Linux Audio

Check our new training course

Loading...
  1/* pci_sabre.c: Sabre specific PCI controller support.
  2 *
  3 * Copyright (C) 1997, 1998, 1999, 2007 David S. Miller (davem@davemloft.net)
  4 * Copyright (C) 1998, 1999 Eddie C. Dost   (ecd@skynet.be)
  5 * Copyright (C) 1999 Jakub Jelinek   (jakub@redhat.com)
  6 */
  7
  8#include <linux/kernel.h>
  9#include <linux/types.h>
 10#include <linux/pci.h>
 11#include <linux/init.h>
 12#include <linux/export.h>
 13#include <linux/slab.h>
 14#include <linux/interrupt.h>
 15#include <linux/of_device.h>
 16
 17#include <asm/apb.h>
 18#include <asm/iommu.h>
 19#include <asm/irq.h>
 20#include <asm/prom.h>
 21#include <asm/upa.h>
 22
 23#include "pci_impl.h"
 24#include "iommu_common.h"
 25#include "psycho_common.h"
 26
 27#define DRIVER_NAME	"sabre"
 28#define PFX		DRIVER_NAME ": "
 29
 30/* SABRE PCI controller register offsets and definitions. */
 31#define SABRE_UE_AFSR		0x0030UL
 32#define  SABRE_UEAFSR_PDRD	 0x4000000000000000UL	/* Primary PCI DMA Read */
 33#define  SABRE_UEAFSR_PDWR	 0x2000000000000000UL	/* Primary PCI DMA Write */
 34#define  SABRE_UEAFSR_SDRD	 0x0800000000000000UL	/* Secondary PCI DMA Read */
 35#define  SABRE_UEAFSR_SDWR	 0x0400000000000000UL	/* Secondary PCI DMA Write */
 36#define  SABRE_UEAFSR_SDTE	 0x0200000000000000UL	/* Secondary DMA Translation Error */
 37#define  SABRE_UEAFSR_PDTE	 0x0100000000000000UL	/* Primary DMA Translation Error */
 38#define  SABRE_UEAFSR_BMSK	 0x0000ffff00000000UL	/* Bytemask */
 39#define  SABRE_UEAFSR_OFF	 0x00000000e0000000UL	/* Offset (AFAR bits [5:3] */
 40#define  SABRE_UEAFSR_BLK	 0x0000000000800000UL	/* Was block operation */
 41#define SABRE_UECE_AFAR		0x0038UL
 42#define SABRE_CE_AFSR		0x0040UL
 43#define  SABRE_CEAFSR_PDRD	 0x4000000000000000UL	/* Primary PCI DMA Read */
 44#define  SABRE_CEAFSR_PDWR	 0x2000000000000000UL	/* Primary PCI DMA Write */
 45#define  SABRE_CEAFSR_SDRD	 0x0800000000000000UL	/* Secondary PCI DMA Read */
 46#define  SABRE_CEAFSR_SDWR	 0x0400000000000000UL	/* Secondary PCI DMA Write */
 47#define  SABRE_CEAFSR_ESYND	 0x00ff000000000000UL	/* ECC Syndrome */
 48#define  SABRE_CEAFSR_BMSK	 0x0000ffff00000000UL	/* Bytemask */
 49#define  SABRE_CEAFSR_OFF	 0x00000000e0000000UL	/* Offset */
 50#define  SABRE_CEAFSR_BLK	 0x0000000000800000UL	/* Was block operation */
 51#define SABRE_UECE_AFAR_ALIAS	0x0048UL	/* Aliases to 0x0038 */
 52#define SABRE_IOMMU_CONTROL	0x0200UL
 53#define  SABRE_IOMMUCTRL_ERRSTS	 0x0000000006000000UL	/* Error status bits */
 54#define  SABRE_IOMMUCTRL_ERR	 0x0000000001000000UL	/* Error present in IOTLB */
 55#define  SABRE_IOMMUCTRL_LCKEN	 0x0000000000800000UL	/* IOTLB lock enable */
 56#define  SABRE_IOMMUCTRL_LCKPTR	 0x0000000000780000UL	/* IOTLB lock pointer */
 57#define  SABRE_IOMMUCTRL_TSBSZ	 0x0000000000070000UL	/* TSB Size */
 58#define  SABRE_IOMMU_TSBSZ_1K   0x0000000000000000
 59#define  SABRE_IOMMU_TSBSZ_2K   0x0000000000010000
 60#define  SABRE_IOMMU_TSBSZ_4K   0x0000000000020000
 61#define  SABRE_IOMMU_TSBSZ_8K   0x0000000000030000
 62#define  SABRE_IOMMU_TSBSZ_16K  0x0000000000040000
 63#define  SABRE_IOMMU_TSBSZ_32K  0x0000000000050000
 64#define  SABRE_IOMMU_TSBSZ_64K  0x0000000000060000
 65#define  SABRE_IOMMU_TSBSZ_128K 0x0000000000070000
 66#define  SABRE_IOMMUCTRL_TBWSZ	 0x0000000000000004UL	/* TSB assumed page size */
 67#define  SABRE_IOMMUCTRL_DENAB	 0x0000000000000002UL	/* Diagnostic Mode Enable */
 68#define  SABRE_IOMMUCTRL_ENAB	 0x0000000000000001UL	/* IOMMU Enable */
 69#define SABRE_IOMMU_TSBBASE	0x0208UL
 70#define SABRE_IOMMU_FLUSH	0x0210UL
 71#define SABRE_IMAP_A_SLOT0	0x0c00UL
 72#define SABRE_IMAP_B_SLOT0	0x0c20UL
 73#define SABRE_IMAP_SCSI		0x1000UL
 74#define SABRE_IMAP_ETH		0x1008UL
 75#define SABRE_IMAP_BPP		0x1010UL
 76#define SABRE_IMAP_AU_REC	0x1018UL
 77#define SABRE_IMAP_AU_PLAY	0x1020UL
 78#define SABRE_IMAP_PFAIL	0x1028UL
 79#define SABRE_IMAP_KMS		0x1030UL
 80#define SABRE_IMAP_FLPY		0x1038UL
 81#define SABRE_IMAP_SHW		0x1040UL
 82#define SABRE_IMAP_KBD		0x1048UL
 83#define SABRE_IMAP_MS		0x1050UL
 84#define SABRE_IMAP_SER		0x1058UL
 85#define SABRE_IMAP_UE		0x1070UL
 86#define SABRE_IMAP_CE		0x1078UL
 87#define SABRE_IMAP_PCIERR	0x1080UL
 88#define SABRE_IMAP_GFX		0x1098UL
 89#define SABRE_IMAP_EUPA		0x10a0UL
 90#define SABRE_ICLR_A_SLOT0	0x1400UL
 91#define SABRE_ICLR_B_SLOT0	0x1480UL
 92#define SABRE_ICLR_SCSI		0x1800UL
 93#define SABRE_ICLR_ETH		0x1808UL
 94#define SABRE_ICLR_BPP		0x1810UL
 95#define SABRE_ICLR_AU_REC	0x1818UL
 96#define SABRE_ICLR_AU_PLAY	0x1820UL
 97#define SABRE_ICLR_PFAIL	0x1828UL
 98#define SABRE_ICLR_KMS		0x1830UL
 99#define SABRE_ICLR_FLPY		0x1838UL
100#define SABRE_ICLR_SHW		0x1840UL
101#define SABRE_ICLR_KBD		0x1848UL
102#define SABRE_ICLR_MS		0x1850UL
103#define SABRE_ICLR_SER		0x1858UL
104#define SABRE_ICLR_UE		0x1870UL
105#define SABRE_ICLR_CE		0x1878UL
106#define SABRE_ICLR_PCIERR	0x1880UL
107#define SABRE_WRSYNC		0x1c20UL
108#define SABRE_PCICTRL		0x2000UL
109#define  SABRE_PCICTRL_MRLEN	 0x0000001000000000UL	/* Use MemoryReadLine for block loads/stores */
110#define  SABRE_PCICTRL_SERR	 0x0000000400000000UL	/* Set when SERR asserted on PCI bus */
111#define  SABRE_PCICTRL_ARBPARK	 0x0000000000200000UL	/* Bus Parking 0=Ultra-IIi 1=prev-bus-owner */
112#define  SABRE_PCICTRL_CPUPRIO	 0x0000000000100000UL	/* Ultra-IIi granted every other bus cycle */
113#define  SABRE_PCICTRL_ARBPRIO	 0x00000000000f0000UL	/* Slot which is granted every other bus cycle */
114#define  SABRE_PCICTRL_ERREN	 0x0000000000000100UL	/* PCI Error Interrupt Enable */
115#define  SABRE_PCICTRL_RTRYWE	 0x0000000000000080UL	/* DMA Flow Control 0=wait-if-possible 1=retry */
116#define  SABRE_PCICTRL_AEN	 0x000000000000000fUL	/* Slot PCI arbitration enables */
117#define SABRE_PIOAFSR		0x2010UL
118#define  SABRE_PIOAFSR_PMA	 0x8000000000000000UL	/* Primary Master Abort */
119#define  SABRE_PIOAFSR_PTA	 0x4000000000000000UL	/* Primary Target Abort */
120#define  SABRE_PIOAFSR_PRTRY	 0x2000000000000000UL	/* Primary Excessive Retries */
121#define  SABRE_PIOAFSR_PPERR	 0x1000000000000000UL	/* Primary Parity Error */
122#define  SABRE_PIOAFSR_SMA	 0x0800000000000000UL	/* Secondary Master Abort */
123#define  SABRE_PIOAFSR_STA	 0x0400000000000000UL	/* Secondary Target Abort */
124#define  SABRE_PIOAFSR_SRTRY	 0x0200000000000000UL	/* Secondary Excessive Retries */
125#define  SABRE_PIOAFSR_SPERR	 0x0100000000000000UL	/* Secondary Parity Error */
126#define  SABRE_PIOAFSR_BMSK	 0x0000ffff00000000UL	/* Byte Mask */
127#define  SABRE_PIOAFSR_BLK	 0x0000000080000000UL	/* Was Block Operation */
128#define SABRE_PIOAFAR		0x2018UL
129#define SABRE_PCIDIAG		0x2020UL
130#define  SABRE_PCIDIAG_DRTRY	 0x0000000000000040UL	/* Disable PIO Retry Limit */
131#define  SABRE_PCIDIAG_IPAPAR	 0x0000000000000008UL	/* Invert PIO Address Parity */
132#define  SABRE_PCIDIAG_IPDPAR	 0x0000000000000004UL	/* Invert PIO Data Parity */
133#define  SABRE_PCIDIAG_IDDPAR	 0x0000000000000002UL	/* Invert DMA Data Parity */
134#define  SABRE_PCIDIAG_ELPBK	 0x0000000000000001UL	/* Loopback Enable - not supported */
135#define SABRE_PCITASR		0x2028UL
136#define  SABRE_PCITASR_EF	 0x0000000000000080UL	/* Respond to 0xe0000000-0xffffffff */
137#define  SABRE_PCITASR_CD	 0x0000000000000040UL	/* Respond to 0xc0000000-0xdfffffff */
138#define  SABRE_PCITASR_AB	 0x0000000000000020UL	/* Respond to 0xa0000000-0xbfffffff */
139#define  SABRE_PCITASR_89	 0x0000000000000010UL	/* Respond to 0x80000000-0x9fffffff */
140#define  SABRE_PCITASR_67	 0x0000000000000008UL	/* Respond to 0x60000000-0x7fffffff */
141#define  SABRE_PCITASR_45	 0x0000000000000004UL	/* Respond to 0x40000000-0x5fffffff */
142#define  SABRE_PCITASR_23	 0x0000000000000002UL	/* Respond to 0x20000000-0x3fffffff */
143#define  SABRE_PCITASR_01	 0x0000000000000001UL	/* Respond to 0x00000000-0x1fffffff */
144#define SABRE_PIOBUF_DIAG	0x5000UL
145#define SABRE_DMABUF_DIAGLO	0x5100UL
146#define SABRE_DMABUF_DIAGHI	0x51c0UL
147#define SABRE_IMAP_GFX_ALIAS	0x6000UL	/* Aliases to 0x1098 */
148#define SABRE_IMAP_EUPA_ALIAS	0x8000UL	/* Aliases to 0x10a0 */
149#define SABRE_IOMMU_VADIAG	0xa400UL
150#define SABRE_IOMMU_TCDIAG	0xa408UL
151#define SABRE_IOMMU_TAG		0xa580UL
152#define  SABRE_IOMMUTAG_ERRSTS	 0x0000000001800000UL	/* Error status bits */
153#define  SABRE_IOMMUTAG_ERR	 0x0000000000400000UL	/* Error present */
154#define  SABRE_IOMMUTAG_WRITE	 0x0000000000200000UL	/* Page is writable */
155#define  SABRE_IOMMUTAG_STREAM	 0x0000000000100000UL	/* Streamable bit - unused */
156#define  SABRE_IOMMUTAG_SIZE	 0x0000000000080000UL	/* 0=8k 1=16k */
157#define  SABRE_IOMMUTAG_VPN	 0x000000000007ffffUL	/* Virtual Page Number [31:13] */
158#define SABRE_IOMMU_DATA	0xa600UL
159#define SABRE_IOMMUDATA_VALID	 0x0000000040000000UL	/* Valid */
160#define SABRE_IOMMUDATA_USED	 0x0000000020000000UL	/* Used (for LRU algorithm) */
161#define SABRE_IOMMUDATA_CACHE	 0x0000000010000000UL	/* Cacheable */
162#define SABRE_IOMMUDATA_PPN	 0x00000000001fffffUL	/* Physical Page Number [33:13] */
163#define SABRE_PCI_IRQSTATE	0xa800UL
164#define SABRE_OBIO_IRQSTATE	0xa808UL
165#define SABRE_FFBCFG		0xf000UL
166#define  SABRE_FFBCFG_SPRQS	 0x000000000f000000	/* Slave P_RQST queue size */
167#define  SABRE_FFBCFG_ONEREAD	 0x0000000000004000	/* Slave supports one outstanding read */
168#define SABRE_MCCTRL0		0xf010UL
169#define  SABRE_MCCTRL0_RENAB	 0x0000000080000000	/* Refresh Enable */
170#define  SABRE_MCCTRL0_EENAB	 0x0000000010000000	/* Enable all ECC functions */
171#define  SABRE_MCCTRL0_11BIT	 0x0000000000001000	/* Enable 11-bit column addressing */
172#define  SABRE_MCCTRL0_DPP	 0x0000000000000f00	/* DIMM Pair Present Bits */
173#define  SABRE_MCCTRL0_RINTVL	 0x00000000000000ff	/* Refresh Interval */
174#define SABRE_MCCTRL1		0xf018UL
175#define  SABRE_MCCTRL1_AMDC	 0x0000000038000000	/* Advance Memdata Clock */
176#define  SABRE_MCCTRL1_ARDC	 0x0000000007000000	/* Advance DRAM Read Data Clock */
177#define  SABRE_MCCTRL1_CSR	 0x0000000000e00000	/* CAS to RAS delay for CBR refresh */
178#define  SABRE_MCCTRL1_CASRW	 0x00000000001c0000	/* CAS length for read/write */
179#define  SABRE_MCCTRL1_RCD	 0x0000000000038000	/* RAS to CAS delay */
180#define  SABRE_MCCTRL1_CP	 0x0000000000007000	/* CAS Precharge */
181#define  SABRE_MCCTRL1_RP	 0x0000000000000e00	/* RAS Precharge */
182#define  SABRE_MCCTRL1_RAS	 0x00000000000001c0	/* Length of RAS for refresh */
183#define  SABRE_MCCTRL1_CASRW2	 0x0000000000000038	/* Must be same as CASRW */
184#define  SABRE_MCCTRL1_RSC	 0x0000000000000007	/* RAS after CAS hold time */
185#define SABRE_RESETCTRL		0xf020UL
186
187#define SABRE_CONFIGSPACE	0x001000000UL
188#define SABRE_IOSPACE		0x002000000UL
189#define SABRE_IOSPACE_SIZE	0x000ffffffUL
190#define SABRE_MEMSPACE		0x100000000UL
191#define SABRE_MEMSPACE_SIZE	0x07fffffffUL
192
193static int hummingbird_p;
194static struct pci_bus *sabre_root_bus;
195
196static irqreturn_t sabre_ue_intr(int irq, void *dev_id)
197{
198	struct pci_pbm_info *pbm = dev_id;
199	unsigned long afsr_reg = pbm->controller_regs + SABRE_UE_AFSR;
200	unsigned long afar_reg = pbm->controller_regs + SABRE_UECE_AFAR;
201	unsigned long afsr, afar, error_bits;
202	int reported;
203
204	/* Latch uncorrectable error status. */
205	afar = upa_readq(afar_reg);
206	afsr = upa_readq(afsr_reg);
207
208	/* Clear the primary/secondary error status bits. */
209	error_bits = afsr &
210		(SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
211		 SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
212		 SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE);
213	if (!error_bits)
214		return IRQ_NONE;
215	upa_writeq(error_bits, afsr_reg);
216
217	/* Log the error. */
218	printk("%s: Uncorrectable Error, primary error type[%s%s]\n",
219	       pbm->name,
220	       ((error_bits & SABRE_UEAFSR_PDRD) ?
221		"DMA Read" :
222		((error_bits & SABRE_UEAFSR_PDWR) ?
223		 "DMA Write" : "???")),
224	       ((error_bits & SABRE_UEAFSR_PDTE) ?
225		":Translation Error" : ""));
226	printk("%s: bytemask[%04lx] dword_offset[%lx] was_block(%d)\n",
227	       pbm->name,
228	       (afsr & SABRE_UEAFSR_BMSK) >> 32UL,
229	       (afsr & SABRE_UEAFSR_OFF) >> 29UL,
230	       ((afsr & SABRE_UEAFSR_BLK) ? 1 : 0));
231	printk("%s: UE AFAR [%016lx]\n", pbm->name, afar);
232	printk("%s: UE Secondary errors [", pbm->name);
233	reported = 0;
234	if (afsr & SABRE_UEAFSR_SDRD) {
235		reported++;
236		printk("(DMA Read)");
237	}
238	if (afsr & SABRE_UEAFSR_SDWR) {
239		reported++;
240		printk("(DMA Write)");
241	}
242	if (afsr & SABRE_UEAFSR_SDTE) {
243		reported++;
244		printk("(Translation Error)");
245	}
246	if (!reported)
247		printk("(none)");
248	printk("]\n");
249
250	/* Interrogate IOMMU for error status. */
251	psycho_check_iommu_error(pbm, afsr, afar, UE_ERR);
252
253	return IRQ_HANDLED;
254}
255
256static irqreturn_t sabre_ce_intr(int irq, void *dev_id)
257{
258	struct pci_pbm_info *pbm = dev_id;
259	unsigned long afsr_reg = pbm->controller_regs + SABRE_CE_AFSR;
260	unsigned long afar_reg = pbm->controller_regs + SABRE_UECE_AFAR;
261	unsigned long afsr, afar, error_bits;
262	int reported;
263
264	/* Latch error status. */
265	afar = upa_readq(afar_reg);
266	afsr = upa_readq(afsr_reg);
267
268	/* Clear primary/secondary error status bits. */
269	error_bits = afsr &
270		(SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
271		 SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR);
272	if (!error_bits)
273		return IRQ_NONE;
274	upa_writeq(error_bits, afsr_reg);
275
276	/* Log the error. */
277	printk("%s: Correctable Error, primary error type[%s]\n",
278	       pbm->name,
279	       ((error_bits & SABRE_CEAFSR_PDRD) ?
280		"DMA Read" :
281		((error_bits & SABRE_CEAFSR_PDWR) ?
282		 "DMA Write" : "???")));
283
284	/* XXX Use syndrome and afar to print out module string just like
285	 * XXX UDB CE trap handler does... -DaveM
286	 */
287	printk("%s: syndrome[%02lx] bytemask[%04lx] dword_offset[%lx] "
288	       "was_block(%d)\n",
289	       pbm->name,
290	       (afsr & SABRE_CEAFSR_ESYND) >> 48UL,
291	       (afsr & SABRE_CEAFSR_BMSK) >> 32UL,
292	       (afsr & SABRE_CEAFSR_OFF) >> 29UL,
293	       ((afsr & SABRE_CEAFSR_BLK) ? 1 : 0));
294	printk("%s: CE AFAR [%016lx]\n", pbm->name, afar);
295	printk("%s: CE Secondary errors [", pbm->name);
296	reported = 0;
297	if (afsr & SABRE_CEAFSR_SDRD) {
298		reported++;
299		printk("(DMA Read)");
300	}
301	if (afsr & SABRE_CEAFSR_SDWR) {
302		reported++;
303		printk("(DMA Write)");
304	}
305	if (!reported)
306		printk("(none)");
307	printk("]\n");
308
309	return IRQ_HANDLED;
310}
311
312static void sabre_register_error_handlers(struct pci_pbm_info *pbm)
313{
314	struct device_node *dp = pbm->op->dev.of_node;
315	struct platform_device *op;
316	unsigned long base = pbm->controller_regs;
317	u64 tmp;
318	int err;
319
320	if (pbm->chip_type == PBM_CHIP_TYPE_SABRE)
321		dp = dp->parent;
322
323	op = of_find_device_by_node(dp);
324	if (!op)
325		return;
326
327	/* Sabre/Hummingbird IRQ property layout is:
328	 * 0: PCI ERR
329	 * 1: UE ERR
330	 * 2: CE ERR
331	 * 3: POWER FAIL
332	 */
333	if (op->archdata.num_irqs < 4)
334		return;
335
336	/* We clear the error bits in the appropriate AFSR before
337	 * registering the handler so that we don't get spurious
338	 * interrupts.
339	 */
340	upa_writeq((SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
341		    SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
342		    SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE),
343		   base + SABRE_UE_AFSR);
344
345	err = request_irq(op->archdata.irqs[1], sabre_ue_intr, 0, "SABRE_UE", pbm);
346	if (err)
347		printk(KERN_WARNING "%s: Couldn't register UE, err=%d.\n",
348		       pbm->name, err);
349
350	upa_writeq((SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
351		    SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR),
352		   base + SABRE_CE_AFSR);
353
354
355	err = request_irq(op->archdata.irqs[2], sabre_ce_intr, 0, "SABRE_CE", pbm);
356	if (err)
357		printk(KERN_WARNING "%s: Couldn't register CE, err=%d.\n",
358		       pbm->name, err);
359	err = request_irq(op->archdata.irqs[0], psycho_pcierr_intr, 0,
360			  "SABRE_PCIERR", pbm);
361	if (err)
362		printk(KERN_WARNING "%s: Couldn't register PCIERR, err=%d.\n",
363		       pbm->name, err);
364
365	tmp = upa_readq(base + SABRE_PCICTRL);
366	tmp |= SABRE_PCICTRL_ERREN;
367	upa_writeq(tmp, base + SABRE_PCICTRL);
368}
369
370static void apb_init(struct pci_bus *sabre_bus)
371{
372	struct pci_dev *pdev;
373
374	list_for_each_entry(pdev, &sabre_bus->devices, bus_list) {
375		if (pdev->vendor == PCI_VENDOR_ID_SUN &&
376		    pdev->device == PCI_DEVICE_ID_SUN_SIMBA) {
377			u16 word16;
378
379			pci_read_config_word(pdev, PCI_COMMAND, &word16);
380			word16 |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY |
381				PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY |
382				PCI_COMMAND_IO;
383			pci_write_config_word(pdev, PCI_COMMAND, word16);
384
385			/* Status register bits are "write 1 to clear". */
386			pci_write_config_word(pdev, PCI_STATUS, 0xffff);
387			pci_write_config_word(pdev, PCI_SEC_STATUS, 0xffff);
388
389			/* Use a primary/seconday latency timer value
390			 * of 64.
391			 */
392			pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 64);
393			pci_write_config_byte(pdev, PCI_SEC_LATENCY_TIMER, 64);
394
395			/* Enable reporting/forwarding of master aborts,
396			 * parity, and SERR.
397			 */
398			pci_write_config_byte(pdev, PCI_BRIDGE_CONTROL,
399					      (PCI_BRIDGE_CTL_PARITY |
400					       PCI_BRIDGE_CTL_SERR |
401					       PCI_BRIDGE_CTL_MASTER_ABORT));
402		}
403	}
404}
405
406static void __devinit sabre_scan_bus(struct pci_pbm_info *pbm,
407				     struct device *parent)
408{
409	static int once;
410
411	/* The APB bridge speaks to the Sabre host PCI bridge
412	 * at 66Mhz, but the front side of APB runs at 33Mhz
413	 * for both segments.
414	 *
415	 * Hummingbird systems do not use APB, so they run
416	 * at 66MHZ.
417	 */
418	if (hummingbird_p)
419		pbm->is_66mhz_capable = 1;
420	else
421		pbm->is_66mhz_capable = 0;
422
423	/* This driver has not been verified to handle
424	 * multiple SABREs yet, so trap this.
425	 *
426	 * Also note that the SABRE host bridge is hardwired
427	 * to live at bus 0.
428	 */
429	if (once != 0) {
430		printk(KERN_ERR PFX "Multiple controllers unsupported.\n");
431		return;
432	}
433	once++;
434
435	pbm->pci_bus = pci_scan_one_pbm(pbm, parent);
436	if (!pbm->pci_bus)
437		return;
438
439	sabre_root_bus = pbm->pci_bus;
440
441	apb_init(pbm->pci_bus);
442
443	sabre_register_error_handlers(pbm);
444}
445
446static void __devinit sabre_pbm_init(struct pci_pbm_info *pbm,
447				     struct platform_device *op)
448{
449	psycho_pbm_init_common(pbm, op, "SABRE", PBM_CHIP_TYPE_SABRE);
450	pbm->pci_afsr = pbm->controller_regs + SABRE_PIOAFSR;
451	pbm->pci_afar = pbm->controller_regs + SABRE_PIOAFAR;
452	pbm->pci_csr = pbm->controller_regs + SABRE_PCICTRL;
453	sabre_scan_bus(pbm, &op->dev);
454}
455
456static const struct of_device_id sabre_match[];
457static int __devinit sabre_probe(struct platform_device *op)
458{
459	const struct of_device_id *match;
460	const struct linux_prom64_registers *pr_regs;
461	struct device_node *dp = op->dev.of_node;
462	struct pci_pbm_info *pbm;
463	u32 upa_portid, dma_mask;
464	struct iommu *iommu;
465	int tsbsize, err;
466	const u32 *vdma;
467	u64 clear_irq;
468
469	match = of_match_device(sabre_match, &op->dev);
470	hummingbird_p = match && (match->data != NULL);
471	if (!hummingbird_p) {
472		struct device_node *cpu_dp;
473
474		/* Of course, Sun has to encode things a thousand
475		 * different ways, inconsistently.
476		 */
477		for_each_node_by_type(cpu_dp, "cpu") {
478			if (!strcmp(cpu_dp->name, "SUNW,UltraSPARC-IIe"))
479				hummingbird_p = 1;
480		}
481	}
482
483	err = -ENOMEM;
484	pbm = kzalloc(sizeof(*pbm), GFP_KERNEL);
485	if (!pbm) {
486		printk(KERN_ERR PFX "Cannot allocate pci_pbm_info.\n");
487		goto out_err;
488	}
489
490	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
491	if (!iommu) {
492		printk(KERN_ERR PFX "Cannot allocate PBM iommu.\n");
493		goto out_free_controller;
494	}
495
496	pbm->iommu = iommu;
497
498	upa_portid = of_getintprop_default(dp, "upa-portid", 0xff);
499
500	pbm->portid = upa_portid;
501
502	/*
503	 * Map in SABRE register set and report the presence of this SABRE.
504	 */
505	
506	pr_regs = of_get_property(dp, "reg", NULL);
507	err = -ENODEV;
508	if (!pr_regs) {
509		printk(KERN_ERR PFX "No reg property\n");
510		goto out_free_iommu;
511	}
512
513	/*
514	 * First REG in property is base of entire SABRE register space.
515	 */
516	pbm->controller_regs = pr_regs[0].phys_addr;
517
518	/* Clear interrupts */
519
520	/* PCI first */
521	for (clear_irq = SABRE_ICLR_A_SLOT0; clear_irq < SABRE_ICLR_B_SLOT0 + 0x80; clear_irq += 8)
522		upa_writeq(0x0UL, pbm->controller_regs + clear_irq);
523
524	/* Then OBIO */
525	for (clear_irq = SABRE_ICLR_SCSI; clear_irq < SABRE_ICLR_SCSI + 0x80; clear_irq += 8)
526		upa_writeq(0x0UL, pbm->controller_regs + clear_irq);
527
528	/* Error interrupts are enabled later after the bus scan. */
529	upa_writeq((SABRE_PCICTRL_MRLEN   | SABRE_PCICTRL_SERR |
530		    SABRE_PCICTRL_ARBPARK | SABRE_PCICTRL_AEN),
531		   pbm->controller_regs + SABRE_PCICTRL);
532
533	/* Now map in PCI config space for entire SABRE. */
534	pbm->config_space = pbm->controller_regs + SABRE_CONFIGSPACE;
535
536	vdma = of_get_property(dp, "virtual-dma", NULL);
537	if (!vdma) {
538		printk(KERN_ERR PFX "No virtual-dma property\n");
539		goto out_free_iommu;
540	}
541
542	dma_mask = vdma[0];
543	switch(vdma[1]) {
544		case 0x20000000:
545			dma_mask |= 0x1fffffff;
546			tsbsize = 64;
547			break;
548		case 0x40000000:
549			dma_mask |= 0x3fffffff;
550			tsbsize = 128;
551			break;
552
553		case 0x80000000:
554			dma_mask |= 0x7fffffff;
555			tsbsize = 128;
556			break;
557		default:
558			printk(KERN_ERR PFX "Strange virtual-dma size.\n");
559			goto out_free_iommu;
560	}
561
562	err = psycho_iommu_init(pbm, tsbsize, vdma[0], dma_mask, SABRE_WRSYNC);
563	if (err)
564		goto out_free_iommu;
565
566	/*
567	 * Look for APB underneath.
568	 */
569	sabre_pbm_init(pbm, op);
570
571	pbm->next = pci_pbm_root;
572	pci_pbm_root = pbm;
573
574	dev_set_drvdata(&op->dev, pbm);
575
576	return 0;
577
578out_free_iommu:
579	kfree(pbm->iommu);
580
581out_free_controller:
582	kfree(pbm);
583
584out_err:
585	return err;
586}
587
588static const struct of_device_id sabre_match[] = {
589	{
590		.name = "pci",
591		.compatible = "pci108e,a001",
592		.data = (void *) 1,
593	},
594	{
595		.name = "pci",
596		.compatible = "pci108e,a000",
597	},
598	{},
599};
600
601static struct platform_driver sabre_driver = {
602	.driver = {
603		.name = DRIVER_NAME,
604		.owner = THIS_MODULE,
605		.of_match_table = sabre_match,
606	},
607	.probe		= sabre_probe,
608};
609
610static int __init sabre_init(void)
611{
612	return platform_driver_register(&sabre_driver);
613}
614
615subsys_initcall(sabre_init);