Linux Audio

Check our new training course

Loading...
   1/*
   2 * NAND flash simulator.
   3 *
   4 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
   5 *
   6 * Copyright (C) 2004 Nokia Corporation
   7 *
   8 * Note: NS means "NAND Simulator".
   9 * Note: Input means input TO flash chip, output means output FROM chip.
  10 *
  11 * This program is free software; you can redistribute it and/or modify it
  12 * under the terms of the GNU General Public License as published by the
  13 * Free Software Foundation; either version 2, or (at your option) any later
  14 * version.
  15 *
  16 * This program is distributed in the hope that it will be useful, but
  17 * WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
  19 * Public License for more details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with this program; if not, write to the Free Software
  23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
  24 */
  25
  26#include <linux/init.h>
  27#include <linux/types.h>
  28#include <linux/module.h>
  29#include <linux/moduleparam.h>
  30#include <linux/vmalloc.h>
  31#include <linux/math64.h>
  32#include <linux/slab.h>
  33#include <linux/errno.h>
  34#include <linux/string.h>
  35#include <linux/mtd/mtd.h>
  36#include <linux/mtd/nand.h>
  37#include <linux/mtd/nand_bch.h>
  38#include <linux/mtd/partitions.h>
  39#include <linux/delay.h>
  40#include <linux/list.h>
  41#include <linux/random.h>
  42#include <linux/sched.h>
  43#include <linux/fs.h>
  44#include <linux/pagemap.h>
  45
  46/* Default simulator parameters values */
  47#if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE)  || \
  48    !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
  49    !defined(CONFIG_NANDSIM_THIRD_ID_BYTE)  || \
  50    !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
  51#define CONFIG_NANDSIM_FIRST_ID_BYTE  0x98
  52#define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
  53#define CONFIG_NANDSIM_THIRD_ID_BYTE  0xFF /* No byte */
  54#define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
  55#endif
  56
  57#ifndef CONFIG_NANDSIM_ACCESS_DELAY
  58#define CONFIG_NANDSIM_ACCESS_DELAY 25
  59#endif
  60#ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
  61#define CONFIG_NANDSIM_PROGRAMM_DELAY 200
  62#endif
  63#ifndef CONFIG_NANDSIM_ERASE_DELAY
  64#define CONFIG_NANDSIM_ERASE_DELAY 2
  65#endif
  66#ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
  67#define CONFIG_NANDSIM_OUTPUT_CYCLE 40
  68#endif
  69#ifndef CONFIG_NANDSIM_INPUT_CYCLE
  70#define CONFIG_NANDSIM_INPUT_CYCLE  50
  71#endif
  72#ifndef CONFIG_NANDSIM_BUS_WIDTH
  73#define CONFIG_NANDSIM_BUS_WIDTH  8
  74#endif
  75#ifndef CONFIG_NANDSIM_DO_DELAYS
  76#define CONFIG_NANDSIM_DO_DELAYS  0
  77#endif
  78#ifndef CONFIG_NANDSIM_LOG
  79#define CONFIG_NANDSIM_LOG        0
  80#endif
  81#ifndef CONFIG_NANDSIM_DBG
  82#define CONFIG_NANDSIM_DBG        0
  83#endif
  84#ifndef CONFIG_NANDSIM_MAX_PARTS
  85#define CONFIG_NANDSIM_MAX_PARTS  32
  86#endif
  87
  88static uint first_id_byte  = CONFIG_NANDSIM_FIRST_ID_BYTE;
  89static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
  90static uint third_id_byte  = CONFIG_NANDSIM_THIRD_ID_BYTE;
  91static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
  92static uint access_delay   = CONFIG_NANDSIM_ACCESS_DELAY;
  93static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
  94static uint erase_delay    = CONFIG_NANDSIM_ERASE_DELAY;
  95static uint output_cycle   = CONFIG_NANDSIM_OUTPUT_CYCLE;
  96static uint input_cycle    = CONFIG_NANDSIM_INPUT_CYCLE;
  97static uint bus_width      = CONFIG_NANDSIM_BUS_WIDTH;
  98static uint do_delays      = CONFIG_NANDSIM_DO_DELAYS;
  99static uint log            = CONFIG_NANDSIM_LOG;
 100static uint dbg            = CONFIG_NANDSIM_DBG;
 101static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS];
 102static unsigned int parts_num;
 103static char *badblocks = NULL;
 104static char *weakblocks = NULL;
 105static char *weakpages = NULL;
 106static unsigned int bitflips = 0;
 107static char *gravepages = NULL;
 108static unsigned int rptwear = 0;
 109static unsigned int overridesize = 0;
 110static char *cache_file = NULL;
 111static unsigned int bbt;
 112static unsigned int bch;
 113
 114module_param(first_id_byte,  uint, 0400);
 115module_param(second_id_byte, uint, 0400);
 116module_param(third_id_byte,  uint, 0400);
 117module_param(fourth_id_byte, uint, 0400);
 118module_param(access_delay,   uint, 0400);
 119module_param(programm_delay, uint, 0400);
 120module_param(erase_delay,    uint, 0400);
 121module_param(output_cycle,   uint, 0400);
 122module_param(input_cycle,    uint, 0400);
 123module_param(bus_width,      uint, 0400);
 124module_param(do_delays,      uint, 0400);
 125module_param(log,            uint, 0400);
 126module_param(dbg,            uint, 0400);
 127module_param_array(parts, ulong, &parts_num, 0400);
 128module_param(badblocks,      charp, 0400);
 129module_param(weakblocks,     charp, 0400);
 130module_param(weakpages,      charp, 0400);
 131module_param(bitflips,       uint, 0400);
 132module_param(gravepages,     charp, 0400);
 133module_param(rptwear,        uint, 0400);
 134module_param(overridesize,   uint, 0400);
 135module_param(cache_file,     charp, 0400);
 136module_param(bbt,	     uint, 0400);
 137module_param(bch,	     uint, 0400);
 138
 139MODULE_PARM_DESC(first_id_byte,  "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
 140MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
 141MODULE_PARM_DESC(third_id_byte,  "The third byte returned by NAND Flash 'read ID' command");
 142MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
 143MODULE_PARM_DESC(access_delay,   "Initial page access delay (microseconds)");
 144MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
 145MODULE_PARM_DESC(erase_delay,    "Sector erase delay (milliseconds)");
 146MODULE_PARM_DESC(output_cycle,   "Word output (from flash) time (nanoseconds)");
 147MODULE_PARM_DESC(input_cycle,    "Word input (to flash) time (nanoseconds)");
 148MODULE_PARM_DESC(bus_width,      "Chip's bus width (8- or 16-bit)");
 149MODULE_PARM_DESC(do_delays,      "Simulate NAND delays using busy-waits if not zero");
 150MODULE_PARM_DESC(log,            "Perform logging if not zero");
 151MODULE_PARM_DESC(dbg,            "Output debug information if not zero");
 152MODULE_PARM_DESC(parts,          "Partition sizes (in erase blocks) separated by commas");
 153/* Page and erase block positions for the following parameters are independent of any partitions */
 154MODULE_PARM_DESC(badblocks,      "Erase blocks that are initially marked bad, separated by commas");
 155MODULE_PARM_DESC(weakblocks,     "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
 156				 " separated by commas e.g. 113:2 means eb 113"
 157				 " can be erased only twice before failing");
 158MODULE_PARM_DESC(weakpages,      "Weak pages [: maximum writes (defaults to 3)]"
 159				 " separated by commas e.g. 1401:2 means page 1401"
 160				 " can be written only twice before failing");
 161MODULE_PARM_DESC(bitflips,       "Maximum number of random bit flips per page (zero by default)");
 162MODULE_PARM_DESC(gravepages,     "Pages that lose data [: maximum reads (defaults to 3)]"
 163				 " separated by commas e.g. 1401:2 means page 1401"
 164				 " can be read only twice before failing");
 165MODULE_PARM_DESC(rptwear,        "Number of erases between reporting wear, if not zero");
 166MODULE_PARM_DESC(overridesize,   "Specifies the NAND Flash size overriding the ID bytes. "
 167				 "The size is specified in erase blocks and as the exponent of a power of two"
 168				 " e.g. 5 means a size of 32 erase blocks");
 169MODULE_PARM_DESC(cache_file,     "File to use to cache nand pages instead of memory");
 170MODULE_PARM_DESC(bbt,		 "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area");
 171MODULE_PARM_DESC(bch,		 "Enable BCH ecc and set how many bits should "
 172				 "be correctable in 512-byte blocks");
 173
 174/* The largest possible page size */
 175#define NS_LARGEST_PAGE_SIZE	4096
 176
 177/* The prefix for simulator output */
 178#define NS_OUTPUT_PREFIX "[nandsim]"
 179
 180/* Simulator's output macros (logging, debugging, warning, error) */
 181#define NS_LOG(args...) \
 182	do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
 183#define NS_DBG(args...) \
 184	do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
 185#define NS_WARN(args...) \
 186	do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
 187#define NS_ERR(args...) \
 188	do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
 189#define NS_INFO(args...) \
 190	do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
 191
 192/* Busy-wait delay macros (microseconds, milliseconds) */
 193#define NS_UDELAY(us) \
 194        do { if (do_delays) udelay(us); } while(0)
 195#define NS_MDELAY(us) \
 196        do { if (do_delays) mdelay(us); } while(0)
 197
 198/* Is the nandsim structure initialized ? */
 199#define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
 200
 201/* Good operation completion status */
 202#define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
 203
 204/* Operation failed completion status */
 205#define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
 206
 207/* Calculate the page offset in flash RAM image by (row, column) address */
 208#define NS_RAW_OFFSET(ns) \
 209	(((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
 210
 211/* Calculate the OOB offset in flash RAM image by (row, column) address */
 212#define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
 213
 214/* After a command is input, the simulator goes to one of the following states */
 215#define STATE_CMD_READ0        0x00000001 /* read data from the beginning of page */
 216#define STATE_CMD_READ1        0x00000002 /* read data from the second half of page */
 217#define STATE_CMD_READSTART    0x00000003 /* read data second command (large page devices) */
 218#define STATE_CMD_PAGEPROG     0x00000004 /* start page program */
 219#define STATE_CMD_READOOB      0x00000005 /* read OOB area */
 220#define STATE_CMD_ERASE1       0x00000006 /* sector erase first command */
 221#define STATE_CMD_STATUS       0x00000007 /* read status */
 222#define STATE_CMD_STATUS_M     0x00000008 /* read multi-plane status (isn't implemented) */
 223#define STATE_CMD_SEQIN        0x00000009 /* sequential data input */
 224#define STATE_CMD_READID       0x0000000A /* read ID */
 225#define STATE_CMD_ERASE2       0x0000000B /* sector erase second command */
 226#define STATE_CMD_RESET        0x0000000C /* reset */
 227#define STATE_CMD_RNDOUT       0x0000000D /* random output command */
 228#define STATE_CMD_RNDOUTSTART  0x0000000E /* random output start command */
 229#define STATE_CMD_MASK         0x0000000F /* command states mask */
 230
 231/* After an address is input, the simulator goes to one of these states */
 232#define STATE_ADDR_PAGE        0x00000010 /* full (row, column) address is accepted */
 233#define STATE_ADDR_SEC         0x00000020 /* sector address was accepted */
 234#define STATE_ADDR_COLUMN      0x00000030 /* column address was accepted */
 235#define STATE_ADDR_ZERO        0x00000040 /* one byte zero address was accepted */
 236#define STATE_ADDR_MASK        0x00000070 /* address states mask */
 237
 238/* During data input/output the simulator is in these states */
 239#define STATE_DATAIN           0x00000100 /* waiting for data input */
 240#define STATE_DATAIN_MASK      0x00000100 /* data input states mask */
 241
 242#define STATE_DATAOUT          0x00001000 /* waiting for page data output */
 243#define STATE_DATAOUT_ID       0x00002000 /* waiting for ID bytes output */
 244#define STATE_DATAOUT_STATUS   0x00003000 /* waiting for status output */
 245#define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
 246#define STATE_DATAOUT_MASK     0x00007000 /* data output states mask */
 247
 248/* Previous operation is done, ready to accept new requests */
 249#define STATE_READY            0x00000000
 250
 251/* This state is used to mark that the next state isn't known yet */
 252#define STATE_UNKNOWN          0x10000000
 253
 254/* Simulator's actions bit masks */
 255#define ACTION_CPY       0x00100000 /* copy page/OOB to the internal buffer */
 256#define ACTION_PRGPAGE   0x00200000 /* program the internal buffer to flash */
 257#define ACTION_SECERASE  0x00300000 /* erase sector */
 258#define ACTION_ZEROOFF   0x00400000 /* don't add any offset to address */
 259#define ACTION_HALFOFF   0x00500000 /* add to address half of page */
 260#define ACTION_OOBOFF    0x00600000 /* add to address OOB offset */
 261#define ACTION_MASK      0x00700000 /* action mask */
 262
 263#define NS_OPER_NUM      13 /* Number of operations supported by the simulator */
 264#define NS_OPER_STATES   6  /* Maximum number of states in operation */
 265
 266#define OPT_ANY          0xFFFFFFFF /* any chip supports this operation */
 267#define OPT_PAGE256      0x00000001 /* 256-byte  page chips */
 268#define OPT_PAGE512      0x00000002 /* 512-byte  page chips */
 269#define OPT_PAGE2048     0x00000008 /* 2048-byte page chips */
 270#define OPT_SMARTMEDIA   0x00000010 /* SmartMedia technology chips */
 271#define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
 272#define OPT_PAGE4096     0x00000080 /* 4096-byte page chips */
 273#define OPT_LARGEPAGE    (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
 274#define OPT_SMALLPAGE    (OPT_PAGE256  | OPT_PAGE512)  /* 256 and 512-byte page chips */
 275
 276/* Remove action bits from state */
 277#define NS_STATE(x) ((x) & ~ACTION_MASK)
 278
 279/*
 280 * Maximum previous states which need to be saved. Currently saving is
 281 * only needed for page program operation with preceded read command
 282 * (which is only valid for 512-byte pages).
 283 */
 284#define NS_MAX_PREVSTATES 1
 285
 286/* Maximum page cache pages needed to read or write a NAND page to the cache_file */
 287#define NS_MAX_HELD_PAGES 16
 288
 289/*
 290 * A union to represent flash memory contents and flash buffer.
 291 */
 292union ns_mem {
 293	u_char *byte;    /* for byte access */
 294	uint16_t *word;  /* for 16-bit word access */
 295};
 296
 297/*
 298 * The structure which describes all the internal simulator data.
 299 */
 300struct nandsim {
 301	struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS];
 302	unsigned int nbparts;
 303
 304	uint busw;              /* flash chip bus width (8 or 16) */
 305	u_char ids[4];          /* chip's ID bytes */
 306	uint32_t options;       /* chip's characteristic bits */
 307	uint32_t state;         /* current chip state */
 308	uint32_t nxstate;       /* next expected state */
 309
 310	uint32_t *op;           /* current operation, NULL operations isn't known yet  */
 311	uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
 312	uint16_t npstates;      /* number of previous states saved */
 313	uint16_t stateidx;      /* current state index */
 314
 315	/* The simulated NAND flash pages array */
 316	union ns_mem *pages;
 317
 318	/* Slab allocator for nand pages */
 319	struct kmem_cache *nand_pages_slab;
 320
 321	/* Internal buffer of page + OOB size bytes */
 322	union ns_mem buf;
 323
 324	/* NAND flash "geometry" */
 325	struct {
 326		uint64_t totsz;     /* total flash size, bytes */
 327		uint32_t secsz;     /* flash sector (erase block) size, bytes */
 328		uint pgsz;          /* NAND flash page size, bytes */
 329		uint oobsz;         /* page OOB area size, bytes */
 330		uint64_t totszoob;  /* total flash size including OOB, bytes */
 331		uint pgszoob;       /* page size including OOB , bytes*/
 332		uint secszoob;      /* sector size including OOB, bytes */
 333		uint pgnum;         /* total number of pages */
 334		uint pgsec;         /* number of pages per sector */
 335		uint secshift;      /* bits number in sector size */
 336		uint pgshift;       /* bits number in page size */
 337		uint oobshift;      /* bits number in OOB size */
 338		uint pgaddrbytes;   /* bytes per page address */
 339		uint secaddrbytes;  /* bytes per sector address */
 340		uint idbytes;       /* the number ID bytes that this chip outputs */
 341	} geom;
 342
 343	/* NAND flash internal registers */
 344	struct {
 345		unsigned command; /* the command register */
 346		u_char   status;  /* the status register */
 347		uint     row;     /* the page number */
 348		uint     column;  /* the offset within page */
 349		uint     count;   /* internal counter */
 350		uint     num;     /* number of bytes which must be processed */
 351		uint     off;     /* fixed page offset */
 352	} regs;
 353
 354	/* NAND flash lines state */
 355        struct {
 356                int ce;  /* chip Enable */
 357                int cle; /* command Latch Enable */
 358                int ale; /* address Latch Enable */
 359                int wp;  /* write Protect */
 360        } lines;
 361
 362	/* Fields needed when using a cache file */
 363	struct file *cfile; /* Open file */
 364	unsigned char *pages_written; /* Which pages have been written */
 365	void *file_buf;
 366	struct page *held_pages[NS_MAX_HELD_PAGES];
 367	int held_cnt;
 368};
 369
 370/*
 371 * Operations array. To perform any operation the simulator must pass
 372 * through the correspondent states chain.
 373 */
 374static struct nandsim_operations {
 375	uint32_t reqopts;  /* options which are required to perform the operation */
 376	uint32_t states[NS_OPER_STATES]; /* operation's states */
 377} ops[NS_OPER_NUM] = {
 378	/* Read page + OOB from the beginning */
 379	{OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
 380			STATE_DATAOUT, STATE_READY}},
 381	/* Read page + OOB from the second half */
 382	{OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
 383			STATE_DATAOUT, STATE_READY}},
 384	/* Read OOB */
 385	{OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
 386			STATE_DATAOUT, STATE_READY}},
 387	/* Program page starting from the beginning */
 388	{OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
 389			STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
 390	/* Program page starting from the beginning */
 391	{OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
 392			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
 393	/* Program page starting from the second half */
 394	{OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
 395			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
 396	/* Program OOB */
 397	{OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
 398			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
 399	/* Erase sector */
 400	{OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
 401	/* Read status */
 402	{OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
 403	/* Read multi-plane status */
 404	{OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}},
 405	/* Read ID */
 406	{OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
 407	/* Large page devices read page */
 408	{OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
 409			       STATE_DATAOUT, STATE_READY}},
 410	/* Large page devices random page read */
 411	{OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
 412			       STATE_DATAOUT, STATE_READY}},
 413};
 414
 415struct weak_block {
 416	struct list_head list;
 417	unsigned int erase_block_no;
 418	unsigned int max_erases;
 419	unsigned int erases_done;
 420};
 421
 422static LIST_HEAD(weak_blocks);
 423
 424struct weak_page {
 425	struct list_head list;
 426	unsigned int page_no;
 427	unsigned int max_writes;
 428	unsigned int writes_done;
 429};
 430
 431static LIST_HEAD(weak_pages);
 432
 433struct grave_page {
 434	struct list_head list;
 435	unsigned int page_no;
 436	unsigned int max_reads;
 437	unsigned int reads_done;
 438};
 439
 440static LIST_HEAD(grave_pages);
 441
 442static unsigned long *erase_block_wear = NULL;
 443static unsigned int wear_eb_count = 0;
 444static unsigned long total_wear = 0;
 445static unsigned int rptwear_cnt = 0;
 446
 447/* MTD structure for NAND controller */
 448static struct mtd_info *nsmtd;
 449
 450static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE];
 451
 452/*
 453 * Allocate array of page pointers, create slab allocation for an array
 454 * and initialize the array by NULL pointers.
 455 *
 456 * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
 457 */
 458static int alloc_device(struct nandsim *ns)
 459{
 460	struct file *cfile;
 461	int i, err;
 462
 463	if (cache_file) {
 464		cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
 465		if (IS_ERR(cfile))
 466			return PTR_ERR(cfile);
 467		if (!cfile->f_op || (!cfile->f_op->read && !cfile->f_op->aio_read)) {
 468			NS_ERR("alloc_device: cache file not readable\n");
 469			err = -EINVAL;
 470			goto err_close;
 471		}
 472		if (!cfile->f_op->write && !cfile->f_op->aio_write) {
 473			NS_ERR("alloc_device: cache file not writeable\n");
 474			err = -EINVAL;
 475			goto err_close;
 476		}
 477		ns->pages_written = vzalloc(ns->geom.pgnum);
 478		if (!ns->pages_written) {
 479			NS_ERR("alloc_device: unable to allocate pages written array\n");
 480			err = -ENOMEM;
 481			goto err_close;
 482		}
 483		ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
 484		if (!ns->file_buf) {
 485			NS_ERR("alloc_device: unable to allocate file buf\n");
 486			err = -ENOMEM;
 487			goto err_free;
 488		}
 489		ns->cfile = cfile;
 490		return 0;
 491	}
 492
 493	ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
 494	if (!ns->pages) {
 495		NS_ERR("alloc_device: unable to allocate page array\n");
 496		return -ENOMEM;
 497	}
 498	for (i = 0; i < ns->geom.pgnum; i++) {
 499		ns->pages[i].byte = NULL;
 500	}
 501	ns->nand_pages_slab = kmem_cache_create("nandsim",
 502						ns->geom.pgszoob, 0, 0, NULL);
 503	if (!ns->nand_pages_slab) {
 504		NS_ERR("cache_create: unable to create kmem_cache\n");
 505		return -ENOMEM;
 506	}
 507
 508	return 0;
 509
 510err_free:
 511	vfree(ns->pages_written);
 512err_close:
 513	filp_close(cfile, NULL);
 514	return err;
 515}
 516
 517/*
 518 * Free any allocated pages, and free the array of page pointers.
 519 */
 520static void free_device(struct nandsim *ns)
 521{
 522	int i;
 523
 524	if (ns->cfile) {
 525		kfree(ns->file_buf);
 526		vfree(ns->pages_written);
 527		filp_close(ns->cfile, NULL);
 528		return;
 529	}
 530
 531	if (ns->pages) {
 532		for (i = 0; i < ns->geom.pgnum; i++) {
 533			if (ns->pages[i].byte)
 534				kmem_cache_free(ns->nand_pages_slab,
 535						ns->pages[i].byte);
 536		}
 537		kmem_cache_destroy(ns->nand_pages_slab);
 538		vfree(ns->pages);
 539	}
 540}
 541
 542static char *get_partition_name(int i)
 543{
 544	char buf[64];
 545	sprintf(buf, "NAND simulator partition %d", i);
 546	return kstrdup(buf, GFP_KERNEL);
 547}
 548
 549/*
 550 * Initialize the nandsim structure.
 551 *
 552 * RETURNS: 0 if success, -ERRNO if failure.
 553 */
 554static int init_nandsim(struct mtd_info *mtd)
 555{
 556	struct nand_chip *chip = mtd->priv;
 557	struct nandsim   *ns   = chip->priv;
 558	int i, ret = 0;
 559	uint64_t remains;
 560	uint64_t next_offset;
 561
 562	if (NS_IS_INITIALIZED(ns)) {
 563		NS_ERR("init_nandsim: nandsim is already initialized\n");
 564		return -EIO;
 565	}
 566
 567	/* Force mtd to not do delays */
 568	chip->chip_delay = 0;
 569
 570	/* Initialize the NAND flash parameters */
 571	ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
 572	ns->geom.totsz    = mtd->size;
 573	ns->geom.pgsz     = mtd->writesize;
 574	ns->geom.oobsz    = mtd->oobsize;
 575	ns->geom.secsz    = mtd->erasesize;
 576	ns->geom.pgszoob  = ns->geom.pgsz + ns->geom.oobsz;
 577	ns->geom.pgnum    = div_u64(ns->geom.totsz, ns->geom.pgsz);
 578	ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
 579	ns->geom.secshift = ffs(ns->geom.secsz) - 1;
 580	ns->geom.pgshift  = chip->page_shift;
 581	ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
 582	ns->geom.pgsec    = ns->geom.secsz / ns->geom.pgsz;
 583	ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
 584	ns->options = 0;
 585
 586	if (ns->geom.pgsz == 256) {
 587		ns->options |= OPT_PAGE256;
 588	}
 589	else if (ns->geom.pgsz == 512) {
 590		ns->options |= OPT_PAGE512;
 591		if (ns->busw == 8)
 592			ns->options |= OPT_PAGE512_8BIT;
 593	} else if (ns->geom.pgsz == 2048) {
 594		ns->options |= OPT_PAGE2048;
 595	} else if (ns->geom.pgsz == 4096) {
 596		ns->options |= OPT_PAGE4096;
 597	} else {
 598		NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
 599		return -EIO;
 600	}
 601
 602	if (ns->options & OPT_SMALLPAGE) {
 603		if (ns->geom.totsz <= (32 << 20)) {
 604			ns->geom.pgaddrbytes  = 3;
 605			ns->geom.secaddrbytes = 2;
 606		} else {
 607			ns->geom.pgaddrbytes  = 4;
 608			ns->geom.secaddrbytes = 3;
 609		}
 610	} else {
 611		if (ns->geom.totsz <= (128 << 20)) {
 612			ns->geom.pgaddrbytes  = 4;
 613			ns->geom.secaddrbytes = 2;
 614		} else {
 615			ns->geom.pgaddrbytes  = 5;
 616			ns->geom.secaddrbytes = 3;
 617		}
 618	}
 619
 620	/* Fill the partition_info structure */
 621	if (parts_num > ARRAY_SIZE(ns->partitions)) {
 622		NS_ERR("too many partitions.\n");
 623		ret = -EINVAL;
 624		goto error;
 625	}
 626	remains = ns->geom.totsz;
 627	next_offset = 0;
 628	for (i = 0; i < parts_num; ++i) {
 629		uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
 630
 631		if (!part_sz || part_sz > remains) {
 632			NS_ERR("bad partition size.\n");
 633			ret = -EINVAL;
 634			goto error;
 635		}
 636		ns->partitions[i].name   = get_partition_name(i);
 637		ns->partitions[i].offset = next_offset;
 638		ns->partitions[i].size   = part_sz;
 639		next_offset += ns->partitions[i].size;
 640		remains -= ns->partitions[i].size;
 641	}
 642	ns->nbparts = parts_num;
 643	if (remains) {
 644		if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
 645			NS_ERR("too many partitions.\n");
 646			ret = -EINVAL;
 647			goto error;
 648		}
 649		ns->partitions[i].name   = get_partition_name(i);
 650		ns->partitions[i].offset = next_offset;
 651		ns->partitions[i].size   = remains;
 652		ns->nbparts += 1;
 653	}
 654
 655	/* Detect how many ID bytes the NAND chip outputs */
 656        for (i = 0; nand_flash_ids[i].name != NULL; i++) {
 657                if (second_id_byte != nand_flash_ids[i].id)
 658                        continue;
 659	}
 660
 661	if (ns->busw == 16)
 662		NS_WARN("16-bit flashes support wasn't tested\n");
 663
 664	printk("flash size: %llu MiB\n",
 665			(unsigned long long)ns->geom.totsz >> 20);
 666	printk("page size: %u bytes\n",         ns->geom.pgsz);
 667	printk("OOB area size: %u bytes\n",     ns->geom.oobsz);
 668	printk("sector size: %u KiB\n",         ns->geom.secsz >> 10);
 669	printk("pages number: %u\n",            ns->geom.pgnum);
 670	printk("pages per sector: %u\n",        ns->geom.pgsec);
 671	printk("bus width: %u\n",               ns->busw);
 672	printk("bits in sector size: %u\n",     ns->geom.secshift);
 673	printk("bits in page size: %u\n",       ns->geom.pgshift);
 674	printk("bits in OOB size: %u\n",	ns->geom.oobshift);
 675	printk("flash size with OOB: %llu KiB\n",
 676			(unsigned long long)ns->geom.totszoob >> 10);
 677	printk("page address bytes: %u\n",      ns->geom.pgaddrbytes);
 678	printk("sector address bytes: %u\n",    ns->geom.secaddrbytes);
 679	printk("options: %#x\n",                ns->options);
 680
 681	if ((ret = alloc_device(ns)) != 0)
 682		goto error;
 683
 684	/* Allocate / initialize the internal buffer */
 685	ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
 686	if (!ns->buf.byte) {
 687		NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
 688			ns->geom.pgszoob);
 689		ret = -ENOMEM;
 690		goto error;
 691	}
 692	memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
 693
 694	return 0;
 695
 696error:
 697	free_device(ns);
 698
 699	return ret;
 700}
 701
 702/*
 703 * Free the nandsim structure.
 704 */
 705static void free_nandsim(struct nandsim *ns)
 706{
 707	kfree(ns->buf.byte);
 708	free_device(ns);
 709
 710	return;
 711}
 712
 713static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
 714{
 715	char *w;
 716	int zero_ok;
 717	unsigned int erase_block_no;
 718	loff_t offset;
 719
 720	if (!badblocks)
 721		return 0;
 722	w = badblocks;
 723	do {
 724		zero_ok = (*w == '0' ? 1 : 0);
 725		erase_block_no = simple_strtoul(w, &w, 0);
 726		if (!zero_ok && !erase_block_no) {
 727			NS_ERR("invalid badblocks.\n");
 728			return -EINVAL;
 729		}
 730		offset = erase_block_no * ns->geom.secsz;
 731		if (mtd_block_markbad(mtd, offset)) {
 732			NS_ERR("invalid badblocks.\n");
 733			return -EINVAL;
 734		}
 735		if (*w == ',')
 736			w += 1;
 737	} while (*w);
 738	return 0;
 739}
 740
 741static int parse_weakblocks(void)
 742{
 743	char *w;
 744	int zero_ok;
 745	unsigned int erase_block_no;
 746	unsigned int max_erases;
 747	struct weak_block *wb;
 748
 749	if (!weakblocks)
 750		return 0;
 751	w = weakblocks;
 752	do {
 753		zero_ok = (*w == '0' ? 1 : 0);
 754		erase_block_no = simple_strtoul(w, &w, 0);
 755		if (!zero_ok && !erase_block_no) {
 756			NS_ERR("invalid weakblocks.\n");
 757			return -EINVAL;
 758		}
 759		max_erases = 3;
 760		if (*w == ':') {
 761			w += 1;
 762			max_erases = simple_strtoul(w, &w, 0);
 763		}
 764		if (*w == ',')
 765			w += 1;
 766		wb = kzalloc(sizeof(*wb), GFP_KERNEL);
 767		if (!wb) {
 768			NS_ERR("unable to allocate memory.\n");
 769			return -ENOMEM;
 770		}
 771		wb->erase_block_no = erase_block_no;
 772		wb->max_erases = max_erases;
 773		list_add(&wb->list, &weak_blocks);
 774	} while (*w);
 775	return 0;
 776}
 777
 778static int erase_error(unsigned int erase_block_no)
 779{
 780	struct weak_block *wb;
 781
 782	list_for_each_entry(wb, &weak_blocks, list)
 783		if (wb->erase_block_no == erase_block_no) {
 784			if (wb->erases_done >= wb->max_erases)
 785				return 1;
 786			wb->erases_done += 1;
 787			return 0;
 788		}
 789	return 0;
 790}
 791
 792static int parse_weakpages(void)
 793{
 794	char *w;
 795	int zero_ok;
 796	unsigned int page_no;
 797	unsigned int max_writes;
 798	struct weak_page *wp;
 799
 800	if (!weakpages)
 801		return 0;
 802	w = weakpages;
 803	do {
 804		zero_ok = (*w == '0' ? 1 : 0);
 805		page_no = simple_strtoul(w, &w, 0);
 806		if (!zero_ok && !page_no) {
 807			NS_ERR("invalid weakpagess.\n");
 808			return -EINVAL;
 809		}
 810		max_writes = 3;
 811		if (*w == ':') {
 812			w += 1;
 813			max_writes = simple_strtoul(w, &w, 0);
 814		}
 815		if (*w == ',')
 816			w += 1;
 817		wp = kzalloc(sizeof(*wp), GFP_KERNEL);
 818		if (!wp) {
 819			NS_ERR("unable to allocate memory.\n");
 820			return -ENOMEM;
 821		}
 822		wp->page_no = page_no;
 823		wp->max_writes = max_writes;
 824		list_add(&wp->list, &weak_pages);
 825	} while (*w);
 826	return 0;
 827}
 828
 829static int write_error(unsigned int page_no)
 830{
 831	struct weak_page *wp;
 832
 833	list_for_each_entry(wp, &weak_pages, list)
 834		if (wp->page_no == page_no) {
 835			if (wp->writes_done >= wp->max_writes)
 836				return 1;
 837			wp->writes_done += 1;
 838			return 0;
 839		}
 840	return 0;
 841}
 842
 843static int parse_gravepages(void)
 844{
 845	char *g;
 846	int zero_ok;
 847	unsigned int page_no;
 848	unsigned int max_reads;
 849	struct grave_page *gp;
 850
 851	if (!gravepages)
 852		return 0;
 853	g = gravepages;
 854	do {
 855		zero_ok = (*g == '0' ? 1 : 0);
 856		page_no = simple_strtoul(g, &g, 0);
 857		if (!zero_ok && !page_no) {
 858			NS_ERR("invalid gravepagess.\n");
 859			return -EINVAL;
 860		}
 861		max_reads = 3;
 862		if (*g == ':') {
 863			g += 1;
 864			max_reads = simple_strtoul(g, &g, 0);
 865		}
 866		if (*g == ',')
 867			g += 1;
 868		gp = kzalloc(sizeof(*gp), GFP_KERNEL);
 869		if (!gp) {
 870			NS_ERR("unable to allocate memory.\n");
 871			return -ENOMEM;
 872		}
 873		gp->page_no = page_no;
 874		gp->max_reads = max_reads;
 875		list_add(&gp->list, &grave_pages);
 876	} while (*g);
 877	return 0;
 878}
 879
 880static int read_error(unsigned int page_no)
 881{
 882	struct grave_page *gp;
 883
 884	list_for_each_entry(gp, &grave_pages, list)
 885		if (gp->page_no == page_no) {
 886			if (gp->reads_done >= gp->max_reads)
 887				return 1;
 888			gp->reads_done += 1;
 889			return 0;
 890		}
 891	return 0;
 892}
 893
 894static void free_lists(void)
 895{
 896	struct list_head *pos, *n;
 897	list_for_each_safe(pos, n, &weak_blocks) {
 898		list_del(pos);
 899		kfree(list_entry(pos, struct weak_block, list));
 900	}
 901	list_for_each_safe(pos, n, &weak_pages) {
 902		list_del(pos);
 903		kfree(list_entry(pos, struct weak_page, list));
 904	}
 905	list_for_each_safe(pos, n, &grave_pages) {
 906		list_del(pos);
 907		kfree(list_entry(pos, struct grave_page, list));
 908	}
 909	kfree(erase_block_wear);
 910}
 911
 912static int setup_wear_reporting(struct mtd_info *mtd)
 913{
 914	size_t mem;
 915
 916	if (!rptwear)
 917		return 0;
 918	wear_eb_count = div_u64(mtd->size, mtd->erasesize);
 919	mem = wear_eb_count * sizeof(unsigned long);
 920	if (mem / sizeof(unsigned long) != wear_eb_count) {
 921		NS_ERR("Too many erase blocks for wear reporting\n");
 922		return -ENOMEM;
 923	}
 924	erase_block_wear = kzalloc(mem, GFP_KERNEL);
 925	if (!erase_block_wear) {
 926		NS_ERR("Too many erase blocks for wear reporting\n");
 927		return -ENOMEM;
 928	}
 929	return 0;
 930}
 931
 932static void update_wear(unsigned int erase_block_no)
 933{
 934	unsigned long wmin = -1, wmax = 0, avg;
 935	unsigned long deciles[10], decile_max[10], tot = 0;
 936	unsigned int i;
 937
 938	if (!erase_block_wear)
 939		return;
 940	total_wear += 1;
 941	if (total_wear == 0)
 942		NS_ERR("Erase counter total overflow\n");
 943	erase_block_wear[erase_block_no] += 1;
 944	if (erase_block_wear[erase_block_no] == 0)
 945		NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
 946	rptwear_cnt += 1;
 947	if (rptwear_cnt < rptwear)
 948		return;
 949	rptwear_cnt = 0;
 950	/* Calc wear stats */
 951	for (i = 0; i < wear_eb_count; ++i) {
 952		unsigned long wear = erase_block_wear[i];
 953		if (wear < wmin)
 954			wmin = wear;
 955		if (wear > wmax)
 956			wmax = wear;
 957		tot += wear;
 958	}
 959	for (i = 0; i < 9; ++i) {
 960		deciles[i] = 0;
 961		decile_max[i] = (wmax * (i + 1) + 5) / 10;
 962	}
 963	deciles[9] = 0;
 964	decile_max[9] = wmax;
 965	for (i = 0; i < wear_eb_count; ++i) {
 966		int d;
 967		unsigned long wear = erase_block_wear[i];
 968		for (d = 0; d < 10; ++d)
 969			if (wear <= decile_max[d]) {
 970				deciles[d] += 1;
 971				break;
 972			}
 973	}
 974	avg = tot / wear_eb_count;
 975	/* Output wear report */
 976	NS_INFO("*** Wear Report ***\n");
 977	NS_INFO("Total numbers of erases:  %lu\n", tot);
 978	NS_INFO("Number of erase blocks:   %u\n", wear_eb_count);
 979	NS_INFO("Average number of erases: %lu\n", avg);
 980	NS_INFO("Maximum number of erases: %lu\n", wmax);
 981	NS_INFO("Minimum number of erases: %lu\n", wmin);
 982	for (i = 0; i < 10; ++i) {
 983		unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
 984		if (from > decile_max[i])
 985			continue;
 986		NS_INFO("Number of ebs with erase counts from %lu to %lu : %lu\n",
 987			from,
 988			decile_max[i],
 989			deciles[i]);
 990	}
 991	NS_INFO("*** End of Wear Report ***\n");
 992}
 993
 994/*
 995 * Returns the string representation of 'state' state.
 996 */
 997static char *get_state_name(uint32_t state)
 998{
 999	switch (NS_STATE(state)) {
1000		case STATE_CMD_READ0:
1001			return "STATE_CMD_READ0";
1002		case STATE_CMD_READ1:
1003			return "STATE_CMD_READ1";
1004		case STATE_CMD_PAGEPROG:
1005			return "STATE_CMD_PAGEPROG";
1006		case STATE_CMD_READOOB:
1007			return "STATE_CMD_READOOB";
1008		case STATE_CMD_READSTART:
1009			return "STATE_CMD_READSTART";
1010		case STATE_CMD_ERASE1:
1011			return "STATE_CMD_ERASE1";
1012		case STATE_CMD_STATUS:
1013			return "STATE_CMD_STATUS";
1014		case STATE_CMD_STATUS_M:
1015			return "STATE_CMD_STATUS_M";
1016		case STATE_CMD_SEQIN:
1017			return "STATE_CMD_SEQIN";
1018		case STATE_CMD_READID:
1019			return "STATE_CMD_READID";
1020		case STATE_CMD_ERASE2:
1021			return "STATE_CMD_ERASE2";
1022		case STATE_CMD_RESET:
1023			return "STATE_CMD_RESET";
1024		case STATE_CMD_RNDOUT:
1025			return "STATE_CMD_RNDOUT";
1026		case STATE_CMD_RNDOUTSTART:
1027			return "STATE_CMD_RNDOUTSTART";
1028		case STATE_ADDR_PAGE:
1029			return "STATE_ADDR_PAGE";
1030		case STATE_ADDR_SEC:
1031			return "STATE_ADDR_SEC";
1032		case STATE_ADDR_ZERO:
1033			return "STATE_ADDR_ZERO";
1034		case STATE_ADDR_COLUMN:
1035			return "STATE_ADDR_COLUMN";
1036		case STATE_DATAIN:
1037			return "STATE_DATAIN";
1038		case STATE_DATAOUT:
1039			return "STATE_DATAOUT";
1040		case STATE_DATAOUT_ID:
1041			return "STATE_DATAOUT_ID";
1042		case STATE_DATAOUT_STATUS:
1043			return "STATE_DATAOUT_STATUS";
1044		case STATE_DATAOUT_STATUS_M:
1045			return "STATE_DATAOUT_STATUS_M";
1046		case STATE_READY:
1047			return "STATE_READY";
1048		case STATE_UNKNOWN:
1049			return "STATE_UNKNOWN";
1050	}
1051
1052	NS_ERR("get_state_name: unknown state, BUG\n");
1053	return NULL;
1054}
1055
1056/*
1057 * Check if command is valid.
1058 *
1059 * RETURNS: 1 if wrong command, 0 if right.
1060 */
1061static int check_command(int cmd)
1062{
1063	switch (cmd) {
1064
1065	case NAND_CMD_READ0:
1066	case NAND_CMD_READ1:
1067	case NAND_CMD_READSTART:
1068	case NAND_CMD_PAGEPROG:
1069	case NAND_CMD_READOOB:
1070	case NAND_CMD_ERASE1:
1071	case NAND_CMD_STATUS:
1072	case NAND_CMD_SEQIN:
1073	case NAND_CMD_READID:
1074	case NAND_CMD_ERASE2:
1075	case NAND_CMD_RESET:
1076	case NAND_CMD_RNDOUT:
1077	case NAND_CMD_RNDOUTSTART:
1078		return 0;
1079
1080	case NAND_CMD_STATUS_MULTI:
1081	default:
1082		return 1;
1083	}
1084}
1085
1086/*
1087 * Returns state after command is accepted by command number.
1088 */
1089static uint32_t get_state_by_command(unsigned command)
1090{
1091	switch (command) {
1092		case NAND_CMD_READ0:
1093			return STATE_CMD_READ0;
1094		case NAND_CMD_READ1:
1095			return STATE_CMD_READ1;
1096		case NAND_CMD_PAGEPROG:
1097			return STATE_CMD_PAGEPROG;
1098		case NAND_CMD_READSTART:
1099			return STATE_CMD_READSTART;
1100		case NAND_CMD_READOOB:
1101			return STATE_CMD_READOOB;
1102		case NAND_CMD_ERASE1:
1103			return STATE_CMD_ERASE1;
1104		case NAND_CMD_STATUS:
1105			return STATE_CMD_STATUS;
1106		case NAND_CMD_STATUS_MULTI:
1107			return STATE_CMD_STATUS_M;
1108		case NAND_CMD_SEQIN:
1109			return STATE_CMD_SEQIN;
1110		case NAND_CMD_READID:
1111			return STATE_CMD_READID;
1112		case NAND_CMD_ERASE2:
1113			return STATE_CMD_ERASE2;
1114		case NAND_CMD_RESET:
1115			return STATE_CMD_RESET;
1116		case NAND_CMD_RNDOUT:
1117			return STATE_CMD_RNDOUT;
1118		case NAND_CMD_RNDOUTSTART:
1119			return STATE_CMD_RNDOUTSTART;
1120	}
1121
1122	NS_ERR("get_state_by_command: unknown command, BUG\n");
1123	return 0;
1124}
1125
1126/*
1127 * Move an address byte to the correspondent internal register.
1128 */
1129static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1130{
1131	uint byte = (uint)bt;
1132
1133	if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1134		ns->regs.column |= (byte << 8 * ns->regs.count);
1135	else {
1136		ns->regs.row |= (byte << 8 * (ns->regs.count -
1137						ns->geom.pgaddrbytes +
1138						ns->geom.secaddrbytes));
1139	}
1140
1141	return;
1142}
1143
1144/*
1145 * Switch to STATE_READY state.
1146 */
1147static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1148{
1149	NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1150
1151	ns->state       = STATE_READY;
1152	ns->nxstate     = STATE_UNKNOWN;
1153	ns->op          = NULL;
1154	ns->npstates    = 0;
1155	ns->stateidx    = 0;
1156	ns->regs.num    = 0;
1157	ns->regs.count  = 0;
1158	ns->regs.off    = 0;
1159	ns->regs.row    = 0;
1160	ns->regs.column = 0;
1161	ns->regs.status = status;
1162}
1163
1164/*
1165 * If the operation isn't known yet, try to find it in the global array
1166 * of supported operations.
1167 *
1168 * Operation can be unknown because of the following.
1169 *   1. New command was accepted and this is the first call to find the
1170 *      correspondent states chain. In this case ns->npstates = 0;
1171 *   2. There are several operations which begin with the same command(s)
1172 *      (for example program from the second half and read from the
1173 *      second half operations both begin with the READ1 command). In this
1174 *      case the ns->pstates[] array contains previous states.
1175 *
1176 * Thus, the function tries to find operation containing the following
1177 * states (if the 'flag' parameter is 0):
1178 *    ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1179 *
1180 * If (one and only one) matching operation is found, it is accepted (
1181 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1182 * zeroed).
1183 *
1184 * If there are several matches, the current state is pushed to the
1185 * ns->pstates.
1186 *
1187 * The operation can be unknown only while commands are input to the chip.
1188 * As soon as address command is accepted, the operation must be known.
1189 * In such situation the function is called with 'flag' != 0, and the
1190 * operation is searched using the following pattern:
1191 *     ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1192 *
1193 * It is supposed that this pattern must either match one operation or
1194 * none. There can't be ambiguity in that case.
1195 *
1196 * If no matches found, the function does the following:
1197 *   1. if there are saved states present, try to ignore them and search
1198 *      again only using the last command. If nothing was found, switch
1199 *      to the STATE_READY state.
1200 *   2. if there are no saved states, switch to the STATE_READY state.
1201 *
1202 * RETURNS: -2 - no matched operations found.
1203 *          -1 - several matches.
1204 *           0 - operation is found.
1205 */
1206static int find_operation(struct nandsim *ns, uint32_t flag)
1207{
1208	int opsfound = 0;
1209	int i, j, idx = 0;
1210
1211	for (i = 0; i < NS_OPER_NUM; i++) {
1212
1213		int found = 1;
1214
1215		if (!(ns->options & ops[i].reqopts))
1216			/* Ignore operations we can't perform */
1217			continue;
1218
1219		if (flag) {
1220			if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1221				continue;
1222		} else {
1223			if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1224				continue;
1225		}
1226
1227		for (j = 0; j < ns->npstates; j++)
1228			if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1229				&& (ns->options & ops[idx].reqopts)) {
1230				found = 0;
1231				break;
1232			}
1233
1234		if (found) {
1235			idx = i;
1236			opsfound += 1;
1237		}
1238	}
1239
1240	if (opsfound == 1) {
1241		/* Exact match */
1242		ns->op = &ops[idx].states[0];
1243		if (flag) {
1244			/*
1245			 * In this case the find_operation function was
1246			 * called when address has just began input. But it isn't
1247			 * yet fully input and the current state must
1248			 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1249			 * state must be the next state (ns->nxstate).
1250			 */
1251			ns->stateidx = ns->npstates - 1;
1252		} else {
1253			ns->stateidx = ns->npstates;
1254		}
1255		ns->npstates = 0;
1256		ns->state = ns->op[ns->stateidx];
1257		ns->nxstate = ns->op[ns->stateidx + 1];
1258		NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1259				idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1260		return 0;
1261	}
1262
1263	if (opsfound == 0) {
1264		/* Nothing was found. Try to ignore previous commands (if any) and search again */
1265		if (ns->npstates != 0) {
1266			NS_DBG("find_operation: no operation found, try again with state %s\n",
1267					get_state_name(ns->state));
1268			ns->npstates = 0;
1269			return find_operation(ns, 0);
1270
1271		}
1272		NS_DBG("find_operation: no operations found\n");
1273		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1274		return -2;
1275	}
1276
1277	if (flag) {
1278		/* This shouldn't happen */
1279		NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1280		return -2;
1281	}
1282
1283	NS_DBG("find_operation: there is still ambiguity\n");
1284
1285	ns->pstates[ns->npstates++] = ns->state;
1286
1287	return -1;
1288}
1289
1290static void put_pages(struct nandsim *ns)
1291{
1292	int i;
1293
1294	for (i = 0; i < ns->held_cnt; i++)
1295		page_cache_release(ns->held_pages[i]);
1296}
1297
1298/* Get page cache pages in advance to provide NOFS memory allocation */
1299static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
1300{
1301	pgoff_t index, start_index, end_index;
1302	struct page *page;
1303	struct address_space *mapping = file->f_mapping;
1304
1305	start_index = pos >> PAGE_CACHE_SHIFT;
1306	end_index = (pos + count - 1) >> PAGE_CACHE_SHIFT;
1307	if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
1308		return -EINVAL;
1309	ns->held_cnt = 0;
1310	for (index = start_index; index <= end_index; index++) {
1311		page = find_get_page(mapping, index);
1312		if (page == NULL) {
1313			page = find_or_create_page(mapping, index, GFP_NOFS);
1314			if (page == NULL) {
1315				write_inode_now(mapping->host, 1);
1316				page = find_or_create_page(mapping, index, GFP_NOFS);
1317			}
1318			if (page == NULL) {
1319				put_pages(ns);
1320				return -ENOMEM;
1321			}
1322			unlock_page(page);
1323		}
1324		ns->held_pages[ns->held_cnt++] = page;
1325	}
1326	return 0;
1327}
1328
1329static int set_memalloc(void)
1330{
1331	if (current->flags & PF_MEMALLOC)
1332		return 0;
1333	current->flags |= PF_MEMALLOC;
1334	return 1;
1335}
1336
1337static void clear_memalloc(int memalloc)
1338{
1339	if (memalloc)
1340		current->flags &= ~PF_MEMALLOC;
1341}
1342
1343static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos)
1344{
1345	mm_segment_t old_fs;
1346	ssize_t tx;
1347	int err, memalloc;
1348
1349	err = get_pages(ns, file, count, *pos);
1350	if (err)
1351		return err;
1352	old_fs = get_fs();
1353	set_fs(get_ds());
1354	memalloc = set_memalloc();
1355	tx = vfs_read(file, (char __user *)buf, count, pos);
1356	clear_memalloc(memalloc);
1357	set_fs(old_fs);
1358	put_pages(ns);
1359	return tx;
1360}
1361
1362static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos)
1363{
1364	mm_segment_t old_fs;
1365	ssize_t tx;
1366	int err, memalloc;
1367
1368	err = get_pages(ns, file, count, *pos);
1369	if (err)
1370		return err;
1371	old_fs = get_fs();
1372	set_fs(get_ds());
1373	memalloc = set_memalloc();
1374	tx = vfs_write(file, (char __user *)buf, count, pos);
1375	clear_memalloc(memalloc);
1376	set_fs(old_fs);
1377	put_pages(ns);
1378	return tx;
1379}
1380
1381/*
1382 * Returns a pointer to the current page.
1383 */
1384static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1385{
1386	return &(ns->pages[ns->regs.row]);
1387}
1388
1389/*
1390 * Retuns a pointer to the current byte, within the current page.
1391 */
1392static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1393{
1394	return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1395}
1396
1397int do_read_error(struct nandsim *ns, int num)
1398{
1399	unsigned int page_no = ns->regs.row;
1400
1401	if (read_error(page_no)) {
1402		int i;
1403		memset(ns->buf.byte, 0xFF, num);
1404		for (i = 0; i < num; ++i)
1405			ns->buf.byte[i] = random32();
1406		NS_WARN("simulating read error in page %u\n", page_no);
1407		return 1;
1408	}
1409	return 0;
1410}
1411
1412void do_bit_flips(struct nandsim *ns, int num)
1413{
1414	if (bitflips && random32() < (1 << 22)) {
1415		int flips = 1;
1416		if (bitflips > 1)
1417			flips = (random32() % (int) bitflips) + 1;
1418		while (flips--) {
1419			int pos = random32() % (num * 8);
1420			ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1421			NS_WARN("read_page: flipping bit %d in page %d "
1422				"reading from %d ecc: corrected=%u failed=%u\n",
1423				pos, ns->regs.row, ns->regs.column + ns->regs.off,
1424				nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1425		}
1426	}
1427}
1428
1429/*
1430 * Fill the NAND buffer with data read from the specified page.
1431 */
1432static void read_page(struct nandsim *ns, int num)
1433{
1434	union ns_mem *mypage;
1435
1436	if (ns->cfile) {
1437		if (!ns->pages_written[ns->regs.row]) {
1438			NS_DBG("read_page: page %d not written\n", ns->regs.row);
1439			memset(ns->buf.byte, 0xFF, num);
1440		} else {
1441			loff_t pos;
1442			ssize_t tx;
1443
1444			NS_DBG("read_page: page %d written, reading from %d\n",
1445				ns->regs.row, ns->regs.column + ns->regs.off);
1446			if (do_read_error(ns, num))
1447				return;
1448			pos = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1449			tx = read_file(ns, ns->cfile, ns->buf.byte, num, &pos);
1450			if (tx != num) {
1451				NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1452				return;
1453			}
1454			do_bit_flips(ns, num);
1455		}
1456		return;
1457	}
1458
1459	mypage = NS_GET_PAGE(ns);
1460	if (mypage->byte == NULL) {
1461		NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1462		memset(ns->buf.byte, 0xFF, num);
1463	} else {
1464		NS_DBG("read_page: page %d allocated, reading from %d\n",
1465			ns->regs.row, ns->regs.column + ns->regs.off);
1466		if (do_read_error(ns, num))
1467			return;
1468		memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1469		do_bit_flips(ns, num);
1470	}
1471}
1472
1473/*
1474 * Erase all pages in the specified sector.
1475 */
1476static void erase_sector(struct nandsim *ns)
1477{
1478	union ns_mem *mypage;
1479	int i;
1480
1481	if (ns->cfile) {
1482		for (i = 0; i < ns->geom.pgsec; i++)
1483			if (ns->pages_written[ns->regs.row + i]) {
1484				NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
1485				ns->pages_written[ns->regs.row + i] = 0;
1486			}
1487		return;
1488	}
1489
1490	mypage = NS_GET_PAGE(ns);
1491	for (i = 0; i < ns->geom.pgsec; i++) {
1492		if (mypage->byte != NULL) {
1493			NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1494			kmem_cache_free(ns->nand_pages_slab, mypage->byte);
1495			mypage->byte = NULL;
1496		}
1497		mypage++;
1498	}
1499}
1500
1501/*
1502 * Program the specified page with the contents from the NAND buffer.
1503 */
1504static int prog_page(struct nandsim *ns, int num)
1505{
1506	int i;
1507	union ns_mem *mypage;
1508	u_char *pg_off;
1509
1510	if (ns->cfile) {
1511		loff_t off, pos;
1512		ssize_t tx;
1513		int all;
1514
1515		NS_DBG("prog_page: writing page %d\n", ns->regs.row);
1516		pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
1517		off = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1518		if (!ns->pages_written[ns->regs.row]) {
1519			all = 1;
1520			memset(ns->file_buf, 0xff, ns->geom.pgszoob);
1521		} else {
1522			all = 0;
1523			pos = off;
1524			tx = read_file(ns, ns->cfile, pg_off, num, &pos);
1525			if (tx != num) {
1526				NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1527				return -1;
1528			}
1529		}
1530		for (i = 0; i < num; i++)
1531			pg_off[i] &= ns->buf.byte[i];
1532		if (all) {
1533			pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
1534			tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, &pos);
1535			if (tx != ns->geom.pgszoob) {
1536				NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1537				return -1;
1538			}
1539			ns->pages_written[ns->regs.row] = 1;
1540		} else {
1541			pos = off;
1542			tx = write_file(ns, ns->cfile, pg_off, num, &pos);
1543			if (tx != num) {
1544				NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1545				return -1;
1546			}
1547		}
1548		return 0;
1549	}
1550
1551	mypage = NS_GET_PAGE(ns);
1552	if (mypage->byte == NULL) {
1553		NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1554		/*
1555		 * We allocate memory with GFP_NOFS because a flash FS may
1556		 * utilize this. If it is holding an FS lock, then gets here,
1557		 * then kernel memory alloc runs writeback which goes to the FS
1558		 * again and deadlocks. This was seen in practice.
1559		 */
1560		mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
1561		if (mypage->byte == NULL) {
1562			NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1563			return -1;
1564		}
1565		memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1566	}
1567
1568	pg_off = NS_PAGE_BYTE_OFF(ns);
1569	for (i = 0; i < num; i++)
1570		pg_off[i] &= ns->buf.byte[i];
1571
1572	return 0;
1573}
1574
1575/*
1576 * If state has any action bit, perform this action.
1577 *
1578 * RETURNS: 0 if success, -1 if error.
1579 */
1580static int do_state_action(struct nandsim *ns, uint32_t action)
1581{
1582	int num;
1583	int busdiv = ns->busw == 8 ? 1 : 2;
1584	unsigned int erase_block_no, page_no;
1585
1586	action &= ACTION_MASK;
1587
1588	/* Check that page address input is correct */
1589	if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1590		NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1591		return -1;
1592	}
1593
1594	switch (action) {
1595
1596	case ACTION_CPY:
1597		/*
1598		 * Copy page data to the internal buffer.
1599		 */
1600
1601		/* Column shouldn't be very large */
1602		if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1603			NS_ERR("do_state_action: column number is too large\n");
1604			break;
1605		}
1606		num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1607		read_page(ns, num);
1608
1609		NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1610			num, NS_RAW_OFFSET(ns) + ns->regs.off);
1611
1612		if (ns->regs.off == 0)
1613			NS_LOG("read page %d\n", ns->regs.row);
1614		else if (ns->regs.off < ns->geom.pgsz)
1615			NS_LOG("read page %d (second half)\n", ns->regs.row);
1616		else
1617			NS_LOG("read OOB of page %d\n", ns->regs.row);
1618
1619		NS_UDELAY(access_delay);
1620		NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1621
1622		break;
1623
1624	case ACTION_SECERASE:
1625		/*
1626		 * Erase sector.
1627		 */
1628
1629		if (ns->lines.wp) {
1630			NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1631			return -1;
1632		}
1633
1634		if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1635			|| (ns->regs.row & ~(ns->geom.secsz - 1))) {
1636			NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1637			return -1;
1638		}
1639
1640		ns->regs.row = (ns->regs.row <<
1641				8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1642		ns->regs.column = 0;
1643
1644		erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1645
1646		NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1647				ns->regs.row, NS_RAW_OFFSET(ns));
1648		NS_LOG("erase sector %u\n", erase_block_no);
1649
1650		erase_sector(ns);
1651
1652		NS_MDELAY(erase_delay);
1653
1654		if (erase_block_wear)
1655			update_wear(erase_block_no);
1656
1657		if (erase_error(erase_block_no)) {
1658			NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1659			return -1;
1660		}
1661
1662		break;
1663
1664	case ACTION_PRGPAGE:
1665		/*
1666		 * Program page - move internal buffer data to the page.
1667		 */
1668
1669		if (ns->lines.wp) {
1670			NS_WARN("do_state_action: device is write-protected, programm\n");
1671			return -1;
1672		}
1673
1674		num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1675		if (num != ns->regs.count) {
1676			NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1677					ns->regs.count, num);
1678			return -1;
1679		}
1680
1681		if (prog_page(ns, num) == -1)
1682			return -1;
1683
1684		page_no = ns->regs.row;
1685
1686		NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1687			num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1688		NS_LOG("programm page %d\n", ns->regs.row);
1689
1690		NS_UDELAY(programm_delay);
1691		NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1692
1693		if (write_error(page_no)) {
1694			NS_WARN("simulating write failure in page %u\n", page_no);
1695			return -1;
1696		}
1697
1698		break;
1699
1700	case ACTION_ZEROOFF:
1701		NS_DBG("do_state_action: set internal offset to 0\n");
1702		ns->regs.off = 0;
1703		break;
1704
1705	case ACTION_HALFOFF:
1706		if (!(ns->options & OPT_PAGE512_8BIT)) {
1707			NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1708				"byte page size 8x chips\n");
1709			return -1;
1710		}
1711		NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1712		ns->regs.off = ns->geom.pgsz/2;
1713		break;
1714
1715	case ACTION_OOBOFF:
1716		NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1717		ns->regs.off = ns->geom.pgsz;
1718		break;
1719
1720	default:
1721		NS_DBG("do_state_action: BUG! unknown action\n");
1722	}
1723
1724	return 0;
1725}
1726
1727/*
1728 * Switch simulator's state.
1729 */
1730static void switch_state(struct nandsim *ns)
1731{
1732	if (ns->op) {
1733		/*
1734		 * The current operation have already been identified.
1735		 * Just follow the states chain.
1736		 */
1737
1738		ns->stateidx += 1;
1739		ns->state = ns->nxstate;
1740		ns->nxstate = ns->op[ns->stateidx + 1];
1741
1742		NS_DBG("switch_state: operation is known, switch to the next state, "
1743			"state: %s, nxstate: %s\n",
1744			get_state_name(ns->state), get_state_name(ns->nxstate));
1745
1746		/* See, whether we need to do some action */
1747		if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1748			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1749			return;
1750		}
1751
1752	} else {
1753		/*
1754		 * We don't yet know which operation we perform.
1755		 * Try to identify it.
1756		 */
1757
1758		/*
1759		 *  The only event causing the switch_state function to
1760		 *  be called with yet unknown operation is new command.
1761		 */
1762		ns->state = get_state_by_command(ns->regs.command);
1763
1764		NS_DBG("switch_state: operation is unknown, try to find it\n");
1765
1766		if (find_operation(ns, 0) != 0)
1767			return;
1768
1769		if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1770			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1771			return;
1772		}
1773	}
1774
1775	/* For 16x devices column means the page offset in words */
1776	if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1777		NS_DBG("switch_state: double the column number for 16x device\n");
1778		ns->regs.column <<= 1;
1779	}
1780
1781	if (NS_STATE(ns->nxstate) == STATE_READY) {
1782		/*
1783		 * The current state is the last. Return to STATE_READY
1784		 */
1785
1786		u_char status = NS_STATUS_OK(ns);
1787
1788		/* In case of data states, see if all bytes were input/output */
1789		if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1790			&& ns->regs.count != ns->regs.num) {
1791			NS_WARN("switch_state: not all bytes were processed, %d left\n",
1792					ns->regs.num - ns->regs.count);
1793			status = NS_STATUS_FAILED(ns);
1794		}
1795
1796		NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1797
1798		switch_to_ready_state(ns, status);
1799
1800		return;
1801	} else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1802		/*
1803		 * If the next state is data input/output, switch to it now
1804		 */
1805
1806		ns->state      = ns->nxstate;
1807		ns->nxstate    = ns->op[++ns->stateidx + 1];
1808		ns->regs.num   = ns->regs.count = 0;
1809
1810		NS_DBG("switch_state: the next state is data I/O, switch, "
1811			"state: %s, nxstate: %s\n",
1812			get_state_name(ns->state), get_state_name(ns->nxstate));
1813
1814		/*
1815		 * Set the internal register to the count of bytes which
1816		 * are expected to be input or output
1817		 */
1818		switch (NS_STATE(ns->state)) {
1819			case STATE_DATAIN:
1820			case STATE_DATAOUT:
1821				ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1822				break;
1823
1824			case STATE_DATAOUT_ID:
1825				ns->regs.num = ns->geom.idbytes;
1826				break;
1827
1828			case STATE_DATAOUT_STATUS:
1829			case STATE_DATAOUT_STATUS_M:
1830				ns->regs.count = ns->regs.num = 0;
1831				break;
1832
1833			default:
1834				NS_ERR("switch_state: BUG! unknown data state\n");
1835		}
1836
1837	} else if (ns->nxstate & STATE_ADDR_MASK) {
1838		/*
1839		 * If the next state is address input, set the internal
1840		 * register to the number of expected address bytes
1841		 */
1842
1843		ns->regs.count = 0;
1844
1845		switch (NS_STATE(ns->nxstate)) {
1846			case STATE_ADDR_PAGE:
1847				ns->regs.num = ns->geom.pgaddrbytes;
1848
1849				break;
1850			case STATE_ADDR_SEC:
1851				ns->regs.num = ns->geom.secaddrbytes;
1852				break;
1853
1854			case STATE_ADDR_ZERO:
1855				ns->regs.num = 1;
1856				break;
1857
1858			case STATE_ADDR_COLUMN:
1859				/* Column address is always 2 bytes */
1860				ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1861				break;
1862
1863			default:
1864				NS_ERR("switch_state: BUG! unknown address state\n");
1865		}
1866	} else {
1867		/*
1868		 * Just reset internal counters.
1869		 */
1870
1871		ns->regs.num = 0;
1872		ns->regs.count = 0;
1873	}
1874}
1875
1876static u_char ns_nand_read_byte(struct mtd_info *mtd)
1877{
1878	struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1879	u_char outb = 0x00;
1880
1881	/* Sanity and correctness checks */
1882	if (!ns->lines.ce) {
1883		NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1884		return outb;
1885	}
1886	if (ns->lines.ale || ns->lines.cle) {
1887		NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1888		return outb;
1889	}
1890	if (!(ns->state & STATE_DATAOUT_MASK)) {
1891		NS_WARN("read_byte: unexpected data output cycle, state is %s "
1892			"return %#x\n", get_state_name(ns->state), (uint)outb);
1893		return outb;
1894	}
1895
1896	/* Status register may be read as many times as it is wanted */
1897	if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1898		NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1899		return ns->regs.status;
1900	}
1901
1902	/* Check if there is any data in the internal buffer which may be read */
1903	if (ns->regs.count == ns->regs.num) {
1904		NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1905		return outb;
1906	}
1907
1908	switch (NS_STATE(ns->state)) {
1909		case STATE_DATAOUT:
1910			if (ns->busw == 8) {
1911				outb = ns->buf.byte[ns->regs.count];
1912				ns->regs.count += 1;
1913			} else {
1914				outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1915				ns->regs.count += 2;
1916			}
1917			break;
1918		case STATE_DATAOUT_ID:
1919			NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1920			outb = ns->ids[ns->regs.count];
1921			ns->regs.count += 1;
1922			break;
1923		default:
1924			BUG();
1925	}
1926
1927	if (ns->regs.count == ns->regs.num) {
1928		NS_DBG("read_byte: all bytes were read\n");
1929
1930		if (NS_STATE(ns->nxstate) == STATE_READY)
1931			switch_state(ns);
1932	}
1933
1934	return outb;
1935}
1936
1937static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1938{
1939	struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1940
1941	/* Sanity and correctness checks */
1942	if (!ns->lines.ce) {
1943		NS_ERR("write_byte: chip is disabled, ignore write\n");
1944		return;
1945	}
1946	if (ns->lines.ale && ns->lines.cle) {
1947		NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1948		return;
1949	}
1950
1951	if (ns->lines.cle == 1) {
1952		/*
1953		 * The byte written is a command.
1954		 */
1955
1956		if (byte == NAND_CMD_RESET) {
1957			NS_LOG("reset chip\n");
1958			switch_to_ready_state(ns, NS_STATUS_OK(ns));
1959			return;
1960		}
1961
1962		/* Check that the command byte is correct */
1963		if (check_command(byte)) {
1964			NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1965			return;
1966		}
1967
1968		if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
1969			|| NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
1970			|| NS_STATE(ns->state) == STATE_DATAOUT) {
1971			int row = ns->regs.row;
1972
1973			switch_state(ns);
1974			if (byte == NAND_CMD_RNDOUT)
1975				ns->regs.row = row;
1976		}
1977
1978		/* Check if chip is expecting command */
1979		if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
1980			/* Do not warn if only 2 id bytes are read */
1981			if (!(ns->regs.command == NAND_CMD_READID &&
1982			    NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
1983				/*
1984				 * We are in situation when something else (not command)
1985				 * was expected but command was input. In this case ignore
1986				 * previous command(s)/state(s) and accept the last one.
1987				 */
1988				NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
1989					"ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
1990			}
1991			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1992		}
1993
1994		NS_DBG("command byte corresponding to %s state accepted\n",
1995			get_state_name(get_state_by_command(byte)));
1996		ns->regs.command = byte;
1997		switch_state(ns);
1998
1999	} else if (ns->lines.ale == 1) {
2000		/*
2001		 * The byte written is an address.
2002		 */
2003
2004		if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
2005
2006			NS_DBG("write_byte: operation isn't known yet, identify it\n");
2007
2008			if (find_operation(ns, 1) < 0)
2009				return;
2010
2011			if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
2012				switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2013				return;
2014			}
2015
2016			ns->regs.count = 0;
2017			switch (NS_STATE(ns->nxstate)) {
2018				case STATE_ADDR_PAGE:
2019					ns->regs.num = ns->geom.pgaddrbytes;
2020					break;
2021				case STATE_ADDR_SEC:
2022					ns->regs.num = ns->geom.secaddrbytes;
2023					break;
2024				case STATE_ADDR_ZERO:
2025					ns->regs.num = 1;
2026					break;
2027				default:
2028					BUG();
2029			}
2030		}
2031
2032		/* Check that chip is expecting address */
2033		if (!(ns->nxstate & STATE_ADDR_MASK)) {
2034			NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
2035				"switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
2036			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2037			return;
2038		}
2039
2040		/* Check if this is expected byte */
2041		if (ns->regs.count == ns->regs.num) {
2042			NS_ERR("write_byte: no more address bytes expected\n");
2043			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2044			return;
2045		}
2046
2047		accept_addr_byte(ns, byte);
2048
2049		ns->regs.count += 1;
2050
2051		NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2052				(uint)byte, ns->regs.count, ns->regs.num);
2053
2054		if (ns->regs.count == ns->regs.num) {
2055			NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
2056			switch_state(ns);
2057		}
2058
2059	} else {
2060		/*
2061		 * The byte written is an input data.
2062		 */
2063
2064		/* Check that chip is expecting data input */
2065		if (!(ns->state & STATE_DATAIN_MASK)) {
2066			NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
2067				"switch to %s\n", (uint)byte,
2068				get_state_name(ns->state), get_state_name(STATE_READY));
2069			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2070			return;
2071		}
2072
2073		/* Check if this is expected byte */
2074		if (ns->regs.count == ns->regs.num) {
2075			NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2076					ns->regs.num);
2077			return;
2078		}
2079
2080		if (ns->busw == 8) {
2081			ns->buf.byte[ns->regs.count] = byte;
2082			ns->regs.count += 1;
2083		} else {
2084			ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
2085			ns->regs.count += 2;
2086		}
2087	}
2088
2089	return;
2090}
2091
2092static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
2093{
2094	struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2095
2096	ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
2097	ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
2098	ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
2099
2100	if (cmd != NAND_CMD_NONE)
2101		ns_nand_write_byte(mtd, cmd);
2102}
2103
2104static int ns_device_ready(struct mtd_info *mtd)
2105{
2106	NS_DBG("device_ready\n");
2107	return 1;
2108}
2109
2110static uint16_t ns_nand_read_word(struct mtd_info *mtd)
2111{
2112	struct nand_chip *chip = (struct nand_chip *)mtd->priv;
2113
2114	NS_DBG("read_word\n");
2115
2116	return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
2117}
2118
2119static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
2120{
2121	struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2122
2123	/* Check that chip is expecting data input */
2124	if (!(ns->state & STATE_DATAIN_MASK)) {
2125		NS_ERR("write_buf: data input isn't expected, state is %s, "
2126			"switch to STATE_READY\n", get_state_name(ns->state));
2127		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2128		return;
2129	}
2130
2131	/* Check if these are expected bytes */
2132	if (ns->regs.count + len > ns->regs.num) {
2133		NS_ERR("write_buf: too many input bytes\n");
2134		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2135		return;
2136	}
2137
2138	memcpy(ns->buf.byte + ns->regs.count, buf, len);
2139	ns->regs.count += len;
2140
2141	if (ns->regs.count == ns->regs.num) {
2142		NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
2143	}
2144}
2145
2146static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
2147{
2148	struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2149
2150	/* Sanity and correctness checks */
2151	if (!ns->lines.ce) {
2152		NS_ERR("read_buf: chip is disabled\n");
2153		return;
2154	}
2155	if (ns->lines.ale || ns->lines.cle) {
2156		NS_ERR("read_buf: ALE or CLE pin is high\n");
2157		return;
2158	}
2159	if (!(ns->state & STATE_DATAOUT_MASK)) {
2160		NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2161			get_state_name(ns->state));
2162		return;
2163	}
2164
2165	if (NS_STATE(ns->state) != STATE_DATAOUT) {
2166		int i;
2167
2168		for (i = 0; i < len; i++)
2169			buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
2170
2171		return;
2172	}
2173
2174	/* Check if these are expected bytes */
2175	if (ns->regs.count + len > ns->regs.num) {
2176		NS_ERR("read_buf: too many bytes to read\n");
2177		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2178		return;
2179	}
2180
2181	memcpy(buf, ns->buf.byte + ns->regs.count, len);
2182	ns->regs.count += len;
2183
2184	if (ns->regs.count == ns->regs.num) {
2185		if (NS_STATE(ns->nxstate) == STATE_READY)
2186			switch_state(ns);
2187	}
2188
2189	return;
2190}
2191
2192static int ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
2193{
2194	ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len);
2195
2196	if (!memcmp(buf, &ns_verify_buf[0], len)) {
2197		NS_DBG("verify_buf: the buffer is OK\n");
2198		return 0;
2199	} else {
2200		NS_DBG("verify_buf: the buffer is wrong\n");
2201		return -EFAULT;
2202	}
2203}
2204
2205/*
2206 * Module initialization function
2207 */
2208static int __init ns_init_module(void)
2209{
2210	struct nand_chip *chip;
2211	struct nandsim *nand;
2212	int retval = -ENOMEM, i;
2213
2214	if (bus_width != 8 && bus_width != 16) {
2215		NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
2216		return -EINVAL;
2217	}
2218
2219	/* Allocate and initialize mtd_info, nand_chip and nandsim structures */
2220	nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
2221				+ sizeof(struct nandsim), GFP_KERNEL);
2222	if (!nsmtd) {
2223		NS_ERR("unable to allocate core structures.\n");
2224		return -ENOMEM;
2225	}
2226	chip        = (struct nand_chip *)(nsmtd + 1);
2227        nsmtd->priv = (void *)chip;
2228	nand        = (struct nandsim *)(chip + 1);
2229	chip->priv  = (void *)nand;
2230
2231	/*
2232	 * Register simulator's callbacks.
2233	 */
2234	chip->cmd_ctrl	 = ns_hwcontrol;
2235	chip->read_byte  = ns_nand_read_byte;
2236	chip->dev_ready  = ns_device_ready;
2237	chip->write_buf  = ns_nand_write_buf;
2238	chip->read_buf   = ns_nand_read_buf;
2239	chip->verify_buf = ns_nand_verify_buf;
2240	chip->read_word  = ns_nand_read_word;
2241	chip->ecc.mode   = NAND_ECC_SOFT;
2242	/* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2243	/* and 'badblocks' parameters to work */
2244	chip->options   |= NAND_SKIP_BBTSCAN;
2245
2246	switch (bbt) {
2247	case 2:
2248		 chip->bbt_options |= NAND_BBT_NO_OOB;
2249	case 1:
2250		 chip->bbt_options |= NAND_BBT_USE_FLASH;
2251	case 0:
2252		break;
2253	default:
2254		NS_ERR("bbt has to be 0..2\n");
2255		retval = -EINVAL;
2256		goto error;
2257	}
2258	/*
2259	 * Perform minimum nandsim structure initialization to handle
2260	 * the initial ID read command correctly
2261	 */
2262	if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
2263		nand->geom.idbytes = 4;
2264	else
2265		nand->geom.idbytes = 2;
2266	nand->regs.status = NS_STATUS_OK(nand);
2267	nand->nxstate = STATE_UNKNOWN;
2268	nand->options |= OPT_PAGE256; /* temporary value */
2269	nand->ids[0] = first_id_byte;
2270	nand->ids[1] = second_id_byte;
2271	nand->ids[2] = third_id_byte;
2272	nand->ids[3] = fourth_id_byte;
2273	if (bus_width == 16) {
2274		nand->busw = 16;
2275		chip->options |= NAND_BUSWIDTH_16;
2276	}
2277
2278	nsmtd->owner = THIS_MODULE;
2279
2280	if ((retval = parse_weakblocks()) != 0)
2281		goto error;
2282
2283	if ((retval = parse_weakpages()) != 0)
2284		goto error;
2285
2286	if ((retval = parse_gravepages()) != 0)
2287		goto error;
2288
2289	retval = nand_scan_ident(nsmtd, 1, NULL);
2290	if (retval) {
2291		NS_ERR("cannot scan NAND Simulator device\n");
2292		if (retval > 0)
2293			retval = -ENXIO;
2294		goto error;
2295	}
2296
2297	if (bch) {
2298		unsigned int eccsteps, eccbytes;
2299		if (!mtd_nand_has_bch()) {
2300			NS_ERR("BCH ECC support is disabled\n");
2301			retval = -EINVAL;
2302			goto error;
2303		}
2304		/* use 512-byte ecc blocks */
2305		eccsteps = nsmtd->writesize/512;
2306		eccbytes = (bch*13+7)/8;
2307		/* do not bother supporting small page devices */
2308		if ((nsmtd->oobsize < 64) || !eccsteps) {
2309			NS_ERR("bch not available on small page devices\n");
2310			retval = -EINVAL;
2311			goto error;
2312		}
2313		if ((eccbytes*eccsteps+2) > nsmtd->oobsize) {
2314			NS_ERR("invalid bch value %u\n", bch);
2315			retval = -EINVAL;
2316			goto error;
2317		}
2318		chip->ecc.mode = NAND_ECC_SOFT_BCH;
2319		chip->ecc.size = 512;
2320		chip->ecc.bytes = eccbytes;
2321		NS_INFO("using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size);
2322	}
2323
2324	retval = nand_scan_tail(nsmtd);
2325	if (retval) {
2326		NS_ERR("can't register NAND Simulator\n");
2327		if (retval > 0)
2328			retval = -ENXIO;
2329		goto error;
2330	}
2331
2332	if (overridesize) {
2333		uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
2334		if (new_size >> overridesize != nsmtd->erasesize) {
2335			NS_ERR("overridesize is too big\n");
2336			goto err_exit;
2337		}
2338		/* N.B. This relies on nand_scan not doing anything with the size before we change it */
2339		nsmtd->size = new_size;
2340		chip->chipsize = new_size;
2341		chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2342		chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2343	}
2344
2345	if ((retval = setup_wear_reporting(nsmtd)) != 0)
2346		goto err_exit;
2347
2348	if ((retval = init_nandsim(nsmtd)) != 0)
2349		goto err_exit;
2350
2351	if ((retval = nand_default_bbt(nsmtd)) != 0)
2352		goto err_exit;
2353
2354	if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2355		goto err_exit;
2356
2357	/* Register NAND partitions */
2358	retval = mtd_device_register(nsmtd, &nand->partitions[0],
2359				     nand->nbparts);
2360	if (retval != 0)
2361		goto err_exit;
2362
2363        return 0;
2364
2365err_exit:
2366	free_nandsim(nand);
2367	nand_release(nsmtd);
2368	for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2369		kfree(nand->partitions[i].name);
2370error:
2371	kfree(nsmtd);
2372	free_lists();
2373
2374	return retval;
2375}
2376
2377module_init(ns_init_module);
2378
2379/*
2380 * Module clean-up function
2381 */
2382static void __exit ns_cleanup_module(void)
2383{
2384	struct nandsim *ns = ((struct nand_chip *)nsmtd->priv)->priv;
2385	int i;
2386
2387	free_nandsim(ns);    /* Free nandsim private resources */
2388	nand_release(nsmtd); /* Unregister driver */
2389	for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2390		kfree(ns->partitions[i].name);
2391	kfree(nsmtd);        /* Free other structures */
2392	free_lists();
2393}
2394
2395module_exit(ns_cleanup_module);
2396
2397MODULE_LICENSE ("GPL");
2398MODULE_AUTHOR ("Artem B. Bityuckiy");
2399MODULE_DESCRIPTION ("The NAND flash simulator");