
373	struct cmng_vnic *vdata = &ram_data->vnic;
374	struct cmng_struct_per_port *pdata = &ram_data->port;
375
376	/* this is the resolution of the fairness timer */
377	fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
378
379	/* fairness per-port variables
380	 * for 10G it is 1000usec. for 1G it is 10000usec.
381	 */
382	tFair = T_FAIR_COEF / input_data->port_rate;
383
384	/* this is the threshold below which we won't arm the timer anymore */
385	pdata->fair_vars.fair_threshold = QM_ARB_BYTES;
386
387	/* we multiply by 1e3/8 to get bytes/msec. We don't want the credits
388	 * to pass a credit of the T_FAIR*FAIR_MEM (algorithm resolution)
389	 */
390	pdata->fair_vars.upper_bound = r_param * tFair * FAIR_MEM;
391
392	/* since each tick is 4 microSeconds */
393	pdata->fair_vars.fairness_timeout =
394				fair_periodic_timeout_usec / SDM_TICKS;
395
396	/* calculate sum of weights */
397	vnicWeightSum = 0;
398
399	for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++)
400		vnicWeightSum += input_data->vnic_min_rate[vnic];
401
402	/* global vnic counter */
403	if (vnicWeightSum > 0) {
404		/* fairness per-vnic variables */
405		for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++) {
406			/* this is the credit for each period of the fairness
407			 * algorithm - number of bytes in T_FAIR (this vnic
408			 * share of the port rate)
409			 */
410			vdata->vnic_min_rate[vnic].vn_credit_delta =
411				(u32)input_data->vnic_min_rate[vnic] * 100 *
412				(T_FAIR_COEF / (8 * 100 * vnicWeightSum));
413			if (vdata->vnic_min_rate[vnic].vn_credit_delta <
414			    pdata->fair_vars.fair_threshold +
415			    MIN_ABOVE_THRESH) {
416				vdata->vnic_min_rate[vnic].vn_credit_delta =
417					pdata->fair_vars.fair_threshold +
418					MIN_ABOVE_THRESH;
419			}
420		}
421	}
422}
423
424static inline void bnx2x_init_fw_wrr(const struct cmng_init_input *input_data,
425				     u32 r_param, struct cmng_init *ram_data)
426{
427	u32 vnic, cos;
428	u32 cosWeightSum = 0;
429	struct cmng_vnic *vdata = &ram_data->vnic;
430	struct cmng_struct_per_port *pdata = &ram_data->port;
431
432	for (cos = 0; cos < MAX_COS_NUMBER; cos++)
433		cosWeightSum += input_data->cos_min_rate[cos];
434
435	if (cosWeightSum > 0) {
436
437		for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++) {
438			/* Since cos and vnic shouldn't work together the rate
439			 * to divide between the coses is the port rate.
440			 */
441			u32 *ccd = vdata->vnic_min_rate[vnic].cos_credit_delta;
442			for (cos = 0; cos < MAX_COS_NUMBER; cos++) {
443				/* this is the credit for each period of
444				 * the fairness algorithm - number of bytes
445				 * in T_FAIR (this cos share of the vnic rate)
446				 */
447				ccd[cos] =
448				    (u32)input_data->cos_min_rate[cos] * 100 *
449				    (T_FAIR_COEF / (8 * 100 * cosWeightSum));
450				 if (ccd[cos] < pdata->fair_vars.fair_threshold
451						+ MIN_ABOVE_THRESH) {
452					ccd[cos] =
453					    pdata->fair_vars.fair_threshold +
454					    MIN_ABOVE_THRESH;
455				}
456			}
457		}
458	}
459}
460
461static inline void bnx2x_init_safc(const struct cmng_init_input *input_data,
462				   struct cmng_init *ram_data)
463{
464	/* in microSeconds */
465	ram_data->port.safc_vars.safc_timeout_usec = SAFC_TIMEOUT_USEC;
466}
467
468/* Congestion management port init */
469static inline void bnx2x_init_cmng(const struct cmng_init_input *input_data,
470				   struct cmng_init *ram_data)
471{
472	u32 r_param;
473	memset(ram_data, 0, sizeof(struct cmng_init));
474
475	ram_data->port.flags = input_data->flags;
476
477	/* number of bytes transmitted in a rate of 10Gbps
478	 * in one usec = 1.25KB.
479	 */
480	r_param = BITS_TO_BYTES(input_data->port_rate);
481	bnx2x_init_max(input_data, r_param, ram_data);
482	bnx2x_init_min(input_data, r_param, ram_data);
483	bnx2x_init_fw_wrr(input_data, r_param, ram_data);
484	bnx2x_init_safc(input_data, ram_data);
485}
486
487
488
489/* Returns the index of start or end of a specific block stage in ops array */
490#define BLOCK_OPS_IDX(block, stage, end) \
491			(2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
492
493
494#define INITOP_SET		0	/* set the HW directly */
495#define INITOP_CLEAR		1	/* clear the HW directly */
496#define INITOP_INIT		2	/* set the init-value array */
497
498/****************************************************************************
499* ILT management
500****************************************************************************/
501struct ilt_line {
502	dma_addr_t page_mapping;
503	void *page;
504	u32 size;
505};
506
507struct ilt_client_info {
508	u32 page_size;
509	u16 start;
510	u16 end;
511	u16 client_num;
512	u16 flags;
513#define ILT_CLIENT_SKIP_INIT	0x1
514#define ILT_CLIENT_SKIP_MEM	0x2
515};
516
517struct bnx2x_ilt {
518	u32 start_line;
519	struct ilt_line		*lines;
520	struct ilt_client_info	clients[4];
521#define ILT_CLIENT_CDU	0
522#define ILT_CLIENT_QM	1
523#define ILT_CLIENT_SRC	2
524#define ILT_CLIENT_TM	3
525};
526
527/****************************************************************************
528* SRC configuration
529****************************************************************************/
530struct src_ent {
531	u8 opaque[56];
532	u64 next;
533};
534
535/****************************************************************************
536* Parity configuration
537****************************************************************************/
538#define BLOCK_PRTY_INFO(block, en_mask, m1, m1h, m2, m3) \
539{ \
540	block##_REG_##block##_PRTY_MASK, \
541	block##_REG_##block##_PRTY_STS_CLR, \
542	en_mask, {m1, m1h, m2, m3}, #block \
543}
544
545#define BLOCK_PRTY_INFO_0(block, en_mask, m1, m1h, m2, m3) \
546{ \
547	block##_REG_##block##_PRTY_MASK_0, \
548	block##_REG_##block##_PRTY_STS_CLR_0, \
549	en_mask, {m1, m1h, m2, m3}, #block"_0" \
550}
551
552#define BLOCK_PRTY_INFO_1(block, en_mask, m1, m1h, m2, m3) \
553{ \
554	block##_REG_##block##_PRTY_MASK_1, \
555	block##_REG_##block##_PRTY_STS_CLR_1, \
556	en_mask, {m1, m1h, m2, m3}, #block"_1" \
557}
558
559static const struct {
560	u32 mask_addr;
561	u32 sts_clr_addr;
562	u32 en_mask;		/* Mask to enable parity attentions */
563	struct {
564		u32 e1;		/* 57710 */
565		u32 e1h;	/* 57711 */
566		u32 e2;		/* 57712 */
567		u32 e3;		/* 578xx */
568	} reg_mask;		/* Register mask (all valid bits) */
569	char name[7];		/* Block's longest name is 6 characters long
570				 * (name + suffix)
571				 */
572} bnx2x_blocks_parity_data[] = {
573	/* bit 19 masked */
574	/* REG_WR(bp, PXP_REG_PXP_PRTY_MASK, 0x80000); */
575	/* bit 5,18,20-31 */
576	/* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_0, 0xfff40020); */
577	/* bit 5 */
578	/* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_1, 0x20);	*/
579	/* REG_WR(bp, HC_REG_HC_PRTY_MASK, 0x0); */
580	/* REG_WR(bp, MISC_REG_MISC_PRTY_MASK, 0x0); */
581
582	/* Block IGU, MISC, PXP and PXP2 parity errors as long as we don't
583	 * want to handle "system kill" flow at the moment.
584	 */
585	BLOCK_PRTY_INFO(PXP, 0x7ffffff, 0x3ffffff, 0x3ffffff, 0x7ffffff,
586			0x7ffffff),
587	BLOCK_PRTY_INFO_0(PXP2,	0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
588			  0xffffffff),
589	BLOCK_PRTY_INFO_1(PXP2,	0x1ffffff, 0x7f, 0x7f, 0x7ff, 0x1ffffff),
590	BLOCK_PRTY_INFO(HC, 0x7, 0x7, 0x7, 0, 0),
591	BLOCK_PRTY_INFO(NIG, 0xffffffff, 0x3fffffff, 0xffffffff, 0, 0),
592	BLOCK_PRTY_INFO_0(NIG,	0xffffffff, 0, 0, 0xffffffff, 0xffffffff),
593	BLOCK_PRTY_INFO_1(NIG,	0xffff, 0, 0, 0xff, 0xffff),
594	BLOCK_PRTY_INFO(IGU, 0x7ff, 0, 0, 0x7ff, 0x7ff),
595	BLOCK_PRTY_INFO(MISC, 0x1, 0x1, 0x1, 0x1, 0x1),
596	BLOCK_PRTY_INFO(QM, 0, 0x1ff, 0xfff, 0xfff, 0xfff),
597	BLOCK_PRTY_INFO(ATC, 0x1f, 0, 0, 0x1f, 0x1f),
598	BLOCK_PRTY_INFO(PGLUE_B, 0x3, 0, 0, 0x3, 0x3),
599	BLOCK_PRTY_INFO(DORQ, 0, 0x3, 0x3, 0x3, 0x3),
600	{GRCBASE_UPB + PB_REG_PB_PRTY_MASK,
601		GRCBASE_UPB + PB_REG_PB_PRTY_STS_CLR, 0xf,
602		{0xf, 0xf, 0xf, 0xf}, "UPB"},
603	{GRCBASE_XPB + PB_REG_PB_PRTY_MASK,
604		GRCBASE_XPB + PB_REG_PB_PRTY_STS_CLR, 0,
605		{0xf, 0xf, 0xf, 0xf}, "XPB"},
606	BLOCK_PRTY_INFO(SRC, 0x4, 0x7, 0x7, 0x7, 0x7),
607	BLOCK_PRTY_INFO(CDU, 0, 0x1f, 0x1f, 0x1f, 0x1f),
608	BLOCK_PRTY_INFO(CFC, 0, 0xf, 0xf, 0xf, 0x3f),
609	BLOCK_PRTY_INFO(DBG, 0, 0x1, 0x1, 0x1, 0x1),
610	BLOCK_PRTY_INFO(DMAE, 0, 0xf, 0xf, 0xf, 0xf),
611	BLOCK_PRTY_INFO(BRB1, 0, 0xf, 0xf, 0xf, 0xf),
612	BLOCK_PRTY_INFO(PRS, (1<<6), 0xff, 0xff, 0xff, 0xff),
613	BLOCK_PRTY_INFO(PBF, 0, 0, 0x3ffff, 0xfffff, 0xfffffff),
614	BLOCK_PRTY_INFO(TM, 0, 0, 0x7f, 0x7f, 0x7f),
615	BLOCK_PRTY_INFO(TSDM, 0x18, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
616	BLOCK_PRTY_INFO(CSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
617	BLOCK_PRTY_INFO(USDM, 0x38, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
618	BLOCK_PRTY_INFO(XSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
619	BLOCK_PRTY_INFO(TCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
620	BLOCK_PRTY_INFO(CCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
621	BLOCK_PRTY_INFO(UCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
622	BLOCK_PRTY_INFO(XCM, 0, 0, 0x3fffffff, 0x3fffffff, 0x3fffffff),
623	BLOCK_PRTY_INFO_0(TSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
624			  0xffffffff),
625	BLOCK_PRTY_INFO_1(TSEM, 0, 0x3, 0x1f, 0x3f, 0x3f),
626	BLOCK_PRTY_INFO_0(USEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
627			  0xffffffff),
628	BLOCK_PRTY_INFO_1(USEM, 0, 0x3, 0x1f, 0x1f, 0x1f),
629	BLOCK_PRTY_INFO_0(CSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
630			  0xffffffff),
631	BLOCK_PRTY_INFO_1(CSEM, 0, 0x3, 0x1f, 0x1f, 0x1f),
632	BLOCK_PRTY_INFO_0(XSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
633			  0xffffffff),
634	BLOCK_PRTY_INFO_1(XSEM, 0, 0x3, 0x1f, 0x3f, 0x3f),
635};
636
637
638/* [28] MCP Latched rom_parity
639 * [29] MCP Latched ump_rx_parity
640 * [30] MCP Latched ump_tx_parity
641 * [31] MCP Latched scpad_parity
642 */
643#define MISC_AEU_ENABLE_MCP_PRTY_BITS	\
644	(AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \
645	 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \
646	 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY | \
647	 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY)
648
649/* Below registers control the MCP parity attention output. When
650 * MISC_AEU_ENABLE_MCP_PRTY_BITS are set - attentions are
651 * enabled, when cleared - disabled.
652 */
653static const u32 mcp_attn_ctl_regs[] = {
654	MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0,
655	MISC_REG_AEU_ENABLE4_NIG_0,
656	MISC_REG_AEU_ENABLE4_PXP_0,
657	MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0,
658	MISC_REG_AEU_ENABLE4_NIG_1,
659	MISC_REG_AEU_ENABLE4_PXP_1
660};
661
662static inline void bnx2x_set_mcp_parity(struct bnx2x *bp, u8 enable)
663{
664	int i;
665	u32 reg_val;
666
667	for (i = 0; i < ARRAY_SIZE(mcp_attn_ctl_regs); i++) {
668		reg_val = REG_RD(bp, mcp_attn_ctl_regs[i]);
669
670		if (enable)
671			reg_val |= MISC_AEU_ENABLE_MCP_PRTY_BITS;
672		else
673			reg_val &= ~MISC_AEU_ENABLE_MCP_PRTY_BITS;
674
675		REG_WR(bp, mcp_attn_ctl_regs[i], reg_val);
676	}
677}
678
679static inline u32 bnx2x_parity_reg_mask(struct bnx2x *bp, int idx)
680{
681	if (CHIP_IS_E1(bp))
682		return bnx2x_blocks_parity_data[idx].reg_mask.e1;
683	else if (CHIP_IS_E1H(bp))
684		return bnx2x_blocks_parity_data[idx].reg_mask.e1h;
685	else if (CHIP_IS_E2(bp))
686		return bnx2x_blocks_parity_data[idx].reg_mask.e2;
687	else /* CHIP_IS_E3 */
688		return bnx2x_blocks_parity_data[idx].reg_mask.e3;
689}
690
691static inline void bnx2x_disable_blocks_parity(struct bnx2x *bp)
692{
693	int i;
694
695	for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) {
696		u32 dis_mask = bnx2x_parity_reg_mask(bp, i);
697
698		if (dis_mask) {
699			REG_WR(bp, bnx2x_blocks_parity_data[i].mask_addr,
700			       dis_mask);
701			DP(NETIF_MSG_HW, "Setting parity mask "
702						 "for %s to\t\t0x%x\n",
703				    bnx2x_blocks_parity_data[i].name, dis_mask);
704		}
705	}
706
707	/* Disable MCP parity attentions */
708	bnx2x_set_mcp_parity(bp, false);
709}
710
711/* Clear the parity error status registers. */
712static inline void bnx2x_clear_blocks_parity(struct bnx2x *bp)
713{
714	int i;
715	u32 reg_val, mcp_aeu_bits =
716		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY |
717		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY |
718		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY |
719		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY;
720
721	/* Clear SEM_FAST parities */
722	REG_WR(bp, XSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
723	REG_WR(bp, TSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
724	REG_WR(bp, USEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
725	REG_WR(bp, CSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
726
727	for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) {
728		u32 reg_mask = bnx2x_parity_reg_mask(bp, i);
729
730		if (reg_mask) {
731			reg_val = REG_RD(bp, bnx2x_blocks_parity_data[i].
732					 sts_clr_addr);
733			if (reg_val & reg_mask)
734				DP(NETIF_MSG_HW,
735					    "Parity errors in %s: 0x%x\n",
736					    bnx2x_blocks_parity_data[i].name,
737					    reg_val & reg_mask);
738		}
739	}
740
741	/* Check if there were parity attentions in MCP */
742	reg_val = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_MCP);
743	if (reg_val & mcp_aeu_bits)
744		DP(NETIF_MSG_HW, "Parity error in MCP: 0x%x\n",
745		   reg_val & mcp_aeu_bits);
746
747	/* Clear parity attentions in MCP:
748	 * [7]  clears Latched rom_parity
749	 * [8]  clears Latched ump_rx_parity
750	 * [9]  clears Latched ump_tx_parity
751	 * [10] clears Latched scpad_parity (both ports)
752	 */
753	REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x780);
754}
755
756static inline void bnx2x_enable_blocks_parity(struct bnx2x *bp)
757{
758	int i;
759
760	for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) {
761		u32 reg_mask = bnx2x_parity_reg_mask(bp, i);
762
763		if (reg_mask)
764			REG_WR(bp, bnx2x_blocks_parity_data[i].mask_addr,
765				bnx2x_blocks_parity_data[i].en_mask & reg_mask);
766	}
767
768	/* Enable MCP parity attentions */
769	bnx2x_set_mcp_parity(bp, true);
770}
771
772
773#endif /* BNX2X_INIT_H */
774