Linux Audio

Check our new training course

Loading...
   1/*
   2 *  Copyright © 2012 Mike Dunn <mikedunn@newsguy.com>
   3 *
   4 * mtd nand driver for M-Systems DiskOnChip G4
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * Tested on the Palm Treo 680.  The G4 is also present on Toshiba Portege, Asus
  12 * P526, some HTC smartphones (Wizard, Prophet, ...), O2 XDA Zinc, maybe others.
  13 * Should work on these as well.  Let me know!
  14 *
  15 * TODO:
  16 *
  17 *  Mechanism for management of password-protected areas
  18 *
  19 *  Hamming ecc when reading oob only
  20 *
  21 *  According to the M-Sys documentation, this device is also available in a
  22 *  "dual-die" configuration having a 256MB capacity, but no mechanism for
  23 *  detecting this variant is documented.  Currently this driver assumes 128MB
  24 *  capacity.
  25 *
  26 *  Support for multiple cascaded devices ("floors").  Not sure which gadgets
  27 *  contain multiple G4s in a cascaded configuration, if any.
  28 *
  29 */
  30
  31#include <linux/kernel.h>
  32#include <linux/slab.h>
  33#include <linux/init.h>
  34#include <linux/string.h>
  35#include <linux/sched.h>
  36#include <linux/delay.h>
  37#include <linux/module.h>
  38#include <linux/export.h>
  39#include <linux/platform_device.h>
  40#include <linux/io.h>
  41#include <linux/bitops.h>
  42#include <linux/mtd/partitions.h>
  43#include <linux/mtd/mtd.h>
  44#include <linux/mtd/nand.h>
  45#include <linux/bch.h>
  46#include <linux/bitrev.h>
  47
  48/*
  49 * You'll want to ignore badblocks if you're reading a partition that contains
  50 * data written by the TrueFFS library (i.e., by PalmOS, Windows, etc), since
  51 * it does not use mtd nand's method for marking bad blocks (using oob area).
  52 * This will also skip the check of the "page written" flag.
  53 */
  54static bool ignore_badblocks;
  55module_param(ignore_badblocks, bool, 0);
  56MODULE_PARM_DESC(ignore_badblocks, "no badblock checking performed");
  57
  58struct docg4_priv {
  59	struct mtd_info	*mtd;
  60	struct device *dev;
  61	void __iomem *virtadr;
  62	int status;
  63	struct {
  64		unsigned int command;
  65		int column;
  66		int page;
  67	} last_command;
  68	uint8_t oob_buf[16];
  69	uint8_t ecc_buf[7];
  70	int oob_page;
  71	struct bch_control *bch;
  72};
  73
  74/*
  75 * Defines prefixed with DOCG4 are unique to the diskonchip G4.  All others are
  76 * shared with other diskonchip devices (P3, G3 at least).
  77 *
  78 * Functions with names prefixed with docg4_ are mtd / nand interface functions
  79 * (though they may also be called internally).  All others are internal.
  80 */
  81
  82#define DOC_IOSPACE_DATA		0x0800
  83
  84/* register offsets */
  85#define DOC_CHIPID			0x1000
  86#define DOC_DEVICESELECT		0x100a
  87#define DOC_ASICMODE			0x100c
  88#define DOC_DATAEND			0x101e
  89#define DOC_NOP				0x103e
  90
  91#define DOC_FLASHSEQUENCE		0x1032
  92#define DOC_FLASHCOMMAND		0x1034
  93#define DOC_FLASHADDRESS		0x1036
  94#define DOC_FLASHCONTROL		0x1038
  95#define DOC_ECCCONF0			0x1040
  96#define DOC_ECCCONF1			0x1042
  97#define DOC_HAMMINGPARITY		0x1046
  98#define DOC_BCH_SYNDROM(idx)		(0x1048 + idx)
  99
 100#define DOC_ASICMODECONFIRM		0x1072
 101#define DOC_CHIPID_INV			0x1074
 102#define DOC_POWERMODE			0x107c
 103
 104#define DOCG4_MYSTERY_REG		0x1050
 105
 106/* apparently used only to write oob bytes 6 and 7 */
 107#define DOCG4_OOB_6_7			0x1052
 108
 109/* DOC_FLASHSEQUENCE register commands */
 110#define DOC_SEQ_RESET			0x00
 111#define DOCG4_SEQ_PAGE_READ		0x03
 112#define DOCG4_SEQ_FLUSH			0x29
 113#define DOCG4_SEQ_PAGEWRITE		0x16
 114#define DOCG4_SEQ_PAGEPROG		0x1e
 115#define DOCG4_SEQ_BLOCKERASE		0x24
 116
 117/* DOC_FLASHCOMMAND register commands */
 118#define DOCG4_CMD_PAGE_READ             0x00
 119#define DOC_CMD_ERASECYCLE2		0xd0
 120#define DOCG4_CMD_FLUSH                 0x70
 121#define DOCG4_CMD_READ2                 0x30
 122#define DOC_CMD_PROG_BLOCK_ADDR		0x60
 123#define DOCG4_CMD_PAGEWRITE		0x80
 124#define DOC_CMD_PROG_CYCLE2		0x10
 125#define DOC_CMD_RESET			0xff
 126
 127/* DOC_POWERMODE register bits */
 128#define DOC_POWERDOWN_READY		0x80
 129
 130/* DOC_FLASHCONTROL register bits */
 131#define DOC_CTRL_CE			0x10
 132#define DOC_CTRL_UNKNOWN		0x40
 133#define DOC_CTRL_FLASHREADY		0x01
 134
 135/* DOC_ECCCONF0 register bits */
 136#define DOC_ECCCONF0_READ_MODE		0x8000
 137#define DOC_ECCCONF0_UNKNOWN		0x2000
 138#define DOC_ECCCONF0_ECC_ENABLE	        0x1000
 139#define DOC_ECCCONF0_DATA_BYTES_MASK	0x07ff
 140
 141/* DOC_ECCCONF1 register bits */
 142#define DOC_ECCCONF1_BCH_SYNDROM_ERR	0x80
 143#define DOC_ECCCONF1_ECC_ENABLE         0x07
 144#define DOC_ECCCONF1_PAGE_IS_WRITTEN	0x20
 145
 146/* DOC_ASICMODE register bits */
 147#define DOC_ASICMODE_RESET		0x00
 148#define DOC_ASICMODE_NORMAL		0x01
 149#define DOC_ASICMODE_POWERDOWN		0x02
 150#define DOC_ASICMODE_MDWREN		0x04
 151#define DOC_ASICMODE_BDETCT_RESET	0x08
 152#define DOC_ASICMODE_RSTIN_RESET	0x10
 153#define DOC_ASICMODE_RAM_WE		0x20
 154
 155/* good status values read after read/write/erase operations */
 156#define DOCG4_PROGSTATUS_GOOD          0x51
 157#define DOCG4_PROGSTATUS_GOOD_2        0xe0
 158
 159/*
 160 * On read operations (page and oob-only), the first byte read from I/O reg is a
 161 * status.  On error, it reads 0x73; otherwise, it reads either 0x71 (first read
 162 * after reset only) or 0x51, so bit 1 is presumed to be an error indicator.
 163 */
 164#define DOCG4_READ_ERROR           0x02 /* bit 1 indicates read error */
 165
 166/* anatomy of the device */
 167#define DOCG4_CHIP_SIZE        0x8000000
 168#define DOCG4_PAGE_SIZE        0x200
 169#define DOCG4_PAGES_PER_BLOCK  0x200
 170#define DOCG4_BLOCK_SIZE       (DOCG4_PAGES_PER_BLOCK * DOCG4_PAGE_SIZE)
 171#define DOCG4_NUMBLOCKS        (DOCG4_CHIP_SIZE / DOCG4_BLOCK_SIZE)
 172#define DOCG4_OOB_SIZE         0x10
 173#define DOCG4_CHIP_SHIFT       27    /* log_2(DOCG4_CHIP_SIZE) */
 174#define DOCG4_PAGE_SHIFT       9     /* log_2(DOCG4_PAGE_SIZE) */
 175#define DOCG4_ERASE_SHIFT      18    /* log_2(DOCG4_BLOCK_SIZE) */
 176
 177/* all but the last byte is included in ecc calculation */
 178#define DOCG4_BCH_SIZE         (DOCG4_PAGE_SIZE + DOCG4_OOB_SIZE - 1)
 179
 180#define DOCG4_USERDATA_LEN     520 /* 512 byte page plus 8 oob avail to user */
 181
 182/* expected values from the ID registers */
 183#define DOCG4_IDREG1_VALUE     0x0400
 184#define DOCG4_IDREG2_VALUE     0xfbff
 185
 186/* primitive polynomial used to build the Galois field used by hw ecc gen */
 187#define DOCG4_PRIMITIVE_POLY   0x4443
 188
 189#define DOCG4_M                14  /* Galois field is of order 2^14 */
 190#define DOCG4_T                4   /* BCH alg corrects up to 4 bit errors */
 191
 192#define DOCG4_FACTORY_BBT_PAGE 16 /* page where read-only factory bbt lives */
 193
 194/*
 195 * Oob bytes 0 - 6 are available to the user.
 196 * Byte 7 is hamming ecc for first 7 bytes.  Bytes 8 - 14 are hw-generated ecc.
 197 * Byte 15 (the last) is used by the driver as a "page written" flag.
 198 */
 199static struct nand_ecclayout docg4_oobinfo = {
 200	.eccbytes = 9,
 201	.eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15},
 202	.oobavail = 7,
 203	.oobfree = { {0, 7} }
 204};
 205
 206/*
 207 * The device has a nop register which M-Sys claims is for the purpose of
 208 * inserting precise delays.  But beware; at least some operations fail if the
 209 * nop writes are replaced with a generic delay!
 210 */
 211static inline void write_nop(void __iomem *docptr)
 212{
 213	writew(0, docptr + DOC_NOP);
 214}
 215
 216static void docg4_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 217{
 218	int i;
 219	struct nand_chip *nand = mtd->priv;
 220	uint16_t *p = (uint16_t *) buf;
 221	len >>= 1;
 222
 223	for (i = 0; i < len; i++)
 224		p[i] = readw(nand->IO_ADDR_R);
 225}
 226
 227static void docg4_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
 228{
 229	int i;
 230	struct nand_chip *nand = mtd->priv;
 231	uint16_t *p = (uint16_t *) buf;
 232	len >>= 1;
 233
 234	for (i = 0; i < len; i++)
 235		writew(p[i], nand->IO_ADDR_W);
 236}
 237
 238static int poll_status(struct docg4_priv *doc)
 239{
 240	/*
 241	 * Busy-wait for the FLASHREADY bit to be set in the FLASHCONTROL
 242	 * register.  Operations known to take a long time (e.g., block erase)
 243	 * should sleep for a while before calling this.
 244	 */
 245
 246	uint16_t flash_status;
 247	unsigned int timeo;
 248	void __iomem *docptr = doc->virtadr;
 249
 250	dev_dbg(doc->dev, "%s...\n", __func__);
 251
 252	/* hardware quirk requires reading twice initially */
 253	flash_status = readw(docptr + DOC_FLASHCONTROL);
 254
 255	timeo = 1000;
 256	do {
 257		cpu_relax();
 258		flash_status = readb(docptr + DOC_FLASHCONTROL);
 259	} while (!(flash_status & DOC_CTRL_FLASHREADY) && --timeo);
 260
 261
 262	if (!timeo) {
 263		dev_err(doc->dev, "%s: timed out!\n", __func__);
 264		return NAND_STATUS_FAIL;
 265	}
 266
 267	if (unlikely(timeo < 50))
 268		dev_warn(doc->dev, "%s: nearly timed out; %d remaining\n",
 269			 __func__, timeo);
 270
 271	return 0;
 272}
 273
 274
 275static int docg4_wait(struct mtd_info *mtd, struct nand_chip *nand)
 276{
 277
 278	struct docg4_priv *doc = nand->priv;
 279	int status = NAND_STATUS_WP;       /* inverse logic?? */
 280	dev_dbg(doc->dev, "%s...\n", __func__);
 281
 282	/* report any previously unreported error */
 283	if (doc->status) {
 284		status |= doc->status;
 285		doc->status = 0;
 286		return status;
 287	}
 288
 289	status |= poll_status(doc);
 290	return status;
 291}
 292
 293static void docg4_select_chip(struct mtd_info *mtd, int chip)
 294{
 295	/*
 296	 * Select among multiple cascaded chips ("floors").  Multiple floors are
 297	 * not yet supported, so the only valid non-negative value is 0.
 298	 */
 299	struct nand_chip *nand = mtd->priv;
 300	struct docg4_priv *doc = nand->priv;
 301	void __iomem *docptr = doc->virtadr;
 302
 303	dev_dbg(doc->dev, "%s: chip %d\n", __func__, chip);
 304
 305	if (chip < 0)
 306		return;		/* deselected */
 307
 308	if (chip > 0)
 309		dev_warn(doc->dev, "multiple floors currently unsupported\n");
 310
 311	writew(0, docptr + DOC_DEVICESELECT);
 312}
 313
 314static void reset(struct mtd_info *mtd)
 315{
 316	/* full device reset */
 317
 318	struct nand_chip *nand = mtd->priv;
 319	struct docg4_priv *doc = nand->priv;
 320	void __iomem *docptr = doc->virtadr;
 321
 322	writew(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN,
 323	       docptr + DOC_ASICMODE);
 324	writew(~(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN),
 325	       docptr + DOC_ASICMODECONFIRM);
 326	write_nop(docptr);
 327
 328	writew(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN,
 329	       docptr + DOC_ASICMODE);
 330	writew(~(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN),
 331	       docptr + DOC_ASICMODECONFIRM);
 332
 333	writew(DOC_ECCCONF1_ECC_ENABLE, docptr + DOC_ECCCONF1);
 334
 335	poll_status(doc);
 336}
 337
 338static void read_hw_ecc(void __iomem *docptr, uint8_t *ecc_buf)
 339{
 340	/* read the 7 hw-generated ecc bytes */
 341
 342	int i;
 343	for (i = 0; i < 7; i++) { /* hw quirk; read twice */
 344		ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i));
 345		ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i));
 346	}
 347}
 348
 349static int correct_data(struct mtd_info *mtd, uint8_t *buf, int page)
 350{
 351	/*
 352	 * Called after a page read when hardware reports bitflips.
 353	 * Up to four bitflips can be corrected.
 354	 */
 355
 356	struct nand_chip *nand = mtd->priv;
 357	struct docg4_priv *doc = nand->priv;
 358	void __iomem *docptr = doc->virtadr;
 359	int i, numerrs, errpos[4];
 360	const uint8_t blank_read_hwecc[8] = {
 361		0xcf, 0x72, 0xfc, 0x1b, 0xa9, 0xc7, 0xb9, 0 };
 362
 363	read_hw_ecc(docptr, doc->ecc_buf); /* read 7 hw-generated ecc bytes */
 364
 365	/* check if read error is due to a blank page */
 366	if (!memcmp(doc->ecc_buf, blank_read_hwecc, 7))
 367		return 0;	/* yes */
 368
 369	/* skip additional check of "written flag" if ignore_badblocks */
 370	if (ignore_badblocks == false) {
 371
 372		/*
 373		 * If the hw ecc bytes are not those of a blank page, there's
 374		 * still a chance that the page is blank, but was read with
 375		 * errors.  Check the "written flag" in last oob byte, which
 376		 * is set to zero when a page is written.  If more than half
 377		 * the bits are set, assume a blank page.  Unfortunately, the
 378		 * bit flips(s) are not reported in stats.
 379		 */
 380
 381		if (doc->oob_buf[15]) {
 382			int bit, numsetbits = 0;
 383			unsigned long written_flag = doc->oob_buf[15];
 384			for_each_set_bit(bit, &written_flag, 8)
 385				numsetbits++;
 386			if (numsetbits > 4) { /* assume blank */
 387				dev_warn(doc->dev,
 388					 "error(s) in blank page "
 389					 "at offset %08x\n",
 390					 page * DOCG4_PAGE_SIZE);
 391				return 0;
 392			}
 393		}
 394	}
 395
 396	/*
 397	 * The hardware ecc unit produces oob_ecc ^ calc_ecc.  The kernel's bch
 398	 * algorithm is used to decode this.  However the hw operates on page
 399	 * data in a bit order that is the reverse of that of the bch alg,
 400	 * requiring that the bits be reversed on the result.  Thanks to Ivan
 401	 * Djelic for his analysis!
 402	 */
 403	for (i = 0; i < 7; i++)
 404		doc->ecc_buf[i] = bitrev8(doc->ecc_buf[i]);
 405
 406	numerrs = decode_bch(doc->bch, NULL, DOCG4_USERDATA_LEN, NULL,
 407			     doc->ecc_buf, NULL, errpos);
 408
 409	if (numerrs == -EBADMSG) {
 410		dev_warn(doc->dev, "uncorrectable errors at offset %08x\n",
 411			 page * DOCG4_PAGE_SIZE);
 412		return -EBADMSG;
 413	}
 414
 415	BUG_ON(numerrs < 0);	/* -EINVAL, or anything other than -EBADMSG */
 416
 417	/* undo last step in BCH alg (modulo mirroring not needed) */
 418	for (i = 0; i < numerrs; i++)
 419		errpos[i] = (errpos[i] & ~7)|(7-(errpos[i] & 7));
 420
 421	/* fix the errors */
 422	for (i = 0; i < numerrs; i++) {
 423
 424		/* ignore if error within oob ecc bytes */
 425		if (errpos[i] > DOCG4_USERDATA_LEN * 8)
 426			continue;
 427
 428		/* if error within oob area preceeding ecc bytes... */
 429		if (errpos[i] > DOCG4_PAGE_SIZE * 8)
 430			change_bit(errpos[i] - DOCG4_PAGE_SIZE * 8,
 431				   (unsigned long *)doc->oob_buf);
 432
 433		else    /* error in page data */
 434			change_bit(errpos[i], (unsigned long *)buf);
 435	}
 436
 437	dev_notice(doc->dev, "%d error(s) corrected at offset %08x\n",
 438		   numerrs, page * DOCG4_PAGE_SIZE);
 439
 440	return numerrs;
 441}
 442
 443static uint8_t docg4_read_byte(struct mtd_info *mtd)
 444{
 445	struct nand_chip *nand = mtd->priv;
 446	struct docg4_priv *doc = nand->priv;
 447
 448	dev_dbg(doc->dev, "%s\n", __func__);
 449
 450	if (doc->last_command.command == NAND_CMD_STATUS) {
 451		int status;
 452
 453		/*
 454		 * Previous nand command was status request, so nand
 455		 * infrastructure code expects to read the status here.  If an
 456		 * error occurred in a previous operation, report it.
 457		 */
 458		doc->last_command.command = 0;
 459
 460		if (doc->status) {
 461			status = doc->status;
 462			doc->status = 0;
 463		}
 464
 465		/* why is NAND_STATUS_WP inverse logic?? */
 466		else
 467			status = NAND_STATUS_WP | NAND_STATUS_READY;
 468
 469		return status;
 470	}
 471
 472	dev_warn(doc->dev, "unexpectd call to read_byte()\n");
 473
 474	return 0;
 475}
 476
 477static void write_addr(struct docg4_priv *doc, uint32_t docg4_addr)
 478{
 479	/* write the four address bytes packed in docg4_addr to the device */
 480
 481	void __iomem *docptr = doc->virtadr;
 482	writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
 483	docg4_addr >>= 8;
 484	writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
 485	docg4_addr >>= 8;
 486	writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
 487	docg4_addr >>= 8;
 488	writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
 489}
 490
 491static int read_progstatus(struct docg4_priv *doc)
 492{
 493	/*
 494	 * This apparently checks the status of programming.  Done after an
 495	 * erasure, and after page data is written.  On error, the status is
 496	 * saved, to be later retrieved by the nand infrastructure code.
 497	 */
 498	void __iomem *docptr = doc->virtadr;
 499
 500	/* status is read from the I/O reg */
 501	uint16_t status1 = readw(docptr + DOC_IOSPACE_DATA);
 502	uint16_t status2 = readw(docptr + DOC_IOSPACE_DATA);
 503	uint16_t status3 = readw(docptr + DOCG4_MYSTERY_REG);
 504
 505	dev_dbg(doc->dev, "docg4: %s: %02x %02x %02x\n",
 506	      __func__, status1, status2, status3);
 507
 508	if (status1 != DOCG4_PROGSTATUS_GOOD
 509	    || status2 != DOCG4_PROGSTATUS_GOOD_2
 510	    || status3 != DOCG4_PROGSTATUS_GOOD_2) {
 511		doc->status = NAND_STATUS_FAIL;
 512		dev_warn(doc->dev, "read_progstatus failed: "
 513			 "%02x, %02x, %02x\n", status1, status2, status3);
 514		return -EIO;
 515	}
 516	return 0;
 517}
 518
 519static int pageprog(struct mtd_info *mtd)
 520{
 521	/*
 522	 * Final step in writing a page.  Writes the contents of its
 523	 * internal buffer out to the flash array, or some such.
 524	 */
 525
 526	struct nand_chip *nand = mtd->priv;
 527	struct docg4_priv *doc = nand->priv;
 528	void __iomem *docptr = doc->virtadr;
 529	int retval = 0;
 530
 531	dev_dbg(doc->dev, "docg4: %s\n", __func__);
 532
 533	writew(DOCG4_SEQ_PAGEPROG, docptr + DOC_FLASHSEQUENCE);
 534	writew(DOC_CMD_PROG_CYCLE2, docptr + DOC_FLASHCOMMAND);
 535	write_nop(docptr);
 536	write_nop(docptr);
 537
 538	/* Just busy-wait; usleep_range() slows things down noticeably. */
 539	poll_status(doc);
 540
 541	writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE);
 542	writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND);
 543	writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0);
 544	write_nop(docptr);
 545	write_nop(docptr);
 546	write_nop(docptr);
 547	write_nop(docptr);
 548	write_nop(docptr);
 549
 550	retval = read_progstatus(doc);
 551	writew(0, docptr + DOC_DATAEND);
 552	write_nop(docptr);
 553	poll_status(doc);
 554	write_nop(docptr);
 555
 556	return retval;
 557}
 558
 559static void sequence_reset(struct mtd_info *mtd)
 560{
 561	/* common starting sequence for all operations */
 562
 563	struct nand_chip *nand = mtd->priv;
 564	struct docg4_priv *doc = nand->priv;
 565	void __iomem *docptr = doc->virtadr;
 566
 567	writew(DOC_CTRL_UNKNOWN | DOC_CTRL_CE, docptr + DOC_FLASHCONTROL);
 568	writew(DOC_SEQ_RESET, docptr + DOC_FLASHSEQUENCE);
 569	writew(DOC_CMD_RESET, docptr + DOC_FLASHCOMMAND);
 570	write_nop(docptr);
 571	write_nop(docptr);
 572	poll_status(doc);
 573	write_nop(docptr);
 574}
 575
 576static void read_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr)
 577{
 578	/* first step in reading a page */
 579
 580	struct nand_chip *nand = mtd->priv;
 581	struct docg4_priv *doc = nand->priv;
 582	void __iomem *docptr = doc->virtadr;
 583
 584	dev_dbg(doc->dev,
 585	      "docg4: %s: g4 page %08x\n", __func__, docg4_addr);
 586
 587	sequence_reset(mtd);
 588
 589	writew(DOCG4_SEQ_PAGE_READ, docptr + DOC_FLASHSEQUENCE);
 590	writew(DOCG4_CMD_PAGE_READ, docptr + DOC_FLASHCOMMAND);
 591	write_nop(docptr);
 592
 593	write_addr(doc, docg4_addr);
 594
 595	write_nop(docptr);
 596	writew(DOCG4_CMD_READ2, docptr + DOC_FLASHCOMMAND);
 597	write_nop(docptr);
 598	write_nop(docptr);
 599
 600	poll_status(doc);
 601}
 602
 603static void write_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr)
 604{
 605	/* first step in writing a page */
 606
 607	struct nand_chip *nand = mtd->priv;
 608	struct docg4_priv *doc = nand->priv;
 609	void __iomem *docptr = doc->virtadr;
 610
 611	dev_dbg(doc->dev,
 612	      "docg4: %s: g4 addr: %x\n", __func__, docg4_addr);
 613	sequence_reset(mtd);
 614	writew(DOCG4_SEQ_PAGEWRITE, docptr + DOC_FLASHSEQUENCE);
 615	writew(DOCG4_CMD_PAGEWRITE, docptr + DOC_FLASHCOMMAND);
 616	write_nop(docptr);
 617	write_addr(doc, docg4_addr);
 618	write_nop(docptr);
 619	write_nop(docptr);
 620	poll_status(doc);
 621}
 622
 623static uint32_t mtd_to_docg4_address(int page, int column)
 624{
 625	/*
 626	 * Convert mtd address to format used by the device, 32 bit packed.
 627	 *
 628	 * Some notes on G4 addressing... The M-Sys documentation on this device
 629	 * claims that pages are 2K in length, and indeed, the format of the
 630	 * address used by the device reflects that.  But within each page are
 631	 * four 512 byte "sub-pages", each with its own oob data that is
 632	 * read/written immediately after the 512 bytes of page data.  This oob
 633	 * data contains the ecc bytes for the preceeding 512 bytes.
 634	 *
 635	 * Rather than tell the mtd nand infrastructure that page size is 2k,
 636	 * with four sub-pages each, we engage in a little subterfuge and tell
 637	 * the infrastructure code that pages are 512 bytes in size.  This is
 638	 * done because during the course of reverse-engineering the device, I
 639	 * never observed an instance where an entire 2K "page" was read or
 640	 * written as a unit.  Each "sub-page" is always addressed individually,
 641	 * its data read/written, and ecc handled before the next "sub-page" is
 642	 * addressed.
 643	 *
 644	 * This requires us to convert addresses passed by the mtd nand
 645	 * infrastructure code to those used by the device.
 646	 *
 647	 * The address that is written to the device consists of four bytes: the
 648	 * first two are the 2k page number, and the second is the index into
 649	 * the page.  The index is in terms of 16-bit half-words and includes
 650	 * the preceeding oob data, so e.g., the index into the second
 651	 * "sub-page" is 0x108, and the full device address of the start of mtd
 652	 * page 0x201 is 0x00800108.
 653	 */
 654	int g4_page = page / 4;	                      /* device's 2K page */
 655	int g4_index = (page % 4) * 0x108 + column/2; /* offset into page */
 656	return (g4_page << 16) | g4_index;	      /* pack */
 657}
 658
 659static void docg4_command(struct mtd_info *mtd, unsigned command, int column,
 660			  int page_addr)
 661{
 662	/* handle standard nand commands */
 663
 664	struct nand_chip *nand = mtd->priv;
 665	struct docg4_priv *doc = nand->priv;
 666	uint32_t g4_addr = mtd_to_docg4_address(page_addr, column);
 667
 668	dev_dbg(doc->dev, "%s %x, page_addr=%x, column=%x\n",
 669	      __func__, command, page_addr, column);
 670
 671	/*
 672	 * Save the command and its arguments.  This enables emulation of
 673	 * standard flash devices, and also some optimizations.
 674	 */
 675	doc->last_command.command = command;
 676	doc->last_command.column = column;
 677	doc->last_command.page = page_addr;
 678
 679	switch (command) {
 680
 681	case NAND_CMD_RESET:
 682		reset(mtd);
 683		break;
 684
 685	case NAND_CMD_READ0:
 686		read_page_prologue(mtd, g4_addr);
 687		break;
 688
 689	case NAND_CMD_STATUS:
 690		/* next call to read_byte() will expect a status */
 691		break;
 692
 693	case NAND_CMD_SEQIN:
 694		write_page_prologue(mtd, g4_addr);
 695
 696		/* hack for deferred write of oob bytes */
 697		if (doc->oob_page == page_addr)
 698			memcpy(nand->oob_poi, doc->oob_buf, 16);
 699		break;
 700
 701	case NAND_CMD_PAGEPROG:
 702		pageprog(mtd);
 703		break;
 704
 705	/* we don't expect these, based on review of nand_base.c */
 706	case NAND_CMD_READOOB:
 707	case NAND_CMD_READID:
 708	case NAND_CMD_ERASE1:
 709	case NAND_CMD_ERASE2:
 710		dev_warn(doc->dev, "docg4_command: "
 711			 "unexpected nand command 0x%x\n", command);
 712		break;
 713
 714	}
 715}
 716
 717static int read_page(struct mtd_info *mtd, struct nand_chip *nand,
 718		     uint8_t *buf, int page, bool use_ecc)
 719{
 720	struct docg4_priv *doc = nand->priv;
 721	void __iomem *docptr = doc->virtadr;
 722	uint16_t status, edc_err, *buf16;
 723	int bits_corrected = 0;
 724
 725	dev_dbg(doc->dev, "%s: page %08x\n", __func__, page);
 726
 727	writew(DOC_ECCCONF0_READ_MODE |
 728	       DOC_ECCCONF0_ECC_ENABLE |
 729	       DOC_ECCCONF0_UNKNOWN |
 730	       DOCG4_BCH_SIZE,
 731	       docptr + DOC_ECCCONF0);
 732	write_nop(docptr);
 733	write_nop(docptr);
 734	write_nop(docptr);
 735	write_nop(docptr);
 736	write_nop(docptr);
 737
 738	/* the 1st byte from the I/O reg is a status; the rest is page data */
 739	status = readw(docptr + DOC_IOSPACE_DATA);
 740	if (status & DOCG4_READ_ERROR) {
 741		dev_err(doc->dev,
 742			"docg4_read_page: bad status: 0x%02x\n", status);
 743		writew(0, docptr + DOC_DATAEND);
 744		return -EIO;
 745	}
 746
 747	dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status);
 748
 749	docg4_read_buf(mtd, buf, DOCG4_PAGE_SIZE); /* read the page data */
 750
 751	/*
 752	 * Diskonchips read oob immediately after a page read.  Mtd
 753	 * infrastructure issues a separate command for reading oob after the
 754	 * page is read.  So we save the oob bytes in a local buffer and just
 755	 * copy it if the next command reads oob from the same page.
 756	 */
 757
 758	/* first 14 oob bytes read from I/O reg */
 759	docg4_read_buf(mtd, doc->oob_buf, 14);
 760
 761	/* last 2 read from another reg */
 762	buf16 = (uint16_t *)(doc->oob_buf + 14);
 763	*buf16 = readw(docptr + DOCG4_MYSTERY_REG);
 764
 765	write_nop(docptr);
 766
 767	if (likely(use_ecc == true)) {
 768
 769		/* read the register that tells us if bitflip(s) detected  */
 770		edc_err = readw(docptr + DOC_ECCCONF1);
 771		edc_err = readw(docptr + DOC_ECCCONF1);
 772		dev_dbg(doc->dev, "%s: edc_err = 0x%02x\n", __func__, edc_err);
 773
 774		/* If bitflips are reported, attempt to correct with ecc */
 775		if (edc_err & DOC_ECCCONF1_BCH_SYNDROM_ERR) {
 776			bits_corrected = correct_data(mtd, buf, page);
 777			if (bits_corrected == -EBADMSG)
 778				mtd->ecc_stats.failed++;
 779			else
 780				mtd->ecc_stats.corrected += bits_corrected;
 781		}
 782	}
 783
 784	writew(0, docptr + DOC_DATAEND);
 785	return bits_corrected;
 786}
 787
 788
 789static int docg4_read_page_raw(struct mtd_info *mtd, struct nand_chip *nand,
 790			       uint8_t *buf, int oob_required, int page)
 791{
 792	return read_page(mtd, nand, buf, page, false);
 793}
 794
 795static int docg4_read_page(struct mtd_info *mtd, struct nand_chip *nand,
 796			   uint8_t *buf, int oob_required, int page)
 797{
 798	return read_page(mtd, nand, buf, page, true);
 799}
 800
 801static int docg4_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
 802			  int page)
 803{
 804	struct docg4_priv *doc = nand->priv;
 805	void __iomem *docptr = doc->virtadr;
 806	uint16_t status;
 807
 808	dev_dbg(doc->dev, "%s: page %x\n", __func__, page);
 809
 810	/*
 811	 * Oob bytes are read as part of a normal page read.  If the previous
 812	 * nand command was a read of the page whose oob is now being read, just
 813	 * copy the oob bytes that we saved in a local buffer and avoid a
 814	 * separate oob read.
 815	 */
 816	if (doc->last_command.command == NAND_CMD_READ0 &&
 817	    doc->last_command.page == page) {
 818		memcpy(nand->oob_poi, doc->oob_buf, 16);
 819		return 0;
 820	}
 821
 822	/*
 823	 * Separate read of oob data only.
 824	 */
 825	docg4_command(mtd, NAND_CMD_READ0, nand->ecc.size, page);
 826
 827	writew(DOC_ECCCONF0_READ_MODE | DOCG4_OOB_SIZE, docptr + DOC_ECCCONF0);
 828	write_nop(docptr);
 829	write_nop(docptr);
 830	write_nop(docptr);
 831	write_nop(docptr);
 832	write_nop(docptr);
 833
 834	/* the 1st byte from the I/O reg is a status; the rest is oob data */
 835	status = readw(docptr + DOC_IOSPACE_DATA);
 836	if (status & DOCG4_READ_ERROR) {
 837		dev_warn(doc->dev,
 838			 "docg4_read_oob failed: status = 0x%02x\n", status);
 839		return -EIO;
 840	}
 841
 842	dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status);
 843
 844	docg4_read_buf(mtd, nand->oob_poi, 16);
 845
 846	write_nop(docptr);
 847	write_nop(docptr);
 848	write_nop(docptr);
 849	writew(0, docptr + DOC_DATAEND);
 850	write_nop(docptr);
 851
 852	return 0;
 853}
 854
 855static void docg4_erase_block(struct mtd_info *mtd, int page)
 856{
 857	struct nand_chip *nand = mtd->priv;
 858	struct docg4_priv *doc = nand->priv;
 859	void __iomem *docptr = doc->virtadr;
 860	uint16_t g4_page;
 861
 862	dev_dbg(doc->dev, "%s: page %04x\n", __func__, page);
 863
 864	sequence_reset(mtd);
 865
 866	writew(DOCG4_SEQ_BLOCKERASE, docptr + DOC_FLASHSEQUENCE);
 867	writew(DOC_CMD_PROG_BLOCK_ADDR, docptr + DOC_FLASHCOMMAND);
 868	write_nop(docptr);
 869
 870	/* only 2 bytes of address are written to specify erase block */
 871	g4_page = (uint16_t)(page / 4);  /* to g4's 2k page addressing */
 872	writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS);
 873	g4_page >>= 8;
 874	writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS);
 875	write_nop(docptr);
 876
 877	/* start the erasure */
 878	writew(DOC_CMD_ERASECYCLE2, docptr + DOC_FLASHCOMMAND);
 879	write_nop(docptr);
 880	write_nop(docptr);
 881
 882	usleep_range(500, 1000); /* erasure is long; take a snooze */
 883	poll_status(doc);
 884	writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE);
 885	writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND);
 886	writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0);
 887	write_nop(docptr);
 888	write_nop(docptr);
 889	write_nop(docptr);
 890	write_nop(docptr);
 891	write_nop(docptr);
 892
 893	read_progstatus(doc);
 894
 895	writew(0, docptr + DOC_DATAEND);
 896	write_nop(docptr);
 897	poll_status(doc);
 898	write_nop(docptr);
 899}
 900
 901static void write_page(struct mtd_info *mtd, struct nand_chip *nand,
 902		       const uint8_t *buf, bool use_ecc)
 903{
 904	struct docg4_priv *doc = nand->priv;
 905	void __iomem *docptr = doc->virtadr;
 906	uint8_t ecc_buf[8];
 907
 908	dev_dbg(doc->dev, "%s...\n", __func__);
 909
 910	writew(DOC_ECCCONF0_ECC_ENABLE |
 911	       DOC_ECCCONF0_UNKNOWN |
 912	       DOCG4_BCH_SIZE,
 913	       docptr + DOC_ECCCONF0);
 914	write_nop(docptr);
 915
 916	/* write the page data */
 917	docg4_write_buf16(mtd, buf, DOCG4_PAGE_SIZE);
 918
 919	/* oob bytes 0 through 5 are written to I/O reg */
 920	docg4_write_buf16(mtd, nand->oob_poi, 6);
 921
 922	/* oob byte 6 written to a separate reg */
 923	writew(nand->oob_poi[6], docptr + DOCG4_OOB_6_7);
 924
 925	write_nop(docptr);
 926	write_nop(docptr);
 927
 928	/* write hw-generated ecc bytes to oob */
 929	if (likely(use_ecc == true)) {
 930		/* oob byte 7 is hamming code */
 931		uint8_t hamming = readb(docptr + DOC_HAMMINGPARITY);
 932		hamming = readb(docptr + DOC_HAMMINGPARITY); /* 2nd read */
 933		writew(hamming, docptr + DOCG4_OOB_6_7);
 934		write_nop(docptr);
 935
 936		/* read the 7 bch bytes from ecc regs */
 937		read_hw_ecc(docptr, ecc_buf);
 938		ecc_buf[7] = 0;         /* clear the "page written" flag */
 939	}
 940
 941	/* write user-supplied bytes to oob */
 942	else {
 943		writew(nand->oob_poi[7], docptr + DOCG4_OOB_6_7);
 944		write_nop(docptr);
 945		memcpy(ecc_buf, &nand->oob_poi[8], 8);
 946	}
 947
 948	docg4_write_buf16(mtd, ecc_buf, 8);
 949	write_nop(docptr);
 950	write_nop(docptr);
 951	writew(0, docptr + DOC_DATAEND);
 952	write_nop(docptr);
 953}
 954
 955static void docg4_write_page_raw(struct mtd_info *mtd, struct nand_chip *nand,
 956				 const uint8_t *buf, int oob_required)
 957{
 958	return write_page(mtd, nand, buf, false);
 959}
 960
 961static void docg4_write_page(struct mtd_info *mtd, struct nand_chip *nand,
 962			     const uint8_t *buf, int oob_required)
 963{
 964	return write_page(mtd, nand, buf, true);
 965}
 966
 967static int docg4_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
 968			   int page)
 969{
 970	/*
 971	 * Writing oob-only is not really supported, because MLC nand must write
 972	 * oob bytes at the same time as page data.  Nonetheless, we save the
 973	 * oob buffer contents here, and then write it along with the page data
 974	 * if the same page is subsequently written.  This allows user space
 975	 * utilities that write the oob data prior to the page data to work
 976	 * (e.g., nandwrite).  The disdvantage is that, if the intention was to
 977	 * write oob only, the operation is quietly ignored.  Also, oob can get
 978	 * corrupted if two concurrent processes are running nandwrite.
 979	 */
 980
 981	/* note that bytes 7..14 are hw generated hamming/ecc and overwritten */
 982	struct docg4_priv *doc = nand->priv;
 983	doc->oob_page = page;
 984	memcpy(doc->oob_buf, nand->oob_poi, 16);
 985	return 0;
 986}
 987
 988static int __init read_factory_bbt(struct mtd_info *mtd)
 989{
 990	/*
 991	 * The device contains a read-only factory bad block table.  Read it and
 992	 * update the memory-based bbt accordingly.
 993	 */
 994
 995	struct nand_chip *nand = mtd->priv;
 996	struct docg4_priv *doc = nand->priv;
 997	uint32_t g4_addr = mtd_to_docg4_address(DOCG4_FACTORY_BBT_PAGE, 0);
 998	uint8_t *buf;
 999	int i, block, status;
1000
1001	buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL);
1002	if (buf == NULL)
1003		return -ENOMEM;
1004
1005	read_page_prologue(mtd, g4_addr);
1006	status = docg4_read_page(mtd, nand, buf, 0, DOCG4_FACTORY_BBT_PAGE);
1007	if (status)
1008		goto exit;
1009
1010	/*
1011	 * If no memory-based bbt was created, exit.  This will happen if module
1012	 * parameter ignore_badblocks is set.  Then why even call this function?
1013	 * For an unknown reason, block erase always fails if it's the first
1014	 * operation after device power-up.  The above read ensures it never is.
1015	 * Ugly, I know.
1016	 */
1017	if (nand->bbt == NULL)  /* no memory-based bbt */
1018		goto exit;
1019
1020	/*
1021	 * Parse factory bbt and update memory-based bbt.  Factory bbt format is
1022	 * simple: one bit per block, block numbers increase left to right (msb
1023	 * to lsb).  Bit clear means bad block.
1024	 */
1025	for (i = block = 0; block < DOCG4_NUMBLOCKS; block += 8, i++) {
1026		int bitnum;
1027		unsigned long bits = ~buf[i];
1028		for_each_set_bit(bitnum, &bits, 8) {
1029			int badblock = block + 7 - bitnum;
1030			nand->bbt[badblock / 4] |=
1031				0x03 << ((badblock % 4) * 2);
1032			mtd->ecc_stats.badblocks++;
1033			dev_notice(doc->dev, "factory-marked bad block: %d\n",
1034				   badblock);
1035		}
1036	}
1037 exit:
1038	kfree(buf);
1039	return status;
1040}
1041
1042static int docg4_block_markbad(struct mtd_info *mtd, loff_t ofs)
1043{
1044	/*
1045	 * Mark a block as bad.  Bad blocks are marked in the oob area of the
1046	 * first page of the block.  The default scan_bbt() in the nand
1047	 * infrastructure code works fine for building the memory-based bbt
1048	 * during initialization, as does the nand infrastructure function that
1049	 * checks if a block is bad by reading the bbt.  This function replaces
1050	 * the nand default because writes to oob-only are not supported.
1051	 */
1052
1053	int ret, i;
1054	uint8_t *buf;
1055	struct nand_chip *nand = mtd->priv;
1056	struct docg4_priv *doc = nand->priv;
1057	struct nand_bbt_descr *bbtd = nand->badblock_pattern;
1058	int block = (int)(ofs >> nand->bbt_erase_shift);
1059	int page = (int)(ofs >> nand->page_shift);
1060	uint32_t g4_addr = mtd_to_docg4_address(page, 0);
1061
1062	dev_dbg(doc->dev, "%s: %08llx\n", __func__, ofs);
1063
1064	if (unlikely(ofs & (DOCG4_BLOCK_SIZE - 1)))
1065		dev_warn(doc->dev, "%s: ofs %llx not start of block!\n",
1066			 __func__, ofs);
1067
1068	/* allocate blank buffer for page data */
1069	buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL);
1070	if (buf == NULL)
1071		return -ENOMEM;
1072
1073	/* update bbt in memory */
1074	nand->bbt[block / 4] |= 0x01 << ((block & 0x03) * 2);
1075
1076	/* write bit-wise negation of pattern to oob buffer */
1077	memset(nand->oob_poi, 0xff, mtd->oobsize);
1078	for (i = 0; i < bbtd->len; i++)
1079		nand->oob_poi[bbtd->offs + i] = ~bbtd->pattern[i];
1080
1081	/* write first page of block */
1082	write_page_prologue(mtd, g4_addr);
1083	docg4_write_page(mtd, nand, buf, 1);
1084	ret = pageprog(mtd);
1085	if (!ret)
1086		mtd->ecc_stats.badblocks++;
1087
1088	kfree(buf);
1089
1090	return ret;
1091}
1092
1093static int docg4_block_neverbad(struct mtd_info *mtd, loff_t ofs, int getchip)
1094{
1095	/* only called when module_param ignore_badblocks is set */
1096	return 0;
1097}
1098
1099static int docg4_suspend(struct platform_device *pdev, pm_message_t state)
1100{
1101	/*
1102	 * Put the device into "deep power-down" mode.  Note that CE# must be
1103	 * deasserted for this to take effect.  The xscale, e.g., can be
1104	 * configured to float this signal when the processor enters power-down,
1105	 * and a suitable pull-up ensures its deassertion.
1106	 */
1107
1108	int i;
1109	uint8_t pwr_down;
1110	struct docg4_priv *doc = platform_get_drvdata(pdev);
1111	void __iomem *docptr = doc->virtadr;
1112
1113	dev_dbg(doc->dev, "%s...\n", __func__);
1114
1115	/* poll the register that tells us we're ready to go to sleep */
1116	for (i = 0; i < 10; i++) {
1117		pwr_down = readb(docptr + DOC_POWERMODE);
1118		if (pwr_down & DOC_POWERDOWN_READY)
1119			break;
1120		usleep_range(1000, 4000);
1121	}
1122
1123	if (pwr_down & DOC_POWERDOWN_READY) {
1124		dev_err(doc->dev, "suspend failed; "
1125			"timeout polling DOC_POWERDOWN_READY\n");
1126		return -EIO;
1127	}
1128
1129	writew(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN,
1130	       docptr + DOC_ASICMODE);
1131	writew(~(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN),
1132	       docptr + DOC_ASICMODECONFIRM);
1133
1134	write_nop(docptr);
1135
1136	return 0;
1137}
1138
1139static int docg4_resume(struct platform_device *pdev)
1140{
1141
1142	/*
1143	 * Exit power-down.  Twelve consecutive reads of the address below
1144	 * accomplishes this, assuming CE# has been asserted.
1145	 */
1146
1147	struct docg4_priv *doc = platform_get_drvdata(pdev);
1148	void __iomem *docptr = doc->virtadr;
1149	int i;
1150
1151	dev_dbg(doc->dev, "%s...\n", __func__);
1152
1153	for (i = 0; i < 12; i++)
1154		readb(docptr + 0x1fff);
1155
1156	return 0;
1157}
1158
1159static void __init init_mtd_structs(struct mtd_info *mtd)
1160{
1161	/* initialize mtd and nand data structures */
1162
1163	/*
1164	 * Note that some of the following initializations are not usually
1165	 * required within a nand driver because they are performed by the nand
1166	 * infrastructure code as part of nand_scan().  In this case they need
1167	 * to be initialized here because we skip call to nand_scan_ident() (the
1168	 * first half of nand_scan()).  The call to nand_scan_ident() is skipped
1169	 * because for this device the chip id is not read in the manner of a
1170	 * standard nand device.  Unfortunately, nand_scan_ident() does other
1171	 * things as well, such as call nand_set_defaults().
1172	 */
1173
1174	struct nand_chip *nand = mtd->priv;
1175	struct docg4_priv *doc = nand->priv;
1176
1177	mtd->size = DOCG4_CHIP_SIZE;
1178	mtd->name = "Msys_Diskonchip_G4";
1179	mtd->writesize = DOCG4_PAGE_SIZE;
1180	mtd->erasesize = DOCG4_BLOCK_SIZE;
1181	mtd->oobsize = DOCG4_OOB_SIZE;
1182	nand->chipsize = DOCG4_CHIP_SIZE;
1183	nand->chip_shift = DOCG4_CHIP_SHIFT;
1184	nand->bbt_erase_shift = nand->phys_erase_shift = DOCG4_ERASE_SHIFT;
1185	nand->chip_delay = 20;
1186	nand->page_shift = DOCG4_PAGE_SHIFT;
1187	nand->pagemask = 0x3ffff;
1188	nand->badblockpos = NAND_LARGE_BADBLOCK_POS;
1189	nand->badblockbits = 8;
1190	nand->ecc.layout = &docg4_oobinfo;
1191	nand->ecc.mode = NAND_ECC_HW_SYNDROME;
1192	nand->ecc.size = DOCG4_PAGE_SIZE;
1193	nand->ecc.prepad = 8;
1194	nand->ecc.bytes	= 8;
1195	nand->ecc.strength = DOCG4_T;
1196	nand->options = NAND_BUSWIDTH_16 | NAND_NO_SUBPAGE_WRITE;
1197	nand->IO_ADDR_R = nand->IO_ADDR_W = doc->virtadr + DOC_IOSPACE_DATA;
1198	nand->controller = &nand->hwcontrol;
1199	spin_lock_init(&nand->controller->lock);
1200	init_waitqueue_head(&nand->controller->wq);
1201
1202	/* methods */
1203	nand->cmdfunc = docg4_command;
1204	nand->waitfunc = docg4_wait;
1205	nand->select_chip = docg4_select_chip;
1206	nand->read_byte = docg4_read_byte;
1207	nand->block_markbad = docg4_block_markbad;
1208	nand->read_buf = docg4_read_buf;
1209	nand->write_buf = docg4_write_buf16;
1210	nand->scan_bbt = nand_default_bbt;
1211	nand->erase_cmd = docg4_erase_block;
1212	nand->ecc.read_page = docg4_read_page;
1213	nand->ecc.write_page = docg4_write_page;
1214	nand->ecc.read_page_raw = docg4_read_page_raw;
1215	nand->ecc.write_page_raw = docg4_write_page_raw;
1216	nand->ecc.read_oob = docg4_read_oob;
1217	nand->ecc.write_oob = docg4_write_oob;
1218
1219	/*
1220	 * The way the nand infrastructure code is written, a memory-based bbt
1221	 * is not created if NAND_SKIP_BBTSCAN is set.  With no memory bbt,
1222	 * nand->block_bad() is used.  So when ignoring bad blocks, we skip the
1223	 * scan and define a dummy block_bad() which always returns 0.
1224	 */
1225	if (ignore_badblocks) {
1226		nand->options |= NAND_SKIP_BBTSCAN;
1227		nand->block_bad	= docg4_block_neverbad;
1228	}
1229
1230}
1231
1232static int __init read_id_reg(struct mtd_info *mtd)
1233{
1234	struct nand_chip *nand = mtd->priv;
1235	struct docg4_priv *doc = nand->priv;
1236	void __iomem *docptr = doc->virtadr;
1237	uint16_t id1, id2;
1238
1239	/* check for presence of g4 chip by reading id registers */
1240	id1 = readw(docptr + DOC_CHIPID);
1241	id1 = readw(docptr + DOCG4_MYSTERY_REG);
1242	id2 = readw(docptr + DOC_CHIPID_INV);
1243	id2 = readw(docptr + DOCG4_MYSTERY_REG);
1244
1245	if (id1 == DOCG4_IDREG1_VALUE && id2 == DOCG4_IDREG2_VALUE) {
1246		dev_info(doc->dev,
1247			 "NAND device: 128MiB Diskonchip G4 detected\n");
1248		return 0;
1249	}
1250
1251	return -ENODEV;
1252}
1253
1254static char const *part_probes[] = { "cmdlinepart", "saftlpart", NULL };
1255
1256static int __init probe_docg4(struct platform_device *pdev)
1257{
1258	struct mtd_info *mtd;
1259	struct nand_chip *nand;
1260	void __iomem *virtadr;
1261	struct docg4_priv *doc;
1262	int len, retval;
1263	struct resource *r;
1264	struct device *dev = &pdev->dev;
1265
1266	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1267	if (r == NULL) {
1268		dev_err(dev, "no io memory resource defined!\n");
1269		return -ENODEV;
1270	}
1271
1272	virtadr = ioremap(r->start, resource_size(r));
1273	if (!virtadr) {
1274		dev_err(dev, "Diskonchip ioremap failed: %pR\n", r);
1275		return -EIO;
1276	}
1277
1278	len = sizeof(struct mtd_info) + sizeof(struct nand_chip) +
1279		sizeof(struct docg4_priv);
1280	mtd = kzalloc(len, GFP_KERNEL);
1281	if (mtd == NULL) {
1282		retval = -ENOMEM;
1283		goto fail;
1284	}
1285	nand = (struct nand_chip *) (mtd + 1);
1286	doc = (struct docg4_priv *) (nand + 1);
1287	mtd->priv = nand;
1288	nand->priv = doc;
1289	mtd->owner = THIS_MODULE;
1290	doc->virtadr = virtadr;
1291	doc->dev = dev;
1292
1293	init_mtd_structs(mtd);
1294
1295	/* initialize kernel bch algorithm */
1296	doc->bch = init_bch(DOCG4_M, DOCG4_T, DOCG4_PRIMITIVE_POLY);
1297	if (doc->bch == NULL) {
1298		retval = -EINVAL;
1299		goto fail;
1300	}
1301
1302	platform_set_drvdata(pdev, doc);
1303
1304	reset(mtd);
1305	retval = read_id_reg(mtd);
1306	if (retval == -ENODEV) {
1307		dev_warn(dev, "No diskonchip G4 device found.\n");
1308		goto fail;
1309	}
1310
1311	retval = nand_scan_tail(mtd);
1312	if (retval)
1313		goto fail;
1314
1315	retval = read_factory_bbt(mtd);
1316	if (retval)
1317		goto fail;
1318
1319	retval = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
1320	if (retval)
1321		goto fail;
1322
1323	doc->mtd = mtd;
1324	return 0;
1325
1326 fail:
1327	iounmap(virtadr);
1328	if (mtd) {
1329		/* re-declarations avoid compiler warning */
1330		struct nand_chip *nand = mtd->priv;
1331		struct docg4_priv *doc = nand->priv;
1332		nand_release(mtd); /* deletes partitions and mtd devices */
1333		platform_set_drvdata(pdev, NULL);
1334		free_bch(doc->bch);
1335		kfree(mtd);
1336	}
1337
1338	return retval;
1339}
1340
1341static int __exit cleanup_docg4(struct platform_device *pdev)
1342{
1343	struct docg4_priv *doc = platform_get_drvdata(pdev);
1344	nand_release(doc->mtd);
1345	platform_set_drvdata(pdev, NULL);
1346	free_bch(doc->bch);
1347	kfree(doc->mtd);
1348	iounmap(doc->virtadr);
1349	return 0;
1350}
1351
1352static struct platform_driver docg4_driver = {
1353	.driver		= {
1354		.name	= "docg4",
1355		.owner	= THIS_MODULE,
1356	},
1357	.suspend	= docg4_suspend,
1358	.resume		= docg4_resume,
1359	.remove		= __exit_p(cleanup_docg4),
1360};
1361
1362static int __init docg4_init(void)
1363{
1364	return platform_driver_probe(&docg4_driver, probe_docg4);
1365}
1366
1367static void __exit docg4_exit(void)
1368{
1369	platform_driver_unregister(&docg4_driver);
1370}
1371
1372module_init(docg4_init);
1373module_exit(docg4_exit);
1374
1375MODULE_LICENSE("GPL");
1376MODULE_AUTHOR("Mike Dunn");
1377MODULE_DESCRIPTION("M-Systems DiskOnChip G4 device driver");