Linux Audio

Check our new training course

Loading...
   1/*
   2 * drivers/media/video/smiapp/smiapp-core.c
   3 *
   4 * Generic driver for SMIA/SMIA++ compliant camera modules
   5 *
   6 * Copyright (C) 2010--2012 Nokia Corporation
   7 * Contact: Sakari Ailus <sakari.ailus@maxwell.research.nokia.com>
   8 *
   9 * Based on smiapp driver by Vimarsh Zutshi
  10 * Based on jt8ev1.c by Vimarsh Zutshi
  11 * Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com>
  12 *
  13 * This program is free software; you can redistribute it and/or
  14 * modify it under the terms of the GNU General Public License
  15 * version 2 as published by the Free Software Foundation.
  16 *
  17 * This program is distributed in the hope that it will be useful, but
  18 * WITHOUT ANY WARRANTY; without even the implied warranty of
  19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  20 * General Public License for more details.
  21 *
  22 * You should have received a copy of the GNU General Public License
  23 * along with this program; if not, write to the Free Software
  24 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
  25 * 02110-1301 USA
  26 *
  27 */
  28
  29#include <linux/clk.h>
  30#include <linux/delay.h>
  31#include <linux/device.h>
  32#include <linux/gpio.h>
  33#include <linux/module.h>
  34#include <linux/slab.h>
  35#include <linux/regulator/consumer.h>
  36#include <linux/slab.h>
  37#include <linux/v4l2-mediabus.h>
  38#include <media/v4l2-device.h>
  39
  40#include "smiapp.h"
  41
  42#define SMIAPP_ALIGN_DIM(dim, flags)		\
  43	((flags) & V4L2_SUBDEV_SEL_FLAG_SIZE_GE	\
  44	 ? ALIGN((dim), 2)			\
  45	 : (dim) & ~1)
  46
  47/*
  48 * smiapp_module_idents - supported camera modules
  49 */
  50static const struct smiapp_module_ident smiapp_module_idents[] = {
  51	SMIAPP_IDENT_L(0x01, 0x022b, -1, "vs6555"),
  52	SMIAPP_IDENT_L(0x01, 0x022e, -1, "vw6558"),
  53	SMIAPP_IDENT_L(0x07, 0x7698, -1, "ovm7698"),
  54	SMIAPP_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"),
  55	SMIAPP_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"),
  56	SMIAPP_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk),
  57	SMIAPP_IDENT_L(0x0c, 0x213e, -1, "et8en2"),
  58	SMIAPP_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"),
  59	SMIAPP_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk),
  60	SMIAPP_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk),
  61	SMIAPP_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk),
  62};
  63
  64/*
  65 *
  66 * Dynamic Capability Identification
  67 *
  68 */
  69
  70static int smiapp_read_frame_fmt(struct smiapp_sensor *sensor)
  71{
  72	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
  73	u32 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc;
  74	unsigned int i;
  75	int rval;
  76	int line_count = 0;
  77	int embedded_start = -1, embedded_end = -1;
  78	int image_start = 0;
  79
  80	rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_TYPE,
  81			   &fmt_model_type);
  82	if (rval)
  83		return rval;
  84
  85	rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_SUBTYPE,
  86			   &fmt_model_subtype);
  87	if (rval)
  88		return rval;
  89
  90	ncol_desc = (fmt_model_subtype
  91		     & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_MASK)
  92		>> SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_SHIFT;
  93	nrow_desc = fmt_model_subtype
  94		& SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NROWS_MASK;
  95
  96	dev_dbg(&client->dev, "format_model_type %s\n",
  97		fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE
  98		? "2 byte" :
  99		fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE
 100		? "4 byte" : "is simply bad");
 101
 102	for (i = 0; i < ncol_desc + nrow_desc; i++) {
 103		u32 desc;
 104		u32 pixelcode;
 105		u32 pixels;
 106		char *which;
 107		char *what;
 108
 109		if (fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE) {
 110			rval = smiapp_read(
 111				sensor,
 112				SMIAPP_REG_U16_FRAME_FORMAT_DESCRIPTOR_2(i),
 113				&desc);
 114			if (rval)
 115				return rval;
 116
 117			pixelcode =
 118				(desc
 119				 & SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_MASK)
 120				>> SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_SHIFT;
 121			pixels = desc & SMIAPP_FRAME_FORMAT_DESC_2_PIXELS_MASK;
 122		} else if (fmt_model_type
 123			   == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE) {
 124			rval = smiapp_read(
 125				sensor,
 126				SMIAPP_REG_U32_FRAME_FORMAT_DESCRIPTOR_4(i),
 127				&desc);
 128			if (rval)
 129				return rval;
 130
 131			pixelcode =
 132				(desc
 133				 & SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_MASK)
 134				>> SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_SHIFT;
 135			pixels = desc & SMIAPP_FRAME_FORMAT_DESC_4_PIXELS_MASK;
 136		} else {
 137			dev_dbg(&client->dev,
 138				"invalid frame format model type %d\n",
 139				fmt_model_type);
 140			return -EINVAL;
 141		}
 142
 143		if (i < ncol_desc)
 144			which = "columns";
 145		else
 146			which = "rows";
 147
 148		switch (pixelcode) {
 149		case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED:
 150			what = "embedded";
 151			break;
 152		case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DUMMY:
 153			what = "dummy";
 154			break;
 155		case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_BLACK:
 156			what = "black";
 157			break;
 158		case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DARK:
 159			what = "dark";
 160			break;
 161		case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE:
 162			what = "visible";
 163			break;
 164		default:
 165			what = "invalid";
 166			dev_dbg(&client->dev, "pixelcode %d\n", pixelcode);
 167			break;
 168		}
 169
 170		dev_dbg(&client->dev, "%s pixels: %d %s\n",
 171			what, pixels, which);
 172
 173		if (i < ncol_desc)
 174			continue;
 175
 176		/* Handle row descriptors */
 177		if (pixelcode
 178		    == SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED) {
 179			embedded_start = line_count;
 180		} else {
 181			if (pixelcode == SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE
 182			    || pixels >= sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES] / 2)
 183				image_start = line_count;
 184			if (embedded_start != -1 && embedded_end == -1)
 185				embedded_end = line_count;
 186		}
 187		line_count += pixels;
 188	}
 189
 190	if (embedded_start == -1 || embedded_end == -1) {
 191		embedded_start = 0;
 192		embedded_end = 0;
 193	}
 194
 195	dev_dbg(&client->dev, "embedded data from lines %d to %d\n",
 196		embedded_start, embedded_end);
 197	dev_dbg(&client->dev, "image data starts at line %d\n", image_start);
 198
 199	return 0;
 200}
 201
 202static int smiapp_pll_configure(struct smiapp_sensor *sensor)
 203{
 204	struct smiapp_pll *pll = &sensor->pll;
 205	int rval;
 206
 207	rval = smiapp_write(
 208		sensor, SMIAPP_REG_U16_VT_PIX_CLK_DIV, pll->vt_pix_clk_div);
 209	if (rval < 0)
 210		return rval;
 211
 212	rval = smiapp_write(
 213		sensor, SMIAPP_REG_U16_VT_SYS_CLK_DIV, pll->vt_sys_clk_div);
 214	if (rval < 0)
 215		return rval;
 216
 217	rval = smiapp_write(
 218		sensor, SMIAPP_REG_U16_PRE_PLL_CLK_DIV, pll->pre_pll_clk_div);
 219	if (rval < 0)
 220		return rval;
 221
 222	rval = smiapp_write(
 223		sensor, SMIAPP_REG_U16_PLL_MULTIPLIER, pll->pll_multiplier);
 224	if (rval < 0)
 225		return rval;
 226
 227	/* Lane op clock ratio does not apply here. */
 228	rval = smiapp_write(
 229		sensor, SMIAPP_REG_U32_REQUESTED_LINK_BIT_RATE_MBPS,
 230		DIV_ROUND_UP(pll->op_sys_clk_freq_hz, 1000000 / 256 / 256));
 231	if (rval < 0 || sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
 232		return rval;
 233
 234	rval = smiapp_write(
 235		sensor, SMIAPP_REG_U16_OP_PIX_CLK_DIV, pll->op_pix_clk_div);
 236	if (rval < 0)
 237		return rval;
 238
 239	return smiapp_write(
 240		sensor, SMIAPP_REG_U16_OP_SYS_CLK_DIV, pll->op_sys_clk_div);
 241}
 242
 243static int smiapp_pll_update(struct smiapp_sensor *sensor)
 244{
 245	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 246	struct smiapp_pll_limits lim = {
 247		.min_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_PRE_PLL_CLK_DIV],
 248		.max_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_PRE_PLL_CLK_DIV],
 249		.min_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_IP_FREQ_HZ],
 250		.max_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_IP_FREQ_HZ],
 251		.min_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MIN_PLL_MULTIPLIER],
 252		.max_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MAX_PLL_MULTIPLIER],
 253		.min_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_OP_FREQ_HZ],
 254		.max_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_OP_FREQ_HZ],
 255
 256		.min_op_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV],
 257		.max_op_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV],
 258		.min_op_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV],
 259		.max_op_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV],
 260		.min_op_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_FREQ_HZ],
 261		.max_op_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_FREQ_HZ],
 262		.min_op_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_FREQ_HZ],
 263		.max_op_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_FREQ_HZ],
 264
 265		.min_vt_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_DIV],
 266		.max_vt_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_DIV],
 267		.min_vt_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_DIV],
 268		.max_vt_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_DIV],
 269		.min_vt_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_FREQ_HZ],
 270		.max_vt_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_FREQ_HZ],
 271		.min_vt_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_FREQ_HZ],
 272		.max_vt_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_FREQ_HZ],
 273
 274		.min_line_length_pck_bin = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN],
 275		.min_line_length_pck = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK],
 276	};
 277	struct smiapp_pll *pll = &sensor->pll;
 278	int rval;
 279
 280	memset(&sensor->pll, 0, sizeof(sensor->pll));
 281
 282	pll->lanes = sensor->platform_data->lanes;
 283	pll->ext_clk_freq_hz = sensor->platform_data->ext_clk;
 284
 285	if (sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0) {
 286		/*
 287		 * Fill in operational clock divisors limits from the
 288		 * video timing ones. On profile 0 sensors the
 289		 * requirements regarding them are essentially the
 290		 * same as on VT ones.
 291		 */
 292		lim.min_op_sys_clk_div = lim.min_vt_sys_clk_div;
 293		lim.max_op_sys_clk_div = lim.max_vt_sys_clk_div;
 294		lim.min_op_pix_clk_div = lim.min_vt_pix_clk_div;
 295		lim.max_op_pix_clk_div = lim.max_vt_pix_clk_div;
 296		lim.min_op_sys_clk_freq_hz = lim.min_vt_sys_clk_freq_hz;
 297		lim.max_op_sys_clk_freq_hz = lim.max_vt_sys_clk_freq_hz;
 298		lim.min_op_pix_clk_freq_hz = lim.min_vt_pix_clk_freq_hz;
 299		lim.max_op_pix_clk_freq_hz = lim.max_vt_pix_clk_freq_hz;
 300		/* Profile 0 sensors have no separate OP clock branch. */
 301		pll->flags |= SMIAPP_PLL_FLAG_NO_OP_CLOCKS;
 302	}
 303
 304	if (smiapp_needs_quirk(sensor,
 305			       SMIAPP_QUIRK_FLAG_OP_PIX_CLOCK_PER_LANE))
 306		pll->flags |= SMIAPP_PLL_FLAG_OP_PIX_CLOCK_PER_LANE;
 307
 308	pll->binning_horizontal = sensor->binning_horizontal;
 309	pll->binning_vertical = sensor->binning_vertical;
 310	pll->link_freq =
 311		sensor->link_freq->qmenu_int[sensor->link_freq->val];
 312	pll->scale_m = sensor->scale_m;
 313	pll->scale_n = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
 314	pll->bits_per_pixel = sensor->csi_format->compressed;
 315
 316	rval = smiapp_pll_calculate(&client->dev, &lim, pll);
 317	if (rval < 0)
 318		return rval;
 319
 320	sensor->pixel_rate_parray->cur.val64 = pll->vt_pix_clk_freq_hz;
 321	sensor->pixel_rate_csi->cur.val64 = pll->pixel_rate_csi;
 322
 323	return 0;
 324}
 325
 326
 327/*
 328 *
 329 * V4L2 Controls handling
 330 *
 331 */
 332
 333static void __smiapp_update_exposure_limits(struct smiapp_sensor *sensor)
 334{
 335	struct v4l2_ctrl *ctrl = sensor->exposure;
 336	int max;
 337
 338	max = sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
 339		+ sensor->vblank->val
 340		- sensor->limits[SMIAPP_LIMIT_COARSE_INTEGRATION_TIME_MAX_MARGIN];
 341
 342	ctrl->maximum = max;
 343	if (ctrl->default_value > max)
 344		ctrl->default_value = max;
 345	if (ctrl->val > max)
 346		ctrl->val = max;
 347	if (ctrl->cur.val > max)
 348		ctrl->cur.val = max;
 349}
 350
 351/*
 352 * Order matters.
 353 *
 354 * 1. Bits-per-pixel, descending.
 355 * 2. Bits-per-pixel compressed, descending.
 356 * 3. Pixel order, same as in pixel_order_str. Formats for all four pixel
 357 *    orders must be defined.
 358 */
 359static const struct smiapp_csi_data_format smiapp_csi_data_formats[] = {
 360	{ V4L2_MBUS_FMT_SGRBG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GRBG, },
 361	{ V4L2_MBUS_FMT_SRGGB12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_RGGB, },
 362	{ V4L2_MBUS_FMT_SBGGR12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_BGGR, },
 363	{ V4L2_MBUS_FMT_SGBRG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GBRG, },
 364	{ V4L2_MBUS_FMT_SGRBG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GRBG, },
 365	{ V4L2_MBUS_FMT_SRGGB10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_RGGB, },
 366	{ V4L2_MBUS_FMT_SBGGR10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_BGGR, },
 367	{ V4L2_MBUS_FMT_SGBRG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GBRG, },
 368	{ V4L2_MBUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GRBG, },
 369	{ V4L2_MBUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_RGGB, },
 370	{ V4L2_MBUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_BGGR, },
 371	{ V4L2_MBUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GBRG, },
 372	{ V4L2_MBUS_FMT_SGRBG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GRBG, },
 373	{ V4L2_MBUS_FMT_SRGGB8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_RGGB, },
 374	{ V4L2_MBUS_FMT_SBGGR8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_BGGR, },
 375	{ V4L2_MBUS_FMT_SGBRG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GBRG, },
 376};
 377
 378const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" };
 379
 380#define to_csi_format_idx(fmt) (((unsigned long)(fmt)			\
 381				 - (unsigned long)smiapp_csi_data_formats) \
 382				/ sizeof(*smiapp_csi_data_formats))
 383
 384static u32 smiapp_pixel_order(struct smiapp_sensor *sensor)
 385{
 386	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 387	int flip = 0;
 388
 389	if (sensor->hflip) {
 390		if (sensor->hflip->val)
 391			flip |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
 392
 393		if (sensor->vflip->val)
 394			flip |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
 395	}
 396
 397	flip ^= sensor->hvflip_inv_mask;
 398
 399	dev_dbg(&client->dev, "flip %d\n", flip);
 400	return sensor->default_pixel_order ^ flip;
 401}
 402
 403static void smiapp_update_mbus_formats(struct smiapp_sensor *sensor)
 404{
 405	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 406	unsigned int csi_format_idx =
 407		to_csi_format_idx(sensor->csi_format) & ~3;
 408	unsigned int internal_csi_format_idx =
 409		to_csi_format_idx(sensor->internal_csi_format) & ~3;
 410	unsigned int pixel_order = smiapp_pixel_order(sensor);
 411
 412	sensor->mbus_frame_fmts =
 413		sensor->default_mbus_frame_fmts << pixel_order;
 414	sensor->csi_format =
 415		&smiapp_csi_data_formats[csi_format_idx + pixel_order];
 416	sensor->internal_csi_format =
 417		&smiapp_csi_data_formats[internal_csi_format_idx
 418					 + pixel_order];
 419
 420	BUG_ON(max(internal_csi_format_idx, csi_format_idx) + pixel_order
 421	       >= ARRAY_SIZE(smiapp_csi_data_formats));
 422	BUG_ON(min(internal_csi_format_idx, csi_format_idx) < 0);
 423
 424	dev_dbg(&client->dev, "new pixel order %s\n",
 425		pixel_order_str[pixel_order]);
 426}
 427
 428static int smiapp_set_ctrl(struct v4l2_ctrl *ctrl)
 429{
 430	struct smiapp_sensor *sensor =
 431		container_of(ctrl->handler, struct smiapp_subdev, ctrl_handler)
 432			->sensor;
 433	u32 orient = 0;
 434	int exposure;
 435	int rval;
 436
 437	switch (ctrl->id) {
 438	case V4L2_CID_ANALOGUE_GAIN:
 439		return smiapp_write(
 440			sensor,
 441			SMIAPP_REG_U16_ANALOGUE_GAIN_CODE_GLOBAL, ctrl->val);
 442
 443	case V4L2_CID_EXPOSURE:
 444		return smiapp_write(
 445			sensor,
 446			SMIAPP_REG_U16_COARSE_INTEGRATION_TIME, ctrl->val);
 447
 448	case V4L2_CID_HFLIP:
 449	case V4L2_CID_VFLIP:
 450		if (sensor->streaming)
 451			return -EBUSY;
 452
 453		if (sensor->hflip->val)
 454			orient |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
 455
 456		if (sensor->vflip->val)
 457			orient |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
 458
 459		orient ^= sensor->hvflip_inv_mask;
 460		rval = smiapp_write(sensor,
 461				    SMIAPP_REG_U8_IMAGE_ORIENTATION,
 462				    orient);
 463		if (rval < 0)
 464			return rval;
 465
 466		smiapp_update_mbus_formats(sensor);
 467
 468		return 0;
 469
 470	case V4L2_CID_VBLANK:
 471		exposure = sensor->exposure->val;
 472
 473		__smiapp_update_exposure_limits(sensor);
 474
 475		if (exposure > sensor->exposure->maximum) {
 476			sensor->exposure->val =
 477				sensor->exposure->maximum;
 478			rval = smiapp_set_ctrl(
 479				sensor->exposure);
 480			if (rval < 0)
 481				return rval;
 482		}
 483
 484		return smiapp_write(
 485			sensor, SMIAPP_REG_U16_FRAME_LENGTH_LINES,
 486			sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
 487			+ ctrl->val);
 488
 489	case V4L2_CID_HBLANK:
 490		return smiapp_write(
 491			sensor, SMIAPP_REG_U16_LINE_LENGTH_PCK,
 492			sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
 493			+ ctrl->val);
 494
 495	case V4L2_CID_LINK_FREQ:
 496		if (sensor->streaming)
 497			return -EBUSY;
 498
 499		return smiapp_pll_update(sensor);
 500
 501	default:
 502		return -EINVAL;
 503	}
 504}
 505
 506static const struct v4l2_ctrl_ops smiapp_ctrl_ops = {
 507	.s_ctrl = smiapp_set_ctrl,
 508};
 509
 510static int smiapp_init_controls(struct smiapp_sensor *sensor)
 511{
 512	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 513	unsigned int max;
 514	int rval;
 515
 516	rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 7);
 517	if (rval)
 518		return rval;
 519	sensor->pixel_array->ctrl_handler.lock = &sensor->mutex;
 520
 521	sensor->analog_gain = v4l2_ctrl_new_std(
 522		&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
 523		V4L2_CID_ANALOGUE_GAIN,
 524		sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN],
 525		sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MAX],
 526		max(sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_STEP], 1U),
 527		sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN]);
 528
 529	/* Exposure limits will be updated soon, use just something here. */
 530	sensor->exposure = v4l2_ctrl_new_std(
 531		&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
 532		V4L2_CID_EXPOSURE, 0, 0, 1, 0);
 533
 534	sensor->hflip = v4l2_ctrl_new_std(
 535		&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
 536		V4L2_CID_HFLIP, 0, 1, 1, 0);
 537	sensor->vflip = v4l2_ctrl_new_std(
 538		&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
 539		V4L2_CID_VFLIP, 0, 1, 1, 0);
 540
 541	sensor->vblank = v4l2_ctrl_new_std(
 542		&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
 543		V4L2_CID_VBLANK, 0, 1, 1, 0);
 544
 545	if (sensor->vblank)
 546		sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE;
 547
 548	sensor->hblank = v4l2_ctrl_new_std(
 549		&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
 550		V4L2_CID_HBLANK, 0, 1, 1, 0);
 551
 552	if (sensor->hblank)
 553		sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE;
 554
 555	sensor->pixel_rate_parray = v4l2_ctrl_new_std(
 556		&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
 557		V4L2_CID_PIXEL_RATE, 0, 0, 1, 0);
 558
 559	if (sensor->pixel_array->ctrl_handler.error) {
 560		dev_err(&client->dev,
 561			"pixel array controls initialization failed (%d)\n",
 562			sensor->pixel_array->ctrl_handler.error);
 563		rval = sensor->pixel_array->ctrl_handler.error;
 564		goto error;
 565	}
 566
 567	sensor->pixel_array->sd.ctrl_handler =
 568		&sensor->pixel_array->ctrl_handler;
 569
 570	v4l2_ctrl_cluster(2, &sensor->hflip);
 571
 572	rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0);
 573	if (rval)
 574		goto error;
 575	sensor->src->ctrl_handler.lock = &sensor->mutex;
 576
 577	for (max = 0; sensor->platform_data->op_sys_clock[max + 1]; max++);
 578
 579	sensor->link_freq = v4l2_ctrl_new_int_menu(
 580		&sensor->src->ctrl_handler, &smiapp_ctrl_ops,
 581		V4L2_CID_LINK_FREQ, max, 0,
 582		sensor->platform_data->op_sys_clock);
 583
 584	sensor->pixel_rate_csi = v4l2_ctrl_new_std(
 585		&sensor->src->ctrl_handler, &smiapp_ctrl_ops,
 586		V4L2_CID_PIXEL_RATE, 0, 0, 1, 0);
 587
 588	if (sensor->src->ctrl_handler.error) {
 589		dev_err(&client->dev,
 590			"src controls initialization failed (%d)\n",
 591			sensor->src->ctrl_handler.error);
 592		rval = sensor->src->ctrl_handler.error;
 593		goto error;
 594	}
 595
 596	sensor->src->sd.ctrl_handler =
 597		&sensor->src->ctrl_handler;
 598
 599	return 0;
 600
 601error:
 602	v4l2_ctrl_handler_free(&sensor->pixel_array->ctrl_handler);
 603	v4l2_ctrl_handler_free(&sensor->src->ctrl_handler);
 604
 605	return rval;
 606}
 607
 608static void smiapp_free_controls(struct smiapp_sensor *sensor)
 609{
 610	unsigned int i;
 611
 612	for (i = 0; i < sensor->ssds_used; i++)
 613		v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler);
 614}
 615
 616static int smiapp_get_limits(struct smiapp_sensor *sensor, int const *limit,
 617			     unsigned int n)
 618{
 619	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 620	unsigned int i;
 621	u32 val;
 622	int rval;
 623
 624	for (i = 0; i < n; i++) {
 625		rval = smiapp_read(
 626			sensor, smiapp_reg_limits[limit[i]].addr, &val);
 627		if (rval)
 628			return rval;
 629		sensor->limits[limit[i]] = val;
 630		dev_dbg(&client->dev, "0x%8.8x \"%s\" = %d, 0x%x\n",
 631			smiapp_reg_limits[limit[i]].addr,
 632			smiapp_reg_limits[limit[i]].what, val, val);
 633	}
 634
 635	return 0;
 636}
 637
 638static int smiapp_get_all_limits(struct smiapp_sensor *sensor)
 639{
 640	unsigned int i;
 641	int rval;
 642
 643	for (i = 0; i < SMIAPP_LIMIT_LAST; i++) {
 644		rval = smiapp_get_limits(sensor, &i, 1);
 645		if (rval < 0)
 646			return rval;
 647	}
 648
 649	if (sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] == 0)
 650		smiapp_replace_limit(sensor, SMIAPP_LIMIT_SCALER_N_MIN, 16);
 651
 652	return 0;
 653}
 654
 655static int smiapp_get_limits_binning(struct smiapp_sensor *sensor)
 656{
 657	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 658	static u32 const limits[] = {
 659		SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN,
 660		SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN,
 661		SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN,
 662		SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN,
 663		SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN,
 664		SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN_BIN,
 665		SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN_BIN,
 666	};
 667	static u32 const limits_replace[] = {
 668		SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES,
 669		SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES,
 670		SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK,
 671		SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK,
 672		SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK,
 673		SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN,
 674		SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN,
 675	};
 676	unsigned int i;
 677	int rval;
 678
 679	if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY] ==
 680	    SMIAPP_BINNING_CAPABILITY_NO) {
 681		for (i = 0; i < ARRAY_SIZE(limits); i++)
 682			sensor->limits[limits[i]] =
 683				sensor->limits[limits_replace[i]];
 684
 685		return 0;
 686	}
 687
 688	rval = smiapp_get_limits(sensor, limits, ARRAY_SIZE(limits));
 689	if (rval < 0)
 690		return rval;
 691
 692	/*
 693	 * Sanity check whether the binning limits are valid. If not,
 694	 * use the non-binning ones.
 695	 */
 696	if (sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN]
 697	    && sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN]
 698	    && sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN])
 699		return 0;
 700
 701	for (i = 0; i < ARRAY_SIZE(limits); i++) {
 702		dev_dbg(&client->dev,
 703			"replace limit 0x%8.8x \"%s\" = %d, 0x%x\n",
 704			smiapp_reg_limits[limits[i]].addr,
 705			smiapp_reg_limits[limits[i]].what,
 706			sensor->limits[limits_replace[i]],
 707			sensor->limits[limits_replace[i]]);
 708		sensor->limits[limits[i]] =
 709			sensor->limits[limits_replace[i]];
 710	}
 711
 712	return 0;
 713}
 714
 715static int smiapp_get_mbus_formats(struct smiapp_sensor *sensor)
 716{
 717	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 718	unsigned int type, n;
 719	unsigned int i, pixel_order;
 720	int rval;
 721
 722	rval = smiapp_read(
 723		sensor, SMIAPP_REG_U8_DATA_FORMAT_MODEL_TYPE, &type);
 724	if (rval)
 725		return rval;
 726
 727	dev_dbg(&client->dev, "data_format_model_type %d\n", type);
 728
 729	rval = smiapp_read(sensor, SMIAPP_REG_U8_PIXEL_ORDER,
 730			   &pixel_order);
 731	if (rval)
 732		return rval;
 733
 734	if (pixel_order >= ARRAY_SIZE(pixel_order_str)) {
 735		dev_dbg(&client->dev, "bad pixel order %d\n", pixel_order);
 736		return -EINVAL;
 737	}
 738
 739	dev_dbg(&client->dev, "pixel order %d (%s)\n", pixel_order,
 740		pixel_order_str[pixel_order]);
 741
 742	switch (type) {
 743	case SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL:
 744		n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N;
 745		break;
 746	case SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED:
 747		n = SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED_N;
 748		break;
 749	default:
 750		return -EINVAL;
 751	}
 752
 753	sensor->default_pixel_order = pixel_order;
 754	sensor->mbus_frame_fmts = 0;
 755
 756	for (i = 0; i < n; i++) {
 757		unsigned int fmt, j;
 758
 759		rval = smiapp_read(
 760			sensor,
 761			SMIAPP_REG_U16_DATA_FORMAT_DESCRIPTOR(i), &fmt);
 762		if (rval)
 763			return rval;
 764
 765		dev_dbg(&client->dev, "bpp %d, compressed %d\n",
 766			fmt >> 8, (u8)fmt);
 767
 768		for (j = 0; j < ARRAY_SIZE(smiapp_csi_data_formats); j++) {
 769			const struct smiapp_csi_data_format *f =
 770				&smiapp_csi_data_formats[j];
 771
 772			if (f->pixel_order != SMIAPP_PIXEL_ORDER_GRBG)
 773				continue;
 774
 775			if (f->width != fmt >> 8 || f->compressed != (u8)fmt)
 776				continue;
 777
 778			dev_dbg(&client->dev, "jolly good! %d\n", j);
 779
 780			sensor->default_mbus_frame_fmts |= 1 << j;
 781			if (!sensor->csi_format) {
 782				sensor->csi_format = f;
 783				sensor->internal_csi_format = f;
 784			}
 785		}
 786	}
 787
 788	if (!sensor->csi_format) {
 789		dev_err(&client->dev, "no supported mbus code found\n");
 790		return -EINVAL;
 791	}
 792
 793	smiapp_update_mbus_formats(sensor);
 794
 795	return 0;
 796}
 797
 798static void smiapp_update_blanking(struct smiapp_sensor *sensor)
 799{
 800	struct v4l2_ctrl *vblank = sensor->vblank;
 801	struct v4l2_ctrl *hblank = sensor->hblank;
 802
 803	vblank->minimum =
 804		max_t(int,
 805		      sensor->limits[SMIAPP_LIMIT_MIN_FRAME_BLANKING_LINES],
 806		      sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN] -
 807		      sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height);
 808	vblank->maximum =
 809		sensor->limits[SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN] -
 810		sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height;
 811
 812	vblank->val = clamp_t(int, vblank->val,
 813			      vblank->minimum, vblank->maximum);
 814	vblank->default_value = vblank->minimum;
 815	vblank->val = vblank->val;
 816	vblank->cur.val = vblank->val;
 817
 818	hblank->minimum =
 819		max_t(int,
 820		      sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN] -
 821		      sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width,
 822		      sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN]);
 823	hblank->maximum =
 824		sensor->limits[SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN] -
 825		sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width;
 826
 827	hblank->val = clamp_t(int, hblank->val,
 828			      hblank->minimum, hblank->maximum);
 829	hblank->default_value = hblank->minimum;
 830	hblank->val = hblank->val;
 831	hblank->cur.val = hblank->val;
 832
 833	__smiapp_update_exposure_limits(sensor);
 834}
 835
 836static int smiapp_update_mode(struct smiapp_sensor *sensor)
 837{
 838	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 839	unsigned int binning_mode;
 840	int rval;
 841
 842	dev_dbg(&client->dev, "frame size: %dx%d\n",
 843		sensor->src->crop[SMIAPP_PAD_SRC].width,
 844		sensor->src->crop[SMIAPP_PAD_SRC].height);
 845	dev_dbg(&client->dev, "csi format width: %d\n",
 846		sensor->csi_format->width);
 847
 848	/* Binning has to be set up here; it affects limits */
 849	if (sensor->binning_horizontal == 1 &&
 850	    sensor->binning_vertical == 1) {
 851		binning_mode = 0;
 852	} else {
 853		u8 binning_type =
 854			(sensor->binning_horizontal << 4)
 855			| sensor->binning_vertical;
 856
 857		rval = smiapp_write(
 858			sensor, SMIAPP_REG_U8_BINNING_TYPE, binning_type);
 859		if (rval < 0)
 860			return rval;
 861
 862		binning_mode = 1;
 863	}
 864	rval = smiapp_write(sensor, SMIAPP_REG_U8_BINNING_MODE, binning_mode);
 865	if (rval < 0)
 866		return rval;
 867
 868	/* Get updated limits due to binning */
 869	rval = smiapp_get_limits_binning(sensor);
 870	if (rval < 0)
 871		return rval;
 872
 873	rval = smiapp_pll_update(sensor);
 874	if (rval < 0)
 875		return rval;
 876
 877	/* Output from pixel array, including blanking */
 878	smiapp_update_blanking(sensor);
 879
 880	dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val);
 881	dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val);
 882
 883	dev_dbg(&client->dev, "real timeperframe\t100/%d\n",
 884		sensor->pll.vt_pix_clk_freq_hz /
 885		((sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
 886		  + sensor->hblank->val) *
 887		 (sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
 888		  + sensor->vblank->val) / 100));
 889
 890	return 0;
 891}
 892
 893/*
 894 *
 895 * SMIA++ NVM handling
 896 *
 897 */
 898static int smiapp_read_nvm(struct smiapp_sensor *sensor,
 899			   unsigned char *nvm)
 900{
 901	u32 i, s, p, np, v;
 902	int rval = 0, rval2;
 903
 904	np = sensor->nvm_size / SMIAPP_NVM_PAGE_SIZE;
 905	for (p = 0; p < np; p++) {
 906		rval = smiapp_write(
 907			sensor,
 908			SMIAPP_REG_U8_DATA_TRANSFER_IF_1_PAGE_SELECT, p);
 909		if (rval)
 910			goto out;
 911
 912		rval = smiapp_write(sensor,
 913				    SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL,
 914				    SMIAPP_DATA_TRANSFER_IF_1_CTRL_EN |
 915				    SMIAPP_DATA_TRANSFER_IF_1_CTRL_RD_EN);
 916		if (rval)
 917			goto out;
 918
 919		for (i = 0; i < 1000; i++) {
 920			rval = smiapp_read(
 921				sensor,
 922				SMIAPP_REG_U8_DATA_TRANSFER_IF_1_STATUS, &s);
 923
 924			if (rval)
 925				goto out;
 926
 927			if (s & SMIAPP_DATA_TRANSFER_IF_1_STATUS_RD_READY)
 928				break;
 929
 930			if (--i == 0) {
 931				rval = -ETIMEDOUT;
 932				goto out;
 933			}
 934
 935		}
 936
 937		for (i = 0; i < SMIAPP_NVM_PAGE_SIZE; i++) {
 938			rval = smiapp_read(
 939				sensor,
 940				SMIAPP_REG_U8_DATA_TRANSFER_IF_1_DATA_0 + i,
 941				&v);
 942			if (rval)
 943				goto out;
 944
 945			*nvm++ = v;
 946		}
 947	}
 948
 949out:
 950	rval2 = smiapp_write(sensor, SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL, 0);
 951	if (rval < 0)
 952		return rval;
 953	else
 954		return rval2;
 955}
 956
 957/*
 958 *
 959 * SMIA++ CCI address control
 960 *
 961 */
 962static int smiapp_change_cci_addr(struct smiapp_sensor *sensor)
 963{
 964	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
 965	int rval;
 966	u32 val;
 967
 968	client->addr = sensor->platform_data->i2c_addr_dfl;
 969
 970	rval = smiapp_write(sensor,
 971			    SMIAPP_REG_U8_CCI_ADDRESS_CONTROL,
 972			    sensor->platform_data->i2c_addr_alt << 1);
 973	if (rval)
 974		return rval;
 975
 976	client->addr = sensor->platform_data->i2c_addr_alt;
 977
 978	/* verify addr change went ok */
 979	rval = smiapp_read(sensor, SMIAPP_REG_U8_CCI_ADDRESS_CONTROL, &val);
 980	if (rval)
 981		return rval;
 982
 983	if (val != sensor->platform_data->i2c_addr_alt << 1)
 984		return -ENODEV;
 985
 986	return 0;
 987}
 988
 989/*
 990 *
 991 * SMIA++ Mode Control
 992 *
 993 */
 994static int smiapp_setup_flash_strobe(struct smiapp_sensor *sensor)
 995{
 996	struct smiapp_flash_strobe_parms *strobe_setup;
 997	unsigned int ext_freq = sensor->platform_data->ext_clk;
 998	u32 tmp;
 999	u32 strobe_adjustment;
1000	u32 strobe_width_high_rs;
1001	int rval;
1002
1003	strobe_setup = sensor->platform_data->strobe_setup;
1004
1005	/*
1006	 * How to calculate registers related to strobe length. Please
1007	 * do not change, or if you do at least know what you're
1008	 * doing. :-)
1009	 *
1010	 * Sakari Ailus <sakari.ailus@maxwell.research.nokia.com> 2010-10-25
1011	 *
1012	 * flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl
1013	 *	/ EXTCLK freq [Hz]) * flash_strobe_adjustment
1014	 *
1015	 * tFlash_strobe_width_ctrl E N, [1 - 0xffff]
1016	 * flash_strobe_adjustment E N, [1 - 0xff]
1017	 *
1018	 * The formula above is written as below to keep it on one
1019	 * line:
1020	 *
1021	 * l / 10^6 = w / e * a
1022	 *
1023	 * Let's mark w * a by x:
1024	 *
1025	 * x = w * a
1026	 *
1027	 * Thus, we get:
1028	 *
1029	 * x = l * e / 10^6
1030	 *
1031	 * The strobe width must be at least as long as requested,
1032	 * thus rounding upwards is needed.
1033	 *
1034	 * x = (l * e + 10^6 - 1) / 10^6
1035	 * -----------------------------
1036	 *
1037	 * Maximum possible accuracy is wanted at all times. Thus keep
1038	 * a as small as possible.
1039	 *
1040	 * Calculate a, assuming maximum w, with rounding upwards:
1041	 *
1042	 * a = (x + (2^16 - 1) - 1) / (2^16 - 1)
1043	 * -------------------------------------
1044	 *
1045	 * Thus, we also get w, with that a, with rounding upwards:
1046	 *
1047	 * w = (x + a - 1) / a
1048	 * -------------------
1049	 *
1050	 * To get limits:
1051	 *
1052	 * x E [1, (2^16 - 1) * (2^8 - 1)]
1053	 *
1054	 * Substituting maximum x to the original formula (with rounding),
1055	 * the maximum l is thus
1056	 *
1057	 * (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1
1058	 *
1059	 * l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e
1060	 * --------------------------------------------------
1061	 *
1062	 * flash_strobe_length must be clamped between 1 and
1063	 * (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq.
1064	 *
1065	 * Then,
1066	 *
1067	 * flash_strobe_adjustment = ((flash_strobe_length *
1068	 *	EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1)
1069	 *
1070	 * tFlash_strobe_width_ctrl = ((flash_strobe_length *
1071	 *	EXTCLK freq + 10^6 - 1) / 10^6 +
1072	 *	flash_strobe_adjustment - 1) / flash_strobe_adjustment
1073	 */
1074	tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) -
1075		      1000000 + 1, ext_freq);
1076	strobe_setup->strobe_width_high_us =
1077		clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp);
1078
1079	tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq +
1080			1000000 - 1), 1000000ULL);
1081	strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1);
1082	strobe_width_high_rs = (tmp + strobe_adjustment - 1) /
1083				strobe_adjustment;
1084
1085	rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_MODE_RS,
1086			    strobe_setup->mode);
1087	if (rval < 0)
1088		goto out;
1089
1090	rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_STROBE_ADJUSTMENT,
1091			    strobe_adjustment);
1092	if (rval < 0)
1093		goto out;
1094
1095	rval = smiapp_write(
1096		sensor, SMIAPP_REG_U16_TFLASH_STROBE_WIDTH_HIGH_RS_CTRL,
1097		strobe_width_high_rs);
1098	if (rval < 0)
1099		goto out;
1100
1101	rval = smiapp_write(sensor, SMIAPP_REG_U16_TFLASH_STROBE_DELAY_RS_CTRL,
1102			    strobe_setup->strobe_delay);
1103	if (rval < 0)
1104		goto out;
1105
1106	rval = smiapp_write(sensor, SMIAPP_REG_U16_FLASH_STROBE_START_POINT,
1107			    strobe_setup->stobe_start_point);
1108	if (rval < 0)
1109		goto out;
1110
1111	rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_TRIGGER_RS,
1112			    strobe_setup->trigger);
1113
1114out:
1115	sensor->platform_data->strobe_setup->trigger = 0;
1116
1117	return rval;
1118}
1119
1120/* -----------------------------------------------------------------------------
1121 * Power management
1122 */
1123
1124static int smiapp_power_on(struct smiapp_sensor *sensor)
1125{
1126	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1127	unsigned int sleep;
1128	int rval;
1129
1130	rval = regulator_enable(sensor->vana);
1131	if (rval) {
1132		dev_err(&client->dev, "failed to enable vana regulator\n");
1133		return rval;
1134	}
1135	usleep_range(1000, 1000);
1136
1137	if (sensor->platform_data->set_xclk)
1138		rval = sensor->platform_data->set_xclk(
1139			&sensor->src->sd, sensor->platform_data->ext_clk);
1140	else
1141		rval = clk_enable(sensor->ext_clk);
1142	if (rval < 0) {
1143		dev_dbg(&client->dev, "failed to set xclk\n");
1144		goto out_xclk_fail;
1145	}
1146	usleep_range(1000, 1000);
1147
1148	if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN)
1149		gpio_set_value(sensor->platform_data->xshutdown, 1);
1150
1151	sleep = SMIAPP_RESET_DELAY(sensor->platform_data->ext_clk);
1152	usleep_range(sleep, sleep);
1153
1154	/*
1155	 * Failures to respond to the address change command have been noticed.
1156	 * Those failures seem to be caused by the sensor requiring a longer
1157	 * boot time than advertised. An additional 10ms delay seems to work
1158	 * around the issue, but the SMIA++ I2C write retry hack makes the delay
1159	 * unnecessary. The failures need to be investigated to find a proper
1160	 * fix, and a delay will likely need to be added here if the I2C write
1161	 * retry hack is reverted before the root cause of the boot time issue
1162	 * is found.
1163	 */
1164
1165	if (sensor->platform_data->i2c_addr_alt) {
1166		rval = smiapp_change_cci_addr(sensor);
1167		if (rval) {
1168			dev_err(&client->dev, "cci address change error\n");
1169			goto out_cci_addr_fail;
1170		}
1171	}
1172
1173	rval = smiapp_write(sensor, SMIAPP_REG_U8_SOFTWARE_RESET,
1174			    SMIAPP_SOFTWARE_RESET);
1175	if (rval < 0) {
1176		dev_err(&client->dev, "software reset failed\n");
1177		goto out_cci_addr_fail;
1178	}
1179
1180	if (sensor->platform_data->i2c_addr_alt) {
1181		rval = smiapp_change_cci_addr(sensor);
1182		if (rval) {
1183			dev_err(&client->dev, "cci address change error\n");
1184			goto out_cci_addr_fail;
1185		}
1186	}
1187
1188	rval = smiapp_write(sensor, SMIAPP_REG_U16_COMPRESSION_MODE,
1189			    SMIAPP_COMPRESSION_MODE_SIMPLE_PREDICTOR);
1190	if (rval) {
1191		dev_err(&client->dev, "compression mode set failed\n");
1192		goto out_cci_addr_fail;
1193	}
1194
1195	rval = smiapp_write(
1196		sensor, SMIAPP_REG_U16_EXTCLK_FREQUENCY_MHZ,
1197		sensor->platform_data->ext_clk / (1000000 / (1 << 8)));
1198	if (rval) {
1199		dev_err(&client->dev, "extclk frequency set failed\n");
1200		goto out_cci_addr_fail;
1201	}
1202
1203	rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_LANE_MODE,
1204			    sensor->platform_data->lanes - 1);
1205	if (rval) {
1206		dev_err(&client->dev, "csi lane mode set failed\n");
1207		goto out_cci_addr_fail;
1208	}
1209
1210	rval = smiapp_write(sensor, SMIAPP_REG_U8_FAST_STANDBY_CTRL,
1211			    SMIAPP_FAST_STANDBY_CTRL_IMMEDIATE);
1212	if (rval) {
1213		dev_err(&client->dev, "fast standby set failed\n");
1214		goto out_cci_addr_fail;
1215	}
1216
1217	rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_SIGNALLING_MODE,
1218			    sensor->platform_data->csi_signalling_mode);
1219	if (rval) {
1220		dev_err(&client->dev, "csi signalling mode set failed\n");
1221		goto out_cci_addr_fail;
1222	}
1223
1224	/* DPHY control done by sensor based on requested link rate */
1225	rval = smiapp_write(sensor, SMIAPP_REG_U8_DPHY_CTRL,
1226			    SMIAPP_DPHY_CTRL_UI);
1227	if (rval < 0)
1228		return rval;
1229
1230	rval = smiapp_call_quirk(sensor, post_poweron);
1231	if (rval) {
1232		dev_err(&client->dev, "post_poweron quirks failed\n");
1233		goto out_cci_addr_fail;
1234	}
1235
1236	/* Are we still initialising...? If yes, return here. */
1237	if (!sensor->pixel_array)
1238		return 0;
1239
1240	rval = v4l2_ctrl_handler_setup(
1241		&sensor->pixel_array->ctrl_handler);
1242	if (rval)
1243		goto out_cci_addr_fail;
1244
1245	rval = v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler);
1246	if (rval)
1247		goto out_cci_addr_fail;
1248
1249	mutex_lock(&sensor->mutex);
1250	rval = smiapp_update_mode(sensor);
1251	mutex_unlock(&sensor->mutex);
1252	if (rval < 0)
1253		goto out_cci_addr_fail;
1254
1255	return 0;
1256
1257out_cci_addr_fail:
1258	if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN)
1259		gpio_set_value(sensor->platform_data->xshutdown, 0);
1260	if (sensor->platform_data->set_xclk)
1261		sensor->platform_data->set_xclk(&sensor->src->sd, 0);
1262	else
1263		clk_disable(sensor->ext_clk);
1264
1265out_xclk_fail:
1266	regulator_disable(sensor->vana);
1267	return rval;
1268}
1269
1270static void smiapp_power_off(struct smiapp_sensor *sensor)
1271{
1272	/*
1273	 * Currently power/clock to lens are enable/disabled separately
1274	 * but they are essentially the same signals. So if the sensor is
1275	 * powered off while the lens is powered on the sensor does not
1276	 * really see a power off and next time the cci address change
1277	 * will fail. So do a soft reset explicitly here.
1278	 */
1279	if (sensor->platform_data->i2c_addr_alt)
1280		smiapp_write(sensor,
1281			     SMIAPP_REG_U8_SOFTWARE_RESET,
1282			     SMIAPP_SOFTWARE_RESET);
1283
1284	if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN)
1285		gpio_set_value(sensor->platform_data->xshutdown, 0);
1286	if (sensor->platform_data->set_xclk)
1287		sensor->platform_data->set_xclk(&sensor->src->sd, 0);
1288	else
1289		clk_disable(sensor->ext_clk);
1290	usleep_range(5000, 5000);
1291	regulator_disable(sensor->vana);
1292	sensor->streaming = 0;
1293}
1294
1295static int smiapp_set_power(struct v4l2_subdev *subdev, int on)
1296{
1297	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1298	int ret = 0;
1299
1300	mutex_lock(&sensor->power_mutex);
1301
1302	/*
1303	 * If the power count is modified from 0 to != 0 or from != 0
1304	 * to 0, update the power state.
1305	 */
1306	if (!sensor->power_count == !on)
1307		goto out;
1308
1309	if (on) {
1310		/* Power on and perform initialisation. */
1311		ret = smiapp_power_on(sensor);
1312		if (ret < 0)
1313			goto out;
1314	} else {
1315		smiapp_power_off(sensor);
1316	}
1317
1318	/* Update the power count. */
1319	sensor->power_count += on ? 1 : -1;
1320	WARN_ON(sensor->power_count < 0);
1321
1322out:
1323	mutex_unlock(&sensor->power_mutex);
1324	return ret;
1325}
1326
1327/* -----------------------------------------------------------------------------
1328 * Video stream management
1329 */
1330
1331static int smiapp_start_streaming(struct smiapp_sensor *sensor)
1332{
1333	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1334	int rval;
1335
1336	mutex_lock(&sensor->mutex);
1337
1338	rval = smiapp_write(sensor, SMIAPP_REG_U16_CSI_DATA_FORMAT,
1339			    (sensor->csi_format->width << 8) |
1340			    sensor->csi_format->compressed);
1341	if (rval)
1342		goto out;
1343
1344	rval = smiapp_pll_configure(sensor);
1345	if (rval)
1346		goto out;
1347
1348	/* Analog crop start coordinates */
1349	rval = smiapp_write(sensor, SMIAPP_REG_U16_X_ADDR_START,
1350			    sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left);
1351	if (rval < 0)
1352		goto out;
1353
1354	rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_ADDR_START,
1355			    sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top);
1356	if (rval < 0)
1357		goto out;
1358
1359	/* Analog crop end coordinates */
1360	rval = smiapp_write(
1361		sensor, SMIAPP_REG_U16_X_ADDR_END,
1362		sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left
1363		+ sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width - 1);
1364	if (rval < 0)
1365		goto out;
1366
1367	rval = smiapp_write(
1368		sensor, SMIAPP_REG_U16_Y_ADDR_END,
1369		sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top
1370		+ sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height - 1);
1371	if (rval < 0)
1372		goto out;
1373
1374	/*
1375	 * Output from pixel array, including blanking, is set using
1376	 * controls below. No need to set here.
1377	 */
1378
1379	/* Digital crop */
1380	if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
1381	    == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
1382		rval = smiapp_write(
1383			sensor, SMIAPP_REG_U16_DIGITAL_CROP_X_OFFSET,
1384			sensor->scaler->crop[SMIAPP_PAD_SINK].left);
1385		if (rval < 0)
1386			goto out;
1387
1388		rval = smiapp_write(
1389			sensor, SMIAPP_REG_U16_DIGITAL_CROP_Y_OFFSET,
1390			sensor->scaler->crop[SMIAPP_PAD_SINK].top);
1391		if (rval < 0)
1392			goto out;
1393
1394		rval = smiapp_write(
1395			sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_WIDTH,
1396			sensor->scaler->crop[SMIAPP_PAD_SINK].width);
1397		if (rval < 0)
1398			goto out;
1399
1400		rval = smiapp_write(
1401			sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_HEIGHT,
1402			sensor->scaler->crop[SMIAPP_PAD_SINK].height);
1403		if (rval < 0)
1404			goto out;
1405	}
1406
1407	/* Scaling */
1408	if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
1409	    != SMIAPP_SCALING_CAPABILITY_NONE) {
1410		rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALING_MODE,
1411				    sensor->scaling_mode);
1412		if (rval < 0)
1413			goto out;
1414
1415		rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALE_M,
1416				    sensor->scale_m);
1417		if (rval < 0)
1418			goto out;
1419	}
1420
1421	/* Output size from sensor */
1422	rval = smiapp_write(sensor, SMIAPP_REG_U16_X_OUTPUT_SIZE,
1423			    sensor->src->crop[SMIAPP_PAD_SRC].width);
1424	if (rval < 0)
1425		goto out;
1426	rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_OUTPUT_SIZE,
1427			    sensor->src->crop[SMIAPP_PAD_SRC].height);
1428	if (rval < 0)
1429		goto out;
1430
1431	if ((sensor->flash_capability &
1432	     (SMIAPP_FLASH_MODE_CAPABILITY_SINGLE_STROBE |
1433	      SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE)) &&
1434	    sensor->platform_data->strobe_setup != NULL &&
1435	    sensor->platform_data->strobe_setup->trigger != 0) {
1436		rval = smiapp_setup_flash_strobe(sensor);
1437		if (rval)
1438			goto out;
1439	}
1440
1441	rval = smiapp_call_quirk(sensor, pre_streamon);
1442	if (rval) {
1443		dev_err(&client->dev, "pre_streamon quirks failed\n");
1444		goto out;
1445	}
1446
1447	rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
1448			    SMIAPP_MODE_SELECT_STREAMING);
1449
1450out:
1451	mutex_unlock(&sensor->mutex);
1452
1453	return rval;
1454}
1455
1456static int smiapp_stop_streaming(struct smiapp_sensor *sensor)
1457{
1458	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
1459	int rval;
1460
1461	mutex_lock(&sensor->mutex);
1462	rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
1463			    SMIAPP_MODE_SELECT_SOFTWARE_STANDBY);
1464	if (rval)
1465		goto out;
1466
1467	rval = smiapp_call_quirk(sensor, post_streamoff);
1468	if (rval)
1469		dev_err(&client->dev, "post_streamoff quirks failed\n");
1470
1471out:
1472	mutex_unlock(&sensor->mutex);
1473	return rval;
1474}
1475
1476/* -----------------------------------------------------------------------------
1477 * V4L2 subdev video operations
1478 */
1479
1480static int smiapp_set_stream(struct v4l2_subdev *subdev, int enable)
1481{
1482	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1483	int rval;
1484
1485	if (sensor->streaming == enable)
1486		return 0;
1487
1488	if (enable) {
1489		sensor->streaming = 1;
1490		rval = smiapp_start_streaming(sensor);
1491		if (rval < 0)
1492			sensor->streaming = 0;
1493	} else {
1494		rval = smiapp_stop_streaming(sensor);
1495		sensor->streaming = 0;
1496	}
1497
1498	return rval;
1499}
1500
1501static int smiapp_enum_mbus_code(struct v4l2_subdev *subdev,
1502				 struct v4l2_subdev_fh *fh,
1503				 struct v4l2_subdev_mbus_code_enum *code)
1504{
1505	struct i2c_client *client = v4l2_get_subdevdata(subdev);
1506	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1507	unsigned int i;
1508	int idx = -1;
1509	int rval = -EINVAL;
1510
1511	mutex_lock(&sensor->mutex);
1512
1513	dev_err(&client->dev, "subdev %s, pad %d, index %d\n",
1514		subdev->name, code->pad, code->index);
1515
1516	if (subdev != &sensor->src->sd || code->pad != SMIAPP_PAD_SRC) {
1517		if (code->index)
1518			goto out;
1519
1520		code->code = sensor->internal_csi_format->code;
1521		rval = 0;
1522		goto out;
1523	}
1524
1525	for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
1526		if (sensor->mbus_frame_fmts & (1 << i))
1527			idx++;
1528
1529		if (idx == code->index) {
1530			code->code = smiapp_csi_data_formats[i].code;
1531			dev_err(&client->dev, "found index %d, i %d, code %x\n",
1532				code->index, i, code->code);
1533			rval = 0;
1534			break;
1535		}
1536	}
1537
1538out:
1539	mutex_unlock(&sensor->mutex);
1540
1541	return rval;
1542}
1543
1544static u32 __smiapp_get_mbus_code(struct v4l2_subdev *subdev,
1545				  unsigned int pad)
1546{
1547	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1548
1549	if (subdev == &sensor->src->sd && pad == SMIAPP_PAD_SRC)
1550		return sensor->csi_format->code;
1551	else
1552		return sensor->internal_csi_format->code;
1553}
1554
1555static int __smiapp_get_format(struct v4l2_subdev *subdev,
1556			       struct v4l2_subdev_fh *fh,
1557			       struct v4l2_subdev_format *fmt)
1558{
1559	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1560
1561	if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
1562		fmt->format = *v4l2_subdev_get_try_format(fh, fmt->pad);
1563	} else {
1564		struct v4l2_rect *r;
1565
1566		if (fmt->pad == ssd->source_pad)
1567			r = &ssd->crop[ssd->source_pad];
1568		else
1569			r = &ssd->sink_fmt;
1570
1571		fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
1572		fmt->format.width = r->width;
1573		fmt->format.height = r->height;
1574	}
1575
1576	return 0;
1577}
1578
1579static int smiapp_get_format(struct v4l2_subdev *subdev,
1580			     struct v4l2_subdev_fh *fh,
1581			     struct v4l2_subdev_format *fmt)
1582{
1583	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1584	int rval;
1585
1586	mutex_lock(&sensor->mutex);
1587	rval = __smiapp_get_format(subdev, fh, fmt);
1588	mutex_unlock(&sensor->mutex);
1589
1590	return rval;
1591}
1592
1593static void smiapp_get_crop_compose(struct v4l2_subdev *subdev,
1594				    struct v4l2_subdev_fh *fh,
1595				    struct v4l2_rect **crops,
1596				    struct v4l2_rect **comps, int which)
1597{
1598	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1599	unsigned int i;
1600
1601	if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1602		if (crops)
1603			for (i = 0; i < subdev->entity.num_pads; i++)
1604				crops[i] = &ssd->crop[i];
1605		if (comps)
1606			*comps = &ssd->compose;
1607	} else {
1608		if (crops) {
1609			for (i = 0; i < subdev->entity.num_pads; i++) {
1610				crops[i] = v4l2_subdev_get_try_crop(fh, i);
1611				BUG_ON(!crops[i]);
1612			}
1613		}
1614		if (comps) {
1615			*comps = v4l2_subdev_get_try_compose(fh,
1616							     SMIAPP_PAD_SINK);
1617			BUG_ON(!*comps);
1618		}
1619	}
1620}
1621
1622/* Changes require propagation only on sink pad. */
1623static void smiapp_propagate(struct v4l2_subdev *subdev,
1624			     struct v4l2_subdev_fh *fh, int which,
1625			     int target)
1626{
1627	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1628	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1629	struct v4l2_rect *comp, *crops[SMIAPP_PADS];
1630
1631	smiapp_get_crop_compose(subdev, fh, crops, &comp, which);
1632
1633	switch (target) {
1634	case V4L2_SUBDEV_SEL_TGT_CROP_ACTUAL:
1635		comp->width = crops[SMIAPP_PAD_SINK]->width;
1636		comp->height = crops[SMIAPP_PAD_SINK]->height;
1637		if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1638			if (ssd == sensor->scaler) {
1639				sensor->scale_m =
1640					sensor->limits[
1641						SMIAPP_LIMIT_SCALER_N_MIN];
1642				sensor->scaling_mode =
1643					SMIAPP_SCALING_MODE_NONE;
1644			} else if (ssd == sensor->binner) {
1645				sensor->binning_horizontal = 1;
1646				sensor->binning_vertical = 1;
1647			}
1648		}
1649		/* Fall through */
1650	case V4L2_SUBDEV_SEL_TGT_COMPOSE_ACTUAL:
1651		*crops[SMIAPP_PAD_SRC] = *comp;
1652		break;
1653	default:
1654		BUG();
1655	}
1656}
1657
1658static const struct smiapp_csi_data_format
1659*smiapp_validate_csi_data_format(struct smiapp_sensor *sensor, u32 code)
1660{
1661	const struct smiapp_csi_data_format *csi_format = sensor->csi_format;
1662	unsigned int i;
1663
1664	for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
1665		if (sensor->mbus_frame_fmts & (1 << i)
1666		    && smiapp_csi_data_formats[i].code == code)
1667			return &smiapp_csi_data_formats[i];
1668	}
1669
1670	return csi_format;
1671}
1672
1673static int smiapp_set_format(struct v4l2_subdev *subdev,
1674			     struct v4l2_subdev_fh *fh,
1675			     struct v4l2_subdev_format *fmt)
1676{
1677	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1678	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1679	struct v4l2_rect *crops[SMIAPP_PADS];
1680
1681	mutex_lock(&sensor->mutex);
1682
1683	/*
1684	 * Media bus code is changeable on src subdev's source pad. On
1685	 * other source pads we just get format here.
1686	 */
1687	if (fmt->pad == ssd->source_pad) {
1688		u32 code = fmt->format.code;
1689		int rval = __smiapp_get_format(subdev, fh, fmt);
1690
1691		if (!rval && subdev == &sensor->src->sd) {
1692			const struct smiapp_csi_data_format *csi_format =
1693				smiapp_validate_csi_data_format(sensor, code);
1694			if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
1695				sensor->csi_format = csi_format;
1696			fmt->format.code = csi_format->code;
1697		}
1698
1699		mutex_unlock(&sensor->mutex);
1700		return rval;
1701	}
1702
1703	/* Sink pad. Width and height are changeable here. */
1704	fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
1705	fmt->format.width &= ~1;
1706	fmt->format.height &= ~1;
1707
1708	fmt->format.width =
1709		clamp(fmt->format.width,
1710		      sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE],
1711		      sensor->limits[SMIAPP_LIMIT_MAX_X_OUTPUT_SIZE]);
1712	fmt->format.height =
1713		clamp(fmt->format.height,
1714		      sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE],
1715		      sensor->limits[SMIAPP_LIMIT_MAX_Y_OUTPUT_SIZE]);
1716
1717	smiapp_get_crop_compose(subdev, fh, crops, NULL, fmt->which);
1718
1719	crops[ssd->sink_pad]->left = 0;
1720	crops[ssd->sink_pad]->top = 0;
1721	crops[ssd->sink_pad]->width = fmt->format.width;
1722	crops[ssd->sink_pad]->height = fmt->format.height;
1723	if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
1724		ssd->sink_fmt = *crops[ssd->sink_pad];
1725	smiapp_propagate(subdev, fh, fmt->which,
1726			 V4L2_SUBDEV_SEL_TGT_CROP_ACTUAL);
1727
1728	mutex_unlock(&sensor->mutex);
1729
1730	return 0;
1731}
1732
1733/*
1734 * Calculate goodness of scaled image size compared to expected image
1735 * size and flags provided.
1736 */
1737#define SCALING_GOODNESS		100000
1738#define SCALING_GOODNESS_EXTREME	100000000
1739static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w,
1740			    int h, int ask_h, u32 flags)
1741{
1742	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1743	struct i2c_client *client = v4l2_get_subdevdata(subdev);
1744	int val = 0;
1745
1746	w &= ~1;
1747	ask_w &= ~1;
1748	h &= ~1;
1749	ask_h &= ~1;
1750
1751	if (flags & V4L2_SUBDEV_SEL_FLAG_SIZE_GE) {
1752		if (w < ask_w)
1753			val -= SCALING_GOODNESS;
1754		if (h < ask_h)
1755			val -= SCALING_GOODNESS;
1756	}
1757
1758	if (flags & V4L2_SUBDEV_SEL_FLAG_SIZE_LE) {
1759		if (w > ask_w)
1760			val -= SCALING_GOODNESS;
1761		if (h > ask_h)
1762			val -= SCALING_GOODNESS;
1763	}
1764
1765	val -= abs(w - ask_w);
1766	val -= abs(h - ask_h);
1767
1768	if (w < sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE])
1769		val -= SCALING_GOODNESS_EXTREME;
1770
1771	dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n",
1772		w, ask_h, h, ask_h, val);
1773
1774	return val;
1775}
1776
1777static void smiapp_set_compose_binner(struct v4l2_subdev *subdev,
1778				      struct v4l2_subdev_fh *fh,
1779				      struct v4l2_subdev_selection *sel,
1780				      struct v4l2_rect **crops,
1781				      struct v4l2_rect *comp)
1782{
1783	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1784	unsigned int i;
1785	unsigned int binh = 1, binv = 1;
1786	unsigned int best = scaling_goodness(
1787		subdev,
1788		crops[SMIAPP_PAD_SINK]->width, sel->r.width,
1789		crops[SMIAPP_PAD_SINK]->height, sel->r.height, sel->flags);
1790
1791	for (i = 0; i < sensor->nbinning_subtypes; i++) {
1792		int this = scaling_goodness(
1793			subdev,
1794			crops[SMIAPP_PAD_SINK]->width
1795			/ sensor->binning_subtypes[i].horizontal,
1796			sel->r.width,
1797			crops[SMIAPP_PAD_SINK]->height
1798			/ sensor->binning_subtypes[i].vertical,
1799			sel->r.height, sel->flags);
1800
1801		if (this > best) {
1802			binh = sensor->binning_subtypes[i].horizontal;
1803			binv = sensor->binning_subtypes[i].vertical;
1804			best = this;
1805		}
1806	}
1807	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1808		sensor->binning_vertical = binv;
1809		sensor->binning_horizontal = binh;
1810	}
1811
1812	sel->r.width = (crops[SMIAPP_PAD_SINK]->width / binh) & ~1;
1813	sel->r.height = (crops[SMIAPP_PAD_SINK]->height / binv) & ~1;
1814}
1815
1816/*
1817 * Calculate best scaling ratio and mode for given output resolution.
1818 *
1819 * Try all of these: horizontal ratio, vertical ratio and smallest
1820 * size possible (horizontally).
1821 *
1822 * Also try whether horizontal scaler or full scaler gives a better
1823 * result.
1824 */
1825static void smiapp_set_compose_scaler(struct v4l2_subdev *subdev,
1826				      struct v4l2_subdev_fh *fh,
1827				      struct v4l2_subdev_selection *sel,
1828				      struct v4l2_rect **crops,
1829				      struct v4l2_rect *comp)
1830{
1831	struct i2c_client *client = v4l2_get_subdevdata(subdev);
1832	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1833	u32 min, max, a, b, max_m;
1834	u32 scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
1835	int mode = SMIAPP_SCALING_MODE_HORIZONTAL;
1836	u32 try[4];
1837	u32 ntry = 0;
1838	unsigned int i;
1839	int best = INT_MIN;
1840
1841	sel->r.width = min_t(unsigned int, sel->r.width,
1842			     crops[SMIAPP_PAD_SINK]->width);
1843	sel->r.height = min_t(unsigned int, sel->r.height,
1844			      crops[SMIAPP_PAD_SINK]->height);
1845
1846	a = crops[SMIAPP_PAD_SINK]->width
1847		* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.width;
1848	b = crops[SMIAPP_PAD_SINK]->height
1849		* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.height;
1850	max_m = crops[SMIAPP_PAD_SINK]->width
1851		* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]
1852		/ sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE];
1853
1854	a = min(sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX],
1855		max(a, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN]));
1856	b = min(sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX],
1857		max(b, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN]));
1858	max_m = min(sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX],
1859		    max(max_m, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN]));
1860
1861	dev_dbg(&client->dev, "scaling: a %d b %d max_m %d\n", a, b, max_m);
1862
1863	min = min(max_m, min(a, b));
1864	max = min(max_m, max(a, b));
1865
1866	try[ntry] = min;
1867	ntry++;
1868	if (min != max) {
1869		try[ntry] = max;
1870		ntry++;
1871	}
1872	if (max != max_m) {
1873		try[ntry] = min + 1;
1874		ntry++;
1875		if (min != max) {
1876			try[ntry] = max + 1;
1877			ntry++;
1878		}
1879	}
1880
1881	for (i = 0; i < ntry; i++) {
1882		int this = scaling_goodness(
1883			subdev,
1884			crops[SMIAPP_PAD_SINK]->width
1885			/ try[i]
1886			* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
1887			sel->r.width,
1888			crops[SMIAPP_PAD_SINK]->height,
1889			sel->r.height,
1890			sel->flags);
1891
1892		dev_dbg(&client->dev, "trying factor %d (%d)\n", try[i], i);
1893
1894		if (this > best) {
1895			scale_m = try[i];
1896			mode = SMIAPP_SCALING_MODE_HORIZONTAL;
1897			best = this;
1898		}
1899
1900		if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
1901		    == SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
1902			continue;
1903
1904		this = scaling_goodness(
1905			subdev, crops[SMIAPP_PAD_SINK]->width
1906			/ try[i]
1907			* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
1908			sel->r.width,
1909			crops[SMIAPP_PAD_SINK]->height
1910			/ try[i]
1911			* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
1912			sel->r.height,
1913			sel->flags);
1914
1915		if (this > best) {
1916			scale_m = try[i];
1917			mode = SMIAPP_SCALING_MODE_BOTH;
1918			best = this;
1919		}
1920	}
1921
1922	sel->r.width =
1923		(crops[SMIAPP_PAD_SINK]->width
1924		 / scale_m
1925		 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]) & ~1;
1926	if (mode == SMIAPP_SCALING_MODE_BOTH)
1927		sel->r.height =
1928			(crops[SMIAPP_PAD_SINK]->height
1929			 / scale_m
1930			 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN])
1931			& ~1;
1932	else
1933		sel->r.height = crops[SMIAPP_PAD_SINK]->height;
1934
1935	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1936		sensor->scale_m = scale_m;
1937		sensor->scaling_mode = mode;
1938	}
1939}
1940/* We're only called on source pads. This function sets scaling. */
1941static int smiapp_set_compose(struct v4l2_subdev *subdev,
1942			      struct v4l2_subdev_fh *fh,
1943			      struct v4l2_subdev_selection *sel)
1944{
1945	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1946	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1947	struct v4l2_rect *comp, *crops[SMIAPP_PADS];
1948
1949	smiapp_get_crop_compose(subdev, fh, crops, &comp, sel->which);
1950
1951	sel->r.top = 0;
1952	sel->r.left = 0;
1953
1954	if (ssd == sensor->binner)
1955		smiapp_set_compose_binner(subdev, fh, sel, crops, comp);
1956	else
1957		smiapp_set_compose_scaler(subdev, fh, sel, crops, comp);
1958
1959	*comp = sel->r;
1960	smiapp_propagate(subdev, fh, sel->which,
1961			 V4L2_SUBDEV_SEL_TGT_COMPOSE_ACTUAL);
1962
1963	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE)
1964		return smiapp_update_mode(sensor);
1965
1966	return 0;
1967}
1968
1969static int __smiapp_sel_supported(struct v4l2_subdev *subdev,
1970				  struct v4l2_subdev_selection *sel)
1971{
1972	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
1973	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
1974
1975	/* We only implement crop in three places. */
1976	switch (sel->target) {
1977	case V4L2_SUBDEV_SEL_TGT_CROP_ACTUAL:
1978	case V4L2_SUBDEV_SEL_TGT_CROP_BOUNDS:
1979		if (ssd == sensor->pixel_array
1980		    && sel->pad == SMIAPP_PA_PAD_SRC)
1981			return 0;
1982		if (ssd == sensor->src
1983		    && sel->pad == SMIAPP_PAD_SRC)
1984			return 0;
1985		if (ssd == sensor->scaler
1986		    && sel->pad == SMIAPP_PAD_SINK
1987		    && sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
1988		    == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP)
1989			return 0;
1990		return -EINVAL;
1991	case V4L2_SUBDEV_SEL_TGT_COMPOSE_ACTUAL:
1992	case V4L2_SUBDEV_SEL_TGT_COMPOSE_BOUNDS:
1993		if (sel->pad == ssd->source_pad)
1994			return -EINVAL;
1995		if (ssd == sensor->binner)
1996			return 0;
1997		if (ssd == sensor->scaler
1998		    && sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
1999		    != SMIAPP_SCALING_CAPABILITY_NONE)
2000			return 0;
2001		/* Fall through */
2002	default:
2003		return -EINVAL;
2004	}
2005}
2006
2007static int smiapp_set_crop(struct v4l2_subdev *subdev,
2008			   struct v4l2_subdev_fh *fh,
2009			   struct v4l2_subdev_selection *sel)
2010{
2011	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2012	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2013	struct v4l2_rect *src_size, *crops[SMIAPP_PADS];
2014	struct v4l2_rect _r;
2015
2016	smiapp_get_crop_compose(subdev, fh, crops, NULL, sel->which);
2017
2018	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2019		if (sel->pad == ssd->sink_pad)
2020			src_size = &ssd->sink_fmt;
2021		else
2022			src_size = &ssd->compose;
2023	} else {
2024		if (sel->pad == ssd->sink_pad) {
2025			_r.left = 0;
2026			_r.top = 0;
2027			_r.width = v4l2_subdev_get_try_format(fh, sel->pad)
2028				->width;
2029			_r.height = v4l2_subdev_get_try_format(fh, sel->pad)
2030				->height;
2031			src_size = &_r;
2032		} else {
2033			src_size =
2034				v4l2_subdev_get_try_compose(
2035					fh, ssd->sink_pad);
2036		}
2037	}
2038
2039	if (ssd == sensor->src && sel->pad == SMIAPP_PAD_SRC) {
2040		sel->r.left = 0;
2041		sel->r.top = 0;
2042	}
2043
2044	sel->r.width = min(sel->r.width, src_size->width);
2045	sel->r.height = min(sel->r.height, src_size->height);
2046
2047	sel->r.left = min(sel->r.left, src_size->width - sel->r.width);
2048	sel->r.top = min(sel->r.top, src_size->height - sel->r.height);
2049
2050	*crops[sel->pad] = sel->r;
2051
2052	if (ssd != sensor->pixel_array && sel->pad == SMIAPP_PAD_SINK)
2053		smiapp_propagate(subdev, fh, sel->which,
2054				 V4L2_SUBDEV_SEL_TGT_CROP_ACTUAL);
2055
2056	return 0;
2057}
2058
2059static int __smiapp_get_selection(struct v4l2_subdev *subdev,
2060				  struct v4l2_subdev_fh *fh,
2061				  struct v4l2_subdev_selection *sel)
2062{
2063	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2064	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
2065	struct v4l2_rect *comp, *crops[SMIAPP_PADS];
2066	struct v4l2_rect sink_fmt;
2067	int ret;
2068
2069	ret = __smiapp_sel_supported(subdev, sel);
2070	if (ret)
2071		return ret;
2072
2073	smiapp_get_crop_compose(subdev, fh, crops, &comp, sel->which);
2074
2075	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2076		sink_fmt = ssd->sink_fmt;
2077	} else {
2078		struct v4l2_mbus_framefmt *fmt =
2079			v4l2_subdev_get_try_format(fh, ssd->sink_pad);
2080
2081		sink_fmt.left = 0;
2082		sink_fmt.top = 0;
2083		sink_fmt.width = fmt->width;
2084		sink_fmt.height = fmt->height;
2085	}
2086
2087	switch (sel->target) {
2088	case V4L2_SUBDEV_SEL_TGT_CROP_BOUNDS:
2089		if (ssd == sensor->pixel_array) {
2090			sel->r.width =
2091				sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
2092			sel->r.height =
2093				sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
2094		} else if (sel->pad == ssd->sink_pad) {
2095			sel->r = sink_fmt;
2096		} else {
2097			sel->r = *comp;
2098		}
2099		break;
2100	case V4L2_SUBDEV_SEL_TGT_CROP_ACTUAL:
2101	case V4L2_SUBDEV_SEL_TGT_COMPOSE_BOUNDS:
2102		sel->r = *crops[sel->pad];
2103		break;
2104	case V4L2_SUBDEV_SEL_TGT_COMPOSE_ACTUAL:
2105		sel->r = *comp;
2106		break;
2107	}
2108
2109	return 0;
2110}
2111
2112static int smiapp_get_selection(struct v4l2_subdev *subdev,
2113				struct v4l2_subdev_fh *fh,
2114				struct v4l2_subdev_selection *sel)
2115{
2116	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2117	int rval;
2118
2119	mutex_lock(&sensor->mutex);
2120	rval = __smiapp_get_selection(subdev, fh, sel);
2121	mutex_unlock(&sensor->mutex);
2122
2123	return rval;
2124}
2125static int smiapp_set_selection(struct v4l2_subdev *subdev,
2126				struct v4l2_subdev_fh *fh,
2127				struct v4l2_subdev_selection *sel)
2128{
2129	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2130	int ret;
2131
2132	ret = __smiapp_sel_supported(subdev, sel);
2133	if (ret)
2134		return ret;
2135
2136	mutex_lock(&sensor->mutex);
2137
2138	sel->r.left = max(0, sel->r.left & ~1);
2139	sel->r.top = max(0, sel->r.top & ~1);
2140	sel->r.width = max(0, SMIAPP_ALIGN_DIM(sel->r.width, sel->flags));
2141	sel->r.height = max(0, SMIAPP_ALIGN_DIM(sel->r.height, sel->flags));
2142
2143	sel->r.width = max_t(unsigned int,
2144			     sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE],
2145			     sel->r.width);
2146	sel->r.height = max_t(unsigned int,
2147			      sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE],
2148			      sel->r.height);
2149
2150	switch (sel->target) {
2151	case V4L2_SUBDEV_SEL_TGT_CROP_ACTUAL:
2152		ret = smiapp_set_crop(subdev, fh, sel);
2153		break;
2154	case V4L2_SUBDEV_SEL_TGT_COMPOSE_ACTUAL:
2155		ret = smiapp_set_compose(subdev, fh, sel);
2156		break;
2157	default:
2158		BUG();
2159	}
2160
2161	mutex_unlock(&sensor->mutex);
2162	return ret;
2163}
2164
2165static int smiapp_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames)
2166{
2167	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2168
2169	*frames = sensor->frame_skip;
2170	return 0;
2171}
2172
2173/* -----------------------------------------------------------------------------
2174 * sysfs attributes
2175 */
2176
2177static ssize_t
2178smiapp_sysfs_nvm_read(struct device *dev, struct device_attribute *attr,
2179		      char *buf)
2180{
2181	struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2182	struct i2c_client *client = v4l2_get_subdevdata(subdev);
2183	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2184	unsigned int nbytes;
2185
2186	if (!sensor->dev_init_done)
2187		return -EBUSY;
2188
2189	if (!sensor->nvm_size) {
2190		/* NVM not read yet - read it now */
2191		sensor->nvm_size = sensor->platform_data->nvm_size;
2192		if (smiapp_set_power(subdev, 1) < 0)
2193			return -ENODEV;
2194		if (smiapp_read_nvm(sensor, sensor->nvm)) {
2195			dev_err(&client->dev, "nvm read failed\n");
2196			return -ENODEV;
2197		}
2198		smiapp_set_power(subdev, 0);
2199	}
2200	/*
2201	 * NVM is still way below a PAGE_SIZE, so we can safely
2202	 * assume this for now.
2203	 */
2204	nbytes = min_t(unsigned int, sensor->nvm_size, PAGE_SIZE);
2205	memcpy(buf, sensor->nvm, nbytes);
2206
2207	return nbytes;
2208}
2209static DEVICE_ATTR(nvm, S_IRUGO, smiapp_sysfs_nvm_read, NULL);
2210
2211/* -----------------------------------------------------------------------------
2212 * V4L2 subdev core operations
2213 */
2214
2215static int smiapp_identify_module(struct v4l2_subdev *subdev)
2216{
2217	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2218	struct i2c_client *client = v4l2_get_subdevdata(subdev);
2219	struct smiapp_module_info *minfo = &sensor->minfo;
2220	unsigned int i;
2221	int rval = 0;
2222
2223	minfo->name = SMIAPP_NAME;
2224
2225	/* Module info */
2226	rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MANUFACTURER_ID,
2227				 &minfo->manufacturer_id);
2228	if (!rval)
2229		rval = smiapp_read_8only(sensor, SMIAPP_REG_U16_MODEL_ID,
2230					 &minfo->model_id);
2231	if (!rval)
2232		rval = smiapp_read_8only(sensor,
2233					 SMIAPP_REG_U8_REVISION_NUMBER_MAJOR,
2234					 &minfo->revision_number_major);
2235	if (!rval)
2236		rval = smiapp_read_8only(sensor,
2237					 SMIAPP_REG_U8_REVISION_NUMBER_MINOR,
2238					 &minfo->revision_number_minor);
2239	if (!rval)
2240		rval = smiapp_read_8only(sensor,
2241					 SMIAPP_REG_U8_MODULE_DATE_YEAR,
2242					 &minfo->module_year);
2243	if (!rval)
2244		rval = smiapp_read_8only(sensor,
2245					 SMIAPP_REG_U8_MODULE_DATE_MONTH,
2246					 &minfo->module_month);
2247	if (!rval)
2248		rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MODULE_DATE_DAY,
2249					 &minfo->module_day);
2250
2251	/* Sensor info */
2252	if (!rval)
2253		rval = smiapp_read_8only(sensor,
2254					 SMIAPP_REG_U8_SENSOR_MANUFACTURER_ID,
2255					 &minfo->sensor_manufacturer_id);
2256	if (!rval)
2257		rval = smiapp_read_8only(sensor,
2258					 SMIAPP_REG_U16_SENSOR_MODEL_ID,
2259					 &minfo->sensor_model_id);
2260	if (!rval)
2261		rval = smiapp_read_8only(sensor,
2262					 SMIAPP_REG_U8_SENSOR_REVISION_NUMBER,
2263					 &minfo->sensor_revision_number);
2264	if (!rval)
2265		rval = smiapp_read_8only(sensor,
2266					 SMIAPP_REG_U8_SENSOR_FIRMWARE_VERSION,
2267					 &minfo->sensor_firmware_version);
2268
2269	/* SMIA */
2270	if (!rval)
2271		rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIA_VERSION,
2272					 &minfo->smia_version);
2273	if (!rval)
2274		rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIAPP_VERSION,
2275					 &minfo->smiapp_version);
2276
2277	if (rval) {
2278		dev_err(&client->dev, "sensor detection failed\n");
2279		return -ENODEV;
2280	}
2281
2282	dev_dbg(&client->dev, "module 0x%2.2x-0x%4.4x\n",
2283		minfo->manufacturer_id, minfo->model_id);
2284
2285	dev_dbg(&client->dev,
2286		"module revision 0x%2.2x-0x%2.2x date %2.2d-%2.2d-%2.2d\n",
2287		minfo->revision_number_major, minfo->revision_number_minor,
2288		minfo->module_year, minfo->module_month, minfo->module_day);
2289
2290	dev_dbg(&client->dev, "sensor 0x%2.2x-0x%4.4x\n",
2291		minfo->sensor_manufacturer_id, minfo->sensor_model_id);
2292
2293	dev_dbg(&client->dev,
2294		"sensor revision 0x%2.2x firmware version 0x%2.2x\n",
2295		minfo->sensor_revision_number, minfo->sensor_firmware_version);
2296
2297	dev_dbg(&client->dev, "smia version %2.2d smiapp version %2.2d\n",
2298		minfo->smia_version, minfo->smiapp_version);
2299
2300	/*
2301	 * Some modules have bad data in the lvalues below. Hope the
2302	 * rvalues have better stuff. The lvalues are module
2303	 * parameters whereas the rvalues are sensor parameters.
2304	 */
2305	if (!minfo->manufacturer_id && !minfo->model_id) {
2306		minfo->manufacturer_id = minfo->sensor_manufacturer_id;
2307		minfo->model_id = minfo->sensor_model_id;
2308		minfo->revision_number_major = minfo->sensor_revision_number;
2309	}
2310
2311	for (i = 0; i < ARRAY_SIZE(smiapp_module_idents); i++) {
2312		if (smiapp_module_idents[i].manufacturer_id
2313		    != minfo->manufacturer_id)
2314			continue;
2315		if (smiapp_module_idents[i].model_id != minfo->model_id)
2316			continue;
2317		if (smiapp_module_idents[i].flags
2318		    & SMIAPP_MODULE_IDENT_FLAG_REV_LE) {
2319			if (smiapp_module_idents[i].revision_number_major
2320			    < minfo->revision_number_major)
2321				continue;
2322		} else {
2323			if (smiapp_module_idents[i].revision_number_major
2324			    != minfo->revision_number_major)
2325				continue;
2326		}
2327
2328		minfo->name = smiapp_module_idents[i].name;
2329		minfo->quirk = smiapp_module_idents[i].quirk;
2330		break;
2331	}
2332
2333	if (i >= ARRAY_SIZE(smiapp_module_idents))
2334		dev_warn(&client->dev,
2335			 "no quirks for this module; let's hope it's fully compliant\n");
2336
2337	dev_dbg(&client->dev, "the sensor is called %s, ident %2.2x%4.4x%2.2x\n",
2338		minfo->name, minfo->manufacturer_id, minfo->model_id,
2339		minfo->revision_number_major);
2340
2341	strlcpy(subdev->name, sensor->minfo.name, sizeof(subdev->name));
2342
2343	return 0;
2344}
2345
2346static const struct v4l2_subdev_ops smiapp_ops;
2347static const struct v4l2_subdev_internal_ops smiapp_internal_ops;
2348static const struct media_entity_operations smiapp_entity_ops;
2349
2350static int smiapp_registered(struct v4l2_subdev *subdev)
2351{
2352	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2353	struct i2c_client *client = v4l2_get_subdevdata(subdev);
2354	struct smiapp_subdev *last = NULL;
2355	u32 tmp;
2356	unsigned int i;
2357	int rval;
2358
2359	sensor->vana = regulator_get(&client->dev, "VANA");
2360	if (IS_ERR(sensor->vana)) {
2361		dev_err(&client->dev, "could not get regulator for vana\n");
2362		return -ENODEV;
2363	}
2364
2365	if (!sensor->platform_data->set_xclk) {
2366		sensor->ext_clk = clk_get(&client->dev,
2367					  sensor->platform_data->ext_clk_name);
2368		if (IS_ERR(sensor->ext_clk)) {
2369			dev_err(&client->dev, "could not get clock %s\n",
2370				sensor->platform_data->ext_clk_name);
2371			rval = -ENODEV;
2372			goto out_clk_get;
2373		}
2374
2375		rval = clk_set_rate(sensor->ext_clk,
2376				    sensor->platform_data->ext_clk);
2377		if (rval < 0) {
2378			dev_err(&client->dev,
2379				"unable to set clock %s freq to %u\n",
2380				sensor->platform_data->ext_clk_name,
2381				sensor->platform_data->ext_clk);
2382			rval = -ENODEV;
2383			goto out_clk_set_rate;
2384		}
2385	}
2386
2387	if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN) {
2388		if (gpio_request_one(sensor->platform_data->xshutdown, 0,
2389				     "SMIA++ xshutdown") != 0) {
2390			dev_err(&client->dev,
2391				"unable to acquire reset gpio %d\n",
2392				sensor->platform_data->xshutdown);
2393			rval = -ENODEV;
2394			goto out_clk_set_rate;
2395		}
2396	}
2397
2398	rval = smiapp_power_on(sensor);
2399	if (rval) {
2400		rval = -ENODEV;
2401		goto out_smiapp_power_on;
2402	}
2403
2404	rval = smiapp_identify_module(subdev);
2405	if (rval) {
2406		rval = -ENODEV;
2407		goto out_power_off;
2408	}
2409
2410	rval = smiapp_get_all_limits(sensor);
2411	if (rval) {
2412		rval = -ENODEV;
2413		goto out_power_off;
2414	}
2415
2416	/*
2417	 * Handle Sensor Module orientation on the board.
2418	 *
2419	 * The application of H-FLIP and V-FLIP on the sensor is modified by
2420	 * the sensor orientation on the board.
2421	 *
2422	 * For SMIAPP_BOARD_SENSOR_ORIENT_180 the default behaviour is to set
2423	 * both H-FLIP and V-FLIP for normal operation which also implies
2424	 * that a set/unset operation for user space HFLIP and VFLIP v4l2
2425	 * controls will need to be internally inverted.
2426	 *
2427	 * Rotation also changes the bayer pattern.
2428	 */
2429	if (sensor->platform_data->module_board_orient ==
2430	    SMIAPP_MODULE_BOARD_ORIENT_180)
2431		sensor->hvflip_inv_mask = SMIAPP_IMAGE_ORIENTATION_HFLIP |
2432					  SMIAPP_IMAGE_ORIENTATION_VFLIP;
2433
2434	rval = smiapp_get_mbus_formats(sensor);
2435	if (rval) {
2436		rval = -ENODEV;
2437		goto out_power_off;
2438	}
2439
2440	if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY]) {
2441		u32 val;
2442
2443		rval = smiapp_read(sensor,
2444				   SMIAPP_REG_U8_BINNING_SUBTYPES, &val);
2445		if (rval < 0) {
2446			rval = -ENODEV;
2447			goto out_power_off;
2448		}
2449		sensor->nbinning_subtypes = min_t(u8, val,
2450						  SMIAPP_BINNING_SUBTYPES);
2451
2452		for (i = 0; i < sensor->nbinning_subtypes; i++) {
2453			rval = smiapp_read(
2454				sensor, SMIAPP_REG_U8_BINNING_TYPE_n(i), &val);
2455			if (rval < 0) {
2456				rval = -ENODEV;
2457				goto out_power_off;
2458			}
2459			sensor->binning_subtypes[i] =
2460				*(struct smiapp_binning_subtype *)&val;
2461
2462			dev_dbg(&client->dev, "binning %xx%x\n",
2463				sensor->binning_subtypes[i].horizontal,
2464				sensor->binning_subtypes[i].vertical);
2465		}
2466	}
2467	sensor->binning_horizontal = 1;
2468	sensor->binning_vertical = 1;
2469
2470	/* SMIA++ NVM initialization - it will be read from the sensor
2471	 * when it is first requested by userspace.
2472	 */
2473	if (sensor->minfo.smiapp_version && sensor->platform_data->nvm_size) {
2474		sensor->nvm = kzalloc(sensor->platform_data->nvm_size,
2475				      GFP_KERNEL);
2476		if (sensor->nvm == NULL) {
2477			dev_err(&client->dev, "nvm buf allocation failed\n");
2478			rval = -ENOMEM;
2479			goto out_power_off;
2480		}
2481
2482		if (device_create_file(&client->dev, &dev_attr_nvm) != 0) {
2483			dev_err(&client->dev, "sysfs nvm entry failed\n");
2484			rval = -EBUSY;
2485			goto out_power_off;
2486		}
2487	}
2488
2489	rval = smiapp_call_quirk(sensor, limits);
2490	if (rval) {
2491		dev_err(&client->dev, "limits quirks failed\n");
2492		goto out_nvm_release;
2493	}
2494
2495	/* We consider this as profile 0 sensor if any of these are zero. */
2496	if (!sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV] ||
2497	    !sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV] ||
2498	    !sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV] ||
2499	    !sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV]) {
2500		sensor->minfo.smiapp_profile = SMIAPP_PROFILE_0;
2501	} else if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
2502		   != SMIAPP_SCALING_CAPABILITY_NONE) {
2503		if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
2504		    == SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
2505			sensor->minfo.smiapp_profile = SMIAPP_PROFILE_1;
2506		else
2507			sensor->minfo.smiapp_profile = SMIAPP_PROFILE_2;
2508		sensor->scaler = &sensor->ssds[sensor->ssds_used];
2509		sensor->ssds_used++;
2510	} else if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
2511		   == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
2512		sensor->scaler = &sensor->ssds[sensor->ssds_used];
2513		sensor->ssds_used++;
2514	}
2515	sensor->binner = &sensor->ssds[sensor->ssds_used];
2516	sensor->ssds_used++;
2517	sensor->pixel_array = &sensor->ssds[sensor->ssds_used];
2518	sensor->ssds_used++;
2519
2520	sensor->scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
2521
2522	for (i = 0; i < SMIAPP_SUBDEVS; i++) {
2523		struct {
2524			struct smiapp_subdev *ssd;
2525			char *name;
2526		} const __this[] = {
2527			{ sensor->scaler, "scaler", },
2528			{ sensor->binner, "binner", },
2529			{ sensor->pixel_array, "pixel array", },
2530		}, *_this = &__this[i];
2531		struct smiapp_subdev *this = _this->ssd;
2532
2533		if (!this)
2534			continue;
2535
2536		if (this != sensor->src)
2537			v4l2_subdev_init(&this->sd, &smiapp_ops);
2538
2539		this->sensor = sensor;
2540
2541		if (this == sensor->pixel_array) {
2542			this->npads = 1;
2543		} else {
2544			this->npads = 2;
2545			this->source_pad = 1;
2546		}
2547
2548		snprintf(this->sd.name,
2549			 sizeof(this->sd.name), "%s %s",
2550			 sensor->minfo.name, _this->name);
2551
2552		this->sink_fmt.width =
2553			sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
2554		this->sink_fmt.height =
2555			sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
2556		this->compose.width = this->sink_fmt.width;
2557		this->compose.height = this->sink_fmt.height;
2558		this->crop[this->source_pad] = this->compose;
2559		this->pads[this->source_pad].flags = MEDIA_PAD_FL_SOURCE;
2560		if (this != sensor->pixel_array) {
2561			this->crop[this->sink_pad] = this->compose;
2562			this->pads[this->sink_pad].flags = MEDIA_PAD_FL_SINK;
2563		}
2564
2565		this->sd.entity.ops = &smiapp_entity_ops;
2566
2567		if (last == NULL) {
2568			last = this;
2569			continue;
2570		}
2571
2572		this->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
2573		this->sd.internal_ops = &smiapp_internal_ops;
2574		this->sd.owner = NULL;
2575		v4l2_set_subdevdata(&this->sd, client);
2576
2577		rval = media_entity_init(&this->sd.entity,
2578					 this->npads, this->pads, 0);
2579		if (rval) {
2580			dev_err(&client->dev,
2581				"media_entity_init failed\n");
2582			goto out_nvm_release;
2583		}
2584
2585		rval = media_entity_create_link(&this->sd.entity,
2586						this->source_pad,
2587						&last->sd.entity,
2588						last->sink_pad,
2589						MEDIA_LNK_FL_ENABLED |
2590						MEDIA_LNK_FL_IMMUTABLE);
2591		if (rval) {
2592			dev_err(&client->dev,
2593				"media_entity_create_link failed\n");
2594			goto out_nvm_release;
2595		}
2596
2597		rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev,
2598						   &this->sd);
2599		if (rval) {
2600			dev_err(&client->dev,
2601				"v4l2_device_register_subdev failed\n");
2602			goto out_nvm_release;
2603		}
2604
2605		last = this;
2606	}
2607
2608	dev_dbg(&client->dev, "profile %d\n", sensor->minfo.smiapp_profile);
2609
2610	sensor->pixel_array->sd.entity.type = MEDIA_ENT_T_V4L2_SUBDEV_SENSOR;
2611
2612	/* final steps */
2613	smiapp_read_frame_fmt(sensor);
2614	rval = smiapp_init_controls(sensor);
2615	if (rval < 0)
2616		goto out_nvm_release;
2617
2618	rval = smiapp_update_mode(sensor);
2619	if (rval) {
2620		dev_err(&client->dev, "update mode failed\n");
2621		goto out_nvm_release;
2622	}
2623
2624	sensor->streaming = false;
2625	sensor->dev_init_done = true;
2626
2627	/* check flash capability */
2628	rval = smiapp_read(sensor, SMIAPP_REG_U8_FLASH_MODE_CAPABILITY, &tmp);
2629	sensor->flash_capability = tmp;
2630	if (rval)
2631		goto out_nvm_release;
2632
2633	smiapp_power_off(sensor);
2634
2635	return 0;
2636
2637out_nvm_release:
2638	device_remove_file(&client->dev, &dev_attr_nvm);
2639
2640out_power_off:
2641	kfree(sensor->nvm);
2642	sensor->nvm = NULL;
2643	smiapp_power_off(sensor);
2644
2645out_smiapp_power_on:
2646	if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN)
2647		gpio_free(sensor->platform_data->xshutdown);
2648
2649out_clk_set_rate:
2650	clk_put(sensor->ext_clk);
2651	sensor->ext_clk = NULL;
2652
2653out_clk_get:
2654	regulator_put(sensor->vana);
2655	sensor->vana = NULL;
2656	return rval;
2657}
2658
2659static int smiapp_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
2660{
2661	struct smiapp_subdev *ssd = to_smiapp_subdev(sd);
2662	struct smiapp_sensor *sensor = ssd->sensor;
2663	u32 mbus_code =
2664		smiapp_csi_data_formats[smiapp_pixel_order(sensor)].code;
2665	unsigned int i;
2666
2667	mutex_lock(&sensor->mutex);
2668
2669	for (i = 0; i < ssd->npads; i++) {
2670		struct v4l2_mbus_framefmt *try_fmt =
2671			v4l2_subdev_get_try_format(fh, i);
2672		struct v4l2_rect *try_crop = v4l2_subdev_get_try_crop(fh, i);
2673		struct v4l2_rect *try_comp;
2674
2675		try_fmt->width = sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
2676		try_fmt->height = sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
2677		try_fmt->code = mbus_code;
2678
2679		try_crop->top = 0;
2680		try_crop->left = 0;
2681		try_crop->width = try_fmt->width;
2682		try_crop->height = try_fmt->height;
2683
2684		if (ssd != sensor->pixel_array)
2685			continue;
2686
2687		try_comp = v4l2_subdev_get_try_compose(fh, i);
2688		*try_comp = *try_crop;
2689	}
2690
2691	mutex_unlock(&sensor->mutex);
2692
2693	return smiapp_set_power(sd, 1);
2694}
2695
2696static int smiapp_close(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
2697{
2698	return smiapp_set_power(sd, 0);
2699}
2700
2701static const struct v4l2_subdev_video_ops smiapp_video_ops = {
2702	.s_stream = smiapp_set_stream,
2703};
2704
2705static const struct v4l2_subdev_core_ops smiapp_core_ops = {
2706	.s_power = smiapp_set_power,
2707};
2708
2709static const struct v4l2_subdev_pad_ops smiapp_pad_ops = {
2710	.enum_mbus_code = smiapp_enum_mbus_code,
2711	.get_fmt = smiapp_get_format,
2712	.set_fmt = smiapp_set_format,
2713	.get_selection = smiapp_get_selection,
2714	.set_selection = smiapp_set_selection,
2715};
2716
2717static const struct v4l2_subdev_sensor_ops smiapp_sensor_ops = {
2718	.g_skip_frames = smiapp_get_skip_frames,
2719};
2720
2721static const struct v4l2_subdev_ops smiapp_ops = {
2722	.core = &smiapp_core_ops,
2723	.video = &smiapp_video_ops,
2724	.pad = &smiapp_pad_ops,
2725	.sensor = &smiapp_sensor_ops,
2726};
2727
2728static const struct media_entity_operations smiapp_entity_ops = {
2729	.link_validate = v4l2_subdev_link_validate,
2730};
2731
2732static const struct v4l2_subdev_internal_ops smiapp_internal_src_ops = {
2733	.registered = smiapp_registered,
2734	.open = smiapp_open,
2735	.close = smiapp_close,
2736};
2737
2738static const struct v4l2_subdev_internal_ops smiapp_internal_ops = {
2739	.open = smiapp_open,
2740	.close = smiapp_close,
2741};
2742
2743/* -----------------------------------------------------------------------------
2744 * I2C Driver
2745 */
2746
2747#ifdef CONFIG_PM
2748
2749static int smiapp_suspend(struct device *dev)
2750{
2751	struct i2c_client *client = to_i2c_client(dev);
2752	struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2753	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2754	bool streaming;
2755
2756	BUG_ON(mutex_is_locked(&sensor->mutex));
2757
2758	if (sensor->power_count == 0)
2759		return 0;
2760
2761	if (sensor->streaming)
2762		smiapp_stop_streaming(sensor);
2763
2764	streaming = sensor->streaming;
2765
2766	smiapp_power_off(sensor);
2767
2768	/* save state for resume */
2769	sensor->streaming = streaming;
2770
2771	return 0;
2772}
2773
2774static int smiapp_resume(struct device *dev)
2775{
2776	struct i2c_client *client = to_i2c_client(dev);
2777	struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2778	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2779	int rval;
2780
2781	if (sensor->power_count == 0)
2782		return 0;
2783
2784	rval = smiapp_power_on(sensor);
2785	if (rval)
2786		return rval;
2787
2788	if (sensor->streaming)
2789		rval = smiapp_start_streaming(sensor);
2790
2791	return rval;
2792}
2793
2794#else
2795
2796#define smiapp_suspend	NULL
2797#define smiapp_resume	NULL
2798
2799#endif /* CONFIG_PM */
2800
2801static int smiapp_probe(struct i2c_client *client,
2802			const struct i2c_device_id *devid)
2803{
2804	struct smiapp_sensor *sensor;
2805	int rval;
2806
2807	if (client->dev.platform_data == NULL)
2808		return -ENODEV;
2809
2810	sensor = kzalloc(sizeof(*sensor), GFP_KERNEL);
2811	if (sensor == NULL)
2812		return -ENOMEM;
2813
2814	sensor->platform_data = client->dev.platform_data;
2815	mutex_init(&sensor->mutex);
2816	mutex_init(&sensor->power_mutex);
2817	sensor->src = &sensor->ssds[sensor->ssds_used];
2818
2819	v4l2_i2c_subdev_init(&sensor->src->sd, client, &smiapp_ops);
2820	sensor->src->sd.internal_ops = &smiapp_internal_src_ops;
2821	sensor->src->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
2822	sensor->src->sensor = sensor;
2823
2824	sensor->src->pads[0].flags = MEDIA_PAD_FL_SOURCE;
2825	rval = media_entity_init(&sensor->src->sd.entity, 2,
2826				 sensor->src->pads, 0);
2827	if (rval < 0)
2828		kfree(sensor);
2829
2830	return rval;
2831}
2832
2833static int __exit smiapp_remove(struct i2c_client *client)
2834{
2835	struct v4l2_subdev *subdev = i2c_get_clientdata(client);
2836	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
2837	unsigned int i;
2838
2839	if (sensor->power_count) {
2840		if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN)
2841			gpio_set_value(sensor->platform_data->xshutdown, 0);
2842		if (sensor->platform_data->set_xclk)
2843			sensor->platform_data->set_xclk(&sensor->src->sd, 0);
2844		else
2845			clk_disable(sensor->ext_clk);
2846		sensor->power_count = 0;
2847	}
2848
2849	if (sensor->nvm) {
2850		device_remove_file(&client->dev, &dev_attr_nvm);
2851		kfree(sensor->nvm);
2852	}
2853
2854	for (i = 0; i < sensor->ssds_used; i++) {
2855		media_entity_cleanup(&sensor->ssds[i].sd.entity);
2856		v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
2857	}
2858	smiapp_free_controls(sensor);
2859	if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN)
2860		gpio_free(sensor->platform_data->xshutdown);
2861	if (sensor->ext_clk)
2862		clk_put(sensor->ext_clk);
2863	if (sensor->vana)
2864		regulator_put(sensor->vana);
2865
2866	kfree(sensor);
2867
2868	return 0;
2869}
2870
2871static const struct i2c_device_id smiapp_id_table[] = {
2872	{ SMIAPP_NAME, 0 },
2873	{ },
2874};
2875MODULE_DEVICE_TABLE(i2c, smiapp_id_table);
2876
2877static const struct dev_pm_ops smiapp_pm_ops = {
2878	.suspend	= smiapp_suspend,
2879	.resume		= smiapp_resume,
2880};
2881
2882static struct i2c_driver smiapp_i2c_driver = {
2883	.driver	= {
2884		.name = SMIAPP_NAME,
2885		.pm = &smiapp_pm_ops,
2886	},
2887	.probe	= smiapp_probe,
2888	.remove	= __exit_p(smiapp_remove),
2889	.id_table = smiapp_id_table,
2890};
2891
2892module_i2c_driver(smiapp_i2c_driver);
2893
2894MODULE_AUTHOR("Sakari Ailus <sakari.ailus@maxwell.research.nokia.com>");
2895MODULE_DESCRIPTION("Generic SMIA/SMIA++ camera module driver");
2896MODULE_LICENSE("GPL");