Linux Audio

Check our new training course

Loading...
   1/*
   2 * Copyright (C) 2003 Sistina Software Limited.
   3 * Copyright (C) 2005-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-bio-record.h"
   9
  10#include <linux/init.h>
  11#include <linux/mempool.h>
  12#include <linux/module.h>
  13#include <linux/pagemap.h>
  14#include <linux/slab.h>
  15#include <linux/workqueue.h>
  16#include <linux/device-mapper.h>
  17#include <linux/dm-io.h>
  18#include <linux/dm-dirty-log.h>
  19#include <linux/dm-kcopyd.h>
  20#include <linux/dm-region-hash.h>
  21
  22#define DM_MSG_PREFIX "raid1"
  23
  24#define MAX_RECOVERY 1	/* Maximum number of regions recovered in parallel. */
  25
  26#define DM_RAID1_HANDLE_ERRORS 0x01
  27#define errors_handled(p)	((p)->features & DM_RAID1_HANDLE_ERRORS)
  28
  29static DECLARE_WAIT_QUEUE_HEAD(_kmirrord_recovery_stopped);
  30
  31/*-----------------------------------------------------------------
  32 * Mirror set structures.
  33 *---------------------------------------------------------------*/
  34enum dm_raid1_error {
  35	DM_RAID1_WRITE_ERROR,
  36	DM_RAID1_FLUSH_ERROR,
  37	DM_RAID1_SYNC_ERROR,
  38	DM_RAID1_READ_ERROR
  39};
  40
  41struct mirror {
  42	struct mirror_set *ms;
  43	atomic_t error_count;
  44	unsigned long error_type;
  45	struct dm_dev *dev;
  46	sector_t offset;
  47};
  48
  49struct mirror_set {
  50	struct dm_target *ti;
  51	struct list_head list;
  52
  53	uint64_t features;
  54
  55	spinlock_t lock;	/* protects the lists */
  56	struct bio_list reads;
  57	struct bio_list writes;
  58	struct bio_list failures;
  59	struct bio_list holds;	/* bios are waiting until suspend */
  60
  61	struct dm_region_hash *rh;
  62	struct dm_kcopyd_client *kcopyd_client;
  63	struct dm_io_client *io_client;
  64	mempool_t *read_record_pool;
  65
  66	/* recovery */
  67	region_t nr_regions;
  68	int in_sync;
  69	int log_failure;
  70	int leg_failure;
  71	atomic_t suspend;
  72
  73	atomic_t default_mirror;	/* Default mirror */
  74
  75	struct workqueue_struct *kmirrord_wq;
  76	struct work_struct kmirrord_work;
  77	struct timer_list timer;
  78	unsigned long timer_pending;
  79
  80	struct work_struct trigger_event;
  81
  82	unsigned nr_mirrors;
  83	struct mirror mirror[0];
  84};
  85
  86static void wakeup_mirrord(void *context)
  87{
  88	struct mirror_set *ms = context;
  89
  90	queue_work(ms->kmirrord_wq, &ms->kmirrord_work);
  91}
  92
  93static void delayed_wake_fn(unsigned long data)
  94{
  95	struct mirror_set *ms = (struct mirror_set *) data;
  96
  97	clear_bit(0, &ms->timer_pending);
  98	wakeup_mirrord(ms);
  99}
 100
 101static void delayed_wake(struct mirror_set *ms)
 102{
 103	if (test_and_set_bit(0, &ms->timer_pending))
 104		return;
 105
 106	ms->timer.expires = jiffies + HZ / 5;
 107	ms->timer.data = (unsigned long) ms;
 108	ms->timer.function = delayed_wake_fn;
 109	add_timer(&ms->timer);
 110}
 111
 112static void wakeup_all_recovery_waiters(void *context)
 113{
 114	wake_up_all(&_kmirrord_recovery_stopped);
 115}
 116
 117static void queue_bio(struct mirror_set *ms, struct bio *bio, int rw)
 118{
 119	unsigned long flags;
 120	int should_wake = 0;
 121	struct bio_list *bl;
 122
 123	bl = (rw == WRITE) ? &ms->writes : &ms->reads;
 124	spin_lock_irqsave(&ms->lock, flags);
 125	should_wake = !(bl->head);
 126	bio_list_add(bl, bio);
 127	spin_unlock_irqrestore(&ms->lock, flags);
 128
 129	if (should_wake)
 130		wakeup_mirrord(ms);
 131}
 132
 133static void dispatch_bios(void *context, struct bio_list *bio_list)
 134{
 135	struct mirror_set *ms = context;
 136	struct bio *bio;
 137
 138	while ((bio = bio_list_pop(bio_list)))
 139		queue_bio(ms, bio, WRITE);
 140}
 141
 142#define MIN_READ_RECORDS 20
 143struct dm_raid1_read_record {
 144	struct mirror *m;
 145	struct dm_bio_details details;
 146};
 147
 148static struct kmem_cache *_dm_raid1_read_record_cache;
 149
 150/*
 151 * Every mirror should look like this one.
 152 */
 153#define DEFAULT_MIRROR 0
 154
 155/*
 156 * This is yucky.  We squirrel the mirror struct away inside
 157 * bi_next for read/write buffers.  This is safe since the bh
 158 * doesn't get submitted to the lower levels of block layer.
 159 */
 160static struct mirror *bio_get_m(struct bio *bio)
 161{
 162	return (struct mirror *) bio->bi_next;
 163}
 164
 165static void bio_set_m(struct bio *bio, struct mirror *m)
 166{
 167	bio->bi_next = (struct bio *) m;
 168}
 169
 170static struct mirror *get_default_mirror(struct mirror_set *ms)
 171{
 172	return &ms->mirror[atomic_read(&ms->default_mirror)];
 173}
 174
 175static void set_default_mirror(struct mirror *m)
 176{
 177	struct mirror_set *ms = m->ms;
 178	struct mirror *m0 = &(ms->mirror[0]);
 179
 180	atomic_set(&ms->default_mirror, m - m0);
 181}
 182
 183static struct mirror *get_valid_mirror(struct mirror_set *ms)
 184{
 185	struct mirror *m;
 186
 187	for (m = ms->mirror; m < ms->mirror + ms->nr_mirrors; m++)
 188		if (!atomic_read(&m->error_count))
 189			return m;
 190
 191	return NULL;
 192}
 193
 194/* fail_mirror
 195 * @m: mirror device to fail
 196 * @error_type: one of the enum's, DM_RAID1_*_ERROR
 197 *
 198 * If errors are being handled, record the type of
 199 * error encountered for this device.  If this type
 200 * of error has already been recorded, we can return;
 201 * otherwise, we must signal userspace by triggering
 202 * an event.  Additionally, if the device is the
 203 * primary device, we must choose a new primary, but
 204 * only if the mirror is in-sync.
 205 *
 206 * This function must not block.
 207 */
 208static void fail_mirror(struct mirror *m, enum dm_raid1_error error_type)
 209{
 210	struct mirror_set *ms = m->ms;
 211	struct mirror *new;
 212
 213	ms->leg_failure = 1;
 214
 215	/*
 216	 * error_count is used for nothing more than a
 217	 * simple way to tell if a device has encountered
 218	 * errors.
 219	 */
 220	atomic_inc(&m->error_count);
 221
 222	if (test_and_set_bit(error_type, &m->error_type))
 223		return;
 224
 225	if (!errors_handled(ms))
 226		return;
 227
 228	if (m != get_default_mirror(ms))
 229		goto out;
 230
 231	if (!ms->in_sync) {
 232		/*
 233		 * Better to issue requests to same failing device
 234		 * than to risk returning corrupt data.
 235		 */
 236		DMERR("Primary mirror (%s) failed while out-of-sync: "
 237		      "Reads may fail.", m->dev->name);
 238		goto out;
 239	}
 240
 241	new = get_valid_mirror(ms);
 242	if (new)
 243		set_default_mirror(new);
 244	else
 245		DMWARN("All sides of mirror have failed.");
 246
 247out:
 248	schedule_work(&ms->trigger_event);
 249}
 250
 251static int mirror_flush(struct dm_target *ti)
 252{
 253	struct mirror_set *ms = ti->private;
 254	unsigned long error_bits;
 255
 256	unsigned int i;
 257	struct dm_io_region io[ms->nr_mirrors];
 258	struct mirror *m;
 259	struct dm_io_request io_req = {
 260		.bi_rw = WRITE_FLUSH,
 261		.mem.type = DM_IO_KMEM,
 262		.mem.ptr.addr = NULL,
 263		.client = ms->io_client,
 264	};
 265
 266	for (i = 0, m = ms->mirror; i < ms->nr_mirrors; i++, m++) {
 267		io[i].bdev = m->dev->bdev;
 268		io[i].sector = 0;
 269		io[i].count = 0;
 270	}
 271
 272	error_bits = -1;
 273	dm_io(&io_req, ms->nr_mirrors, io, &error_bits);
 274	if (unlikely(error_bits != 0)) {
 275		for (i = 0; i < ms->nr_mirrors; i++)
 276			if (test_bit(i, &error_bits))
 277				fail_mirror(ms->mirror + i,
 278					    DM_RAID1_FLUSH_ERROR);
 279		return -EIO;
 280	}
 281
 282	return 0;
 283}
 284
 285/*-----------------------------------------------------------------
 286 * Recovery.
 287 *
 288 * When a mirror is first activated we may find that some regions
 289 * are in the no-sync state.  We have to recover these by
 290 * recopying from the default mirror to all the others.
 291 *---------------------------------------------------------------*/
 292static void recovery_complete(int read_err, unsigned long write_err,
 293			      void *context)
 294{
 295	struct dm_region *reg = context;
 296	struct mirror_set *ms = dm_rh_region_context(reg);
 297	int m, bit = 0;
 298
 299	if (read_err) {
 300		/* Read error means the failure of default mirror. */
 301		DMERR_LIMIT("Unable to read primary mirror during recovery");
 302		fail_mirror(get_default_mirror(ms), DM_RAID1_SYNC_ERROR);
 303	}
 304
 305	if (write_err) {
 306		DMERR_LIMIT("Write error during recovery (error = 0x%lx)",
 307			    write_err);
 308		/*
 309		 * Bits correspond to devices (excluding default mirror).
 310		 * The default mirror cannot change during recovery.
 311		 */
 312		for (m = 0; m < ms->nr_mirrors; m++) {
 313			if (&ms->mirror[m] == get_default_mirror(ms))
 314				continue;
 315			if (test_bit(bit, &write_err))
 316				fail_mirror(ms->mirror + m,
 317					    DM_RAID1_SYNC_ERROR);
 318			bit++;
 319		}
 320	}
 321
 322	dm_rh_recovery_end(reg, !(read_err || write_err));
 323}
 324
 325static int recover(struct mirror_set *ms, struct dm_region *reg)
 326{
 327	int r;
 328	unsigned i;
 329	struct dm_io_region from, to[DM_KCOPYD_MAX_REGIONS], *dest;
 330	struct mirror *m;
 331	unsigned long flags = 0;
 332	region_t key = dm_rh_get_region_key(reg);
 333	sector_t region_size = dm_rh_get_region_size(ms->rh);
 334
 335	/* fill in the source */
 336	m = get_default_mirror(ms);
 337	from.bdev = m->dev->bdev;
 338	from.sector = m->offset + dm_rh_region_to_sector(ms->rh, key);
 339	if (key == (ms->nr_regions - 1)) {
 340		/*
 341		 * The final region may be smaller than
 342		 * region_size.
 343		 */
 344		from.count = ms->ti->len & (region_size - 1);
 345		if (!from.count)
 346			from.count = region_size;
 347	} else
 348		from.count = region_size;
 349
 350	/* fill in the destinations */
 351	for (i = 0, dest = to; i < ms->nr_mirrors; i++) {
 352		if (&ms->mirror[i] == get_default_mirror(ms))
 353			continue;
 354
 355		m = ms->mirror + i;
 356		dest->bdev = m->dev->bdev;
 357		dest->sector = m->offset + dm_rh_region_to_sector(ms->rh, key);
 358		dest->count = from.count;
 359		dest++;
 360	}
 361
 362	/* hand to kcopyd */
 363	if (!errors_handled(ms))
 364		set_bit(DM_KCOPYD_IGNORE_ERROR, &flags);
 365
 366	r = dm_kcopyd_copy(ms->kcopyd_client, &from, ms->nr_mirrors - 1, to,
 367			   flags, recovery_complete, reg);
 368
 369	return r;
 370}
 371
 372static void do_recovery(struct mirror_set *ms)
 373{
 374	struct dm_region *reg;
 375	struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
 376	int r;
 377
 378	/*
 379	 * Start quiescing some regions.
 380	 */
 381	dm_rh_recovery_prepare(ms->rh);
 382
 383	/*
 384	 * Copy any already quiesced regions.
 385	 */
 386	while ((reg = dm_rh_recovery_start(ms->rh))) {
 387		r = recover(ms, reg);
 388		if (r)
 389			dm_rh_recovery_end(reg, 0);
 390	}
 391
 392	/*
 393	 * Update the in sync flag.
 394	 */
 395	if (!ms->in_sync &&
 396	    (log->type->get_sync_count(log) == ms->nr_regions)) {
 397		/* the sync is complete */
 398		dm_table_event(ms->ti->table);
 399		ms->in_sync = 1;
 400	}
 401}
 402
 403/*-----------------------------------------------------------------
 404 * Reads
 405 *---------------------------------------------------------------*/
 406static struct mirror *choose_mirror(struct mirror_set *ms, sector_t sector)
 407{
 408	struct mirror *m = get_default_mirror(ms);
 409
 410	do {
 411		if (likely(!atomic_read(&m->error_count)))
 412			return m;
 413
 414		if (m-- == ms->mirror)
 415			m += ms->nr_mirrors;
 416	} while (m != get_default_mirror(ms));
 417
 418	return NULL;
 419}
 420
 421static int default_ok(struct mirror *m)
 422{
 423	struct mirror *default_mirror = get_default_mirror(m->ms);
 424
 425	return !atomic_read(&default_mirror->error_count);
 426}
 427
 428static int mirror_available(struct mirror_set *ms, struct bio *bio)
 429{
 430	struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
 431	region_t region = dm_rh_bio_to_region(ms->rh, bio);
 432
 433	if (log->type->in_sync(log, region, 0))
 434		return choose_mirror(ms,  bio->bi_sector) ? 1 : 0;
 435
 436	return 0;
 437}
 438
 439/*
 440 * remap a buffer to a particular mirror.
 441 */
 442static sector_t map_sector(struct mirror *m, struct bio *bio)
 443{
 444	if (unlikely(!bio->bi_size))
 445		return 0;
 446	return m->offset + dm_target_offset(m->ms->ti, bio->bi_sector);
 447}
 448
 449static void map_bio(struct mirror *m, struct bio *bio)
 450{
 451	bio->bi_bdev = m->dev->bdev;
 452	bio->bi_sector = map_sector(m, bio);
 453}
 454
 455static void map_region(struct dm_io_region *io, struct mirror *m,
 456		       struct bio *bio)
 457{
 458	io->bdev = m->dev->bdev;
 459	io->sector = map_sector(m, bio);
 460	io->count = bio->bi_size >> 9;
 461}
 462
 463static void hold_bio(struct mirror_set *ms, struct bio *bio)
 464{
 465	/*
 466	 * Lock is required to avoid race condition during suspend
 467	 * process.
 468	 */
 469	spin_lock_irq(&ms->lock);
 470
 471	if (atomic_read(&ms->suspend)) {
 472		spin_unlock_irq(&ms->lock);
 473
 474		/*
 475		 * If device is suspended, complete the bio.
 476		 */
 477		if (dm_noflush_suspending(ms->ti))
 478			bio_endio(bio, DM_ENDIO_REQUEUE);
 479		else
 480			bio_endio(bio, -EIO);
 481		return;
 482	}
 483
 484	/*
 485	 * Hold bio until the suspend is complete.
 486	 */
 487	bio_list_add(&ms->holds, bio);
 488	spin_unlock_irq(&ms->lock);
 489}
 490
 491/*-----------------------------------------------------------------
 492 * Reads
 493 *---------------------------------------------------------------*/
 494static void read_callback(unsigned long error, void *context)
 495{
 496	struct bio *bio = context;
 497	struct mirror *m;
 498
 499	m = bio_get_m(bio);
 500	bio_set_m(bio, NULL);
 501
 502	if (likely(!error)) {
 503		bio_endio(bio, 0);
 504		return;
 505	}
 506
 507	fail_mirror(m, DM_RAID1_READ_ERROR);
 508
 509	if (likely(default_ok(m)) || mirror_available(m->ms, bio)) {
 510		DMWARN_LIMIT("Read failure on mirror device %s.  "
 511			     "Trying alternative device.",
 512			     m->dev->name);
 513		queue_bio(m->ms, bio, bio_rw(bio));
 514		return;
 515	}
 516
 517	DMERR_LIMIT("Read failure on mirror device %s.  Failing I/O.",
 518		    m->dev->name);
 519	bio_endio(bio, -EIO);
 520}
 521
 522/* Asynchronous read. */
 523static void read_async_bio(struct mirror *m, struct bio *bio)
 524{
 525	struct dm_io_region io;
 526	struct dm_io_request io_req = {
 527		.bi_rw = READ,
 528		.mem.type = DM_IO_BVEC,
 529		.mem.ptr.bvec = bio->bi_io_vec + bio->bi_idx,
 530		.notify.fn = read_callback,
 531		.notify.context = bio,
 532		.client = m->ms->io_client,
 533	};
 534
 535	map_region(&io, m, bio);
 536	bio_set_m(bio, m);
 537	BUG_ON(dm_io(&io_req, 1, &io, NULL));
 538}
 539
 540static inline int region_in_sync(struct mirror_set *ms, region_t region,
 541				 int may_block)
 542{
 543	int state = dm_rh_get_state(ms->rh, region, may_block);
 544	return state == DM_RH_CLEAN || state == DM_RH_DIRTY;
 545}
 546
 547static void do_reads(struct mirror_set *ms, struct bio_list *reads)
 548{
 549	region_t region;
 550	struct bio *bio;
 551	struct mirror *m;
 552
 553	while ((bio = bio_list_pop(reads))) {
 554		region = dm_rh_bio_to_region(ms->rh, bio);
 555		m = get_default_mirror(ms);
 556
 557		/*
 558		 * We can only read balance if the region is in sync.
 559		 */
 560		if (likely(region_in_sync(ms, region, 1)))
 561			m = choose_mirror(ms, bio->bi_sector);
 562		else if (m && atomic_read(&m->error_count))
 563			m = NULL;
 564
 565		if (likely(m))
 566			read_async_bio(m, bio);
 567		else
 568			bio_endio(bio, -EIO);
 569	}
 570}
 571
 572/*-----------------------------------------------------------------
 573 * Writes.
 574 *
 575 * We do different things with the write io depending on the
 576 * state of the region that it's in:
 577 *
 578 * SYNC: 	increment pending, use kcopyd to write to *all* mirrors
 579 * RECOVERING:	delay the io until recovery completes
 580 * NOSYNC:	increment pending, just write to the default mirror
 581 *---------------------------------------------------------------*/
 582
 583
 584static void write_callback(unsigned long error, void *context)
 585{
 586	unsigned i, ret = 0;
 587	struct bio *bio = (struct bio *) context;
 588	struct mirror_set *ms;
 589	int should_wake = 0;
 590	unsigned long flags;
 591
 592	ms = bio_get_m(bio)->ms;
 593	bio_set_m(bio, NULL);
 594
 595	/*
 596	 * NOTE: We don't decrement the pending count here,
 597	 * instead it is done by the targets endio function.
 598	 * This way we handle both writes to SYNC and NOSYNC
 599	 * regions with the same code.
 600	 */
 601	if (likely(!error)) {
 602		bio_endio(bio, ret);
 603		return;
 604	}
 605
 606	for (i = 0; i < ms->nr_mirrors; i++)
 607		if (test_bit(i, &error))
 608			fail_mirror(ms->mirror + i, DM_RAID1_WRITE_ERROR);
 609
 610	/*
 611	 * Need to raise event.  Since raising
 612	 * events can block, we need to do it in
 613	 * the main thread.
 614	 */
 615	spin_lock_irqsave(&ms->lock, flags);
 616	if (!ms->failures.head)
 617		should_wake = 1;
 618	bio_list_add(&ms->failures, bio);
 619	spin_unlock_irqrestore(&ms->lock, flags);
 620	if (should_wake)
 621		wakeup_mirrord(ms);
 622}
 623
 624static void do_write(struct mirror_set *ms, struct bio *bio)
 625{
 626	unsigned int i;
 627	struct dm_io_region io[ms->nr_mirrors], *dest = io;
 628	struct mirror *m;
 629	struct dm_io_request io_req = {
 630		.bi_rw = WRITE | (bio->bi_rw & WRITE_FLUSH_FUA),
 631		.mem.type = DM_IO_BVEC,
 632		.mem.ptr.bvec = bio->bi_io_vec + bio->bi_idx,
 633		.notify.fn = write_callback,
 634		.notify.context = bio,
 635		.client = ms->io_client,
 636	};
 637
 638	if (bio->bi_rw & REQ_DISCARD) {
 639		io_req.bi_rw |= REQ_DISCARD;
 640		io_req.mem.type = DM_IO_KMEM;
 641		io_req.mem.ptr.addr = NULL;
 642	}
 643
 644	for (i = 0, m = ms->mirror; i < ms->nr_mirrors; i++, m++)
 645		map_region(dest++, m, bio);
 646
 647	/*
 648	 * Use default mirror because we only need it to retrieve the reference
 649	 * to the mirror set in write_callback().
 650	 */
 651	bio_set_m(bio, get_default_mirror(ms));
 652
 653	BUG_ON(dm_io(&io_req, ms->nr_mirrors, io, NULL));
 654}
 655
 656static void do_writes(struct mirror_set *ms, struct bio_list *writes)
 657{
 658	int state;
 659	struct bio *bio;
 660	struct bio_list sync, nosync, recover, *this_list = NULL;
 661	struct bio_list requeue;
 662	struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
 663	region_t region;
 664
 665	if (!writes->head)
 666		return;
 667
 668	/*
 669	 * Classify each write.
 670	 */
 671	bio_list_init(&sync);
 672	bio_list_init(&nosync);
 673	bio_list_init(&recover);
 674	bio_list_init(&requeue);
 675
 676	while ((bio = bio_list_pop(writes))) {
 677		if ((bio->bi_rw & REQ_FLUSH) ||
 678		    (bio->bi_rw & REQ_DISCARD)) {
 679			bio_list_add(&sync, bio);
 680			continue;
 681		}
 682
 683		region = dm_rh_bio_to_region(ms->rh, bio);
 684
 685		if (log->type->is_remote_recovering &&
 686		    log->type->is_remote_recovering(log, region)) {
 687			bio_list_add(&requeue, bio);
 688			continue;
 689		}
 690
 691		state = dm_rh_get_state(ms->rh, region, 1);
 692		switch (state) {
 693		case DM_RH_CLEAN:
 694		case DM_RH_DIRTY:
 695			this_list = &sync;
 696			break;
 697
 698		case DM_RH_NOSYNC:
 699			this_list = &nosync;
 700			break;
 701
 702		case DM_RH_RECOVERING:
 703			this_list = &recover;
 704			break;
 705		}
 706
 707		bio_list_add(this_list, bio);
 708	}
 709
 710	/*
 711	 * Add bios that are delayed due to remote recovery
 712	 * back on to the write queue
 713	 */
 714	if (unlikely(requeue.head)) {
 715		spin_lock_irq(&ms->lock);
 716		bio_list_merge(&ms->writes, &requeue);
 717		spin_unlock_irq(&ms->lock);
 718		delayed_wake(ms);
 719	}
 720
 721	/*
 722	 * Increment the pending counts for any regions that will
 723	 * be written to (writes to recover regions are going to
 724	 * be delayed).
 725	 */
 726	dm_rh_inc_pending(ms->rh, &sync);
 727	dm_rh_inc_pending(ms->rh, &nosync);
 728
 729	/*
 730	 * If the flush fails on a previous call and succeeds here,
 731	 * we must not reset the log_failure variable.  We need
 732	 * userspace interaction to do that.
 733	 */
 734	ms->log_failure = dm_rh_flush(ms->rh) ? 1 : ms->log_failure;
 735
 736	/*
 737	 * Dispatch io.
 738	 */
 739	if (unlikely(ms->log_failure) && errors_handled(ms)) {
 740		spin_lock_irq(&ms->lock);
 741		bio_list_merge(&ms->failures, &sync);
 742		spin_unlock_irq(&ms->lock);
 743		wakeup_mirrord(ms);
 744	} else
 745		while ((bio = bio_list_pop(&sync)))
 746			do_write(ms, bio);
 747
 748	while ((bio = bio_list_pop(&recover)))
 749		dm_rh_delay(ms->rh, bio);
 750
 751	while ((bio = bio_list_pop(&nosync))) {
 752		if (unlikely(ms->leg_failure) && errors_handled(ms)) {
 753			spin_lock_irq(&ms->lock);
 754			bio_list_add(&ms->failures, bio);
 755			spin_unlock_irq(&ms->lock);
 756			wakeup_mirrord(ms);
 757		} else {
 758			map_bio(get_default_mirror(ms), bio);
 759			generic_make_request(bio);
 760		}
 761	}
 762}
 763
 764static void do_failures(struct mirror_set *ms, struct bio_list *failures)
 765{
 766	struct bio *bio;
 767
 768	if (likely(!failures->head))
 769		return;
 770
 771	/*
 772	 * If the log has failed, unattempted writes are being
 773	 * put on the holds list.  We can't issue those writes
 774	 * until a log has been marked, so we must store them.
 775	 *
 776	 * If a 'noflush' suspend is in progress, we can requeue
 777	 * the I/O's to the core.  This give userspace a chance
 778	 * to reconfigure the mirror, at which point the core
 779	 * will reissue the writes.  If the 'noflush' flag is
 780	 * not set, we have no choice but to return errors.
 781	 *
 782	 * Some writes on the failures list may have been
 783	 * submitted before the log failure and represent a
 784	 * failure to write to one of the devices.  It is ok
 785	 * for us to treat them the same and requeue them
 786	 * as well.
 787	 */
 788	while ((bio = bio_list_pop(failures))) {
 789		if (!ms->log_failure) {
 790			ms->in_sync = 0;
 791			dm_rh_mark_nosync(ms->rh, bio);
 792		}
 793
 794		/*
 795		 * If all the legs are dead, fail the I/O.
 796		 * If we have been told to handle errors, hold the bio
 797		 * and wait for userspace to deal with the problem.
 798		 * Otherwise pretend that the I/O succeeded. (This would
 799		 * be wrong if the failed leg returned after reboot and
 800		 * got replicated back to the good legs.)
 801		 */
 802		if (!get_valid_mirror(ms))
 803			bio_endio(bio, -EIO);
 804		else if (errors_handled(ms))
 805			hold_bio(ms, bio);
 806		else
 807			bio_endio(bio, 0);
 808	}
 809}
 810
 811static void trigger_event(struct work_struct *work)
 812{
 813	struct mirror_set *ms =
 814		container_of(work, struct mirror_set, trigger_event);
 815
 816	dm_table_event(ms->ti->table);
 817}
 818
 819/*-----------------------------------------------------------------
 820 * kmirrord
 821 *---------------------------------------------------------------*/
 822static void do_mirror(struct work_struct *work)
 823{
 824	struct mirror_set *ms = container_of(work, struct mirror_set,
 825					     kmirrord_work);
 826	struct bio_list reads, writes, failures;
 827	unsigned long flags;
 828
 829	spin_lock_irqsave(&ms->lock, flags);
 830	reads = ms->reads;
 831	writes = ms->writes;
 832	failures = ms->failures;
 833	bio_list_init(&ms->reads);
 834	bio_list_init(&ms->writes);
 835	bio_list_init(&ms->failures);
 836	spin_unlock_irqrestore(&ms->lock, flags);
 837
 838	dm_rh_update_states(ms->rh, errors_handled(ms));
 839	do_recovery(ms);
 840	do_reads(ms, &reads);
 841	do_writes(ms, &writes);
 842	do_failures(ms, &failures);
 843}
 844
 845/*-----------------------------------------------------------------
 846 * Target functions
 847 *---------------------------------------------------------------*/
 848static struct mirror_set *alloc_context(unsigned int nr_mirrors,
 849					uint32_t region_size,
 850					struct dm_target *ti,
 851					struct dm_dirty_log *dl)
 852{
 853	size_t len;
 854	struct mirror_set *ms = NULL;
 855
 856	len = sizeof(*ms) + (sizeof(ms->mirror[0]) * nr_mirrors);
 857
 858	ms = kzalloc(len, GFP_KERNEL);
 859	if (!ms) {
 860		ti->error = "Cannot allocate mirror context";
 861		return NULL;
 862	}
 863
 864	spin_lock_init(&ms->lock);
 865	bio_list_init(&ms->reads);
 866	bio_list_init(&ms->writes);
 867	bio_list_init(&ms->failures);
 868	bio_list_init(&ms->holds);
 869
 870	ms->ti = ti;
 871	ms->nr_mirrors = nr_mirrors;
 872	ms->nr_regions = dm_sector_div_up(ti->len, region_size);
 873	ms->in_sync = 0;
 874	ms->log_failure = 0;
 875	ms->leg_failure = 0;
 876	atomic_set(&ms->suspend, 0);
 877	atomic_set(&ms->default_mirror, DEFAULT_MIRROR);
 878
 879	ms->read_record_pool = mempool_create_slab_pool(MIN_READ_RECORDS,
 880						_dm_raid1_read_record_cache);
 881
 882	if (!ms->read_record_pool) {
 883		ti->error = "Error creating mirror read_record_pool";
 884		kfree(ms);
 885		return NULL;
 886	}
 887
 888	ms->io_client = dm_io_client_create();
 889	if (IS_ERR(ms->io_client)) {
 890		ti->error = "Error creating dm_io client";
 891		mempool_destroy(ms->read_record_pool);
 892		kfree(ms);
 893 		return NULL;
 894	}
 895
 896	ms->rh = dm_region_hash_create(ms, dispatch_bios, wakeup_mirrord,
 897				       wakeup_all_recovery_waiters,
 898				       ms->ti->begin, MAX_RECOVERY,
 899				       dl, region_size, ms->nr_regions);
 900	if (IS_ERR(ms->rh)) {
 901		ti->error = "Error creating dirty region hash";
 902		dm_io_client_destroy(ms->io_client);
 903		mempool_destroy(ms->read_record_pool);
 904		kfree(ms);
 905		return NULL;
 906	}
 907
 908	return ms;
 909}
 910
 911static void free_context(struct mirror_set *ms, struct dm_target *ti,
 912			 unsigned int m)
 913{
 914	while (m--)
 915		dm_put_device(ti, ms->mirror[m].dev);
 916
 917	dm_io_client_destroy(ms->io_client);
 918	dm_region_hash_destroy(ms->rh);
 919	mempool_destroy(ms->read_record_pool);
 920	kfree(ms);
 921}
 922
 923static int get_mirror(struct mirror_set *ms, struct dm_target *ti,
 924		      unsigned int mirror, char **argv)
 925{
 926	unsigned long long offset;
 927	char dummy;
 928
 929	if (sscanf(argv[1], "%llu%c", &offset, &dummy) != 1) {
 930		ti->error = "Invalid offset";
 931		return -EINVAL;
 932	}
 933
 934	if (dm_get_device(ti, argv[0], dm_table_get_mode(ti->table),
 935			  &ms->mirror[mirror].dev)) {
 936		ti->error = "Device lookup failure";
 937		return -ENXIO;
 938	}
 939
 940	ms->mirror[mirror].ms = ms;
 941	atomic_set(&(ms->mirror[mirror].error_count), 0);
 942	ms->mirror[mirror].error_type = 0;
 943	ms->mirror[mirror].offset = offset;
 944
 945	return 0;
 946}
 947
 948/*
 949 * Create dirty log: log_type #log_params <log_params>
 950 */
 951static struct dm_dirty_log *create_dirty_log(struct dm_target *ti,
 952					     unsigned argc, char **argv,
 953					     unsigned *args_used)
 954{
 955	unsigned param_count;
 956	struct dm_dirty_log *dl;
 957	char dummy;
 958
 959	if (argc < 2) {
 960		ti->error = "Insufficient mirror log arguments";
 961		return NULL;
 962	}
 963
 964	if (sscanf(argv[1], "%u%c", &param_count, &dummy) != 1) {
 965		ti->error = "Invalid mirror log argument count";
 966		return NULL;
 967	}
 968
 969	*args_used = 2 + param_count;
 970
 971	if (argc < *args_used) {
 972		ti->error = "Insufficient mirror log arguments";
 973		return NULL;
 974	}
 975
 976	dl = dm_dirty_log_create(argv[0], ti, mirror_flush, param_count,
 977				 argv + 2);
 978	if (!dl) {
 979		ti->error = "Error creating mirror dirty log";
 980		return NULL;
 981	}
 982
 983	return dl;
 984}
 985
 986static int parse_features(struct mirror_set *ms, unsigned argc, char **argv,
 987			  unsigned *args_used)
 988{
 989	unsigned num_features;
 990	struct dm_target *ti = ms->ti;
 991	char dummy;
 992
 993	*args_used = 0;
 994
 995	if (!argc)
 996		return 0;
 997
 998	if (sscanf(argv[0], "%u%c", &num_features, &dummy) != 1) {
 999		ti->error = "Invalid number of features";
1000		return -EINVAL;
1001	}
1002
1003	argc--;
1004	argv++;
1005	(*args_used)++;
1006
1007	if (num_features > argc) {
1008		ti->error = "Not enough arguments to support feature count";
1009		return -EINVAL;
1010	}
1011
1012	if (!strcmp("handle_errors", argv[0]))
1013		ms->features |= DM_RAID1_HANDLE_ERRORS;
1014	else {
1015		ti->error = "Unrecognised feature requested";
1016		return -EINVAL;
1017	}
1018
1019	(*args_used)++;
1020
1021	return 0;
1022}
1023
1024/*
1025 * Construct a mirror mapping:
1026 *
1027 * log_type #log_params <log_params>
1028 * #mirrors [mirror_path offset]{2,}
1029 * [#features <features>]
1030 *
1031 * log_type is "core" or "disk"
1032 * #log_params is between 1 and 3
1033 *
1034 * If present, features must be "handle_errors".
1035 */
1036static int mirror_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1037{
1038	int r;
1039	unsigned int nr_mirrors, m, args_used;
1040	struct mirror_set *ms;
1041	struct dm_dirty_log *dl;
1042	char dummy;
1043
1044	dl = create_dirty_log(ti, argc, argv, &args_used);
1045	if (!dl)
1046		return -EINVAL;
1047
1048	argv += args_used;
1049	argc -= args_used;
1050
1051	if (!argc || sscanf(argv[0], "%u%c", &nr_mirrors, &dummy) != 1 ||
1052	    nr_mirrors < 2 || nr_mirrors > DM_KCOPYD_MAX_REGIONS + 1) {
1053		ti->error = "Invalid number of mirrors";
1054		dm_dirty_log_destroy(dl);
1055		return -EINVAL;
1056	}
1057
1058	argv++, argc--;
1059
1060	if (argc < nr_mirrors * 2) {
1061		ti->error = "Too few mirror arguments";
1062		dm_dirty_log_destroy(dl);
1063		return -EINVAL;
1064	}
1065
1066	ms = alloc_context(nr_mirrors, dl->type->get_region_size(dl), ti, dl);
1067	if (!ms) {
1068		dm_dirty_log_destroy(dl);
1069		return -ENOMEM;
1070	}
1071
1072	/* Get the mirror parameter sets */
1073	for (m = 0; m < nr_mirrors; m++) {
1074		r = get_mirror(ms, ti, m, argv);
1075		if (r) {
1076			free_context(ms, ti, m);
1077			return r;
1078		}
1079		argv += 2;
1080		argc -= 2;
1081	}
1082
1083	ti->private = ms;
1084	ti->split_io = dm_rh_get_region_size(ms->rh);
1085	ti->num_flush_requests = 1;
1086	ti->num_discard_requests = 1;
1087	ti->discard_zeroes_data_unsupported = 1;
1088
1089	ms->kmirrord_wq = alloc_workqueue("kmirrord",
1090					  WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1091	if (!ms->kmirrord_wq) {
1092		DMERR("couldn't start kmirrord");
1093		r = -ENOMEM;
1094		goto err_free_context;
1095	}
1096	INIT_WORK(&ms->kmirrord_work, do_mirror);
1097	init_timer(&ms->timer);
1098	ms->timer_pending = 0;
1099	INIT_WORK(&ms->trigger_event, trigger_event);
1100
1101	r = parse_features(ms, argc, argv, &args_used);
1102	if (r)
1103		goto err_destroy_wq;
1104
1105	argv += args_used;
1106	argc -= args_used;
1107
1108	/*
1109	 * Any read-balancing addition depends on the
1110	 * DM_RAID1_HANDLE_ERRORS flag being present.
1111	 * This is because the decision to balance depends
1112	 * on the sync state of a region.  If the above
1113	 * flag is not present, we ignore errors; and
1114	 * the sync state may be inaccurate.
1115	 */
1116
1117	if (argc) {
1118		ti->error = "Too many mirror arguments";
1119		r = -EINVAL;
1120		goto err_destroy_wq;
1121	}
1122
1123	ms->kcopyd_client = dm_kcopyd_client_create();
1124	if (IS_ERR(ms->kcopyd_client)) {
1125		r = PTR_ERR(ms->kcopyd_client);
1126		goto err_destroy_wq;
1127	}
1128
1129	wakeup_mirrord(ms);
1130	return 0;
1131
1132err_destroy_wq:
1133	destroy_workqueue(ms->kmirrord_wq);
1134err_free_context:
1135	free_context(ms, ti, ms->nr_mirrors);
1136	return r;
1137}
1138
1139static void mirror_dtr(struct dm_target *ti)
1140{
1141	struct mirror_set *ms = (struct mirror_set *) ti->private;
1142
1143	del_timer_sync(&ms->timer);
1144	flush_workqueue(ms->kmirrord_wq);
1145	flush_work_sync(&ms->trigger_event);
1146	dm_kcopyd_client_destroy(ms->kcopyd_client);
1147	destroy_workqueue(ms->kmirrord_wq);
1148	free_context(ms, ti, ms->nr_mirrors);
1149}
1150
1151/*
1152 * Mirror mapping function
1153 */
1154static int mirror_map(struct dm_target *ti, struct bio *bio,
1155		      union map_info *map_context)
1156{
1157	int r, rw = bio_rw(bio);
1158	struct mirror *m;
1159	struct mirror_set *ms = ti->private;
1160	struct dm_raid1_read_record *read_record = NULL;
1161	struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
1162
1163	if (rw == WRITE) {
1164		/* Save region for mirror_end_io() handler */
1165		map_context->ll = dm_rh_bio_to_region(ms->rh, bio);
1166		queue_bio(ms, bio, rw);
1167		return DM_MAPIO_SUBMITTED;
1168	}
1169
1170	r = log->type->in_sync(log, dm_rh_bio_to_region(ms->rh, bio), 0);
1171	if (r < 0 && r != -EWOULDBLOCK)
1172		return r;
1173
1174	/*
1175	 * If region is not in-sync queue the bio.
1176	 */
1177	if (!r || (r == -EWOULDBLOCK)) {
1178		if (rw == READA)
1179			return -EWOULDBLOCK;
1180
1181		queue_bio(ms, bio, rw);
1182		return DM_MAPIO_SUBMITTED;
1183	}
1184
1185	/*
1186	 * The region is in-sync and we can perform reads directly.
1187	 * Store enough information so we can retry if it fails.
1188	 */
1189	m = choose_mirror(ms, bio->bi_sector);
1190	if (unlikely(!m))
1191		return -EIO;
1192
1193	read_record = mempool_alloc(ms->read_record_pool, GFP_NOIO);
1194	if (likely(read_record)) {
1195		dm_bio_record(&read_record->details, bio);
1196		map_context->ptr = read_record;
1197		read_record->m = m;
1198	}
1199
1200	map_bio(m, bio);
1201
1202	return DM_MAPIO_REMAPPED;
1203}
1204
1205static int mirror_end_io(struct dm_target *ti, struct bio *bio,
1206			 int error, union map_info *map_context)
1207{
1208	int rw = bio_rw(bio);
1209	struct mirror_set *ms = (struct mirror_set *) ti->private;
1210	struct mirror *m = NULL;
1211	struct dm_bio_details *bd = NULL;
1212	struct dm_raid1_read_record *read_record = map_context->ptr;
1213
1214	/*
1215	 * We need to dec pending if this was a write.
1216	 */
1217	if (rw == WRITE) {
1218		if (!(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD)))
1219			dm_rh_dec(ms->rh, map_context->ll);
1220		return error;
1221	}
1222
1223	if (error == -EOPNOTSUPP)
1224		goto out;
1225
1226	if ((error == -EWOULDBLOCK) && (bio->bi_rw & REQ_RAHEAD))
1227		goto out;
1228
1229	if (unlikely(error)) {
1230		if (!read_record) {
1231			/*
1232			 * There wasn't enough memory to record necessary
1233			 * information for a retry or there was no other
1234			 * mirror in-sync.
1235			 */
1236			DMERR_LIMIT("Mirror read failed.");
1237			return -EIO;
1238		}
1239
1240		m = read_record->m;
1241
1242		DMERR("Mirror read failed from %s. Trying alternative device.",
1243		      m->dev->name);
1244
1245		fail_mirror(m, DM_RAID1_READ_ERROR);
1246
1247		/*
1248		 * A failed read is requeued for another attempt using an intact
1249		 * mirror.
1250		 */
1251		if (default_ok(m) || mirror_available(ms, bio)) {
1252			bd = &read_record->details;
1253
1254			dm_bio_restore(bd, bio);
1255			mempool_free(read_record, ms->read_record_pool);
1256			map_context->ptr = NULL;
1257			queue_bio(ms, bio, rw);
1258			return 1;
1259		}
1260		DMERR("All replicated volumes dead, failing I/O");
1261	}
1262
1263out:
1264	if (read_record) {
1265		mempool_free(read_record, ms->read_record_pool);
1266		map_context->ptr = NULL;
1267	}
1268
1269	return error;
1270}
1271
1272static void mirror_presuspend(struct dm_target *ti)
1273{
1274	struct mirror_set *ms = (struct mirror_set *) ti->private;
1275	struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
1276
1277	struct bio_list holds;
1278	struct bio *bio;
1279
1280	atomic_set(&ms->suspend, 1);
1281
1282	/*
1283	 * Process bios in the hold list to start recovery waiting
1284	 * for bios in the hold list. After the process, no bio has
1285	 * a chance to be added in the hold list because ms->suspend
1286	 * is set.
1287	 */
1288	spin_lock_irq(&ms->lock);
1289	holds = ms->holds;
1290	bio_list_init(&ms->holds);
1291	spin_unlock_irq(&ms->lock);
1292
1293	while ((bio = bio_list_pop(&holds)))
1294		hold_bio(ms, bio);
1295
1296	/*
1297	 * We must finish up all the work that we've
1298	 * generated (i.e. recovery work).
1299	 */
1300	dm_rh_stop_recovery(ms->rh);
1301
1302	wait_event(_kmirrord_recovery_stopped,
1303		   !dm_rh_recovery_in_flight(ms->rh));
1304
1305	if (log->type->presuspend && log->type->presuspend(log))
1306		/* FIXME: need better error handling */
1307		DMWARN("log presuspend failed");
1308
1309	/*
1310	 * Now that recovery is complete/stopped and the
1311	 * delayed bios are queued, we need to wait for
1312	 * the worker thread to complete.  This way,
1313	 * we know that all of our I/O has been pushed.
1314	 */
1315	flush_workqueue(ms->kmirrord_wq);
1316}
1317
1318static void mirror_postsuspend(struct dm_target *ti)
1319{
1320	struct mirror_set *ms = ti->private;
1321	struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
1322
1323	if (log->type->postsuspend && log->type->postsuspend(log))
1324		/* FIXME: need better error handling */
1325		DMWARN("log postsuspend failed");
1326}
1327
1328static void mirror_resume(struct dm_target *ti)
1329{
1330	struct mirror_set *ms = ti->private;
1331	struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
1332
1333	atomic_set(&ms->suspend, 0);
1334	if (log->type->resume && log->type->resume(log))
1335		/* FIXME: need better error handling */
1336		DMWARN("log resume failed");
1337	dm_rh_start_recovery(ms->rh);
1338}
1339
1340/*
1341 * device_status_char
1342 * @m: mirror device/leg we want the status of
1343 *
1344 * We return one character representing the most severe error
1345 * we have encountered.
1346 *    A => Alive - No failures
1347 *    D => Dead - A write failure occurred leaving mirror out-of-sync
1348 *    S => Sync - A sychronization failure occurred, mirror out-of-sync
1349 *    R => Read - A read failure occurred, mirror data unaffected
1350 *
1351 * Returns: <char>
1352 */
1353static char device_status_char(struct mirror *m)
1354{
1355	if (!atomic_read(&(m->error_count)))
1356		return 'A';
1357
1358	return (test_bit(DM_RAID1_FLUSH_ERROR, &(m->error_type))) ? 'F' :
1359		(test_bit(DM_RAID1_WRITE_ERROR, &(m->error_type))) ? 'D' :
1360		(test_bit(DM_RAID1_SYNC_ERROR, &(m->error_type))) ? 'S' :
1361		(test_bit(DM_RAID1_READ_ERROR, &(m->error_type))) ? 'R' : 'U';
1362}
1363
1364
1365static int mirror_status(struct dm_target *ti, status_type_t type,
1366			 char *result, unsigned int maxlen)
1367{
1368	unsigned int m, sz = 0;
1369	struct mirror_set *ms = (struct mirror_set *) ti->private;
1370	struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
1371	char buffer[ms->nr_mirrors + 1];
1372
1373	switch (type) {
1374	case STATUSTYPE_INFO:
1375		DMEMIT("%d ", ms->nr_mirrors);
1376		for (m = 0; m < ms->nr_mirrors; m++) {
1377			DMEMIT("%s ", ms->mirror[m].dev->name);
1378			buffer[m] = device_status_char(&(ms->mirror[m]));
1379		}
1380		buffer[m] = '\0';
1381
1382		DMEMIT("%llu/%llu 1 %s ",
1383		      (unsigned long long)log->type->get_sync_count(log),
1384		      (unsigned long long)ms->nr_regions, buffer);
1385
1386		sz += log->type->status(log, type, result+sz, maxlen-sz);
1387
1388		break;
1389
1390	case STATUSTYPE_TABLE:
1391		sz = log->type->status(log, type, result, maxlen);
1392
1393		DMEMIT("%d", ms->nr_mirrors);
1394		for (m = 0; m < ms->nr_mirrors; m++)
1395			DMEMIT(" %s %llu", ms->mirror[m].dev->name,
1396			       (unsigned long long)ms->mirror[m].offset);
1397
1398		if (ms->features & DM_RAID1_HANDLE_ERRORS)
1399			DMEMIT(" 1 handle_errors");
1400	}
1401
1402	return 0;
1403}
1404
1405static int mirror_iterate_devices(struct dm_target *ti,
1406				  iterate_devices_callout_fn fn, void *data)
1407{
1408	struct mirror_set *ms = ti->private;
1409	int ret = 0;
1410	unsigned i;
1411
1412	for (i = 0; !ret && i < ms->nr_mirrors; i++)
1413		ret = fn(ti, ms->mirror[i].dev,
1414			 ms->mirror[i].offset, ti->len, data);
1415
1416	return ret;
1417}
1418
1419static struct target_type mirror_target = {
1420	.name	 = "mirror",
1421	.version = {1, 12, 1},
1422	.module	 = THIS_MODULE,
1423	.ctr	 = mirror_ctr,
1424	.dtr	 = mirror_dtr,
1425	.map	 = mirror_map,
1426	.end_io	 = mirror_end_io,
1427	.presuspend = mirror_presuspend,
1428	.postsuspend = mirror_postsuspend,
1429	.resume	 = mirror_resume,
1430	.status	 = mirror_status,
1431	.iterate_devices = mirror_iterate_devices,
1432};
1433
1434static int __init dm_mirror_init(void)
1435{
1436	int r;
1437
1438	_dm_raid1_read_record_cache = KMEM_CACHE(dm_raid1_read_record, 0);
1439	if (!_dm_raid1_read_record_cache) {
1440		DMERR("Can't allocate dm_raid1_read_record cache");
1441		r = -ENOMEM;
1442		goto bad_cache;
1443	}
1444
1445	r = dm_register_target(&mirror_target);
1446	if (r < 0) {
1447		DMERR("Failed to register mirror target");
1448		goto bad_target;
1449	}
1450
1451	return 0;
1452
1453bad_target:
1454	kmem_cache_destroy(_dm_raid1_read_record_cache);
1455bad_cache:
1456	return r;
1457}
1458
1459static void __exit dm_mirror_exit(void)
1460{
1461	dm_unregister_target(&mirror_target);
1462	kmem_cache_destroy(_dm_raid1_read_record_cache);
1463}
1464
1465/* Module hooks */
1466module_init(dm_mirror_init);
1467module_exit(dm_mirror_exit);
1468
1469MODULE_DESCRIPTION(DM_NAME " mirror target");
1470MODULE_AUTHOR("Joe Thornber");
1471MODULE_LICENSE("GPL");