Linux Audio

Check our new training course

Loading...
   1/*
   2 * NAND Flash Controller Device Driver
   3 * Copyright © 2009-2010, Intel Corporation and its suppliers.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * You should have received a copy of the GNU General Public License along with
  15 * this program; if not, write to the Free Software Foundation, Inc.,
  16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  17 *
  18 */
  19
  20#include <linux/interrupt.h>
  21#include <linux/delay.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/wait.h>
  24#include <linux/mutex.h>
  25#include <linux/slab.h>
  26#include <linux/pci.h>
  27#include <linux/mtd/mtd.h>
  28#include <linux/module.h>
  29
  30#include "denali.h"
  31
  32MODULE_LICENSE("GPL");
  33
  34/* We define a module parameter that allows the user to override
  35 * the hardware and decide what timing mode should be used.
  36 */
  37#define NAND_DEFAULT_TIMINGS	-1
  38
  39static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
  40module_param(onfi_timing_mode, int, S_IRUGO);
  41MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting."
  42			" -1 indicates use default timings");
  43
  44#define DENALI_NAND_NAME    "denali-nand"
  45
  46/* We define a macro here that combines all interrupts this driver uses into
  47 * a single constant value, for convenience. */
  48#define DENALI_IRQ_ALL	(INTR_STATUS__DMA_CMD_COMP | \
  49			INTR_STATUS__ECC_TRANSACTION_DONE | \
  50			INTR_STATUS__ECC_ERR | \
  51			INTR_STATUS__PROGRAM_FAIL | \
  52			INTR_STATUS__LOAD_COMP | \
  53			INTR_STATUS__PROGRAM_COMP | \
  54			INTR_STATUS__TIME_OUT | \
  55			INTR_STATUS__ERASE_FAIL | \
  56			INTR_STATUS__RST_COMP | \
  57			INTR_STATUS__ERASE_COMP)
  58
  59/* indicates whether or not the internal value for the flash bank is
  60 * valid or not */
  61#define CHIP_SELECT_INVALID	-1
  62
  63#define SUPPORT_8BITECC		1
  64
  65/* This macro divides two integers and rounds fractional values up
  66 * to the nearest integer value. */
  67#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
  68
  69/* this macro allows us to convert from an MTD structure to our own
  70 * device context (denali) structure.
  71 */
  72#define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)
  73
  74/* These constants are defined by the driver to enable common driver
  75 * configuration options. */
  76#define SPARE_ACCESS		0x41
  77#define MAIN_ACCESS		0x42
  78#define MAIN_SPARE_ACCESS	0x43
  79
  80#define DENALI_READ	0
  81#define DENALI_WRITE	0x100
  82
  83/* types of device accesses. We can issue commands and get status */
  84#define COMMAND_CYCLE	0
  85#define ADDR_CYCLE	1
  86#define STATUS_CYCLE	2
  87
  88/* this is a helper macro that allows us to
  89 * format the bank into the proper bits for the controller */
  90#define BANK(x) ((x) << 24)
  91
  92/* List of platforms this NAND controller has be integrated into */
  93static const struct pci_device_id denali_pci_ids[] = {
  94	{ PCI_VDEVICE(INTEL, 0x0701), INTEL_CE4100 },
  95	{ PCI_VDEVICE(INTEL, 0x0809), INTEL_MRST },
  96	{ /* end: all zeroes */ }
  97};
  98
  99/* forward declarations */
 100static void clear_interrupts(struct denali_nand_info *denali);
 101static uint32_t wait_for_irq(struct denali_nand_info *denali,
 102							uint32_t irq_mask);
 103static void denali_irq_enable(struct denali_nand_info *denali,
 104							uint32_t int_mask);
 105static uint32_t read_interrupt_status(struct denali_nand_info *denali);
 106
 107/* Certain operations for the denali NAND controller use
 108 * an indexed mode to read/write data. The operation is
 109 * performed by writing the address value of the command
 110 * to the device memory followed by the data. This function
 111 * abstracts this common operation.
 112*/
 113static void index_addr(struct denali_nand_info *denali,
 114				uint32_t address, uint32_t data)
 115{
 116	iowrite32(address, denali->flash_mem);
 117	iowrite32(data, denali->flash_mem + 0x10);
 118}
 119
 120/* Perform an indexed read of the device */
 121static void index_addr_read_data(struct denali_nand_info *denali,
 122				 uint32_t address, uint32_t *pdata)
 123{
 124	iowrite32(address, denali->flash_mem);
 125	*pdata = ioread32(denali->flash_mem + 0x10);
 126}
 127
 128/* We need to buffer some data for some of the NAND core routines.
 129 * The operations manage buffering that data. */
 130static void reset_buf(struct denali_nand_info *denali)
 131{
 132	denali->buf.head = denali->buf.tail = 0;
 133}
 134
 135static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
 136{
 137	BUG_ON(denali->buf.tail >= sizeof(denali->buf.buf));
 138	denali->buf.buf[denali->buf.tail++] = byte;
 139}
 140
 141/* reads the status of the device */
 142static void read_status(struct denali_nand_info *denali)
 143{
 144	uint32_t cmd = 0x0;
 145
 146	/* initialize the data buffer to store status */
 147	reset_buf(denali);
 148
 149	cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
 150	if (cmd)
 151		write_byte_to_buf(denali, NAND_STATUS_WP);
 152	else
 153		write_byte_to_buf(denali, 0);
 154}
 155
 156/* resets a specific device connected to the core */
 157static void reset_bank(struct denali_nand_info *denali)
 158{
 159	uint32_t irq_status = 0;
 160	uint32_t irq_mask = INTR_STATUS__RST_COMP |
 161			    INTR_STATUS__TIME_OUT;
 162
 163	clear_interrupts(denali);
 164
 165	iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
 166
 167	irq_status = wait_for_irq(denali, irq_mask);
 168
 169	if (irq_status & INTR_STATUS__TIME_OUT)
 170		dev_err(denali->dev, "reset bank failed.\n");
 171}
 172
 173/* Reset the flash controller */
 174static uint16_t denali_nand_reset(struct denali_nand_info *denali)
 175{
 176	uint32_t i;
 177
 178	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
 179		       __FILE__, __LINE__, __func__);
 180
 181	for (i = 0 ; i < denali->max_banks; i++)
 182		iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
 183		denali->flash_reg + INTR_STATUS(i));
 184
 185	for (i = 0 ; i < denali->max_banks; i++) {
 186		iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
 187		while (!(ioread32(denali->flash_reg +
 188				INTR_STATUS(i)) &
 189			(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
 190			cpu_relax();
 191		if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
 192			INTR_STATUS__TIME_OUT)
 193			dev_dbg(denali->dev,
 194			"NAND Reset operation timed out on bank %d\n", i);
 195	}
 196
 197	for (i = 0; i < denali->max_banks; i++)
 198		iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
 199			denali->flash_reg + INTR_STATUS(i));
 200
 201	return PASS;
 202}
 203
 204/* this routine calculates the ONFI timing values for a given mode and
 205 * programs the clocking register accordingly. The mode is determined by
 206 * the get_onfi_nand_para routine.
 207 */
 208static void nand_onfi_timing_set(struct denali_nand_info *denali,
 209								uint16_t mode)
 210{
 211	uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
 212	uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
 213	uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
 214	uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
 215	uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
 216	uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
 217	uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
 218	uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
 219	uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
 220	uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
 221	uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
 222	uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};
 223
 224	uint16_t TclsRising = 1;
 225	uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
 226	uint16_t dv_window = 0;
 227	uint16_t en_lo, en_hi;
 228	uint16_t acc_clks;
 229	uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
 230
 231	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
 232		       __FILE__, __LINE__, __func__);
 233
 234	en_lo = CEIL_DIV(Trp[mode], CLK_X);
 235	en_hi = CEIL_DIV(Treh[mode], CLK_X);
 236#if ONFI_BLOOM_TIME
 237	if ((en_hi * CLK_X) < (Treh[mode] + 2))
 238		en_hi++;
 239#endif
 240
 241	if ((en_lo + en_hi) * CLK_X < Trc[mode])
 242		en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);
 243
 244	if ((en_lo + en_hi) < CLK_MULTI)
 245		en_lo += CLK_MULTI - en_lo - en_hi;
 246
 247	while (dv_window < 8) {
 248		data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];
 249
 250		data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];
 251
 252		data_invalid =
 253		    data_invalid_rhoh <
 254		    data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;
 255
 256		dv_window = data_invalid - Trea[mode];
 257
 258		if (dv_window < 8)
 259			en_lo++;
 260	}
 261
 262	acc_clks = CEIL_DIV(Trea[mode], CLK_X);
 263
 264	while (((acc_clks * CLK_X) - Trea[mode]) < 3)
 265		acc_clks++;
 266
 267	if ((data_invalid - acc_clks * CLK_X) < 2)
 268		dev_warn(denali->dev, "%s, Line %d: Warning!\n",
 269			__FILE__, __LINE__);
 270
 271	addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
 272	re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
 273	re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
 274	we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
 275	cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
 276	if (!TclsRising)
 277		cs_cnt = CEIL_DIV(Tcs[mode], CLK_X);
 278	if (cs_cnt == 0)
 279		cs_cnt = 1;
 280
 281	if (Tcea[mode]) {
 282		while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode])
 283			cs_cnt++;
 284	}
 285
 286#if MODE5_WORKAROUND
 287	if (mode == 5)
 288		acc_clks = 5;
 289#endif
 290
 291	/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
 292	if ((ioread32(denali->flash_reg + MANUFACTURER_ID) == 0) &&
 293		(ioread32(denali->flash_reg + DEVICE_ID) == 0x88))
 294		acc_clks = 6;
 295
 296	iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
 297	iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
 298	iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
 299	iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
 300	iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
 301	iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
 302	iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
 303	iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
 304}
 305
 306/* queries the NAND device to see what ONFI modes it supports. */
 307static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
 308{
 309	int i;
 310	/* we needn't to do a reset here because driver has already
 311	 * reset all the banks before
 312	 * */
 313	if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
 314		ONFI_TIMING_MODE__VALUE))
 315		return FAIL;
 316
 317	for (i = 5; i > 0; i--) {
 318		if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
 319			(0x01 << i))
 320			break;
 321	}
 322
 323	nand_onfi_timing_set(denali, i);
 324
 325	/* By now, all the ONFI devices we know support the page cache */
 326	/* rw feature. So here we enable the pipeline_rw_ahead feature */
 327	/* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
 328	/* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE);  */
 329
 330	return PASS;
 331}
 332
 333static void get_samsung_nand_para(struct denali_nand_info *denali,
 334							uint8_t device_id)
 335{
 336	if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
 337		/* Set timing register values according to datasheet */
 338		iowrite32(5, denali->flash_reg + ACC_CLKS);
 339		iowrite32(20, denali->flash_reg + RE_2_WE);
 340		iowrite32(12, denali->flash_reg + WE_2_RE);
 341		iowrite32(14, denali->flash_reg + ADDR_2_DATA);
 342		iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
 343		iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
 344		iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
 345	}
 346}
 347
 348static void get_toshiba_nand_para(struct denali_nand_info *denali)
 349{
 350	uint32_t tmp;
 351
 352	/* Workaround to fix a controller bug which reports a wrong */
 353	/* spare area size for some kind of Toshiba NAND device */
 354	if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
 355		(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
 356		iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
 357		tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
 358			ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
 359		iowrite32(tmp,
 360				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
 361#if SUPPORT_15BITECC
 362		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
 363#elif SUPPORT_8BITECC
 364		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
 365#endif
 366	}
 367}
 368
 369static void get_hynix_nand_para(struct denali_nand_info *denali,
 370							uint8_t device_id)
 371{
 372	uint32_t main_size, spare_size;
 373
 374	switch (device_id) {
 375	case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
 376	case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
 377		iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
 378		iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
 379		iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
 380		main_size = 4096 *
 381			ioread32(denali->flash_reg + DEVICES_CONNECTED);
 382		spare_size = 224 *
 383			ioread32(denali->flash_reg + DEVICES_CONNECTED);
 384		iowrite32(main_size,
 385				denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
 386		iowrite32(spare_size,
 387				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
 388		iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
 389#if SUPPORT_15BITECC
 390		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
 391#elif SUPPORT_8BITECC
 392		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
 393#endif
 394		break;
 395	default:
 396		dev_warn(denali->dev,
 397			"Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
 398			"Will use default parameter values instead.\n",
 399			device_id);
 400	}
 401}
 402
 403/* determines how many NAND chips are connected to the controller. Note for
 404 * Intel CE4100 devices we don't support more than one device.
 405 */
 406static void find_valid_banks(struct denali_nand_info *denali)
 407{
 408	uint32_t id[denali->max_banks];
 409	int i;
 410
 411	denali->total_used_banks = 1;
 412	for (i = 0; i < denali->max_banks; i++) {
 413		index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
 414		index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
 415		index_addr_read_data(denali,
 416				(uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);
 417
 418		dev_dbg(denali->dev,
 419			"Return 1st ID for bank[%d]: %x\n", i, id[i]);
 420
 421		if (i == 0) {
 422			if (!(id[i] & 0x0ff))
 423				break; /* WTF? */
 424		} else {
 425			if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
 426				denali->total_used_banks++;
 427			else
 428				break;
 429		}
 430	}
 431
 432	if (denali->platform == INTEL_CE4100) {
 433		/* Platform limitations of the CE4100 device limit
 434		 * users to a single chip solution for NAND.
 435		 * Multichip support is not enabled.
 436		 */
 437		if (denali->total_used_banks != 1) {
 438			dev_err(denali->dev,
 439					"Sorry, Intel CE4100 only supports "
 440					"a single NAND device.\n");
 441			BUG();
 442		}
 443	}
 444	dev_dbg(denali->dev,
 445		"denali->total_used_banks: %d\n", denali->total_used_banks);
 446}
 447
 448/*
 449 * Use the configuration feature register to determine the maximum number of
 450 * banks that the hardware supports.
 451 */
 452static void detect_max_banks(struct denali_nand_info *denali)
 453{
 454	uint32_t features = ioread32(denali->flash_reg + FEATURES);
 455
 456	denali->max_banks = 2 << (features & FEATURES__N_BANKS);
 457}
 458
 459static void detect_partition_feature(struct denali_nand_info *denali)
 460{
 461	/* For MRST platform, denali->fwblks represent the
 462	 * number of blocks firmware is taken,
 463	 * FW is in protect partition and MTD driver has no
 464	 * permission to access it. So let driver know how many
 465	 * blocks it can't touch.
 466	 * */
 467	if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
 468		if ((ioread32(denali->flash_reg + PERM_SRC_ID(1)) &
 469			PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
 470			denali->fwblks =
 471			    ((ioread32(denali->flash_reg + MIN_MAX_BANK(1)) &
 472			      MIN_MAX_BANK__MIN_VALUE) *
 473			     denali->blksperchip)
 474			    +
 475			    (ioread32(denali->flash_reg + MIN_BLK_ADDR(1)) &
 476			    MIN_BLK_ADDR__VALUE);
 477		} else
 478			denali->fwblks = SPECTRA_START_BLOCK;
 479	} else
 480		denali->fwblks = SPECTRA_START_BLOCK;
 481}
 482
 483static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
 484{
 485	uint16_t status = PASS;
 486	uint32_t id_bytes[5], addr;
 487	uint8_t i, maf_id, device_id;
 488
 489	dev_dbg(denali->dev,
 490			"%s, Line %d, Function: %s\n",
 491			__FILE__, __LINE__, __func__);
 492
 493	/* Use read id method to get device ID and other
 494	 * params. For some NAND chips, controller can't
 495	 * report the correct device ID by reading from
 496	 * DEVICE_ID register
 497	 * */
 498	addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
 499	index_addr(denali, (uint32_t)addr | 0, 0x90);
 500	index_addr(denali, (uint32_t)addr | 1, 0);
 501	for (i = 0; i < 5; i++)
 502		index_addr_read_data(denali, addr | 2, &id_bytes[i]);
 503	maf_id = id_bytes[0];
 504	device_id = id_bytes[1];
 505
 506	if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
 507		ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
 508		if (FAIL == get_onfi_nand_para(denali))
 509			return FAIL;
 510	} else if (maf_id == 0xEC) { /* Samsung NAND */
 511		get_samsung_nand_para(denali, device_id);
 512	} else if (maf_id == 0x98) { /* Toshiba NAND */
 513		get_toshiba_nand_para(denali);
 514	} else if (maf_id == 0xAD) { /* Hynix NAND */
 515		get_hynix_nand_para(denali, device_id);
 516	}
 517
 518	dev_info(denali->dev,
 519			"Dump timing register values:"
 520			"acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
 521			"we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
 522			"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
 523			ioread32(denali->flash_reg + ACC_CLKS),
 524			ioread32(denali->flash_reg + RE_2_WE),
 525			ioread32(denali->flash_reg + RE_2_RE),
 526			ioread32(denali->flash_reg + WE_2_RE),
 527			ioread32(denali->flash_reg + ADDR_2_DATA),
 528			ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
 529			ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
 530			ioread32(denali->flash_reg + CS_SETUP_CNT));
 531
 532	find_valid_banks(denali);
 533
 534	detect_partition_feature(denali);
 535
 536	/* If the user specified to override the default timings
 537	 * with a specific ONFI mode, we apply those changes here.
 538	 */
 539	if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
 540		nand_onfi_timing_set(denali, onfi_timing_mode);
 541
 542	return status;
 543}
 544
 545static void denali_set_intr_modes(struct denali_nand_info *denali,
 546					uint16_t INT_ENABLE)
 547{
 548	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
 549		       __FILE__, __LINE__, __func__);
 550
 551	if (INT_ENABLE)
 552		iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
 553	else
 554		iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
 555}
 556
 557/* validation function to verify that the controlling software is making
 558 * a valid request
 559 */
 560static inline bool is_flash_bank_valid(int flash_bank)
 561{
 562	return (flash_bank >= 0 && flash_bank < 4);
 563}
 564
 565static void denali_irq_init(struct denali_nand_info *denali)
 566{
 567	uint32_t int_mask = 0;
 568	int i;
 569
 570	/* Disable global interrupts */
 571	denali_set_intr_modes(denali, false);
 572
 573	int_mask = DENALI_IRQ_ALL;
 574
 575	/* Clear all status bits */
 576	for (i = 0; i < denali->max_banks; ++i)
 577		iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i));
 578
 579	denali_irq_enable(denali, int_mask);
 580}
 581
 582static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
 583{
 584	denali_set_intr_modes(denali, false);
 585	free_irq(irqnum, denali);
 586}
 587
 588static void denali_irq_enable(struct denali_nand_info *denali,
 589							uint32_t int_mask)
 590{
 591	int i;
 592
 593	for (i = 0; i < denali->max_banks; ++i)
 594		iowrite32(int_mask, denali->flash_reg + INTR_EN(i));
 595}
 596
 597/* This function only returns when an interrupt that this driver cares about
 598 * occurs. This is to reduce the overhead of servicing interrupts
 599 */
 600static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
 601{
 602	return read_interrupt_status(denali) & DENALI_IRQ_ALL;
 603}
 604
 605/* Interrupts are cleared by writing a 1 to the appropriate status bit */
 606static inline void clear_interrupt(struct denali_nand_info *denali,
 607							uint32_t irq_mask)
 608{
 609	uint32_t intr_status_reg = 0;
 610
 611	intr_status_reg = INTR_STATUS(denali->flash_bank);
 612
 613	iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
 614}
 615
 616static void clear_interrupts(struct denali_nand_info *denali)
 617{
 618	uint32_t status = 0x0;
 619	spin_lock_irq(&denali->irq_lock);
 620
 621	status = read_interrupt_status(denali);
 622	clear_interrupt(denali, status);
 623
 624	denali->irq_status = 0x0;
 625	spin_unlock_irq(&denali->irq_lock);
 626}
 627
 628static uint32_t read_interrupt_status(struct denali_nand_info *denali)
 629{
 630	uint32_t intr_status_reg = 0;
 631
 632	intr_status_reg = INTR_STATUS(denali->flash_bank);
 633
 634	return ioread32(denali->flash_reg + intr_status_reg);
 635}
 636
 637/* This is the interrupt service routine. It handles all interrupts
 638 * sent to this device. Note that on CE4100, this is a shared
 639 * interrupt.
 640 */
 641static irqreturn_t denali_isr(int irq, void *dev_id)
 642{
 643	struct denali_nand_info *denali = dev_id;
 644	uint32_t irq_status = 0x0;
 645	irqreturn_t result = IRQ_NONE;
 646
 647	spin_lock(&denali->irq_lock);
 648
 649	/* check to see if a valid NAND chip has
 650	 * been selected.
 651	 */
 652	if (is_flash_bank_valid(denali->flash_bank)) {
 653		/* check to see if controller generated
 654		 * the interrupt, since this is a shared interrupt */
 655		irq_status = denali_irq_detected(denali);
 656		if (irq_status != 0) {
 657			/* handle interrupt */
 658			/* first acknowledge it */
 659			clear_interrupt(denali, irq_status);
 660			/* store the status in the device context for someone
 661			   to read */
 662			denali->irq_status |= irq_status;
 663			/* notify anyone who cares that it happened */
 664			complete(&denali->complete);
 665			/* tell the OS that we've handled this */
 666			result = IRQ_HANDLED;
 667		}
 668	}
 669	spin_unlock(&denali->irq_lock);
 670	return result;
 671}
 672#define BANK(x) ((x) << 24)
 673
 674static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
 675{
 676	unsigned long comp_res = 0;
 677	uint32_t intr_status = 0;
 678	bool retry = false;
 679	unsigned long timeout = msecs_to_jiffies(1000);
 680
 681	do {
 682		comp_res =
 683			wait_for_completion_timeout(&denali->complete, timeout);
 684		spin_lock_irq(&denali->irq_lock);
 685		intr_status = denali->irq_status;
 686
 687		if (intr_status & irq_mask) {
 688			denali->irq_status &= ~irq_mask;
 689			spin_unlock_irq(&denali->irq_lock);
 690			/* our interrupt was detected */
 691			break;
 692		} else {
 693			/* these are not the interrupts you are looking for -
 694			 * need to wait again */
 695			spin_unlock_irq(&denali->irq_lock);
 696			retry = true;
 697		}
 698	} while (comp_res != 0);
 699
 700	if (comp_res == 0) {
 701		/* timeout */
 702		printk(KERN_ERR "timeout occurred, status = 0x%x, mask = 0x%x\n",
 703				intr_status, irq_mask);
 704
 705		intr_status = 0;
 706	}
 707	return intr_status;
 708}
 709
 710/* This helper function setups the registers for ECC and whether or not
 711 * the spare area will be transferred. */
 712static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
 713				bool transfer_spare)
 714{
 715	int ecc_en_flag = 0, transfer_spare_flag = 0;
 716
 717	/* set ECC, transfer spare bits if needed */
 718	ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
 719	transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
 720
 721	/* Enable spare area/ECC per user's request. */
 722	iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
 723	iowrite32(transfer_spare_flag,
 724			denali->flash_reg + TRANSFER_SPARE_REG);
 725}
 726
 727/* sends a pipeline command operation to the controller. See the Denali NAND
 728 * controller's user guide for more information (section 4.2.3.6).
 729 */
 730static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
 731							bool ecc_en,
 732							bool transfer_spare,
 733							int access_type,
 734							int op)
 735{
 736	int status = PASS;
 737	uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0,
 738		 irq_mask = 0;
 739
 740	if (op == DENALI_READ)
 741		irq_mask = INTR_STATUS__LOAD_COMP;
 742	else if (op == DENALI_WRITE)
 743		irq_mask = 0;
 744	else
 745		BUG();
 746
 747	setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
 748
 749	/* clear interrupts */
 750	clear_interrupts(denali);
 751
 752	addr = BANK(denali->flash_bank) | denali->page;
 753
 754	if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
 755		cmd = MODE_01 | addr;
 756		iowrite32(cmd, denali->flash_mem);
 757	} else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
 758		/* read spare area */
 759		cmd = MODE_10 | addr;
 760		index_addr(denali, (uint32_t)cmd, access_type);
 761
 762		cmd = MODE_01 | addr;
 763		iowrite32(cmd, denali->flash_mem);
 764	} else if (op == DENALI_READ) {
 765		/* setup page read request for access type */
 766		cmd = MODE_10 | addr;
 767		index_addr(denali, (uint32_t)cmd, access_type);
 768
 769		/* page 33 of the NAND controller spec indicates we should not
 770		   use the pipeline commands in Spare area only mode. So we
 771		   don't.
 772		 */
 773		if (access_type == SPARE_ACCESS) {
 774			cmd = MODE_01 | addr;
 775			iowrite32(cmd, denali->flash_mem);
 776		} else {
 777			index_addr(denali, (uint32_t)cmd,
 778					0x2000 | op | page_count);
 779
 780			/* wait for command to be accepted
 781			 * can always use status0 bit as the
 782			 * mask is identical for each
 783			 * bank. */
 784			irq_status = wait_for_irq(denali, irq_mask);
 785
 786			if (irq_status == 0) {
 787				dev_err(denali->dev,
 788						"cmd, page, addr on timeout "
 789						"(0x%x, 0x%x, 0x%x)\n",
 790						cmd, denali->page, addr);
 791				status = FAIL;
 792			} else {
 793				cmd = MODE_01 | addr;
 794				iowrite32(cmd, denali->flash_mem);
 795			}
 796		}
 797	}
 798	return status;
 799}
 800
 801/* helper function that simply writes a buffer to the flash */
 802static int write_data_to_flash_mem(struct denali_nand_info *denali,
 803							const uint8_t *buf,
 804							int len)
 805{
 806	uint32_t i = 0, *buf32;
 807
 808	/* verify that the len is a multiple of 4. see comment in
 809	 * read_data_from_flash_mem() */
 810	BUG_ON((len % 4) != 0);
 811
 812	/* write the data to the flash memory */
 813	buf32 = (uint32_t *)buf;
 814	for (i = 0; i < len / 4; i++)
 815		iowrite32(*buf32++, denali->flash_mem + 0x10);
 816	return i*4; /* intent is to return the number of bytes read */
 817}
 818
 819/* helper function that simply reads a buffer from the flash */
 820static int read_data_from_flash_mem(struct denali_nand_info *denali,
 821								uint8_t *buf,
 822								int len)
 823{
 824	uint32_t i = 0, *buf32;
 825
 826	/* we assume that len will be a multiple of 4, if not
 827	 * it would be nice to know about it ASAP rather than
 828	 * have random failures...
 829	 * This assumption is based on the fact that this
 830	 * function is designed to be used to read flash pages,
 831	 * which are typically multiples of 4...
 832	 */
 833
 834	BUG_ON((len % 4) != 0);
 835
 836	/* transfer the data from the flash */
 837	buf32 = (uint32_t *)buf;
 838	for (i = 0; i < len / 4; i++)
 839		*buf32++ = ioread32(denali->flash_mem + 0x10);
 840	return i*4; /* intent is to return the number of bytes read */
 841}
 842
 843/* writes OOB data to the device */
 844static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
 845{
 846	struct denali_nand_info *denali = mtd_to_denali(mtd);
 847	uint32_t irq_status = 0;
 848	uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
 849						INTR_STATUS__PROGRAM_FAIL;
 850	int status = 0;
 851
 852	denali->page = page;
 853
 854	if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
 855							DENALI_WRITE) == PASS) {
 856		write_data_to_flash_mem(denali, buf, mtd->oobsize);
 857
 858		/* wait for operation to complete */
 859		irq_status = wait_for_irq(denali, irq_mask);
 860
 861		if (irq_status == 0) {
 862			dev_err(denali->dev, "OOB write failed\n");
 863			status = -EIO;
 864		}
 865	} else {
 866		dev_err(denali->dev, "unable to send pipeline command\n");
 867		status = -EIO;
 868	}
 869	return status;
 870}
 871
 872/* reads OOB data from the device */
 873static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
 874{
 875	struct denali_nand_info *denali = mtd_to_denali(mtd);
 876	uint32_t irq_mask = INTR_STATUS__LOAD_COMP,
 877			 irq_status = 0, addr = 0x0, cmd = 0x0;
 878
 879	denali->page = page;
 880
 881	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
 882							DENALI_READ) == PASS) {
 883		read_data_from_flash_mem(denali, buf, mtd->oobsize);
 884
 885		/* wait for command to be accepted
 886		 * can always use status0 bit as the mask is identical for each
 887		 * bank. */
 888		irq_status = wait_for_irq(denali, irq_mask);
 889
 890		if (irq_status == 0)
 891			dev_err(denali->dev, "page on OOB timeout %d\n",
 892					denali->page);
 893
 894		/* We set the device back to MAIN_ACCESS here as I observed
 895		 * instability with the controller if you do a block erase
 896		 * and the last transaction was a SPARE_ACCESS. Block erase
 897		 * is reliable (according to the MTD test infrastructure)
 898		 * if you are in MAIN_ACCESS.
 899		 */
 900		addr = BANK(denali->flash_bank) | denali->page;
 901		cmd = MODE_10 | addr;
 902		index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
 903	}
 904}
 905
 906/* this function examines buffers to see if they contain data that
 907 * indicate that the buffer is part of an erased region of flash.
 908 */
 909bool is_erased(uint8_t *buf, int len)
 910{
 911	int i = 0;
 912	for (i = 0; i < len; i++)
 913		if (buf[i] != 0xFF)
 914			return false;
 915	return true;
 916}
 917#define ECC_SECTOR_SIZE 512
 918
 919#define ECC_SECTOR(x)	(((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
 920#define ECC_BYTE(x)	(((x) & ECC_ERROR_ADDRESS__OFFSET))
 921#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
 922#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
 923#define ECC_ERR_DEVICE(x)	(((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
 924#define ECC_LAST_ERR(x)		((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
 925
 926static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
 927		       uint32_t irq_status, unsigned int *max_bitflips)
 928{
 929	bool check_erased_page = false;
 930	unsigned int bitflips = 0;
 931
 932	if (irq_status & INTR_STATUS__ECC_ERR) {
 933		/* read the ECC errors. we'll ignore them for now */
 934		uint32_t err_address = 0, err_correction_info = 0;
 935		uint32_t err_byte = 0, err_sector = 0, err_device = 0;
 936		uint32_t err_correction_value = 0;
 937		denali_set_intr_modes(denali, false);
 938
 939		do {
 940			err_address = ioread32(denali->flash_reg +
 941						ECC_ERROR_ADDRESS);
 942			err_sector = ECC_SECTOR(err_address);
 943			err_byte = ECC_BYTE(err_address);
 944
 945			err_correction_info = ioread32(denali->flash_reg +
 946						ERR_CORRECTION_INFO);
 947			err_correction_value =
 948				ECC_CORRECTION_VALUE(err_correction_info);
 949			err_device = ECC_ERR_DEVICE(err_correction_info);
 950
 951			if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
 952				/* If err_byte is larger than ECC_SECTOR_SIZE,
 953				 * means error happened in OOB, so we ignore
 954				 * it. It's no need for us to correct it
 955				 * err_device is represented the NAND error
 956				 * bits are happened in if there are more
 957				 * than one NAND connected.
 958				 * */
 959				if (err_byte < ECC_SECTOR_SIZE) {
 960					int offset;
 961					offset = (err_sector *
 962							ECC_SECTOR_SIZE +
 963							err_byte) *
 964							denali->devnum +
 965							err_device;
 966					/* correct the ECC error */
 967					buf[offset] ^= err_correction_value;
 968					denali->mtd.ecc_stats.corrected++;
 969					bitflips++;
 970				}
 971			} else {
 972				/* if the error is not correctable, need to
 973				 * look at the page to see if it is an erased
 974				 * page. if so, then it's not a real ECC error
 975				 * */
 976				check_erased_page = true;
 977			}
 978		} while (!ECC_LAST_ERR(err_correction_info));
 979		/* Once handle all ecc errors, controller will triger
 980		 * a ECC_TRANSACTION_DONE interrupt, so here just wait
 981		 * for a while for this interrupt
 982		 * */
 983		while (!(read_interrupt_status(denali) &
 984				INTR_STATUS__ECC_TRANSACTION_DONE))
 985			cpu_relax();
 986		clear_interrupts(denali);
 987		denali_set_intr_modes(denali, true);
 988	}
 989	*max_bitflips = bitflips;
 990	return check_erased_page;
 991}
 992
 993/* programs the controller to either enable/disable DMA transfers */
 994static void denali_enable_dma(struct denali_nand_info *denali, bool en)
 995{
 996	uint32_t reg_val = 0x0;
 997
 998	if (en)
 999		reg_val = DMA_ENABLE__FLAG;
1000
1001	iowrite32(reg_val, denali->flash_reg + DMA_ENABLE);
1002	ioread32(denali->flash_reg + DMA_ENABLE);
1003}
1004
1005/* setups the HW to perform the data DMA */
1006static void denali_setup_dma(struct denali_nand_info *denali, int op)
1007{
1008	uint32_t mode = 0x0;
1009	const int page_count = 1;
1010	dma_addr_t addr = denali->buf.dma_buf;
1011
1012	mode = MODE_10 | BANK(denali->flash_bank);
1013
1014	/* DMA is a four step process */
1015
1016	/* 1. setup transfer type and # of pages */
1017	index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
1018
1019	/* 2. set memory high address bits 23:8 */
1020	index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200);
1021
1022	/* 3. set memory low address bits 23:8 */
1023	index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300);
1024
1025	/* 4.  interrupt when complete, burst len = 64 bytes*/
1026	index_addr(denali, mode | 0x14000, 0x2400);
1027}
1028
1029/* writes a page. user specifies type, and this function handles the
1030 * configuration details. */
1031static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
1032			const uint8_t *buf, bool raw_xfer)
1033{
1034	struct denali_nand_info *denali = mtd_to_denali(mtd);
1035
1036	dma_addr_t addr = denali->buf.dma_buf;
1037	size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1038
1039	uint32_t irq_status = 0;
1040	uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP |
1041						INTR_STATUS__PROGRAM_FAIL;
1042
1043	/* if it is a raw xfer, we want to disable ecc, and send
1044	 * the spare area.
1045	 * !raw_xfer - enable ecc
1046	 * raw_xfer - transfer spare
1047	 */
1048	setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);
1049
1050	/* copy buffer into DMA buffer */
1051	memcpy(denali->buf.buf, buf, mtd->writesize);
1052
1053	if (raw_xfer) {
1054		/* transfer the data to the spare area */
1055		memcpy(denali->buf.buf + mtd->writesize,
1056			chip->oob_poi,
1057			mtd->oobsize);
1058	}
1059
1060	dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);
1061
1062	clear_interrupts(denali);
1063	denali_enable_dma(denali, true);
1064
1065	denali_setup_dma(denali, DENALI_WRITE);
1066
1067	/* wait for operation to complete */
1068	irq_status = wait_for_irq(denali, irq_mask);
1069
1070	if (irq_status == 0) {
1071		dev_err(denali->dev,
1072				"timeout on write_page (type = %d)\n",
1073				raw_xfer);
1074		denali->status =
1075			(irq_status & INTR_STATUS__PROGRAM_FAIL) ?
1076			NAND_STATUS_FAIL : PASS;
1077	}
1078
1079	denali_enable_dma(denali, false);
1080	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);
1081}
1082
1083/* NAND core entry points */
1084
1085/* this is the callback that the NAND core calls to write a page. Since
1086 * writing a page with ECC or without is similar, all the work is done
1087 * by write_page above.
1088 * */
1089static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1090				const uint8_t *buf, int oob_required)
1091{
1092	/* for regular page writes, we let HW handle all the ECC
1093	 * data written to the device. */
1094	write_page(mtd, chip, buf, false);
1095}
1096
1097/* This is the callback that the NAND core calls to write a page without ECC.
1098 * raw access is similar to ECC page writes, so all the work is done in the
1099 * write_page() function above.
1100 */
1101static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1102					const uint8_t *buf, int oob_required)
1103{
1104	/* for raw page writes, we want to disable ECC and simply write
1105	   whatever data is in the buffer. */
1106	write_page(mtd, chip, buf, true);
1107}
1108
1109static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1110			    int page)
1111{
1112	return write_oob_data(mtd, chip->oob_poi, page);
1113}
1114
1115static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1116			   int page)
1117{
1118	read_oob_data(mtd, chip->oob_poi, page);
1119
1120	return 0;
1121}
1122
1123static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1124			    uint8_t *buf, int oob_required, int page)
1125{
1126	unsigned int max_bitflips;
1127	struct denali_nand_info *denali = mtd_to_denali(mtd);
1128
1129	dma_addr_t addr = denali->buf.dma_buf;
1130	size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1131
1132	uint32_t irq_status = 0;
1133	uint32_t irq_mask = INTR_STATUS__ECC_TRANSACTION_DONE |
1134			    INTR_STATUS__ECC_ERR;
1135	bool check_erased_page = false;
1136
1137	if (page != denali->page) {
1138		dev_err(denali->dev, "IN %s: page %d is not"
1139				" equal to denali->page %d, investigate!!",
1140				__func__, page, denali->page);
1141		BUG();
1142	}
1143
1144	setup_ecc_for_xfer(denali, true, false);
1145
1146	denali_enable_dma(denali, true);
1147	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1148
1149	clear_interrupts(denali);
1150	denali_setup_dma(denali, DENALI_READ);
1151
1152	/* wait for operation to complete */
1153	irq_status = wait_for_irq(denali, irq_mask);
1154
1155	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1156
1157	memcpy(buf, denali->buf.buf, mtd->writesize);
1158
1159	check_erased_page = handle_ecc(denali, buf, irq_status, &max_bitflips);
1160	denali_enable_dma(denali, false);
1161
1162	if (check_erased_page) {
1163		read_oob_data(&denali->mtd, chip->oob_poi, denali->page);
1164
1165		/* check ECC failures that may have occurred on erased pages */
1166		if (check_erased_page) {
1167			if (!is_erased(buf, denali->mtd.writesize))
1168				denali->mtd.ecc_stats.failed++;
1169			if (!is_erased(buf, denali->mtd.oobsize))
1170				denali->mtd.ecc_stats.failed++;
1171		}
1172	}
1173	return max_bitflips;
1174}
1175
1176static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1177				uint8_t *buf, int oob_required, int page)
1178{
1179	struct denali_nand_info *denali = mtd_to_denali(mtd);
1180
1181	dma_addr_t addr = denali->buf.dma_buf;
1182	size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1183
1184	uint32_t irq_status = 0;
1185	uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
1186
1187	if (page != denali->page) {
1188		dev_err(denali->dev, "IN %s: page %d is not"
1189				" equal to denali->page %d, investigate!!",
1190				__func__, page, denali->page);
1191		BUG();
1192	}
1193
1194	setup_ecc_for_xfer(denali, false, true);
1195	denali_enable_dma(denali, true);
1196
1197	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1198
1199	clear_interrupts(denali);
1200	denali_setup_dma(denali, DENALI_READ);
1201
1202	/* wait for operation to complete */
1203	irq_status = wait_for_irq(denali, irq_mask);
1204
1205	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1206
1207	denali_enable_dma(denali, false);
1208
1209	memcpy(buf, denali->buf.buf, mtd->writesize);
1210	memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);
1211
1212	return 0;
1213}
1214
1215static uint8_t denali_read_byte(struct mtd_info *mtd)
1216{
1217	struct denali_nand_info *denali = mtd_to_denali(mtd);
1218	uint8_t result = 0xff;
1219
1220	if (denali->buf.head < denali->buf.tail)
1221		result = denali->buf.buf[denali->buf.head++];
1222
1223	return result;
1224}
1225
1226static void denali_select_chip(struct mtd_info *mtd, int chip)
1227{
1228	struct denali_nand_info *denali = mtd_to_denali(mtd);
1229
1230	spin_lock_irq(&denali->irq_lock);
1231	denali->flash_bank = chip;
1232	spin_unlock_irq(&denali->irq_lock);
1233}
1234
1235static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
1236{
1237	struct denali_nand_info *denali = mtd_to_denali(mtd);
1238	int status = denali->status;
1239	denali->status = 0;
1240
1241	return status;
1242}
1243
1244static void denali_erase(struct mtd_info *mtd, int page)
1245{
1246	struct denali_nand_info *denali = mtd_to_denali(mtd);
1247
1248	uint32_t cmd = 0x0, irq_status = 0;
1249
1250	/* clear interrupts */
1251	clear_interrupts(denali);
1252
1253	/* setup page read request for access type */
1254	cmd = MODE_10 | BANK(denali->flash_bank) | page;
1255	index_addr(denali, (uint32_t)cmd, 0x1);
1256
1257	/* wait for erase to complete or failure to occur */
1258	irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
1259					INTR_STATUS__ERASE_FAIL);
1260
1261	denali->status = (irq_status & INTR_STATUS__ERASE_FAIL) ?
1262						NAND_STATUS_FAIL : PASS;
1263}
1264
1265static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
1266			   int page)
1267{
1268	struct denali_nand_info *denali = mtd_to_denali(mtd);
1269	uint32_t addr, id;
1270	int i;
1271
1272	switch (cmd) {
1273	case NAND_CMD_PAGEPROG:
1274		break;
1275	case NAND_CMD_STATUS:
1276		read_status(denali);
1277		break;
1278	case NAND_CMD_READID:
1279	case NAND_CMD_PARAM:
1280		reset_buf(denali);
1281		/*sometimes ManufactureId read from register is not right
1282		 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
1283		 * So here we send READID cmd to NAND insteand
1284		 * */
1285		addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
1286		index_addr(denali, (uint32_t)addr | 0, 0x90);
1287		index_addr(denali, (uint32_t)addr | 1, 0);
1288		for (i = 0; i < 5; i++) {
1289			index_addr_read_data(denali,
1290						(uint32_t)addr | 2,
1291						&id);
1292			write_byte_to_buf(denali, id);
1293		}
1294		break;
1295	case NAND_CMD_READ0:
1296	case NAND_CMD_SEQIN:
1297		denali->page = page;
1298		break;
1299	case NAND_CMD_RESET:
1300		reset_bank(denali);
1301		break;
1302	case NAND_CMD_READOOB:
1303		/* TODO: Read OOB data */
1304		break;
1305	default:
1306		printk(KERN_ERR ": unsupported command"
1307				" received 0x%x\n", cmd);
1308		break;
1309	}
1310}
1311
1312/* stubs for ECC functions not used by the NAND core */
1313static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
1314				uint8_t *ecc_code)
1315{
1316	struct denali_nand_info *denali = mtd_to_denali(mtd);
1317	dev_err(denali->dev,
1318			"denali_ecc_calculate called unexpectedly\n");
1319	BUG();
1320	return -EIO;
1321}
1322
1323static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
1324				uint8_t *read_ecc, uint8_t *calc_ecc)
1325{
1326	struct denali_nand_info *denali = mtd_to_denali(mtd);
1327	dev_err(denali->dev,
1328			"denali_ecc_correct called unexpectedly\n");
1329	BUG();
1330	return -EIO;
1331}
1332
1333static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
1334{
1335	struct denali_nand_info *denali = mtd_to_denali(mtd);
1336	dev_err(denali->dev,
1337			"denali_ecc_hwctl called unexpectedly\n");
1338	BUG();
1339}
1340/* end NAND core entry points */
1341
1342/* Initialization code to bring the device up to a known good state */
1343static void denali_hw_init(struct denali_nand_info *denali)
1344{
1345	/* tell driver how many bit controller will skip before
1346	 * writing ECC code in OOB, this register may be already
1347	 * set by firmware. So we read this value out.
1348	 * if this value is 0, just let it be.
1349	 * */
1350	denali->bbtskipbytes = ioread32(denali->flash_reg +
1351						SPARE_AREA_SKIP_BYTES);
1352	detect_max_banks(denali);
1353	denali_nand_reset(denali);
1354	iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
1355	iowrite32(CHIP_EN_DONT_CARE__FLAG,
1356			denali->flash_reg + CHIP_ENABLE_DONT_CARE);
1357
1358	iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
1359
1360	/* Should set value for these registers when init */
1361	iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
1362	iowrite32(1, denali->flash_reg + ECC_ENABLE);
1363	denali_nand_timing_set(denali);
1364	denali_irq_init(denali);
1365}
1366
1367/* Althogh controller spec said SLC ECC is forceb to be 4bit,
1368 * but denali controller in MRST only support 15bit and 8bit ECC
1369 * correction
1370 * */
1371#define ECC_8BITS	14
1372static struct nand_ecclayout nand_8bit_oob = {
1373	.eccbytes = 14,
1374};
1375
1376#define ECC_15BITS	26
1377static struct nand_ecclayout nand_15bit_oob = {
1378	.eccbytes = 26,
1379};
1380
1381static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
1382static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
1383
1384static struct nand_bbt_descr bbt_main_descr = {
1385	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1386		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1387	.offs =	8,
1388	.len = 4,
1389	.veroffs = 12,
1390	.maxblocks = 4,
1391	.pattern = bbt_pattern,
1392};
1393
1394static struct nand_bbt_descr bbt_mirror_descr = {
1395	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1396		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1397	.offs =	8,
1398	.len = 4,
1399	.veroffs = 12,
1400	.maxblocks = 4,
1401	.pattern = mirror_pattern,
1402};
1403
1404/* initialize driver data structures */
1405void denali_drv_init(struct denali_nand_info *denali)
1406{
1407	denali->idx = 0;
1408
1409	/* setup interrupt handler */
1410	/* the completion object will be used to notify
1411	 * the callee that the interrupt is done */
1412	init_completion(&denali->complete);
1413
1414	/* the spinlock will be used to synchronize the ISR
1415	 * with any element that might be access shared
1416	 * data (interrupt status) */
1417	spin_lock_init(&denali->irq_lock);
1418
1419	/* indicate that MTD has not selected a valid bank yet */
1420	denali->flash_bank = CHIP_SELECT_INVALID;
1421
1422	/* initialize our irq_status variable to indicate no interrupts */
1423	denali->irq_status = 0;
1424}
1425
1426/* driver entry point */
1427static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
1428{
1429	int ret = -ENODEV;
1430	resource_size_t csr_base, mem_base;
1431	unsigned long csr_len, mem_len;
1432	struct denali_nand_info *denali;
1433
1434	denali = kzalloc(sizeof(*denali), GFP_KERNEL);
1435	if (!denali)
1436		return -ENOMEM;
1437
1438	ret = pci_enable_device(dev);
1439	if (ret) {
1440		printk(KERN_ERR "Spectra: pci_enable_device failed.\n");
1441		goto failed_alloc_memery;
1442	}
1443
1444	if (id->driver_data == INTEL_CE4100) {
1445		/* Due to a silicon limitation, we can only support
1446		 * ONFI timing mode 1 and below.
1447		 */
1448		if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
1449			printk(KERN_ERR "Intel CE4100 only supports"
1450					" ONFI timing mode 1 or below\n");
1451			ret = -EINVAL;
1452			goto failed_enable_dev;
1453		}
1454		denali->platform = INTEL_CE4100;
1455		mem_base = pci_resource_start(dev, 0);
1456		mem_len = pci_resource_len(dev, 1);
1457		csr_base = pci_resource_start(dev, 1);
1458		csr_len = pci_resource_len(dev, 1);
1459	} else {
1460		denali->platform = INTEL_MRST;
1461		csr_base = pci_resource_start(dev, 0);
1462		csr_len = pci_resource_len(dev, 0);
1463		mem_base = pci_resource_start(dev, 1);
1464		mem_len = pci_resource_len(dev, 1);
1465		if (!mem_len) {
1466			mem_base = csr_base + csr_len;
1467			mem_len = csr_len;
1468		}
1469	}
1470
1471	/* Is 32-bit DMA supported? */
1472	ret = dma_set_mask(&dev->dev, DMA_BIT_MASK(32));
1473	if (ret) {
1474		printk(KERN_ERR "Spectra: no usable DMA configuration\n");
1475		goto failed_enable_dev;
1476	}
1477	denali->buf.dma_buf = dma_map_single(&dev->dev, denali->buf.buf,
1478					     DENALI_BUF_SIZE,
1479					     DMA_BIDIRECTIONAL);
1480
1481	if (dma_mapping_error(&dev->dev, denali->buf.dma_buf)) {
1482		dev_err(&dev->dev, "Spectra: failed to map DMA buffer\n");
1483		goto failed_enable_dev;
1484	}
1485
1486	pci_set_master(dev);
1487	denali->dev = &dev->dev;
1488	denali->mtd.dev.parent = &dev->dev;
1489
1490	ret = pci_request_regions(dev, DENALI_NAND_NAME);
1491	if (ret) {
1492		printk(KERN_ERR "Spectra: Unable to request memory regions\n");
1493		goto failed_dma_map;
1494	}
1495
1496	denali->flash_reg = ioremap_nocache(csr_base, csr_len);
1497	if (!denali->flash_reg) {
1498		printk(KERN_ERR "Spectra: Unable to remap memory region\n");
1499		ret = -ENOMEM;
1500		goto failed_req_regions;
1501	}
1502
1503	denali->flash_mem = ioremap_nocache(mem_base, mem_len);
1504	if (!denali->flash_mem) {
1505		printk(KERN_ERR "Spectra: ioremap_nocache failed!");
1506		ret = -ENOMEM;
1507		goto failed_remap_reg;
1508	}
1509
1510	denali_hw_init(denali);
1511	denali_drv_init(denali);
1512
1513	/* denali_isr register is done after all the hardware
1514	 * initilization is finished*/
1515	if (request_irq(dev->irq, denali_isr, IRQF_SHARED,
1516			DENALI_NAND_NAME, denali)) {
1517		printk(KERN_ERR "Spectra: Unable to allocate IRQ\n");
1518		ret = -ENODEV;
1519		goto failed_remap_mem;
1520	}
1521
1522	/* now that our ISR is registered, we can enable interrupts */
1523	denali_set_intr_modes(denali, true);
1524
1525	pci_set_drvdata(dev, denali);
1526
1527	denali->mtd.name = "denali-nand";
1528	denali->mtd.owner = THIS_MODULE;
1529	denali->mtd.priv = &denali->nand;
1530
1531	/* register the driver with the NAND core subsystem */
1532	denali->nand.select_chip = denali_select_chip;
1533	denali->nand.cmdfunc = denali_cmdfunc;
1534	denali->nand.read_byte = denali_read_byte;
1535	denali->nand.waitfunc = denali_waitfunc;
1536
1537	/* scan for NAND devices attached to the controller
1538	 * this is the first stage in a two step process to register
1539	 * with the nand subsystem */
1540	if (nand_scan_ident(&denali->mtd, denali->max_banks, NULL)) {
1541		ret = -ENXIO;
1542		goto failed_req_irq;
1543	}
1544
1545	/* MTD supported page sizes vary by kernel. We validate our
1546	 * kernel supports the device here.
1547	 */
1548	if (denali->mtd.writesize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE) {
1549		ret = -ENODEV;
1550		printk(KERN_ERR "Spectra: device size not supported by this "
1551			"version of MTD.");
1552		goto failed_req_irq;
1553	}
1554
1555	/* support for multi nand
1556	 * MTD known nothing about multi nand,
1557	 * so we should tell it the real pagesize
1558	 * and anything necessery
1559	 */
1560	denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
1561	denali->nand.chipsize <<= (denali->devnum - 1);
1562	denali->nand.page_shift += (denali->devnum - 1);
1563	denali->nand.pagemask = (denali->nand.chipsize >>
1564						denali->nand.page_shift) - 1;
1565	denali->nand.bbt_erase_shift += (denali->devnum - 1);
1566	denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
1567	denali->nand.chip_shift += (denali->devnum - 1);
1568	denali->mtd.writesize <<= (denali->devnum - 1);
1569	denali->mtd.oobsize <<= (denali->devnum - 1);
1570	denali->mtd.erasesize <<= (denali->devnum - 1);
1571	denali->mtd.size = denali->nand.numchips * denali->nand.chipsize;
1572	denali->bbtskipbytes *= denali->devnum;
1573
1574	/* second stage of the NAND scan
1575	 * this stage requires information regarding ECC and
1576	 * bad block management. */
1577
1578	/* Bad block management */
1579	denali->nand.bbt_td = &bbt_main_descr;
1580	denali->nand.bbt_md = &bbt_mirror_descr;
1581
1582	/* skip the scan for now until we have OOB read and write support */
1583	denali->nand.bbt_options |= NAND_BBT_USE_FLASH;
1584	denali->nand.options |= NAND_SKIP_BBTSCAN;
1585	denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
1586
1587	/* Denali Controller only support 15bit and 8bit ECC in MRST,
1588	 * so just let controller do 15bit ECC for MLC and 8bit ECC for
1589	 * SLC if possible.
1590	 * */
1591	if (denali->nand.cellinfo & 0xc &&
1592			(denali->mtd.oobsize > (denali->bbtskipbytes +
1593			ECC_15BITS * (denali->mtd.writesize /
1594			ECC_SECTOR_SIZE)))) {
1595		/* if MLC OOB size is large enough, use 15bit ECC*/
1596		denali->nand.ecc.strength = 15;
1597		denali->nand.ecc.layout = &nand_15bit_oob;
1598		denali->nand.ecc.bytes = ECC_15BITS;
1599		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
1600	} else if (denali->mtd.oobsize < (denali->bbtskipbytes +
1601			ECC_8BITS * (denali->mtd.writesize /
1602			ECC_SECTOR_SIZE))) {
1603		printk(KERN_ERR "Your NAND chip OOB is not large enough to"
1604				" contain 8bit ECC correction codes");
1605		goto failed_req_irq;
1606	} else {
1607		denali->nand.ecc.strength = 8;
1608		denali->nand.ecc.layout = &nand_8bit_oob;
1609		denali->nand.ecc.bytes = ECC_8BITS;
1610		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
1611	}
1612
1613	denali->nand.ecc.bytes *= denali->devnum;
1614	denali->nand.ecc.strength *= denali->devnum;
1615	denali->nand.ecc.layout->eccbytes *=
1616		denali->mtd.writesize / ECC_SECTOR_SIZE;
1617	denali->nand.ecc.layout->oobfree[0].offset =
1618		denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes;
1619	denali->nand.ecc.layout->oobfree[0].length =
1620		denali->mtd.oobsize - denali->nand.ecc.layout->eccbytes -
1621		denali->bbtskipbytes;
1622
1623	/* Let driver know the total blocks number and
1624	 * how many blocks contained by each nand chip.
1625	 * blksperchip will help driver to know how many
1626	 * blocks is taken by FW.
1627	 * */
1628	denali->totalblks = denali->mtd.size >>
1629				denali->nand.phys_erase_shift;
1630	denali->blksperchip = denali->totalblks / denali->nand.numchips;
1631
1632	/* These functions are required by the NAND core framework, otherwise,
1633	 * the NAND core will assert. However, we don't need them, so we'll stub
1634	 * them out. */
1635	denali->nand.ecc.calculate = denali_ecc_calculate;
1636	denali->nand.ecc.correct = denali_ecc_correct;
1637	denali->nand.ecc.hwctl = denali_ecc_hwctl;
1638
1639	/* override the default read operations */
1640	denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum;
1641	denali->nand.ecc.read_page = denali_read_page;
1642	denali->nand.ecc.read_page_raw = denali_read_page_raw;
1643	denali->nand.ecc.write_page = denali_write_page;
1644	denali->nand.ecc.write_page_raw = denali_write_page_raw;
1645	denali->nand.ecc.read_oob = denali_read_oob;
1646	denali->nand.ecc.write_oob = denali_write_oob;
1647	denali->nand.erase_cmd = denali_erase;
1648
1649	if (nand_scan_tail(&denali->mtd)) {
1650		ret = -ENXIO;
1651		goto failed_req_irq;
1652	}
1653
1654	ret = mtd_device_register(&denali->mtd, NULL, 0);
1655	if (ret) {
1656		dev_err(&dev->dev, "Spectra: Failed to register MTD: %d\n",
1657				ret);
1658		goto failed_req_irq;
1659	}
1660	return 0;
1661
1662failed_req_irq:
1663	denali_irq_cleanup(dev->irq, denali);
1664failed_remap_mem:
1665	iounmap(denali->flash_mem);
1666failed_remap_reg:
1667	iounmap(denali->flash_reg);
1668failed_req_regions:
1669	pci_release_regions(dev);
1670failed_dma_map:
1671	dma_unmap_single(&dev->dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
1672			 DMA_BIDIRECTIONAL);
1673failed_enable_dev:
1674	pci_disable_device(dev);
1675failed_alloc_memery:
1676	kfree(denali);
1677	return ret;
1678}
1679
1680/* driver exit point */
1681static void denali_pci_remove(struct pci_dev *dev)
1682{
1683	struct denali_nand_info *denali = pci_get_drvdata(dev);
1684
1685	nand_release(&denali->mtd);
1686
1687	denali_irq_cleanup(dev->irq, denali);
1688
1689	iounmap(denali->flash_reg);
1690	iounmap(denali->flash_mem);
1691	pci_release_regions(dev);
1692	pci_disable_device(dev);
1693	dma_unmap_single(&dev->dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
1694			 DMA_BIDIRECTIONAL);
1695	pci_set_drvdata(dev, NULL);
1696	kfree(denali);
1697}
1698
1699MODULE_DEVICE_TABLE(pci, denali_pci_ids);
1700
1701static struct pci_driver denali_pci_driver = {
1702	.name = DENALI_NAND_NAME,
1703	.id_table = denali_pci_ids,
1704	.probe = denali_pci_probe,
1705	.remove = denali_pci_remove,
1706};
1707
1708module_pci_driver(denali_pci_driver);