Linux Audio

Check our new training course

Loading...
  1/* time.c: UltraSparc timer and TOD clock support.
  2 *
  3 * Copyright (C) 1997, 2008 David S. Miller (davem@davemloft.net)
  4 * Copyright (C) 1998 Eddie C. Dost   (ecd@skynet.be)
  5 *
  6 * Based largely on code which is:
  7 *
  8 * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu)
  9 */
 10
 11#include <linux/errno.h>
 12#include <linux/export.h>
 13#include <linux/sched.h>
 14#include <linux/kernel.h>
 15#include <linux/param.h>
 16#include <linux/string.h>
 17#include <linux/mm.h>
 18#include <linux/interrupt.h>
 19#include <linux/time.h>
 20#include <linux/timex.h>
 21#include <linux/init.h>
 22#include <linux/ioport.h>
 23#include <linux/mc146818rtc.h>
 24#include <linux/delay.h>
 25#include <linux/profile.h>
 26#include <linux/bcd.h>
 27#include <linux/jiffies.h>
 28#include <linux/cpufreq.h>
 29#include <linux/percpu.h>
 30#include <linux/miscdevice.h>
 31#include <linux/rtc.h>
 32#include <linux/rtc/m48t59.h>
 33#include <linux/kernel_stat.h>
 34#include <linux/clockchips.h>
 35#include <linux/clocksource.h>
 36#include <linux/of_device.h>
 37#include <linux/platform_device.h>
 38#include <linux/ftrace.h>
 39
 40#include <asm/oplib.h>
 41#include <asm/timer.h>
 42#include <asm/irq.h>
 43#include <asm/io.h>
 44#include <asm/prom.h>
 45#include <asm/starfire.h>
 46#include <asm/smp.h>
 47#include <asm/sections.h>
 48#include <asm/cpudata.h>
 49#include <asm/uaccess.h>
 50#include <asm/irq_regs.h>
 51
 52#include "entry.h"
 53
 54DEFINE_SPINLOCK(rtc_lock);
 55
 56#define TICK_PRIV_BIT	(1UL << 63)
 57#define TICKCMP_IRQ_BIT	(1UL << 63)
 58
 59#ifdef CONFIG_SMP
 60unsigned long profile_pc(struct pt_regs *regs)
 61{
 62	unsigned long pc = instruction_pointer(regs);
 63
 64	if (in_lock_functions(pc))
 65		return regs->u_regs[UREG_RETPC];
 66	return pc;
 67}
 68EXPORT_SYMBOL(profile_pc);
 69#endif
 70
 71static void tick_disable_protection(void)
 72{
 73	/* Set things up so user can access tick register for profiling
 74	 * purposes.  Also workaround BB_ERRATA_1 by doing a dummy
 75	 * read back of %tick after writing it.
 76	 */
 77	__asm__ __volatile__(
 78	"	ba,pt	%%xcc, 1f\n"
 79	"	 nop\n"
 80	"	.align	64\n"
 81	"1:	rd	%%tick, %%g2\n"
 82	"	add	%%g2, 6, %%g2\n"
 83	"	andn	%%g2, %0, %%g2\n"
 84	"	wrpr	%%g2, 0, %%tick\n"
 85	"	rdpr	%%tick, %%g0"
 86	: /* no outputs */
 87	: "r" (TICK_PRIV_BIT)
 88	: "g2");
 89}
 90
 91static void tick_disable_irq(void)
 92{
 93	__asm__ __volatile__(
 94	"	ba,pt	%%xcc, 1f\n"
 95	"	 nop\n"
 96	"	.align	64\n"
 97	"1:	wr	%0, 0x0, %%tick_cmpr\n"
 98	"	rd	%%tick_cmpr, %%g0"
 99	: /* no outputs */
100	: "r" (TICKCMP_IRQ_BIT));
101}
102
103static void tick_init_tick(void)
104{
105	tick_disable_protection();
106	tick_disable_irq();
107}
108
109static unsigned long long tick_get_tick(void)
110{
111	unsigned long ret;
112
113	__asm__ __volatile__("rd	%%tick, %0\n\t"
114			     "mov	%0, %0"
115			     : "=r" (ret));
116
117	return ret & ~TICK_PRIV_BIT;
118}
119
120static int tick_add_compare(unsigned long adj)
121{
122	unsigned long orig_tick, new_tick, new_compare;
123
124	__asm__ __volatile__("rd	%%tick, %0"
125			     : "=r" (orig_tick));
126
127	orig_tick &= ~TICKCMP_IRQ_BIT;
128
129	/* Workaround for Spitfire Errata (#54 I think??), I discovered
130	 * this via Sun BugID 4008234, mentioned in Solaris-2.5.1 patch
131	 * number 103640.
132	 *
133	 * On Blackbird writes to %tick_cmpr can fail, the
134	 * workaround seems to be to execute the wr instruction
135	 * at the start of an I-cache line, and perform a dummy
136	 * read back from %tick_cmpr right after writing to it. -DaveM
137	 */
138	__asm__ __volatile__("ba,pt	%%xcc, 1f\n\t"
139			     " add	%1, %2, %0\n\t"
140			     ".align	64\n"
141			     "1:\n\t"
142			     "wr	%0, 0, %%tick_cmpr\n\t"
143			     "rd	%%tick_cmpr, %%g0\n\t"
144			     : "=r" (new_compare)
145			     : "r" (orig_tick), "r" (adj));
146
147	__asm__ __volatile__("rd	%%tick, %0"
148			     : "=r" (new_tick));
149	new_tick &= ~TICKCMP_IRQ_BIT;
150
151	return ((long)(new_tick - (orig_tick+adj))) > 0L;
152}
153
154static unsigned long tick_add_tick(unsigned long adj)
155{
156	unsigned long new_tick;
157
158	/* Also need to handle Blackbird bug here too. */
159	__asm__ __volatile__("rd	%%tick, %0\n\t"
160			     "add	%0, %1, %0\n\t"
161			     "wrpr	%0, 0, %%tick\n\t"
162			     : "=&r" (new_tick)
163			     : "r" (adj));
164
165	return new_tick;
166}
167
168static struct sparc64_tick_ops tick_operations __read_mostly = {
169	.name		=	"tick",
170	.init_tick	=	tick_init_tick,
171	.disable_irq	=	tick_disable_irq,
172	.get_tick	=	tick_get_tick,
173	.add_tick	=	tick_add_tick,
174	.add_compare	=	tick_add_compare,
175	.softint_mask	=	1UL << 0,
176};
177
178struct sparc64_tick_ops *tick_ops __read_mostly = &tick_operations;
179EXPORT_SYMBOL(tick_ops);
180
181static void stick_disable_irq(void)
182{
183	__asm__ __volatile__(
184	"wr	%0, 0x0, %%asr25"
185	: /* no outputs */
186	: "r" (TICKCMP_IRQ_BIT));
187}
188
189static void stick_init_tick(void)
190{
191	/* Writes to the %tick and %stick register are not
192	 * allowed on sun4v.  The Hypervisor controls that
193	 * bit, per-strand.
194	 */
195	if (tlb_type != hypervisor) {
196		tick_disable_protection();
197		tick_disable_irq();
198
199		/* Let the user get at STICK too. */
200		__asm__ __volatile__(
201		"	rd	%%asr24, %%g2\n"
202		"	andn	%%g2, %0, %%g2\n"
203		"	wr	%%g2, 0, %%asr24"
204		: /* no outputs */
205		: "r" (TICK_PRIV_BIT)
206		: "g1", "g2");
207	}
208
209	stick_disable_irq();
210}
211
212static unsigned long long stick_get_tick(void)
213{
214	unsigned long ret;
215
216	__asm__ __volatile__("rd	%%asr24, %0"
217			     : "=r" (ret));
218
219	return ret & ~TICK_PRIV_BIT;
220}
221
222static unsigned long stick_add_tick(unsigned long adj)
223{
224	unsigned long new_tick;
225
226	__asm__ __volatile__("rd	%%asr24, %0\n\t"
227			     "add	%0, %1, %0\n\t"
228			     "wr	%0, 0, %%asr24\n\t"
229			     : "=&r" (new_tick)
230			     : "r" (adj));
231
232	return new_tick;
233}
234
235static int stick_add_compare(unsigned long adj)
236{
237	unsigned long orig_tick, new_tick;
238
239	__asm__ __volatile__("rd	%%asr24, %0"
240			     : "=r" (orig_tick));
241	orig_tick &= ~TICKCMP_IRQ_BIT;
242
243	__asm__ __volatile__("wr	%0, 0, %%asr25"
244			     : /* no outputs */
245			     : "r" (orig_tick + adj));
246
247	__asm__ __volatile__("rd	%%asr24, %0"
248			     : "=r" (new_tick));
249	new_tick &= ~TICKCMP_IRQ_BIT;
250
251	return ((long)(new_tick - (orig_tick+adj))) > 0L;
252}
253
254static struct sparc64_tick_ops stick_operations __read_mostly = {
255	.name		=	"stick",
256	.init_tick	=	stick_init_tick,
257	.disable_irq	=	stick_disable_irq,
258	.get_tick	=	stick_get_tick,
259	.add_tick	=	stick_add_tick,
260	.add_compare	=	stick_add_compare,
261	.softint_mask	=	1UL << 16,
262};
263
264/* On Hummingbird the STICK/STICK_CMPR register is implemented
265 * in I/O space.  There are two 64-bit registers each, the
266 * first holds the low 32-bits of the value and the second holds
267 * the high 32-bits.
268 *
269 * Since STICK is constantly updating, we have to access it carefully.
270 *
271 * The sequence we use to read is:
272 * 1) read high
273 * 2) read low
274 * 3) read high again, if it rolled re-read both low and high again.
275 *
276 * Writing STICK safely is also tricky:
277 * 1) write low to zero
278 * 2) write high
279 * 3) write low
280 */
281#define HBIRD_STICKCMP_ADDR	0x1fe0000f060UL
282#define HBIRD_STICK_ADDR	0x1fe0000f070UL
283
284static unsigned long __hbird_read_stick(void)
285{
286	unsigned long ret, tmp1, tmp2, tmp3;
287	unsigned long addr = HBIRD_STICK_ADDR+8;
288
289	__asm__ __volatile__("ldxa	[%1] %5, %2\n"
290			     "1:\n\t"
291			     "sub	%1, 0x8, %1\n\t"
292			     "ldxa	[%1] %5, %3\n\t"
293			     "add	%1, 0x8, %1\n\t"
294			     "ldxa	[%1] %5, %4\n\t"
295			     "cmp	%4, %2\n\t"
296			     "bne,a,pn	%%xcc, 1b\n\t"
297			     " mov	%4, %2\n\t"
298			     "sllx	%4, 32, %4\n\t"
299			     "or	%3, %4, %0\n\t"
300			     : "=&r" (ret), "=&r" (addr),
301			       "=&r" (tmp1), "=&r" (tmp2), "=&r" (tmp3)
302			     : "i" (ASI_PHYS_BYPASS_EC_E), "1" (addr));
303
304	return ret;
305}
306
307static void __hbird_write_stick(unsigned long val)
308{
309	unsigned long low = (val & 0xffffffffUL);
310	unsigned long high = (val >> 32UL);
311	unsigned long addr = HBIRD_STICK_ADDR;
312
313	__asm__ __volatile__("stxa	%%g0, [%0] %4\n\t"
314			     "add	%0, 0x8, %0\n\t"
315			     "stxa	%3, [%0] %4\n\t"
316			     "sub	%0, 0x8, %0\n\t"
317			     "stxa	%2, [%0] %4"
318			     : "=&r" (addr)
319			     : "0" (addr), "r" (low), "r" (high),
320			       "i" (ASI_PHYS_BYPASS_EC_E));
321}
322
323static void __hbird_write_compare(unsigned long val)
324{
325	unsigned long low = (val & 0xffffffffUL);
326	unsigned long high = (val >> 32UL);
327	unsigned long addr = HBIRD_STICKCMP_ADDR + 0x8UL;
328
329	__asm__ __volatile__("stxa	%3, [%0] %4\n\t"
330			     "sub	%0, 0x8, %0\n\t"
331			     "stxa	%2, [%0] %4"
332			     : "=&r" (addr)
333			     : "0" (addr), "r" (low), "r" (high),
334			       "i" (ASI_PHYS_BYPASS_EC_E));
335}
336
337static void hbtick_disable_irq(void)
338{
339	__hbird_write_compare(TICKCMP_IRQ_BIT);
340}
341
342static void hbtick_init_tick(void)
343{
344	tick_disable_protection();
345
346	/* XXX This seems to be necessary to 'jumpstart' Hummingbird
347	 * XXX into actually sending STICK interrupts.  I think because
348	 * XXX of how we store %tick_cmpr in head.S this somehow resets the
349	 * XXX {TICK + STICK} interrupt mux.  -DaveM
350	 */
351	__hbird_write_stick(__hbird_read_stick());
352
353	hbtick_disable_irq();
354}
355
356static unsigned long long hbtick_get_tick(void)
357{
358	return __hbird_read_stick() & ~TICK_PRIV_BIT;
359}
360
361static unsigned long hbtick_add_tick(unsigned long adj)
362{
363	unsigned long val;
364
365	val = __hbird_read_stick() + adj;
366	__hbird_write_stick(val);
367
368	return val;
369}
370
371static int hbtick_add_compare(unsigned long adj)
372{
373	unsigned long val = __hbird_read_stick();
374	unsigned long val2;
375
376	val &= ~TICKCMP_IRQ_BIT;
377	val += adj;
378	__hbird_write_compare(val);
379
380	val2 = __hbird_read_stick() & ~TICKCMP_IRQ_BIT;
381
382	return ((long)(val2 - val)) > 0L;
383}
384
385static struct sparc64_tick_ops hbtick_operations __read_mostly = {
386	.name		=	"hbtick",
387	.init_tick	=	hbtick_init_tick,
388	.disable_irq	=	hbtick_disable_irq,
389	.get_tick	=	hbtick_get_tick,
390	.add_tick	=	hbtick_add_tick,
391	.add_compare	=	hbtick_add_compare,
392	.softint_mask	=	1UL << 0,
393};
394
395static unsigned long timer_ticks_per_nsec_quotient __read_mostly;
396
397int update_persistent_clock(struct timespec now)
398{
399	struct rtc_device *rtc = rtc_class_open("rtc0");
400	int err = -1;
401
402	if (rtc) {
403		err = rtc_set_mmss(rtc, now.tv_sec);
404		rtc_class_close(rtc);
405	}
406
407	return err;
408}
409
410unsigned long cmos_regs;
411EXPORT_SYMBOL(cmos_regs);
412
413static struct resource rtc_cmos_resource;
414
415static struct platform_device rtc_cmos_device = {
416	.name		= "rtc_cmos",
417	.id		= -1,
418	.resource	= &rtc_cmos_resource,
419	.num_resources	= 1,
420};
421
422static int __devinit rtc_probe(struct platform_device *op)
423{
424	struct resource *r;
425
426	printk(KERN_INFO "%s: RTC regs at 0x%llx\n",
427	       op->dev.of_node->full_name, op->resource[0].start);
428
429	/* The CMOS RTC driver only accepts IORESOURCE_IO, so cons
430	 * up a fake resource so that the probe works for all cases.
431	 * When the RTC is behind an ISA bus it will have IORESOURCE_IO
432	 * already, whereas when it's behind EBUS is will be IORESOURCE_MEM.
433	 */
434
435	r = &rtc_cmos_resource;
436	r->flags = IORESOURCE_IO;
437	r->name = op->resource[0].name;
438	r->start = op->resource[0].start;
439	r->end = op->resource[0].end;
440
441	cmos_regs = op->resource[0].start;
442	return platform_device_register(&rtc_cmos_device);
443}
444
445static const struct of_device_id rtc_match[] = {
446	{
447		.name = "rtc",
448		.compatible = "m5819",
449	},
450	{
451		.name = "rtc",
452		.compatible = "isa-m5819p",
453	},
454	{
455		.name = "rtc",
456		.compatible = "isa-m5823p",
457	},
458	{
459		.name = "rtc",
460		.compatible = "ds1287",
461	},
462	{},
463};
464
465static struct platform_driver rtc_driver = {
466	.probe		= rtc_probe,
467	.driver = {
468		.name = "rtc",
469		.owner = THIS_MODULE,
470		.of_match_table = rtc_match,
471	},
472};
473
474static struct platform_device rtc_bq4802_device = {
475	.name		= "rtc-bq4802",
476	.id		= -1,
477	.num_resources	= 1,
478};
479
480static int __devinit bq4802_probe(struct platform_device *op)
481{
482
483	printk(KERN_INFO "%s: BQ4802 regs at 0x%llx\n",
484	       op->dev.of_node->full_name, op->resource[0].start);
485
486	rtc_bq4802_device.resource = &op->resource[0];
487	return platform_device_register(&rtc_bq4802_device);
488}
489
490static const struct of_device_id bq4802_match[] = {
491	{
492		.name = "rtc",
493		.compatible = "bq4802",
494	},
495	{},
496};
497
498static struct platform_driver bq4802_driver = {
499	.probe		= bq4802_probe,
500	.driver = {
501		.name = "bq4802",
502		.owner = THIS_MODULE,
503		.of_match_table = bq4802_match,
504	},
505};
506
507static unsigned char mostek_read_byte(struct device *dev, u32 ofs)
508{
509	struct platform_device *pdev = to_platform_device(dev);
510	void __iomem *regs = (void __iomem *) pdev->resource[0].start;
511
512	return readb(regs + ofs);
513}
514
515static void mostek_write_byte(struct device *dev, u32 ofs, u8 val)
516{
517	struct platform_device *pdev = to_platform_device(dev);
518	void __iomem *regs = (void __iomem *) pdev->resource[0].start;
519
520	writeb(val, regs + ofs);
521}
522
523static struct m48t59_plat_data m48t59_data = {
524	.read_byte	= mostek_read_byte,
525	.write_byte	= mostek_write_byte,
526};
527
528static struct platform_device m48t59_rtc = {
529	.name		= "rtc-m48t59",
530	.id		= 0,
531	.num_resources	= 1,
532	.dev	= {
533		.platform_data = &m48t59_data,
534	},
535};
536
537static int __devinit mostek_probe(struct platform_device *op)
538{
539	struct device_node *dp = op->dev.of_node;
540
541	/* On an Enterprise system there can be multiple mostek clocks.
542	 * We should only match the one that is on the central FHC bus.
543	 */
544	if (!strcmp(dp->parent->name, "fhc") &&
545	    strcmp(dp->parent->parent->name, "central") != 0)
546		return -ENODEV;
547
548	printk(KERN_INFO "%s: Mostek regs at 0x%llx\n",
549	       dp->full_name, op->resource[0].start);
550
551	m48t59_rtc.resource = &op->resource[0];
552	return platform_device_register(&m48t59_rtc);
553}
554
555static const struct of_device_id mostek_match[] = {
556	{
557		.name = "eeprom",
558	},
559	{},
560};
561
562static struct platform_driver mostek_driver = {
563	.probe		= mostek_probe,
564	.driver = {
565		.name = "mostek",
566		.owner = THIS_MODULE,
567		.of_match_table = mostek_match,
568	},
569};
570
571static struct platform_device rtc_sun4v_device = {
572	.name		= "rtc-sun4v",
573	.id		= -1,
574};
575
576static struct platform_device rtc_starfire_device = {
577	.name		= "rtc-starfire",
578	.id		= -1,
579};
580
581static int __init clock_init(void)
582{
583	if (this_is_starfire)
584		return platform_device_register(&rtc_starfire_device);
585
586	if (tlb_type == hypervisor)
587		return platform_device_register(&rtc_sun4v_device);
588
589	(void) platform_driver_register(&rtc_driver);
590	(void) platform_driver_register(&mostek_driver);
591	(void) platform_driver_register(&bq4802_driver);
592
593	return 0;
594}
595
596/* Must be after subsys_initcall() so that busses are probed.  Must
597 * be before device_initcall() because things like the RTC driver
598 * need to see the clock registers.
599 */
600fs_initcall(clock_init);
601
602/* This is gets the master TICK_INT timer going. */
603static unsigned long sparc64_init_timers(void)
604{
605	struct device_node *dp;
606	unsigned long freq;
607
608	dp = of_find_node_by_path("/");
609	if (tlb_type == spitfire) {
610		unsigned long ver, manuf, impl;
611
612		__asm__ __volatile__ ("rdpr %%ver, %0"
613				      : "=&r" (ver));
614		manuf = ((ver >> 48) & 0xffff);
615		impl = ((ver >> 32) & 0xffff);
616		if (manuf == 0x17 && impl == 0x13) {
617			/* Hummingbird, aka Ultra-IIe */
618			tick_ops = &hbtick_operations;
619			freq = of_getintprop_default(dp, "stick-frequency", 0);
620		} else {
621			tick_ops = &tick_operations;
622			freq = local_cpu_data().clock_tick;
623		}
624	} else {
625		tick_ops = &stick_operations;
626		freq = of_getintprop_default(dp, "stick-frequency", 0);
627	}
628
629	return freq;
630}
631
632struct freq_table {
633	unsigned long clock_tick_ref;
634	unsigned int ref_freq;
635};
636static DEFINE_PER_CPU(struct freq_table, sparc64_freq_table) = { 0, 0 };
637
638unsigned long sparc64_get_clock_tick(unsigned int cpu)
639{
640	struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu);
641
642	if (ft->clock_tick_ref)
643		return ft->clock_tick_ref;
644	return cpu_data(cpu).clock_tick;
645}
646EXPORT_SYMBOL(sparc64_get_clock_tick);
647
648#ifdef CONFIG_CPU_FREQ
649
650static int sparc64_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
651				    void *data)
652{
653	struct cpufreq_freqs *freq = data;
654	unsigned int cpu = freq->cpu;
655	struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu);
656
657	if (!ft->ref_freq) {
658		ft->ref_freq = freq->old;
659		ft->clock_tick_ref = cpu_data(cpu).clock_tick;
660	}
661	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
662	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
663	    (val == CPUFREQ_RESUMECHANGE)) {
664		cpu_data(cpu).clock_tick =
665			cpufreq_scale(ft->clock_tick_ref,
666				      ft->ref_freq,
667				      freq->new);
668	}
669
670	return 0;
671}
672
673static struct notifier_block sparc64_cpufreq_notifier_block = {
674	.notifier_call	= sparc64_cpufreq_notifier
675};
676
677static int __init register_sparc64_cpufreq_notifier(void)
678{
679
680	cpufreq_register_notifier(&sparc64_cpufreq_notifier_block,
681				  CPUFREQ_TRANSITION_NOTIFIER);
682	return 0;
683}
684
685core_initcall(register_sparc64_cpufreq_notifier);
686
687#endif /* CONFIG_CPU_FREQ */
688
689static int sparc64_next_event(unsigned long delta,
690			      struct clock_event_device *evt)
691{
692	return tick_ops->add_compare(delta) ? -ETIME : 0;
693}
694
695static void sparc64_timer_setup(enum clock_event_mode mode,
696				struct clock_event_device *evt)
697{
698	switch (mode) {
699	case CLOCK_EVT_MODE_ONESHOT:
700	case CLOCK_EVT_MODE_RESUME:
701		break;
702
703	case CLOCK_EVT_MODE_SHUTDOWN:
704		tick_ops->disable_irq();
705		break;
706
707	case CLOCK_EVT_MODE_PERIODIC:
708	case CLOCK_EVT_MODE_UNUSED:
709		WARN_ON(1);
710		break;
711	}
712}
713
714static struct clock_event_device sparc64_clockevent = {
715	.features	= CLOCK_EVT_FEAT_ONESHOT,
716	.set_mode	= sparc64_timer_setup,
717	.set_next_event	= sparc64_next_event,
718	.rating		= 100,
719	.shift		= 30,
720	.irq		= -1,
721};
722static DEFINE_PER_CPU(struct clock_event_device, sparc64_events);
723
724void __irq_entry timer_interrupt(int irq, struct pt_regs *regs)
725{
726	struct pt_regs *old_regs = set_irq_regs(regs);
727	unsigned long tick_mask = tick_ops->softint_mask;
728	int cpu = smp_processor_id();
729	struct clock_event_device *evt = &per_cpu(sparc64_events, cpu);
730
731	clear_softint(tick_mask);
732
733	irq_enter();
734
735	local_cpu_data().irq0_irqs++;
736	kstat_incr_irqs_this_cpu(0, irq_to_desc(0));
737
738	if (unlikely(!evt->event_handler)) {
739		printk(KERN_WARNING
740		       "Spurious SPARC64 timer interrupt on cpu %d\n", cpu);
741	} else
742		evt->event_handler(evt);
743
744	irq_exit();
745
746	set_irq_regs(old_regs);
747}
748
749void __devinit setup_sparc64_timer(void)
750{
751	struct clock_event_device *sevt;
752	unsigned long pstate;
753
754	/* Guarantee that the following sequences execute
755	 * uninterrupted.
756	 */
757	__asm__ __volatile__("rdpr	%%pstate, %0\n\t"
758			     "wrpr	%0, %1, %%pstate"
759			     : "=r" (pstate)
760			     : "i" (PSTATE_IE));
761
762	tick_ops->init_tick();
763
764	/* Restore PSTATE_IE. */
765	__asm__ __volatile__("wrpr	%0, 0x0, %%pstate"
766			     : /* no outputs */
767			     : "r" (pstate));
768
769	sevt = &__get_cpu_var(sparc64_events);
770
771	memcpy(sevt, &sparc64_clockevent, sizeof(*sevt));
772	sevt->cpumask = cpumask_of(smp_processor_id());
773
774	clockevents_register_device(sevt);
775}
776
777#define SPARC64_NSEC_PER_CYC_SHIFT	10UL
778
779static struct clocksource clocksource_tick = {
780	.rating		= 100,
781	.mask		= CLOCKSOURCE_MASK(64),
782	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
783};
784
785static unsigned long tb_ticks_per_usec __read_mostly;
786
787void __delay(unsigned long loops)
788{
789	unsigned long bclock, now;
790
791	bclock = tick_ops->get_tick();
792	do {
793		now = tick_ops->get_tick();
794	} while ((now-bclock) < loops);
795}
796EXPORT_SYMBOL(__delay);
797
798void udelay(unsigned long usecs)
799{
800	__delay(tb_ticks_per_usec * usecs);
801}
802EXPORT_SYMBOL(udelay);
803
804static cycle_t clocksource_tick_read(struct clocksource *cs)
805{
806	return tick_ops->get_tick();
807}
808
809void __init time_init(void)
810{
811	unsigned long freq = sparc64_init_timers();
812
813	tb_ticks_per_usec = freq / USEC_PER_SEC;
814
815	timer_ticks_per_nsec_quotient =
816		clocksource_hz2mult(freq, SPARC64_NSEC_PER_CYC_SHIFT);
817
818	clocksource_tick.name = tick_ops->name;
819	clocksource_tick.read = clocksource_tick_read;
820
821	clocksource_register_hz(&clocksource_tick, freq);
822	printk("clocksource: mult[%x] shift[%d]\n",
823	       clocksource_tick.mult, clocksource_tick.shift);
824
825	sparc64_clockevent.name = tick_ops->name;
826	clockevents_calc_mult_shift(&sparc64_clockevent, freq, 4);
827
828	sparc64_clockevent.max_delta_ns =
829		clockevent_delta2ns(0x7fffffffffffffffUL, &sparc64_clockevent);
830	sparc64_clockevent.min_delta_ns =
831		clockevent_delta2ns(0xF, &sparc64_clockevent);
832
833	printk("clockevent: mult[%x] shift[%d]\n",
834	       sparc64_clockevent.mult, sparc64_clockevent.shift);
835
836	setup_sparc64_timer();
837}
838
839unsigned long long sched_clock(void)
840{
841	unsigned long ticks = tick_ops->get_tick();
842
843	return (ticks * timer_ticks_per_nsec_quotient)
844		>> SPARC64_NSEC_PER_CYC_SHIFT;
845}
846
847int __devinit read_current_timer(unsigned long *timer_val)
848{
849	*timer_val = tick_ops->get_tick();
850	return 0;
851}