Linux Audio

Check our new training course

Loading...
   1/*
   2 * Freescale GPMI NAND Flash Driver
   3 *
   4 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
   5 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2 of the License, or
  10 * (at your option) any later version.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU General Public License along
  18 * with this program; if not, write to the Free Software Foundation, Inc.,
  19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  20 */
  21#include <linux/clk.h>
  22#include <linux/slab.h>
  23#include <linux/interrupt.h>
  24#include <linux/module.h>
  25#include <linux/mtd/gpmi-nand.h>
  26#include <linux/mtd/partitions.h>
  27#include <linux/pinctrl/consumer.h>
  28#include <linux/of.h>
  29#include <linux/of_device.h>
  30#include "gpmi-nand.h"
  31
  32/* add our owner bbt descriptor */
  33static uint8_t scan_ff_pattern[] = { 0xff };
  34static struct nand_bbt_descr gpmi_bbt_descr = {
  35	.options	= 0,
  36	.offs		= 0,
  37	.len		= 1,
  38	.pattern	= scan_ff_pattern
  39};
  40
  41/*  We will use all the (page + OOB). */
  42static struct nand_ecclayout gpmi_hw_ecclayout = {
  43	.eccbytes = 0,
  44	.eccpos = { 0, },
  45	.oobfree = { {.offset = 0, .length = 0} }
  46};
  47
  48static irqreturn_t bch_irq(int irq, void *cookie)
  49{
  50	struct gpmi_nand_data *this = cookie;
  51
  52	gpmi_clear_bch(this);
  53	complete(&this->bch_done);
  54	return IRQ_HANDLED;
  55}
  56
  57/*
  58 *  Calculate the ECC strength by hand:
  59 *	E : The ECC strength.
  60 *	G : the length of Galois Field.
  61 *	N : The chunk count of per page.
  62 *	O : the oobsize of the NAND chip.
  63 *	M : the metasize of per page.
  64 *
  65 *	The formula is :
  66 *		E * G * N
  67 *	      ------------ <= (O - M)
  68 *                  8
  69 *
  70 *      So, we get E by:
  71 *                    (O - M) * 8
  72 *              E <= -------------
  73 *                       G * N
  74 */
  75static inline int get_ecc_strength(struct gpmi_nand_data *this)
  76{
  77	struct bch_geometry *geo = &this->bch_geometry;
  78	struct mtd_info	*mtd = &this->mtd;
  79	int ecc_strength;
  80
  81	ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
  82			/ (geo->gf_len * geo->ecc_chunk_count);
  83
  84	/* We need the minor even number. */
  85	return round_down(ecc_strength, 2);
  86}
  87
  88int common_nfc_set_geometry(struct gpmi_nand_data *this)
  89{
  90	struct bch_geometry *geo = &this->bch_geometry;
  91	struct mtd_info *mtd = &this->mtd;
  92	unsigned int metadata_size;
  93	unsigned int status_size;
  94	unsigned int block_mark_bit_offset;
  95
  96	/*
  97	 * The size of the metadata can be changed, though we set it to 10
  98	 * bytes now. But it can't be too large, because we have to save
  99	 * enough space for BCH.
 100	 */
 101	geo->metadata_size = 10;
 102
 103	/* The default for the length of Galois Field. */
 104	geo->gf_len = 13;
 105
 106	/* The default for chunk size. There is no oobsize greater then 512. */
 107	geo->ecc_chunk_size = 512;
 108	while (geo->ecc_chunk_size < mtd->oobsize)
 109		geo->ecc_chunk_size *= 2; /* keep C >= O */
 110
 111	geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
 112
 113	/* We use the same ECC strength for all chunks. */
 114	geo->ecc_strength = get_ecc_strength(this);
 115	if (!geo->ecc_strength) {
 116		pr_err("We get a wrong ECC strength.\n");
 117		return -EINVAL;
 118	}
 119
 120	geo->page_size = mtd->writesize + mtd->oobsize;
 121	geo->payload_size = mtd->writesize;
 122
 123	/*
 124	 * The auxiliary buffer contains the metadata and the ECC status. The
 125	 * metadata is padded to the nearest 32-bit boundary. The ECC status
 126	 * contains one byte for every ECC chunk, and is also padded to the
 127	 * nearest 32-bit boundary.
 128	 */
 129	metadata_size = ALIGN(geo->metadata_size, 4);
 130	status_size   = ALIGN(geo->ecc_chunk_count, 4);
 131
 132	geo->auxiliary_size = metadata_size + status_size;
 133	geo->auxiliary_status_offset = metadata_size;
 134
 135	if (!this->swap_block_mark)
 136		return 0;
 137
 138	/*
 139	 * We need to compute the byte and bit offsets of
 140	 * the physical block mark within the ECC-based view of the page.
 141	 *
 142	 * NAND chip with 2K page shows below:
 143	 *                                             (Block Mark)
 144	 *                                                   |      |
 145	 *                                                   |  D   |
 146	 *                                                   |<---->|
 147	 *                                                   V      V
 148	 *    +---+----------+-+----------+-+----------+-+----------+-+
 149	 *    | M |   data   |E|   data   |E|   data   |E|   data   |E|
 150	 *    +---+----------+-+----------+-+----------+-+----------+-+
 151	 *
 152	 * The position of block mark moves forward in the ECC-based view
 153	 * of page, and the delta is:
 154	 *
 155	 *                   E * G * (N - 1)
 156	 *             D = (---------------- + M)
 157	 *                          8
 158	 *
 159	 * With the formula to compute the ECC strength, and the condition
 160	 *       : C >= O         (C is the ecc chunk size)
 161	 *
 162	 * It's easy to deduce to the following result:
 163	 *
 164	 *         E * G       (O - M)      C - M         C - M
 165	 *      ----------- <= ------- <=  --------  <  ---------
 166	 *           8            N           N          (N - 1)
 167	 *
 168	 *  So, we get:
 169	 *
 170	 *                   E * G * (N - 1)
 171	 *             D = (---------------- + M) < C
 172	 *                          8
 173	 *
 174	 *  The above inequality means the position of block mark
 175	 *  within the ECC-based view of the page is still in the data chunk,
 176	 *  and it's NOT in the ECC bits of the chunk.
 177	 *
 178	 *  Use the following to compute the bit position of the
 179	 *  physical block mark within the ECC-based view of the page:
 180	 *          (page_size - D) * 8
 181	 *
 182	 *  --Huang Shijie
 183	 */
 184	block_mark_bit_offset = mtd->writesize * 8 -
 185		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
 186				+ geo->metadata_size * 8);
 187
 188	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
 189	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
 190	return 0;
 191}
 192
 193struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
 194{
 195	int chipnr = this->current_chip;
 196
 197	return this->dma_chans[chipnr];
 198}
 199
 200/* Can we use the upper's buffer directly for DMA? */
 201void prepare_data_dma(struct gpmi_nand_data *this, enum dma_data_direction dr)
 202{
 203	struct scatterlist *sgl = &this->data_sgl;
 204	int ret;
 205
 206	this->direct_dma_map_ok = true;
 207
 208	/* first try to map the upper buffer directly */
 209	sg_init_one(sgl, this->upper_buf, this->upper_len);
 210	ret = dma_map_sg(this->dev, sgl, 1, dr);
 211	if (ret == 0) {
 212		/* We have to use our own DMA buffer. */
 213		sg_init_one(sgl, this->data_buffer_dma, PAGE_SIZE);
 214
 215		if (dr == DMA_TO_DEVICE)
 216			memcpy(this->data_buffer_dma, this->upper_buf,
 217				this->upper_len);
 218
 219		ret = dma_map_sg(this->dev, sgl, 1, dr);
 220		if (ret == 0)
 221			pr_err("map failed.\n");
 222
 223		this->direct_dma_map_ok = false;
 224	}
 225}
 226
 227/* This will be called after the DMA operation is finished. */
 228static void dma_irq_callback(void *param)
 229{
 230	struct gpmi_nand_data *this = param;
 231	struct completion *dma_c = &this->dma_done;
 232
 233	complete(dma_c);
 234
 235	switch (this->dma_type) {
 236	case DMA_FOR_COMMAND:
 237		dma_unmap_sg(this->dev, &this->cmd_sgl, 1, DMA_TO_DEVICE);
 238		break;
 239
 240	case DMA_FOR_READ_DATA:
 241		dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE);
 242		if (this->direct_dma_map_ok == false)
 243			memcpy(this->upper_buf, this->data_buffer_dma,
 244				this->upper_len);
 245		break;
 246
 247	case DMA_FOR_WRITE_DATA:
 248		dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE);
 249		break;
 250
 251	case DMA_FOR_READ_ECC_PAGE:
 252	case DMA_FOR_WRITE_ECC_PAGE:
 253		/* We have to wait the BCH interrupt to finish. */
 254		break;
 255
 256	default:
 257		pr_err("in wrong DMA operation.\n");
 258	}
 259}
 260
 261int start_dma_without_bch_irq(struct gpmi_nand_data *this,
 262				struct dma_async_tx_descriptor *desc)
 263{
 264	struct completion *dma_c = &this->dma_done;
 265	int err;
 266
 267	init_completion(dma_c);
 268
 269	desc->callback		= dma_irq_callback;
 270	desc->callback_param	= this;
 271	dmaengine_submit(desc);
 272	dma_async_issue_pending(get_dma_chan(this));
 273
 274	/* Wait for the interrupt from the DMA block. */
 275	err = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000));
 276	if (!err) {
 277		pr_err("DMA timeout, last DMA :%d\n", this->last_dma_type);
 278		gpmi_dump_info(this);
 279		return -ETIMEDOUT;
 280	}
 281	return 0;
 282}
 283
 284/*
 285 * This function is used in BCH reading or BCH writing pages.
 286 * It will wait for the BCH interrupt as long as ONE second.
 287 * Actually, we must wait for two interrupts :
 288 *	[1] firstly the DMA interrupt and
 289 *	[2] secondly the BCH interrupt.
 290 */
 291int start_dma_with_bch_irq(struct gpmi_nand_data *this,
 292			struct dma_async_tx_descriptor *desc)
 293{
 294	struct completion *bch_c = &this->bch_done;
 295	int err;
 296
 297	/* Prepare to receive an interrupt from the BCH block. */
 298	init_completion(bch_c);
 299
 300	/* start the DMA */
 301	start_dma_without_bch_irq(this, desc);
 302
 303	/* Wait for the interrupt from the BCH block. */
 304	err = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000));
 305	if (!err) {
 306		pr_err("BCH timeout, last DMA :%d\n", this->last_dma_type);
 307		gpmi_dump_info(this);
 308		return -ETIMEDOUT;
 309	}
 310	return 0;
 311}
 312
 313static int __devinit
 314acquire_register_block(struct gpmi_nand_data *this, const char *res_name)
 315{
 316	struct platform_device *pdev = this->pdev;
 317	struct resources *res = &this->resources;
 318	struct resource *r;
 319	void *p;
 320
 321	r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name);
 322	if (!r) {
 323		pr_err("Can't get resource for %s\n", res_name);
 324		return -ENXIO;
 325	}
 326
 327	p = ioremap(r->start, resource_size(r));
 328	if (!p) {
 329		pr_err("Can't remap %s\n", res_name);
 330		return -ENOMEM;
 331	}
 332
 333	if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
 334		res->gpmi_regs = p;
 335	else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
 336		res->bch_regs = p;
 337	else
 338		pr_err("unknown resource name : %s\n", res_name);
 339
 340	return 0;
 341}
 342
 343static void release_register_block(struct gpmi_nand_data *this)
 344{
 345	struct resources *res = &this->resources;
 346	if (res->gpmi_regs)
 347		iounmap(res->gpmi_regs);
 348	if (res->bch_regs)
 349		iounmap(res->bch_regs);
 350	res->gpmi_regs = NULL;
 351	res->bch_regs = NULL;
 352}
 353
 354static int __devinit
 355acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
 356{
 357	struct platform_device *pdev = this->pdev;
 358	struct resources *res = &this->resources;
 359	const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
 360	struct resource *r;
 361	int err;
 362
 363	r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name);
 364	if (!r) {
 365		pr_err("Can't get resource for %s\n", res_name);
 366		return -ENXIO;
 367	}
 368
 369	err = request_irq(r->start, irq_h, 0, res_name, this);
 370	if (err) {
 371		pr_err("Can't own %s\n", res_name);
 372		return err;
 373	}
 374
 375	res->bch_low_interrupt = r->start;
 376	res->bch_high_interrupt = r->end;
 377	return 0;
 378}
 379
 380static void release_bch_irq(struct gpmi_nand_data *this)
 381{
 382	struct resources *res = &this->resources;
 383	int i = res->bch_low_interrupt;
 384
 385	for (; i <= res->bch_high_interrupt; i++)
 386		free_irq(i, this);
 387}
 388
 389static bool gpmi_dma_filter(struct dma_chan *chan, void *param)
 390{
 391	struct gpmi_nand_data *this = param;
 392	int dma_channel = (int)this->private;
 393
 394	if (!mxs_dma_is_apbh(chan))
 395		return false;
 396	/*
 397	 * only catch the GPMI dma channels :
 398	 *	for mx23 :	MX23_DMA_GPMI0 ~ MX23_DMA_GPMI3
 399	 *		(These four channels share the same IRQ!)
 400	 *
 401	 *	for mx28 :	MX28_DMA_GPMI0 ~ MX28_DMA_GPMI7
 402	 *		(These eight channels share the same IRQ!)
 403	 */
 404	if (dma_channel == chan->chan_id) {
 405		chan->private = &this->dma_data;
 406		return true;
 407	}
 408	return false;
 409}
 410
 411static void release_dma_channels(struct gpmi_nand_data *this)
 412{
 413	unsigned int i;
 414	for (i = 0; i < DMA_CHANS; i++)
 415		if (this->dma_chans[i]) {
 416			dma_release_channel(this->dma_chans[i]);
 417			this->dma_chans[i] = NULL;
 418		}
 419}
 420
 421static int __devinit acquire_dma_channels(struct gpmi_nand_data *this)
 422{
 423	struct platform_device *pdev = this->pdev;
 424	struct resource *r_dma;
 425	struct device_node *dn;
 426	int dma_channel;
 427	unsigned int ret;
 428	struct dma_chan *dma_chan;
 429	dma_cap_mask_t mask;
 430
 431	/* dma channel, we only use the first one. */
 432	dn = pdev->dev.of_node;
 433	ret = of_property_read_u32(dn, "fsl,gpmi-dma-channel", &dma_channel);
 434	if (ret) {
 435		pr_err("unable to get DMA channel from dt.\n");
 436		goto acquire_err;
 437	}
 438	this->private = (void *)dma_channel;
 439
 440	/* gpmi dma interrupt */
 441	r_dma = platform_get_resource_byname(pdev, IORESOURCE_IRQ,
 442					GPMI_NAND_DMA_INTERRUPT_RES_NAME);
 443	if (!r_dma) {
 444		pr_err("Can't get resource for DMA\n");
 445		goto acquire_err;
 446	}
 447	this->dma_data.chan_irq = r_dma->start;
 448
 449	/* request dma channel */
 450	dma_cap_zero(mask);
 451	dma_cap_set(DMA_SLAVE, mask);
 452
 453	dma_chan = dma_request_channel(mask, gpmi_dma_filter, this);
 454	if (!dma_chan) {
 455		pr_err("dma_request_channel failed.\n");
 456		goto acquire_err;
 457	}
 458
 459	this->dma_chans[0] = dma_chan;
 460	return 0;
 461
 462acquire_err:
 463	release_dma_channels(this);
 464	return -EINVAL;
 465}
 466
 467static int __devinit acquire_resources(struct gpmi_nand_data *this)
 468{
 469	struct resources *res = &this->resources;
 470	struct pinctrl *pinctrl;
 471	int ret;
 472
 473	ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
 474	if (ret)
 475		goto exit_regs;
 476
 477	ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
 478	if (ret)
 479		goto exit_regs;
 480
 481	ret = acquire_bch_irq(this, bch_irq);
 482	if (ret)
 483		goto exit_regs;
 484
 485	ret = acquire_dma_channels(this);
 486	if (ret)
 487		goto exit_dma_channels;
 488
 489	pinctrl = devm_pinctrl_get_select_default(&this->pdev->dev);
 490	if (IS_ERR(pinctrl)) {
 491		ret = PTR_ERR(pinctrl);
 492		goto exit_pin;
 493	}
 494
 495	res->clock = clk_get(&this->pdev->dev, NULL);
 496	if (IS_ERR(res->clock)) {
 497		pr_err("can not get the clock\n");
 498		ret = -ENOENT;
 499		goto exit_clock;
 500	}
 501	return 0;
 502
 503exit_clock:
 504exit_pin:
 505	release_dma_channels(this);
 506exit_dma_channels:
 507	release_bch_irq(this);
 508exit_regs:
 509	release_register_block(this);
 510	return ret;
 511}
 512
 513static void release_resources(struct gpmi_nand_data *this)
 514{
 515	struct resources *r = &this->resources;
 516
 517	clk_put(r->clock);
 518	release_register_block(this);
 519	release_bch_irq(this);
 520	release_dma_channels(this);
 521}
 522
 523static int __devinit init_hardware(struct gpmi_nand_data *this)
 524{
 525	int ret;
 526
 527	/*
 528	 * This structure contains the "safe" GPMI timing that should succeed
 529	 * with any NAND Flash device
 530	 * (although, with less-than-optimal performance).
 531	 */
 532	struct nand_timing  safe_timing = {
 533		.data_setup_in_ns        = 80,
 534		.data_hold_in_ns         = 60,
 535		.address_setup_in_ns     = 25,
 536		.gpmi_sample_delay_in_ns =  6,
 537		.tREA_in_ns              = -1,
 538		.tRLOH_in_ns             = -1,
 539		.tRHOH_in_ns             = -1,
 540	};
 541
 542	/* Initialize the hardwares. */
 543	ret = gpmi_init(this);
 544	if (ret)
 545		return ret;
 546
 547	this->timing = safe_timing;
 548	return 0;
 549}
 550
 551static int read_page_prepare(struct gpmi_nand_data *this,
 552			void *destination, unsigned length,
 553			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
 554			void **use_virt, dma_addr_t *use_phys)
 555{
 556	struct device *dev = this->dev;
 557
 558	if (virt_addr_valid(destination)) {
 559		dma_addr_t dest_phys;
 560
 561		dest_phys = dma_map_single(dev, destination,
 562						length, DMA_FROM_DEVICE);
 563		if (dma_mapping_error(dev, dest_phys)) {
 564			if (alt_size < length) {
 565				pr_err("Alternate buffer is too small\n");
 566				return -ENOMEM;
 567			}
 568			goto map_failed;
 569		}
 570		*use_virt = destination;
 571		*use_phys = dest_phys;
 572		this->direct_dma_map_ok = true;
 573		return 0;
 574	}
 575
 576map_failed:
 577	*use_virt = alt_virt;
 578	*use_phys = alt_phys;
 579	this->direct_dma_map_ok = false;
 580	return 0;
 581}
 582
 583static inline void read_page_end(struct gpmi_nand_data *this,
 584			void *destination, unsigned length,
 585			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
 586			void *used_virt, dma_addr_t used_phys)
 587{
 588	if (this->direct_dma_map_ok)
 589		dma_unmap_single(this->dev, used_phys, length, DMA_FROM_DEVICE);
 590}
 591
 592static inline void read_page_swap_end(struct gpmi_nand_data *this,
 593			void *destination, unsigned length,
 594			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
 595			void *used_virt, dma_addr_t used_phys)
 596{
 597	if (!this->direct_dma_map_ok)
 598		memcpy(destination, alt_virt, length);
 599}
 600
 601static int send_page_prepare(struct gpmi_nand_data *this,
 602			const void *source, unsigned length,
 603			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
 604			const void **use_virt, dma_addr_t *use_phys)
 605{
 606	struct device *dev = this->dev;
 607
 608	if (virt_addr_valid(source)) {
 609		dma_addr_t source_phys;
 610
 611		source_phys = dma_map_single(dev, (void *)source, length,
 612						DMA_TO_DEVICE);
 613		if (dma_mapping_error(dev, source_phys)) {
 614			if (alt_size < length) {
 615				pr_err("Alternate buffer is too small\n");
 616				return -ENOMEM;
 617			}
 618			goto map_failed;
 619		}
 620		*use_virt = source;
 621		*use_phys = source_phys;
 622		return 0;
 623	}
 624map_failed:
 625	/*
 626	 * Copy the content of the source buffer into the alternate
 627	 * buffer and set up the return values accordingly.
 628	 */
 629	memcpy(alt_virt, source, length);
 630
 631	*use_virt = alt_virt;
 632	*use_phys = alt_phys;
 633	return 0;
 634}
 635
 636static void send_page_end(struct gpmi_nand_data *this,
 637			const void *source, unsigned length,
 638			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
 639			const void *used_virt, dma_addr_t used_phys)
 640{
 641	struct device *dev = this->dev;
 642	if (used_virt == source)
 643		dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE);
 644}
 645
 646static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
 647{
 648	struct device *dev = this->dev;
 649
 650	if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt))
 651		dma_free_coherent(dev, this->page_buffer_size,
 652					this->page_buffer_virt,
 653					this->page_buffer_phys);
 654	kfree(this->cmd_buffer);
 655	kfree(this->data_buffer_dma);
 656
 657	this->cmd_buffer	= NULL;
 658	this->data_buffer_dma	= NULL;
 659	this->page_buffer_virt	= NULL;
 660	this->page_buffer_size	=  0;
 661}
 662
 663/* Allocate the DMA buffers */
 664static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
 665{
 666	struct bch_geometry *geo = &this->bch_geometry;
 667	struct device *dev = this->dev;
 668
 669	/* [1] Allocate a command buffer. PAGE_SIZE is enough. */
 670	this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA);
 671	if (this->cmd_buffer == NULL)
 672		goto error_alloc;
 673
 674	/* [2] Allocate a read/write data buffer. PAGE_SIZE is enough. */
 675	this->data_buffer_dma = kzalloc(PAGE_SIZE, GFP_DMA);
 676	if (this->data_buffer_dma == NULL)
 677		goto error_alloc;
 678
 679	/*
 680	 * [3] Allocate the page buffer.
 681	 *
 682	 * Both the payload buffer and the auxiliary buffer must appear on
 683	 * 32-bit boundaries. We presume the size of the payload buffer is a
 684	 * power of two and is much larger than four, which guarantees the
 685	 * auxiliary buffer will appear on a 32-bit boundary.
 686	 */
 687	this->page_buffer_size = geo->payload_size + geo->auxiliary_size;
 688	this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size,
 689					&this->page_buffer_phys, GFP_DMA);
 690	if (!this->page_buffer_virt)
 691		goto error_alloc;
 692
 693
 694	/* Slice up the page buffer. */
 695	this->payload_virt = this->page_buffer_virt;
 696	this->payload_phys = this->page_buffer_phys;
 697	this->auxiliary_virt = this->payload_virt + geo->payload_size;
 698	this->auxiliary_phys = this->payload_phys + geo->payload_size;
 699	return 0;
 700
 701error_alloc:
 702	gpmi_free_dma_buffer(this);
 703	pr_err("allocate DMA buffer ret!!\n");
 704	return -ENOMEM;
 705}
 706
 707static void gpmi_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
 708{
 709	struct nand_chip *chip = mtd->priv;
 710	struct gpmi_nand_data *this = chip->priv;
 711	int ret;
 712
 713	/*
 714	 * Every operation begins with a command byte and a series of zero or
 715	 * more address bytes. These are distinguished by either the Address
 716	 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
 717	 * asserted. When MTD is ready to execute the command, it will deassert
 718	 * both latch enables.
 719	 *
 720	 * Rather than run a separate DMA operation for every single byte, we
 721	 * queue them up and run a single DMA operation for the entire series
 722	 * of command and data bytes. NAND_CMD_NONE means the END of the queue.
 723	 */
 724	if ((ctrl & (NAND_ALE | NAND_CLE))) {
 725		if (data != NAND_CMD_NONE)
 726			this->cmd_buffer[this->command_length++] = data;
 727		return;
 728	}
 729
 730	if (!this->command_length)
 731		return;
 732
 733	ret = gpmi_send_command(this);
 734	if (ret)
 735		pr_err("Chip: %u, Error %d\n", this->current_chip, ret);
 736
 737	this->command_length = 0;
 738}
 739
 740static int gpmi_dev_ready(struct mtd_info *mtd)
 741{
 742	struct nand_chip *chip = mtd->priv;
 743	struct gpmi_nand_data *this = chip->priv;
 744
 745	return gpmi_is_ready(this, this->current_chip);
 746}
 747
 748static void gpmi_select_chip(struct mtd_info *mtd, int chipnr)
 749{
 750	struct nand_chip *chip = mtd->priv;
 751	struct gpmi_nand_data *this = chip->priv;
 752
 753	if ((this->current_chip < 0) && (chipnr >= 0))
 754		gpmi_begin(this);
 755	else if ((this->current_chip >= 0) && (chipnr < 0))
 756		gpmi_end(this);
 757
 758	this->current_chip = chipnr;
 759}
 760
 761static void gpmi_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 762{
 763	struct nand_chip *chip = mtd->priv;
 764	struct gpmi_nand_data *this = chip->priv;
 765
 766	pr_debug("len is %d\n", len);
 767	this->upper_buf	= buf;
 768	this->upper_len	= len;
 769
 770	gpmi_read_data(this);
 771}
 772
 773static void gpmi_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
 774{
 775	struct nand_chip *chip = mtd->priv;
 776	struct gpmi_nand_data *this = chip->priv;
 777
 778	pr_debug("len is %d\n", len);
 779	this->upper_buf	= (uint8_t *)buf;
 780	this->upper_len	= len;
 781
 782	gpmi_send_data(this);
 783}
 784
 785static uint8_t gpmi_read_byte(struct mtd_info *mtd)
 786{
 787	struct nand_chip *chip = mtd->priv;
 788	struct gpmi_nand_data *this = chip->priv;
 789	uint8_t *buf = this->data_buffer_dma;
 790
 791	gpmi_read_buf(mtd, buf, 1);
 792	return buf[0];
 793}
 794
 795/*
 796 * Handles block mark swapping.
 797 * It can be called in swapping the block mark, or swapping it back,
 798 * because the the operations are the same.
 799 */
 800static void block_mark_swapping(struct gpmi_nand_data *this,
 801				void *payload, void *auxiliary)
 802{
 803	struct bch_geometry *nfc_geo = &this->bch_geometry;
 804	unsigned char *p;
 805	unsigned char *a;
 806	unsigned int  bit;
 807	unsigned char mask;
 808	unsigned char from_data;
 809	unsigned char from_oob;
 810
 811	if (!this->swap_block_mark)
 812		return;
 813
 814	/*
 815	 * If control arrives here, we're swapping. Make some convenience
 816	 * variables.
 817	 */
 818	bit = nfc_geo->block_mark_bit_offset;
 819	p   = payload + nfc_geo->block_mark_byte_offset;
 820	a   = auxiliary;
 821
 822	/*
 823	 * Get the byte from the data area that overlays the block mark. Since
 824	 * the ECC engine applies its own view to the bits in the page, the
 825	 * physical block mark won't (in general) appear on a byte boundary in
 826	 * the data.
 827	 */
 828	from_data = (p[0] >> bit) | (p[1] << (8 - bit));
 829
 830	/* Get the byte from the OOB. */
 831	from_oob = a[0];
 832
 833	/* Swap them. */
 834	a[0] = from_data;
 835
 836	mask = (0x1 << bit) - 1;
 837	p[0] = (p[0] & mask) | (from_oob << bit);
 838
 839	mask = ~0 << bit;
 840	p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
 841}
 842
 843static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
 844				uint8_t *buf, int oob_required, int page)
 845{
 846	struct gpmi_nand_data *this = chip->priv;
 847	struct bch_geometry *nfc_geo = &this->bch_geometry;
 848	void          *payload_virt;
 849	dma_addr_t    payload_phys;
 850	void          *auxiliary_virt;
 851	dma_addr_t    auxiliary_phys;
 852	unsigned int  i;
 853	unsigned char *status;
 854	unsigned int  failed;
 855	unsigned int  corrected;
 856	int           ret;
 857
 858	pr_debug("page number is : %d\n", page);
 859	ret = read_page_prepare(this, buf, mtd->writesize,
 860					this->payload_virt, this->payload_phys,
 861					nfc_geo->payload_size,
 862					&payload_virt, &payload_phys);
 863	if (ret) {
 864		pr_err("Inadequate DMA buffer\n");
 865		ret = -ENOMEM;
 866		return ret;
 867	}
 868	auxiliary_virt = this->auxiliary_virt;
 869	auxiliary_phys = this->auxiliary_phys;
 870
 871	/* go! */
 872	ret = gpmi_read_page(this, payload_phys, auxiliary_phys);
 873	read_page_end(this, buf, mtd->writesize,
 874			this->payload_virt, this->payload_phys,
 875			nfc_geo->payload_size,
 876			payload_virt, payload_phys);
 877	if (ret) {
 878		pr_err("Error in ECC-based read: %d\n", ret);
 879		goto exit_nfc;
 880	}
 881
 882	/* handle the block mark swapping */
 883	block_mark_swapping(this, payload_virt, auxiliary_virt);
 884
 885	/* Loop over status bytes, accumulating ECC status. */
 886	failed		= 0;
 887	corrected	= 0;
 888	status		= auxiliary_virt + nfc_geo->auxiliary_status_offset;
 889
 890	for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) {
 891		if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
 892			continue;
 893
 894		if (*status == STATUS_UNCORRECTABLE) {
 895			failed++;
 896			continue;
 897		}
 898		corrected += *status;
 899	}
 900
 901	/*
 902	 * Propagate ECC status to the owning MTD only when failed or
 903	 * corrected times nearly reaches our ECC correction threshold.
 904	 */
 905	if (failed || corrected >= (nfc_geo->ecc_strength - 1)) {
 906		mtd->ecc_stats.failed    += failed;
 907		mtd->ecc_stats.corrected += corrected;
 908	}
 909
 910	if (oob_required) {
 911		/*
 912		 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
 913		 * for details about our policy for delivering the OOB.
 914		 *
 915		 * We fill the caller's buffer with set bits, and then copy the
 916		 * block mark to th caller's buffer. Note that, if block mark
 917		 * swapping was necessary, it has already been done, so we can
 918		 * rely on the first byte of the auxiliary buffer to contain
 919		 * the block mark.
 920		 */
 921		memset(chip->oob_poi, ~0, mtd->oobsize);
 922		chip->oob_poi[0] = ((uint8_t *) auxiliary_virt)[0];
 923	}
 924
 925	read_page_swap_end(this, buf, mtd->writesize,
 926			this->payload_virt, this->payload_phys,
 927			nfc_geo->payload_size,
 928			payload_virt, payload_phys);
 929exit_nfc:
 930	return ret;
 931}
 932
 933static void gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
 934				const uint8_t *buf, int oob_required)
 935{
 936	struct gpmi_nand_data *this = chip->priv;
 937	struct bch_geometry *nfc_geo = &this->bch_geometry;
 938	const void *payload_virt;
 939	dma_addr_t payload_phys;
 940	const void *auxiliary_virt;
 941	dma_addr_t auxiliary_phys;
 942	int        ret;
 943
 944	pr_debug("ecc write page.\n");
 945	if (this->swap_block_mark) {
 946		/*
 947		 * If control arrives here, we're doing block mark swapping.
 948		 * Since we can't modify the caller's buffers, we must copy them
 949		 * into our own.
 950		 */
 951		memcpy(this->payload_virt, buf, mtd->writesize);
 952		payload_virt = this->payload_virt;
 953		payload_phys = this->payload_phys;
 954
 955		memcpy(this->auxiliary_virt, chip->oob_poi,
 956				nfc_geo->auxiliary_size);
 957		auxiliary_virt = this->auxiliary_virt;
 958		auxiliary_phys = this->auxiliary_phys;
 959
 960		/* Handle block mark swapping. */
 961		block_mark_swapping(this,
 962				(void *) payload_virt, (void *) auxiliary_virt);
 963	} else {
 964		/*
 965		 * If control arrives here, we're not doing block mark swapping,
 966		 * so we can to try and use the caller's buffers.
 967		 */
 968		ret = send_page_prepare(this,
 969				buf, mtd->writesize,
 970				this->payload_virt, this->payload_phys,
 971				nfc_geo->payload_size,
 972				&payload_virt, &payload_phys);
 973		if (ret) {
 974			pr_err("Inadequate payload DMA buffer\n");
 975			return;
 976		}
 977
 978		ret = send_page_prepare(this,
 979				chip->oob_poi, mtd->oobsize,
 980				this->auxiliary_virt, this->auxiliary_phys,
 981				nfc_geo->auxiliary_size,
 982				&auxiliary_virt, &auxiliary_phys);
 983		if (ret) {
 984			pr_err("Inadequate auxiliary DMA buffer\n");
 985			goto exit_auxiliary;
 986		}
 987	}
 988
 989	/* Ask the NFC. */
 990	ret = gpmi_send_page(this, payload_phys, auxiliary_phys);
 991	if (ret)
 992		pr_err("Error in ECC-based write: %d\n", ret);
 993
 994	if (!this->swap_block_mark) {
 995		send_page_end(this, chip->oob_poi, mtd->oobsize,
 996				this->auxiliary_virt, this->auxiliary_phys,
 997				nfc_geo->auxiliary_size,
 998				auxiliary_virt, auxiliary_phys);
 999exit_auxiliary:
1000		send_page_end(this, buf, mtd->writesize,
1001				this->payload_virt, this->payload_phys,
1002				nfc_geo->payload_size,
1003				payload_virt, payload_phys);
1004	}
1005}
1006
1007/*
1008 * There are several places in this driver where we have to handle the OOB and
1009 * block marks. This is the function where things are the most complicated, so
1010 * this is where we try to explain it all. All the other places refer back to
1011 * here.
1012 *
1013 * These are the rules, in order of decreasing importance:
1014 *
1015 * 1) Nothing the caller does can be allowed to imperil the block mark.
1016 *
1017 * 2) In read operations, the first byte of the OOB we return must reflect the
1018 *    true state of the block mark, no matter where that block mark appears in
1019 *    the physical page.
1020 *
1021 * 3) ECC-based read operations return an OOB full of set bits (since we never
1022 *    allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
1023 *    return).
1024 *
1025 * 4) "Raw" read operations return a direct view of the physical bytes in the
1026 *    page, using the conventional definition of which bytes are data and which
1027 *    are OOB. This gives the caller a way to see the actual, physical bytes
1028 *    in the page, without the distortions applied by our ECC engine.
1029 *
1030 *
1031 * What we do for this specific read operation depends on two questions:
1032 *
1033 * 1) Are we doing a "raw" read, or an ECC-based read?
1034 *
1035 * 2) Are we using block mark swapping or transcription?
1036 *
1037 * There are four cases, illustrated by the following Karnaugh map:
1038 *
1039 *                    |           Raw           |         ECC-based       |
1040 *       -------------+-------------------------+-------------------------+
1041 *                    | Read the conventional   |                         |
1042 *                    | OOB at the end of the   |                         |
1043 *       Swapping     | page and return it. It  |                         |
1044 *                    | contains exactly what   |                         |
1045 *                    | we want.                | Read the block mark and |
1046 *       -------------+-------------------------+ return it in a buffer   |
1047 *                    | Read the conventional   | full of set bits.       |
1048 *                    | OOB at the end of the   |                         |
1049 *                    | page and also the block |                         |
1050 *       Transcribing | mark in the metadata.   |                         |
1051 *                    | Copy the block mark     |                         |
1052 *                    | into the first byte of  |                         |
1053 *                    | the OOB.                |                         |
1054 *       -------------+-------------------------+-------------------------+
1055 *
1056 * Note that we break rule #4 in the Transcribing/Raw case because we're not
1057 * giving an accurate view of the actual, physical bytes in the page (we're
1058 * overwriting the block mark). That's OK because it's more important to follow
1059 * rule #2.
1060 *
1061 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
1062 * easy. When reading a page, for example, the NAND Flash MTD code calls our
1063 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
1064 * ECC-based or raw view of the page is implicit in which function it calls
1065 * (there is a similar pair of ECC-based/raw functions for writing).
1066 *
1067 * Since MTD assumes the OOB is not covered by ECC, there is no pair of
1068 * ECC-based/raw functions for reading or or writing the OOB. The fact that the
1069 * caller wants an ECC-based or raw view of the page is not propagated down to
1070 * this driver.
1071 */
1072static int gpmi_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1073				int page)
1074{
1075	struct gpmi_nand_data *this = chip->priv;
1076
1077	pr_debug("page number is %d\n", page);
1078	/* clear the OOB buffer */
1079	memset(chip->oob_poi, ~0, mtd->oobsize);
1080
1081	/* Read out the conventional OOB. */
1082	chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
1083	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1084
1085	/*
1086	 * Now, we want to make sure the block mark is correct. In the
1087	 * Swapping/Raw case, we already have it. Otherwise, we need to
1088	 * explicitly read it.
1089	 */
1090	if (!this->swap_block_mark) {
1091		/* Read the block mark into the first byte of the OOB buffer. */
1092		chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1093		chip->oob_poi[0] = chip->read_byte(mtd);
1094	}
1095
1096	return 0;
1097}
1098
1099static int
1100gpmi_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page)
1101{
1102	/*
1103	 * The BCH will use all the (page + oob).
1104	 * Our gpmi_hw_ecclayout can only prohibit the JFFS2 to write the oob.
1105	 * But it can not stop some ioctls such MEMWRITEOOB which uses
1106	 * MTD_OPS_PLACE_OOB. So We have to implement this function to prohibit
1107	 * these ioctls too.
1108	 */
1109	return -EPERM;
1110}
1111
1112static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs)
1113{
1114	struct nand_chip *chip = mtd->priv;
1115	struct gpmi_nand_data *this = chip->priv;
1116	int block, ret = 0;
1117	uint8_t *block_mark;
1118	int column, page, status, chipnr;
1119
1120	/* Get block number */
1121	block = (int)(ofs >> chip->bbt_erase_shift);
1122	if (chip->bbt)
1123		chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1124
1125	/* Do we have a flash based bad block table ? */
1126	if (chip->bbt_options & NAND_BBT_USE_FLASH)
1127		ret = nand_update_bbt(mtd, ofs);
1128	else {
1129		chipnr = (int)(ofs >> chip->chip_shift);
1130		chip->select_chip(mtd, chipnr);
1131
1132		column = this->swap_block_mark ? mtd->writesize : 0;
1133
1134		/* Write the block mark. */
1135		block_mark = this->data_buffer_dma;
1136		block_mark[0] = 0; /* bad block marker */
1137
1138		/* Shift to get page */
1139		page = (int)(ofs >> chip->page_shift);
1140
1141		chip->cmdfunc(mtd, NAND_CMD_SEQIN, column, page);
1142		chip->write_buf(mtd, block_mark, 1);
1143		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1144
1145		status = chip->waitfunc(mtd, chip);
1146		if (status & NAND_STATUS_FAIL)
1147			ret = -EIO;
1148
1149		chip->select_chip(mtd, -1);
1150	}
1151	if (!ret)
1152		mtd->ecc_stats.badblocks++;
1153
1154	return ret;
1155}
1156
1157static int nand_boot_set_geometry(struct gpmi_nand_data *this)
1158{
1159	struct boot_rom_geometry *geometry = &this->rom_geometry;
1160
1161	/*
1162	 * Set the boot block stride size.
1163	 *
1164	 * In principle, we should be reading this from the OTP bits, since
1165	 * that's where the ROM is going to get it. In fact, we don't have any
1166	 * way to read the OTP bits, so we go with the default and hope for the
1167	 * best.
1168	 */
1169	geometry->stride_size_in_pages = 64;
1170
1171	/*
1172	 * Set the search area stride exponent.
1173	 *
1174	 * In principle, we should be reading this from the OTP bits, since
1175	 * that's where the ROM is going to get it. In fact, we don't have any
1176	 * way to read the OTP bits, so we go with the default and hope for the
1177	 * best.
1178	 */
1179	geometry->search_area_stride_exponent = 2;
1180	return 0;
1181}
1182
1183static const char  *fingerprint = "STMP";
1184static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
1185{
1186	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1187	struct device *dev = this->dev;
1188	struct mtd_info *mtd = &this->mtd;
1189	struct nand_chip *chip = &this->nand;
1190	unsigned int search_area_size_in_strides;
1191	unsigned int stride;
1192	unsigned int page;
1193	loff_t byte;
1194	uint8_t *buffer = chip->buffers->databuf;
1195	int saved_chip_number;
1196	int found_an_ncb_fingerprint = false;
1197
1198	/* Compute the number of strides in a search area. */
1199	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1200
1201	saved_chip_number = this->current_chip;
1202	chip->select_chip(mtd, 0);
1203
1204	/*
1205	 * Loop through the first search area, looking for the NCB fingerprint.
1206	 */
1207	dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
1208
1209	for (stride = 0; stride < search_area_size_in_strides; stride++) {
1210		/* Compute the page and byte addresses. */
1211		page = stride * rom_geo->stride_size_in_pages;
1212		byte = page   * mtd->writesize;
1213
1214		dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
1215
1216		/*
1217		 * Read the NCB fingerprint. The fingerprint is four bytes long
1218		 * and starts in the 12th byte of the page.
1219		 */
1220		chip->cmdfunc(mtd, NAND_CMD_READ0, 12, page);
1221		chip->read_buf(mtd, buffer, strlen(fingerprint));
1222
1223		/* Look for the fingerprint. */
1224		if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
1225			found_an_ncb_fingerprint = true;
1226			break;
1227		}
1228
1229	}
1230
1231	chip->select_chip(mtd, saved_chip_number);
1232
1233	if (found_an_ncb_fingerprint)
1234		dev_dbg(dev, "\tFound a fingerprint\n");
1235	else
1236		dev_dbg(dev, "\tNo fingerprint found\n");
1237	return found_an_ncb_fingerprint;
1238}
1239
1240/* Writes a transcription stamp. */
1241static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
1242{
1243	struct device *dev = this->dev;
1244	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1245	struct mtd_info *mtd = &this->mtd;
1246	struct nand_chip *chip = &this->nand;
1247	unsigned int block_size_in_pages;
1248	unsigned int search_area_size_in_strides;
1249	unsigned int search_area_size_in_pages;
1250	unsigned int search_area_size_in_blocks;
1251	unsigned int block;
1252	unsigned int stride;
1253	unsigned int page;
1254	loff_t       byte;
1255	uint8_t      *buffer = chip->buffers->databuf;
1256	int saved_chip_number;
1257	int status;
1258
1259	/* Compute the search area geometry. */
1260	block_size_in_pages = mtd->erasesize / mtd->writesize;
1261	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1262	search_area_size_in_pages = search_area_size_in_strides *
1263					rom_geo->stride_size_in_pages;
1264	search_area_size_in_blocks =
1265		  (search_area_size_in_pages + (block_size_in_pages - 1)) /
1266				    block_size_in_pages;
1267
1268	dev_dbg(dev, "Search Area Geometry :\n");
1269	dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
1270	dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
1271	dev_dbg(dev, "\tin Pages  : %u\n", search_area_size_in_pages);
1272
1273	/* Select chip 0. */
1274	saved_chip_number = this->current_chip;
1275	chip->select_chip(mtd, 0);
1276
1277	/* Loop over blocks in the first search area, erasing them. */
1278	dev_dbg(dev, "Erasing the search area...\n");
1279
1280	for (block = 0; block < search_area_size_in_blocks; block++) {
1281		/* Compute the page address. */
1282		page = block * block_size_in_pages;
1283
1284		/* Erase this block. */
1285		dev_dbg(dev, "\tErasing block 0x%x\n", block);
1286		chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1287		chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1288
1289		/* Wait for the erase to finish. */
1290		status = chip->waitfunc(mtd, chip);
1291		if (status & NAND_STATUS_FAIL)
1292			dev_err(dev, "[%s] Erase failed.\n", __func__);
1293	}
1294
1295	/* Write the NCB fingerprint into the page buffer. */
1296	memset(buffer, ~0, mtd->writesize);
1297	memset(chip->oob_poi, ~0, mtd->oobsize);
1298	memcpy(buffer + 12, fingerprint, strlen(fingerprint));
1299
1300	/* Loop through the first search area, writing NCB fingerprints. */
1301	dev_dbg(dev, "Writing NCB fingerprints...\n");
1302	for (stride = 0; stride < search_area_size_in_strides; stride++) {
1303		/* Compute the page and byte addresses. */
1304		page = stride * rom_geo->stride_size_in_pages;
1305		byte = page   * mtd->writesize;
1306
1307		/* Write the first page of the current stride. */
1308		dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
1309		chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1310		chip->ecc.write_page_raw(mtd, chip, buffer, 0);
1311		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1312
1313		/* Wait for the write to finish. */
1314		status = chip->waitfunc(mtd, chip);
1315		if (status & NAND_STATUS_FAIL)
1316			dev_err(dev, "[%s] Write failed.\n", __func__);
1317	}
1318
1319	/* Deselect chip 0. */
1320	chip->select_chip(mtd, saved_chip_number);
1321	return 0;
1322}
1323
1324static int mx23_boot_init(struct gpmi_nand_data  *this)
1325{
1326	struct device *dev = this->dev;
1327	struct nand_chip *chip = &this->nand;
1328	struct mtd_info *mtd = &this->mtd;
1329	unsigned int block_count;
1330	unsigned int block;
1331	int     chipnr;
1332	int     page;
1333	loff_t  byte;
1334	uint8_t block_mark;
1335	int     ret = 0;
1336
1337	/*
1338	 * If control arrives here, we can't use block mark swapping, which
1339	 * means we're forced to use transcription. First, scan for the
1340	 * transcription stamp. If we find it, then we don't have to do
1341	 * anything -- the block marks are already transcribed.
1342	 */
1343	if (mx23_check_transcription_stamp(this))
1344		return 0;
1345
1346	/*
1347	 * If control arrives here, we couldn't find a transcription stamp, so
1348	 * so we presume the block marks are in the conventional location.
1349	 */
1350	dev_dbg(dev, "Transcribing bad block marks...\n");
1351
1352	/* Compute the number of blocks in the entire medium. */
1353	block_count = chip->chipsize >> chip->phys_erase_shift;
1354
1355	/*
1356	 * Loop over all the blocks in the medium, transcribing block marks as
1357	 * we go.
1358	 */
1359	for (block = 0; block < block_count; block++) {
1360		/*
1361		 * Compute the chip, page and byte addresses for this block's
1362		 * conventional mark.
1363		 */
1364		chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
1365		page = block << (chip->phys_erase_shift - chip->page_shift);
1366		byte = block <<  chip->phys_erase_shift;
1367
1368		/* Send the command to read the conventional block mark. */
1369		chip->select_chip(mtd, chipnr);
1370		chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
1371		block_mark = chip->read_byte(mtd);
1372		chip->select_chip(mtd, -1);
1373
1374		/*
1375		 * Check if the block is marked bad. If so, we need to mark it
1376		 * again, but this time the result will be a mark in the
1377		 * location where we transcribe block marks.
1378		 */
1379		if (block_mark != 0xff) {
1380			dev_dbg(dev, "Transcribing mark in block %u\n", block);
1381			ret = chip->block_markbad(mtd, byte);
1382			if (ret)
1383				dev_err(dev, "Failed to mark block bad with "
1384							"ret %d\n", ret);
1385		}
1386	}
1387
1388	/* Write the stamp that indicates we've transcribed the block marks. */
1389	mx23_write_transcription_stamp(this);
1390	return 0;
1391}
1392
1393static int nand_boot_init(struct gpmi_nand_data  *this)
1394{
1395	nand_boot_set_geometry(this);
1396
1397	/* This is ROM arch-specific initilization before the BBT scanning. */
1398	if (GPMI_IS_MX23(this))
1399		return mx23_boot_init(this);
1400	return 0;
1401}
1402
1403static int gpmi_set_geometry(struct gpmi_nand_data *this)
1404{
1405	int ret;
1406
1407	/* Free the temporary DMA memory for reading ID. */
1408	gpmi_free_dma_buffer(this);
1409
1410	/* Set up the NFC geometry which is used by BCH. */
1411	ret = bch_set_geometry(this);
1412	if (ret) {
1413		pr_err("set geometry ret : %d\n", ret);
1414		return ret;
1415	}
1416
1417	/* Alloc the new DMA buffers according to the pagesize and oobsize */
1418	return gpmi_alloc_dma_buffer(this);
1419}
1420
1421static int gpmi_pre_bbt_scan(struct gpmi_nand_data  *this)
1422{
1423	int ret;
1424
1425	/* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
1426	if (GPMI_IS_MX23(this))
1427		this->swap_block_mark = false;
1428	else
1429		this->swap_block_mark = true;
1430
1431	/* Set up the medium geometry */
1432	ret = gpmi_set_geometry(this);
1433	if (ret)
1434		return ret;
1435
1436	/* Adjust the ECC strength according to the chip. */
1437	this->nand.ecc.strength = this->bch_geometry.ecc_strength;
1438	this->mtd.ecc_strength = this->bch_geometry.ecc_strength;
1439
1440	/* NAND boot init, depends on the gpmi_set_geometry(). */
1441	return nand_boot_init(this);
1442}
1443
1444static int gpmi_scan_bbt(struct mtd_info *mtd)
1445{
1446	struct nand_chip *chip = mtd->priv;
1447	struct gpmi_nand_data *this = chip->priv;
1448	int ret;
1449
1450	/* Prepare for the BBT scan. */
1451	ret = gpmi_pre_bbt_scan(this);
1452	if (ret)
1453		return ret;
1454
1455	/* use the default BBT implementation */
1456	return nand_default_bbt(mtd);
1457}
1458
1459void gpmi_nfc_exit(struct gpmi_nand_data *this)
1460{
1461	nand_release(&this->mtd);
1462	gpmi_free_dma_buffer(this);
1463}
1464
1465static int __devinit gpmi_nfc_init(struct gpmi_nand_data *this)
1466{
1467	struct mtd_info  *mtd = &this->mtd;
1468	struct nand_chip *chip = &this->nand;
1469	struct mtd_part_parser_data ppdata = {};
1470	int ret;
1471
1472	/* init current chip */
1473	this->current_chip	= -1;
1474
1475	/* init the MTD data structures */
1476	mtd->priv		= chip;
1477	mtd->name		= "gpmi-nand";
1478	mtd->owner		= THIS_MODULE;
1479
1480	/* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
1481	chip->priv		= this;
1482	chip->select_chip	= gpmi_select_chip;
1483	chip->cmd_ctrl		= gpmi_cmd_ctrl;
1484	chip->dev_ready		= gpmi_dev_ready;
1485	chip->read_byte		= gpmi_read_byte;
1486	chip->read_buf		= gpmi_read_buf;
1487	chip->write_buf		= gpmi_write_buf;
1488	chip->ecc.read_page	= gpmi_ecc_read_page;
1489	chip->ecc.write_page	= gpmi_ecc_write_page;
1490	chip->ecc.read_oob	= gpmi_ecc_read_oob;
1491	chip->ecc.write_oob	= gpmi_ecc_write_oob;
1492	chip->scan_bbt		= gpmi_scan_bbt;
1493	chip->badblock_pattern	= &gpmi_bbt_descr;
1494	chip->block_markbad	= gpmi_block_markbad;
1495	chip->options		|= NAND_NO_SUBPAGE_WRITE;
1496	chip->ecc.mode		= NAND_ECC_HW;
1497	chip->ecc.size		= 1;
1498	chip->ecc.strength	= 8;
1499	chip->ecc.layout	= &gpmi_hw_ecclayout;
1500
1501	/* Allocate a temporary DMA buffer for reading ID in the nand_scan() */
1502	this->bch_geometry.payload_size = 1024;
1503	this->bch_geometry.auxiliary_size = 128;
1504	ret = gpmi_alloc_dma_buffer(this);
1505	if (ret)
1506		goto err_out;
1507
1508	ret = nand_scan(mtd, 1);
1509	if (ret) {
1510		pr_err("Chip scan failed\n");
1511		goto err_out;
1512	}
1513
1514	ppdata.of_node = this->pdev->dev.of_node;
1515	ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
1516	if (ret)
1517		goto err_out;
1518	return 0;
1519
1520err_out:
1521	gpmi_nfc_exit(this);
1522	return ret;
1523}
1524
1525static const struct platform_device_id gpmi_ids[] = {
1526	{ .name = "imx23-gpmi-nand", .driver_data = IS_MX23, },
1527	{ .name = "imx28-gpmi-nand", .driver_data = IS_MX28, },
1528	{ .name = "imx6q-gpmi-nand", .driver_data = IS_MX6Q, },
1529	{},
1530};
1531
1532static const struct of_device_id gpmi_nand_id_table[] = {
1533	{
1534		.compatible = "fsl,imx23-gpmi-nand",
1535		.data = (void *)&gpmi_ids[IS_MX23]
1536	}, {
1537		.compatible = "fsl,imx28-gpmi-nand",
1538		.data = (void *)&gpmi_ids[IS_MX28]
1539	}, {
1540		.compatible = "fsl,imx6q-gpmi-nand",
1541		.data = (void *)&gpmi_ids[IS_MX6Q]
1542	}, {}
1543};
1544MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);
1545
1546static int __devinit gpmi_nand_probe(struct platform_device *pdev)
1547{
1548	struct gpmi_nand_data *this;
1549	const struct of_device_id *of_id;
1550	int ret;
1551
1552	of_id = of_match_device(gpmi_nand_id_table, &pdev->dev);
1553	if (of_id) {
1554		pdev->id_entry = of_id->data;
1555	} else {
1556		pr_err("Failed to find the right device id.\n");
1557		return -ENOMEM;
1558	}
1559
1560	this = kzalloc(sizeof(*this), GFP_KERNEL);
1561	if (!this) {
1562		pr_err("Failed to allocate per-device memory\n");
1563		return -ENOMEM;
1564	}
1565
1566	platform_set_drvdata(pdev, this);
1567	this->pdev  = pdev;
1568	this->dev   = &pdev->dev;
1569
1570	ret = acquire_resources(this);
1571	if (ret)
1572		goto exit_acquire_resources;
1573
1574	ret = init_hardware(this);
1575	if (ret)
1576		goto exit_nfc_init;
1577
1578	ret = gpmi_nfc_init(this);
1579	if (ret)
1580		goto exit_nfc_init;
1581
1582	return 0;
1583
1584exit_nfc_init:
1585	release_resources(this);
1586exit_acquire_resources:
1587	platform_set_drvdata(pdev, NULL);
1588	kfree(this);
1589	return ret;
1590}
1591
1592static int __exit gpmi_nand_remove(struct platform_device *pdev)
1593{
1594	struct gpmi_nand_data *this = platform_get_drvdata(pdev);
1595
1596	gpmi_nfc_exit(this);
1597	release_resources(this);
1598	platform_set_drvdata(pdev, NULL);
1599	kfree(this);
1600	return 0;
1601}
1602
1603static struct platform_driver gpmi_nand_driver = {
1604	.driver = {
1605		.name = "gpmi-nand",
1606		.of_match_table = gpmi_nand_id_table,
1607	},
1608	.probe   = gpmi_nand_probe,
1609	.remove  = __exit_p(gpmi_nand_remove),
1610	.id_table = gpmi_ids,
1611};
1612
1613static int __init gpmi_nand_init(void)
1614{
1615	int err;
1616
1617	err = platform_driver_register(&gpmi_nand_driver);
1618	if (err == 0)
1619		printk(KERN_INFO "GPMI NAND driver registered. (IMX)\n");
1620	else
1621		pr_err("i.MX GPMI NAND driver registration failed\n");
1622	return err;
1623}
1624
1625static void __exit gpmi_nand_exit(void)
1626{
1627	platform_driver_unregister(&gpmi_nand_driver);
1628}
1629
1630module_init(gpmi_nand_init);
1631module_exit(gpmi_nand_exit);
1632
1633MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1634MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
1635MODULE_LICENSE("GPL");