Linux Audio

Check our new training course

Loading...
   1/*
   2 * SPU file system -- file contents
   3 *
   4 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
   5 *
   6 * Author: Arnd Bergmann <arndb@de.ibm.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2, or (at your option)
  11 * any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23#undef DEBUG
  24
  25#include <linux/fs.h>
  26#include <linux/ioctl.h>
  27#include <linux/export.h>
  28#include <linux/pagemap.h>
  29#include <linux/poll.h>
  30#include <linux/ptrace.h>
  31#include <linux/seq_file.h>
  32#include <linux/slab.h>
  33
  34#include <asm/io.h>
  35#include <asm/time.h>
  36#include <asm/spu.h>
  37#include <asm/spu_info.h>
  38#include <asm/uaccess.h>
  39
  40#include "spufs.h"
  41#include "sputrace.h"
  42
  43#define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
  44
  45/* Simple attribute files */
  46struct spufs_attr {
  47	int (*get)(void *, u64 *);
  48	int (*set)(void *, u64);
  49	char get_buf[24];       /* enough to store a u64 and "\n\0" */
  50	char set_buf[24];
  51	void *data;
  52	const char *fmt;        /* format for read operation */
  53	struct mutex mutex;     /* protects access to these buffers */
  54};
  55
  56static int spufs_attr_open(struct inode *inode, struct file *file,
  57		int (*get)(void *, u64 *), int (*set)(void *, u64),
  58		const char *fmt)
  59{
  60	struct spufs_attr *attr;
  61
  62	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
  63	if (!attr)
  64		return -ENOMEM;
  65
  66	attr->get = get;
  67	attr->set = set;
  68	attr->data = inode->i_private;
  69	attr->fmt = fmt;
  70	mutex_init(&attr->mutex);
  71	file->private_data = attr;
  72
  73	return nonseekable_open(inode, file);
  74}
  75
  76static int spufs_attr_release(struct inode *inode, struct file *file)
  77{
  78       kfree(file->private_data);
  79	return 0;
  80}
  81
  82static ssize_t spufs_attr_read(struct file *file, char __user *buf,
  83		size_t len, loff_t *ppos)
  84{
  85	struct spufs_attr *attr;
  86	size_t size;
  87	ssize_t ret;
  88
  89	attr = file->private_data;
  90	if (!attr->get)
  91		return -EACCES;
  92
  93	ret = mutex_lock_interruptible(&attr->mutex);
  94	if (ret)
  95		return ret;
  96
  97	if (*ppos) {		/* continued read */
  98		size = strlen(attr->get_buf);
  99	} else {		/* first read */
 100		u64 val;
 101		ret = attr->get(attr->data, &val);
 102		if (ret)
 103			goto out;
 104
 105		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
 106				 attr->fmt, (unsigned long long)val);
 107	}
 108
 109	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
 110out:
 111	mutex_unlock(&attr->mutex);
 112	return ret;
 113}
 114
 115static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
 116		size_t len, loff_t *ppos)
 117{
 118	struct spufs_attr *attr;
 119	u64 val;
 120	size_t size;
 121	ssize_t ret;
 122
 123	attr = file->private_data;
 124	if (!attr->set)
 125		return -EACCES;
 126
 127	ret = mutex_lock_interruptible(&attr->mutex);
 128	if (ret)
 129		return ret;
 130
 131	ret = -EFAULT;
 132	size = min(sizeof(attr->set_buf) - 1, len);
 133	if (copy_from_user(attr->set_buf, buf, size))
 134		goto out;
 135
 136	ret = len; /* claim we got the whole input */
 137	attr->set_buf[size] = '\0';
 138	val = simple_strtol(attr->set_buf, NULL, 0);
 139	attr->set(attr->data, val);
 140out:
 141	mutex_unlock(&attr->mutex);
 142	return ret;
 143}
 144
 145#define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt)	\
 146static int __fops ## _open(struct inode *inode, struct file *file)	\
 147{									\
 148	__simple_attr_check_format(__fmt, 0ull);			\
 149	return spufs_attr_open(inode, file, __get, __set, __fmt);	\
 150}									\
 151static const struct file_operations __fops = {				\
 152	.owner	 = THIS_MODULE,						\
 153	.open	 = __fops ## _open,					\
 154	.release = spufs_attr_release,					\
 155	.read	 = spufs_attr_read,					\
 156	.write	 = spufs_attr_write,					\
 157	.llseek  = generic_file_llseek,					\
 158};
 159
 160
 161static int
 162spufs_mem_open(struct inode *inode, struct file *file)
 163{
 164	struct spufs_inode_info *i = SPUFS_I(inode);
 165	struct spu_context *ctx = i->i_ctx;
 166
 167	mutex_lock(&ctx->mapping_lock);
 168	file->private_data = ctx;
 169	if (!i->i_openers++)
 170		ctx->local_store = inode->i_mapping;
 171	mutex_unlock(&ctx->mapping_lock);
 172	return 0;
 173}
 174
 175static int
 176spufs_mem_release(struct inode *inode, struct file *file)
 177{
 178	struct spufs_inode_info *i = SPUFS_I(inode);
 179	struct spu_context *ctx = i->i_ctx;
 180
 181	mutex_lock(&ctx->mapping_lock);
 182	if (!--i->i_openers)
 183		ctx->local_store = NULL;
 184	mutex_unlock(&ctx->mapping_lock);
 185	return 0;
 186}
 187
 188static ssize_t
 189__spufs_mem_read(struct spu_context *ctx, char __user *buffer,
 190			size_t size, loff_t *pos)
 191{
 192	char *local_store = ctx->ops->get_ls(ctx);
 193	return simple_read_from_buffer(buffer, size, pos, local_store,
 194					LS_SIZE);
 195}
 196
 197static ssize_t
 198spufs_mem_read(struct file *file, char __user *buffer,
 199				size_t size, loff_t *pos)
 200{
 201	struct spu_context *ctx = file->private_data;
 202	ssize_t ret;
 203
 204	ret = spu_acquire(ctx);
 205	if (ret)
 206		return ret;
 207	ret = __spufs_mem_read(ctx, buffer, size, pos);
 208	spu_release(ctx);
 209
 210	return ret;
 211}
 212
 213static ssize_t
 214spufs_mem_write(struct file *file, const char __user *buffer,
 215					size_t size, loff_t *ppos)
 216{
 217	struct spu_context *ctx = file->private_data;
 218	char *local_store;
 219	loff_t pos = *ppos;
 220	int ret;
 221
 222	if (pos > LS_SIZE)
 223		return -EFBIG;
 224
 225	ret = spu_acquire(ctx);
 226	if (ret)
 227		return ret;
 228
 229	local_store = ctx->ops->get_ls(ctx);
 230	size = simple_write_to_buffer(local_store, LS_SIZE, ppos, buffer, size);
 231	spu_release(ctx);
 232
 233	return size;
 234}
 235
 236static int
 237spufs_mem_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
 238{
 239	struct spu_context *ctx	= vma->vm_file->private_data;
 240	unsigned long address = (unsigned long)vmf->virtual_address;
 241	unsigned long pfn, offset;
 242
 243#ifdef CONFIG_SPU_FS_64K_LS
 244	struct spu_state *csa = &ctx->csa;
 245	int psize;
 246
 247	/* Check what page size we are using */
 248	psize = get_slice_psize(vma->vm_mm, address);
 249
 250	/* Some sanity checking */
 251	BUG_ON(csa->use_big_pages != (psize == MMU_PAGE_64K));
 252
 253	/* Wow, 64K, cool, we need to align the address though */
 254	if (csa->use_big_pages) {
 255		BUG_ON(vma->vm_start & 0xffff);
 256		address &= ~0xfffful;
 257	}
 258#endif /* CONFIG_SPU_FS_64K_LS */
 259
 260	offset = vmf->pgoff << PAGE_SHIFT;
 261	if (offset >= LS_SIZE)
 262		return VM_FAULT_SIGBUS;
 263
 264	pr_debug("spufs_mem_mmap_fault address=0x%lx, offset=0x%lx\n",
 265			address, offset);
 266
 267	if (spu_acquire(ctx))
 268		return VM_FAULT_NOPAGE;
 269
 270	if (ctx->state == SPU_STATE_SAVED) {
 271		vma->vm_page_prot = pgprot_cached(vma->vm_page_prot);
 272		pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
 273	} else {
 274		vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
 275		pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
 276	}
 277	vm_insert_pfn(vma, address, pfn);
 278
 279	spu_release(ctx);
 280
 281	return VM_FAULT_NOPAGE;
 282}
 283
 284static int spufs_mem_mmap_access(struct vm_area_struct *vma,
 285				unsigned long address,
 286				void *buf, int len, int write)
 287{
 288	struct spu_context *ctx = vma->vm_file->private_data;
 289	unsigned long offset = address - vma->vm_start;
 290	char *local_store;
 291
 292	if (write && !(vma->vm_flags & VM_WRITE))
 293		return -EACCES;
 294	if (spu_acquire(ctx))
 295		return -EINTR;
 296	if ((offset + len) > vma->vm_end)
 297		len = vma->vm_end - offset;
 298	local_store = ctx->ops->get_ls(ctx);
 299	if (write)
 300		memcpy_toio(local_store + offset, buf, len);
 301	else
 302		memcpy_fromio(buf, local_store + offset, len);
 303	spu_release(ctx);
 304	return len;
 305}
 306
 307static const struct vm_operations_struct spufs_mem_mmap_vmops = {
 308	.fault = spufs_mem_mmap_fault,
 309	.access = spufs_mem_mmap_access,
 310};
 311
 312static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
 313{
 314#ifdef CONFIG_SPU_FS_64K_LS
 315	struct spu_context	*ctx = file->private_data;
 316	struct spu_state	*csa = &ctx->csa;
 317
 318	/* Sanity check VMA alignment */
 319	if (csa->use_big_pages) {
 320		pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx,"
 321			 " pgoff=0x%lx\n", vma->vm_start, vma->vm_end,
 322			 vma->vm_pgoff);
 323		if (vma->vm_start & 0xffff)
 324			return -EINVAL;
 325		if (vma->vm_pgoff & 0xf)
 326			return -EINVAL;
 327	}
 328#endif /* CONFIG_SPU_FS_64K_LS */
 329
 330	if (!(vma->vm_flags & VM_SHARED))
 331		return -EINVAL;
 332
 333	vma->vm_flags |= VM_IO | VM_PFNMAP;
 334	vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
 335
 336	vma->vm_ops = &spufs_mem_mmap_vmops;
 337	return 0;
 338}
 339
 340#ifdef CONFIG_SPU_FS_64K_LS
 341static unsigned long spufs_get_unmapped_area(struct file *file,
 342		unsigned long addr, unsigned long len, unsigned long pgoff,
 343		unsigned long flags)
 344{
 345	struct spu_context	*ctx = file->private_data;
 346	struct spu_state	*csa = &ctx->csa;
 347
 348	/* If not using big pages, fallback to normal MM g_u_a */
 349	if (!csa->use_big_pages)
 350		return current->mm->get_unmapped_area(file, addr, len,
 351						      pgoff, flags);
 352
 353	/* Else, try to obtain a 64K pages slice */
 354	return slice_get_unmapped_area(addr, len, flags,
 355				       MMU_PAGE_64K, 1, 0);
 356}
 357#endif /* CONFIG_SPU_FS_64K_LS */
 358
 359static const struct file_operations spufs_mem_fops = {
 360	.open			= spufs_mem_open,
 361	.release		= spufs_mem_release,
 362	.read			= spufs_mem_read,
 363	.write			= spufs_mem_write,
 364	.llseek			= generic_file_llseek,
 365	.mmap			= spufs_mem_mmap,
 366#ifdef CONFIG_SPU_FS_64K_LS
 367	.get_unmapped_area	= spufs_get_unmapped_area,
 368#endif
 369};
 370
 371static int spufs_ps_fault(struct vm_area_struct *vma,
 372				    struct vm_fault *vmf,
 373				    unsigned long ps_offs,
 374				    unsigned long ps_size)
 375{
 376	struct spu_context *ctx = vma->vm_file->private_data;
 377	unsigned long area, offset = vmf->pgoff << PAGE_SHIFT;
 378	int ret = 0;
 379
 380	spu_context_nospu_trace(spufs_ps_fault__enter, ctx);
 381
 382	if (offset >= ps_size)
 383		return VM_FAULT_SIGBUS;
 384
 385	if (fatal_signal_pending(current))
 386		return VM_FAULT_SIGBUS;
 387
 388	/*
 389	 * Because we release the mmap_sem, the context may be destroyed while
 390	 * we're in spu_wait. Grab an extra reference so it isn't destroyed
 391	 * in the meantime.
 392	 */
 393	get_spu_context(ctx);
 394
 395	/*
 396	 * We have to wait for context to be loaded before we have
 397	 * pages to hand out to the user, but we don't want to wait
 398	 * with the mmap_sem held.
 399	 * It is possible to drop the mmap_sem here, but then we need
 400	 * to return VM_FAULT_NOPAGE because the mappings may have
 401	 * hanged.
 402	 */
 403	if (spu_acquire(ctx))
 404		goto refault;
 405
 406	if (ctx->state == SPU_STATE_SAVED) {
 407		up_read(&current->mm->mmap_sem);
 408		spu_context_nospu_trace(spufs_ps_fault__sleep, ctx);
 409		ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
 410		spu_context_trace(spufs_ps_fault__wake, ctx, ctx->spu);
 411		down_read(&current->mm->mmap_sem);
 412	} else {
 413		area = ctx->spu->problem_phys + ps_offs;
 414		vm_insert_pfn(vma, (unsigned long)vmf->virtual_address,
 415					(area + offset) >> PAGE_SHIFT);
 416		spu_context_trace(spufs_ps_fault__insert, ctx, ctx->spu);
 417	}
 418
 419	if (!ret)
 420		spu_release(ctx);
 421
 422refault:
 423	put_spu_context(ctx);
 424	return VM_FAULT_NOPAGE;
 425}
 426
 427#if SPUFS_MMAP_4K
 428static int spufs_cntl_mmap_fault(struct vm_area_struct *vma,
 429					   struct vm_fault *vmf)
 430{
 431	return spufs_ps_fault(vma, vmf, 0x4000, SPUFS_CNTL_MAP_SIZE);
 432}
 433
 434static const struct vm_operations_struct spufs_cntl_mmap_vmops = {
 435	.fault = spufs_cntl_mmap_fault,
 436};
 437
 438/*
 439 * mmap support for problem state control area [0x4000 - 0x4fff].
 440 */
 441static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
 442{
 443	if (!(vma->vm_flags & VM_SHARED))
 444		return -EINVAL;
 445
 446	vma->vm_flags |= VM_IO | VM_PFNMAP;
 447	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
 448
 449	vma->vm_ops = &spufs_cntl_mmap_vmops;
 450	return 0;
 451}
 452#else /* SPUFS_MMAP_4K */
 453#define spufs_cntl_mmap NULL
 454#endif /* !SPUFS_MMAP_4K */
 455
 456static int spufs_cntl_get(void *data, u64 *val)
 457{
 458	struct spu_context *ctx = data;
 459	int ret;
 460
 461	ret = spu_acquire(ctx);
 462	if (ret)
 463		return ret;
 464	*val = ctx->ops->status_read(ctx);
 465	spu_release(ctx);
 466
 467	return 0;
 468}
 469
 470static int spufs_cntl_set(void *data, u64 val)
 471{
 472	struct spu_context *ctx = data;
 473	int ret;
 474
 475	ret = spu_acquire(ctx);
 476	if (ret)
 477		return ret;
 478	ctx->ops->runcntl_write(ctx, val);
 479	spu_release(ctx);
 480
 481	return 0;
 482}
 483
 484static int spufs_cntl_open(struct inode *inode, struct file *file)
 485{
 486	struct spufs_inode_info *i = SPUFS_I(inode);
 487	struct spu_context *ctx = i->i_ctx;
 488
 489	mutex_lock(&ctx->mapping_lock);
 490	file->private_data = ctx;
 491	if (!i->i_openers++)
 492		ctx->cntl = inode->i_mapping;
 493	mutex_unlock(&ctx->mapping_lock);
 494	return simple_attr_open(inode, file, spufs_cntl_get,
 495					spufs_cntl_set, "0x%08lx");
 496}
 497
 498static int
 499spufs_cntl_release(struct inode *inode, struct file *file)
 500{
 501	struct spufs_inode_info *i = SPUFS_I(inode);
 502	struct spu_context *ctx = i->i_ctx;
 503
 504	simple_attr_release(inode, file);
 505
 506	mutex_lock(&ctx->mapping_lock);
 507	if (!--i->i_openers)
 508		ctx->cntl = NULL;
 509	mutex_unlock(&ctx->mapping_lock);
 510	return 0;
 511}
 512
 513static const struct file_operations spufs_cntl_fops = {
 514	.open = spufs_cntl_open,
 515	.release = spufs_cntl_release,
 516	.read = simple_attr_read,
 517	.write = simple_attr_write,
 518	.llseek	= generic_file_llseek,
 519	.mmap = spufs_cntl_mmap,
 520};
 521
 522static int
 523spufs_regs_open(struct inode *inode, struct file *file)
 524{
 525	struct spufs_inode_info *i = SPUFS_I(inode);
 526	file->private_data = i->i_ctx;
 527	return 0;
 528}
 529
 530static ssize_t
 531__spufs_regs_read(struct spu_context *ctx, char __user *buffer,
 532			size_t size, loff_t *pos)
 533{
 534	struct spu_lscsa *lscsa = ctx->csa.lscsa;
 535	return simple_read_from_buffer(buffer, size, pos,
 536				      lscsa->gprs, sizeof lscsa->gprs);
 537}
 538
 539static ssize_t
 540spufs_regs_read(struct file *file, char __user *buffer,
 541		size_t size, loff_t *pos)
 542{
 543	int ret;
 544	struct spu_context *ctx = file->private_data;
 545
 546	/* pre-check for file position: if we'd return EOF, there's no point
 547	 * causing a deschedule */
 548	if (*pos >= sizeof(ctx->csa.lscsa->gprs))
 549		return 0;
 550
 551	ret = spu_acquire_saved(ctx);
 552	if (ret)
 553		return ret;
 554	ret = __spufs_regs_read(ctx, buffer, size, pos);
 555	spu_release_saved(ctx);
 556	return ret;
 557}
 558
 559static ssize_t
 560spufs_regs_write(struct file *file, const char __user *buffer,
 561		 size_t size, loff_t *pos)
 562{
 563	struct spu_context *ctx = file->private_data;
 564	struct spu_lscsa *lscsa = ctx->csa.lscsa;
 565	int ret;
 566
 567	if (*pos >= sizeof(lscsa->gprs))
 568		return -EFBIG;
 569
 570	ret = spu_acquire_saved(ctx);
 571	if (ret)
 572		return ret;
 573
 574	size = simple_write_to_buffer(lscsa->gprs, sizeof(lscsa->gprs), pos,
 575					buffer, size);
 576
 577	spu_release_saved(ctx);
 578	return size;
 579}
 580
 581static const struct file_operations spufs_regs_fops = {
 582	.open	 = spufs_regs_open,
 583	.read    = spufs_regs_read,
 584	.write   = spufs_regs_write,
 585	.llseek  = generic_file_llseek,
 586};
 587
 588static ssize_t
 589__spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
 590			size_t size, loff_t * pos)
 591{
 592	struct spu_lscsa *lscsa = ctx->csa.lscsa;
 593	return simple_read_from_buffer(buffer, size, pos,
 594				      &lscsa->fpcr, sizeof(lscsa->fpcr));
 595}
 596
 597static ssize_t
 598spufs_fpcr_read(struct file *file, char __user * buffer,
 599		size_t size, loff_t * pos)
 600{
 601	int ret;
 602	struct spu_context *ctx = file->private_data;
 603
 604	ret = spu_acquire_saved(ctx);
 605	if (ret)
 606		return ret;
 607	ret = __spufs_fpcr_read(ctx, buffer, size, pos);
 608	spu_release_saved(ctx);
 609	return ret;
 610}
 611
 612static ssize_t
 613spufs_fpcr_write(struct file *file, const char __user * buffer,
 614		 size_t size, loff_t * pos)
 615{
 616	struct spu_context *ctx = file->private_data;
 617	struct spu_lscsa *lscsa = ctx->csa.lscsa;
 618	int ret;
 619
 620	if (*pos >= sizeof(lscsa->fpcr))
 621		return -EFBIG;
 622
 623	ret = spu_acquire_saved(ctx);
 624	if (ret)
 625		return ret;
 626
 627	size = simple_write_to_buffer(&lscsa->fpcr, sizeof(lscsa->fpcr), pos,
 628					buffer, size);
 629
 630	spu_release_saved(ctx);
 631	return size;
 632}
 633
 634static const struct file_operations spufs_fpcr_fops = {
 635	.open = spufs_regs_open,
 636	.read = spufs_fpcr_read,
 637	.write = spufs_fpcr_write,
 638	.llseek = generic_file_llseek,
 639};
 640
 641/* generic open function for all pipe-like files */
 642static int spufs_pipe_open(struct inode *inode, struct file *file)
 643{
 644	struct spufs_inode_info *i = SPUFS_I(inode);
 645	file->private_data = i->i_ctx;
 646
 647	return nonseekable_open(inode, file);
 648}
 649
 650/*
 651 * Read as many bytes from the mailbox as possible, until
 652 * one of the conditions becomes true:
 653 *
 654 * - no more data available in the mailbox
 655 * - end of the user provided buffer
 656 * - end of the mapped area
 657 */
 658static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
 659			size_t len, loff_t *pos)
 660{
 661	struct spu_context *ctx = file->private_data;
 662	u32 mbox_data, __user *udata;
 663	ssize_t count;
 664
 665	if (len < 4)
 666		return -EINVAL;
 667
 668	if (!access_ok(VERIFY_WRITE, buf, len))
 669		return -EFAULT;
 670
 671	udata = (void __user *)buf;
 672
 673	count = spu_acquire(ctx);
 674	if (count)
 675		return count;
 676
 677	for (count = 0; (count + 4) <= len; count += 4, udata++) {
 678		int ret;
 679		ret = ctx->ops->mbox_read(ctx, &mbox_data);
 680		if (ret == 0)
 681			break;
 682
 683		/*
 684		 * at the end of the mapped area, we can fault
 685		 * but still need to return the data we have
 686		 * read successfully so far.
 687		 */
 688		ret = __put_user(mbox_data, udata);
 689		if (ret) {
 690			if (!count)
 691				count = -EFAULT;
 692			break;
 693		}
 694	}
 695	spu_release(ctx);
 696
 697	if (!count)
 698		count = -EAGAIN;
 699
 700	return count;
 701}
 702
 703static const struct file_operations spufs_mbox_fops = {
 704	.open	= spufs_pipe_open,
 705	.read	= spufs_mbox_read,
 706	.llseek	= no_llseek,
 707};
 708
 709static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
 710			size_t len, loff_t *pos)
 711{
 712	struct spu_context *ctx = file->private_data;
 713	ssize_t ret;
 714	u32 mbox_stat;
 715
 716	if (len < 4)
 717		return -EINVAL;
 718
 719	ret = spu_acquire(ctx);
 720	if (ret)
 721		return ret;
 722
 723	mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;
 724
 725	spu_release(ctx);
 726
 727	if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
 728		return -EFAULT;
 729
 730	return 4;
 731}
 732
 733static const struct file_operations spufs_mbox_stat_fops = {
 734	.open	= spufs_pipe_open,
 735	.read	= spufs_mbox_stat_read,
 736	.llseek = no_llseek,
 737};
 738
 739/* low-level ibox access function */
 740size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
 741{
 742	return ctx->ops->ibox_read(ctx, data);
 743}
 744
 745static int spufs_ibox_fasync(int fd, struct file *file, int on)
 746{
 747	struct spu_context *ctx = file->private_data;
 748
 749	return fasync_helper(fd, file, on, &ctx->ibox_fasync);
 750}
 751
 752/* interrupt-level ibox callback function. */
 753void spufs_ibox_callback(struct spu *spu)
 754{
 755	struct spu_context *ctx = spu->ctx;
 756
 757	if (!ctx)
 758		return;
 759
 760	wake_up_all(&ctx->ibox_wq);
 761	kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
 762}
 763
 764/*
 765 * Read as many bytes from the interrupt mailbox as possible, until
 766 * one of the conditions becomes true:
 767 *
 768 * - no more data available in the mailbox
 769 * - end of the user provided buffer
 770 * - end of the mapped area
 771 *
 772 * If the file is opened without O_NONBLOCK, we wait here until
 773 * any data is available, but return when we have been able to
 774 * read something.
 775 */
 776static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
 777			size_t len, loff_t *pos)
 778{
 779	struct spu_context *ctx = file->private_data;
 780	u32 ibox_data, __user *udata;
 781	ssize_t count;
 782
 783	if (len < 4)
 784		return -EINVAL;
 785
 786	if (!access_ok(VERIFY_WRITE, buf, len))
 787		return -EFAULT;
 788
 789	udata = (void __user *)buf;
 790
 791	count = spu_acquire(ctx);
 792	if (count)
 793		goto out;
 794
 795	/* wait only for the first element */
 796	count = 0;
 797	if (file->f_flags & O_NONBLOCK) {
 798		if (!spu_ibox_read(ctx, &ibox_data)) {
 799			count = -EAGAIN;
 800			goto out_unlock;
 801		}
 802	} else {
 803		count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
 804		if (count)
 805			goto out;
 806	}
 807
 808	/* if we can't write at all, return -EFAULT */
 809	count = __put_user(ibox_data, udata);
 810	if (count)
 811		goto out_unlock;
 812
 813	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
 814		int ret;
 815		ret = ctx->ops->ibox_read(ctx, &ibox_data);
 816		if (ret == 0)
 817			break;
 818		/*
 819		 * at the end of the mapped area, we can fault
 820		 * but still need to return the data we have
 821		 * read successfully so far.
 822		 */
 823		ret = __put_user(ibox_data, udata);
 824		if (ret)
 825			break;
 826	}
 827
 828out_unlock:
 829	spu_release(ctx);
 830out:
 831	return count;
 832}
 833
 834static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
 835{
 836	struct spu_context *ctx = file->private_data;
 837	unsigned int mask;
 838
 839	poll_wait(file, &ctx->ibox_wq, wait);
 840
 841	/*
 842	 * For now keep this uninterruptible and also ignore the rule
 843	 * that poll should not sleep.  Will be fixed later.
 844	 */
 845	mutex_lock(&ctx->state_mutex);
 846	mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
 847	spu_release(ctx);
 848
 849	return mask;
 850}
 851
 852static const struct file_operations spufs_ibox_fops = {
 853	.open	= spufs_pipe_open,
 854	.read	= spufs_ibox_read,
 855	.poll	= spufs_ibox_poll,
 856	.fasync	= spufs_ibox_fasync,
 857	.llseek = no_llseek,
 858};
 859
 860static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
 861			size_t len, loff_t *pos)
 862{
 863	struct spu_context *ctx = file->private_data;
 864	ssize_t ret;
 865	u32 ibox_stat;
 866
 867	if (len < 4)
 868		return -EINVAL;
 869
 870	ret = spu_acquire(ctx);
 871	if (ret)
 872		return ret;
 873	ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
 874	spu_release(ctx);
 875
 876	if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
 877		return -EFAULT;
 878
 879	return 4;
 880}
 881
 882static const struct file_operations spufs_ibox_stat_fops = {
 883	.open	= spufs_pipe_open,
 884	.read	= spufs_ibox_stat_read,
 885	.llseek = no_llseek,
 886};
 887
 888/* low-level mailbox write */
 889size_t spu_wbox_write(struct spu_context *ctx, u32 data)
 890{
 891	return ctx->ops->wbox_write(ctx, data);
 892}
 893
 894static int spufs_wbox_fasync(int fd, struct file *file, int on)
 895{
 896	struct spu_context *ctx = file->private_data;
 897	int ret;
 898
 899	ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
 900
 901	return ret;
 902}
 903
 904/* interrupt-level wbox callback function. */
 905void spufs_wbox_callback(struct spu *spu)
 906{
 907	struct spu_context *ctx = spu->ctx;
 908
 909	if (!ctx)
 910		return;
 911
 912	wake_up_all(&ctx->wbox_wq);
 913	kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
 914}
 915
 916/*
 917 * Write as many bytes to the interrupt mailbox as possible, until
 918 * one of the conditions becomes true:
 919 *
 920 * - the mailbox is full
 921 * - end of the user provided buffer
 922 * - end of the mapped area
 923 *
 924 * If the file is opened without O_NONBLOCK, we wait here until
 925 * space is availabyl, but return when we have been able to
 926 * write something.
 927 */
 928static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
 929			size_t len, loff_t *pos)
 930{
 931	struct spu_context *ctx = file->private_data;
 932	u32 wbox_data, __user *udata;
 933	ssize_t count;
 934
 935	if (len < 4)
 936		return -EINVAL;
 937
 938	udata = (void __user *)buf;
 939	if (!access_ok(VERIFY_READ, buf, len))
 940		return -EFAULT;
 941
 942	if (__get_user(wbox_data, udata))
 943		return -EFAULT;
 944
 945	count = spu_acquire(ctx);
 946	if (count)
 947		goto out;
 948
 949	/*
 950	 * make sure we can at least write one element, by waiting
 951	 * in case of !O_NONBLOCK
 952	 */
 953	count = 0;
 954	if (file->f_flags & O_NONBLOCK) {
 955		if (!spu_wbox_write(ctx, wbox_data)) {
 956			count = -EAGAIN;
 957			goto out_unlock;
 958		}
 959	} else {
 960		count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
 961		if (count)
 962			goto out;
 963	}
 964
 965
 966	/* write as much as possible */
 967	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
 968		int ret;
 969		ret = __get_user(wbox_data, udata);
 970		if (ret)
 971			break;
 972
 973		ret = spu_wbox_write(ctx, wbox_data);
 974		if (ret == 0)
 975			break;
 976	}
 977
 978out_unlock:
 979	spu_release(ctx);
 980out:
 981	return count;
 982}
 983
 984static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
 985{
 986	struct spu_context *ctx = file->private_data;
 987	unsigned int mask;
 988
 989	poll_wait(file, &ctx->wbox_wq, wait);
 990
 991	/*
 992	 * For now keep this uninterruptible and also ignore the rule
 993	 * that poll should not sleep.  Will be fixed later.
 994	 */
 995	mutex_lock(&ctx->state_mutex);
 996	mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
 997	spu_release(ctx);
 998
 999	return mask;
1000}
1001
1002static const struct file_operations spufs_wbox_fops = {
1003	.open	= spufs_pipe_open,
1004	.write	= spufs_wbox_write,
1005	.poll	= spufs_wbox_poll,
1006	.fasync	= spufs_wbox_fasync,
1007	.llseek = no_llseek,
1008};
1009
1010static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
1011			size_t len, loff_t *pos)
1012{
1013	struct spu_context *ctx = file->private_data;
1014	ssize_t ret;
1015	u32 wbox_stat;
1016
1017	if (len < 4)
1018		return -EINVAL;
1019
1020	ret = spu_acquire(ctx);
1021	if (ret)
1022		return ret;
1023	wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
1024	spu_release(ctx);
1025
1026	if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
1027		return -EFAULT;
1028
1029	return 4;
1030}
1031
1032static const struct file_operations spufs_wbox_stat_fops = {
1033	.open	= spufs_pipe_open,
1034	.read	= spufs_wbox_stat_read,
1035	.llseek = no_llseek,
1036};
1037
1038static int spufs_signal1_open(struct inode *inode, struct file *file)
1039{
1040	struct spufs_inode_info *i = SPUFS_I(inode);
1041	struct spu_context *ctx = i->i_ctx;
1042
1043	mutex_lock(&ctx->mapping_lock);
1044	file->private_data = ctx;
1045	if (!i->i_openers++)
1046		ctx->signal1 = inode->i_mapping;
1047	mutex_unlock(&ctx->mapping_lock);
1048	return nonseekable_open(inode, file);
1049}
1050
1051static int
1052spufs_signal1_release(struct inode *inode, struct file *file)
1053{
1054	struct spufs_inode_info *i = SPUFS_I(inode);
1055	struct spu_context *ctx = i->i_ctx;
1056
1057	mutex_lock(&ctx->mapping_lock);
1058	if (!--i->i_openers)
1059		ctx->signal1 = NULL;
1060	mutex_unlock(&ctx->mapping_lock);
1061	return 0;
1062}
1063
1064static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
1065			size_t len, loff_t *pos)
1066{
1067	int ret = 0;
1068	u32 data;
1069
1070	if (len < 4)
1071		return -EINVAL;
1072
1073	if (ctx->csa.spu_chnlcnt_RW[3]) {
1074		data = ctx->csa.spu_chnldata_RW[3];
1075		ret = 4;
1076	}
1077
1078	if (!ret)
1079		goto out;
1080
1081	if (copy_to_user(buf, &data, 4))
1082		return -EFAULT;
1083
1084out:
1085	return ret;
1086}
1087
1088static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
1089			size_t len, loff_t *pos)
1090{
1091	int ret;
1092	struct spu_context *ctx = file->private_data;
1093
1094	ret = spu_acquire_saved(ctx);
1095	if (ret)
1096		return ret;
1097	ret = __spufs_signal1_read(ctx, buf, len, pos);
1098	spu_release_saved(ctx);
1099
1100	return ret;
1101}
1102
1103static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
1104			size_t len, loff_t *pos)
1105{
1106	struct spu_context *ctx;
1107	ssize_t ret;
1108	u32 data;
1109
1110	ctx = file->private_data;
1111
1112	if (len < 4)
1113		return -EINVAL;
1114
1115	if (copy_from_user(&data, buf, 4))
1116		return -EFAULT;
1117
1118	ret = spu_acquire(ctx);
1119	if (ret)
1120		return ret;
1121	ctx->ops->signal1_write(ctx, data);
1122	spu_release(ctx);
1123
1124	return 4;
1125}
1126
1127static int
1128spufs_signal1_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1129{
1130#if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1131	return spufs_ps_fault(vma, vmf, 0x14000, SPUFS_SIGNAL_MAP_SIZE);
1132#elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1133	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1134	 * signal 1 and 2 area
1135	 */
1136	return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1137#else
1138#error unsupported page size
1139#endif
1140}
1141
1142static const struct vm_operations_struct spufs_signal1_mmap_vmops = {
1143	.fault = spufs_signal1_mmap_fault,
1144};
1145
1146static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
1147{
1148	if (!(vma->vm_flags & VM_SHARED))
1149		return -EINVAL;
1150
1151	vma->vm_flags |= VM_IO | VM_PFNMAP;
1152	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1153
1154	vma->vm_ops = &spufs_signal1_mmap_vmops;
1155	return 0;
1156}
1157
1158static const struct file_operations spufs_signal1_fops = {
1159	.open = spufs_signal1_open,
1160	.release = spufs_signal1_release,
1161	.read = spufs_signal1_read,
1162	.write = spufs_signal1_write,
1163	.mmap = spufs_signal1_mmap,
1164	.llseek = no_llseek,
1165};
1166
1167static const struct file_operations spufs_signal1_nosched_fops = {
1168	.open = spufs_signal1_open,
1169	.release = spufs_signal1_release,
1170	.write = spufs_signal1_write,
1171	.mmap = spufs_signal1_mmap,
1172	.llseek = no_llseek,
1173};
1174
1175static int spufs_signal2_open(struct inode *inode, struct file *file)
1176{
1177	struct spufs_inode_info *i = SPUFS_I(inode);
1178	struct spu_context *ctx = i->i_ctx;
1179
1180	mutex_lock(&ctx->mapping_lock);
1181	file->private_data = ctx;
1182	if (!i->i_openers++)
1183		ctx->signal2 = inode->i_mapping;
1184	mutex_unlock(&ctx->mapping_lock);
1185	return nonseekable_open(inode, file);
1186}
1187
1188static int
1189spufs_signal2_release(struct inode *inode, struct file *file)
1190{
1191	struct spufs_inode_info *i = SPUFS_I(inode);
1192	struct spu_context *ctx = i->i_ctx;
1193
1194	mutex_lock(&ctx->mapping_lock);
1195	if (!--i->i_openers)
1196		ctx->signal2 = NULL;
1197	mutex_unlock(&ctx->mapping_lock);
1198	return 0;
1199}
1200
1201static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
1202			size_t len, loff_t *pos)
1203{
1204	int ret = 0;
1205	u32 data;
1206
1207	if (len < 4)
1208		return -EINVAL;
1209
1210	if (ctx->csa.spu_chnlcnt_RW[4]) {
1211		data =  ctx->csa.spu_chnldata_RW[4];
1212		ret = 4;
1213	}
1214
1215	if (!ret)
1216		goto out;
1217
1218	if (copy_to_user(buf, &data, 4))
1219		return -EFAULT;
1220
1221out:
1222	return ret;
1223}
1224
1225static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
1226			size_t len, loff_t *pos)
1227{
1228	struct spu_context *ctx = file->private_data;
1229	int ret;
1230
1231	ret = spu_acquire_saved(ctx);
1232	if (ret)
1233		return ret;
1234	ret = __spufs_signal2_read(ctx, buf, len, pos);
1235	spu_release_saved(ctx);
1236
1237	return ret;
1238}
1239
1240static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
1241			size_t len, loff_t *pos)
1242{
1243	struct spu_context *ctx;
1244	ssize_t ret;
1245	u32 data;
1246
1247	ctx = file->private_data;
1248
1249	if (len < 4)
1250		return -EINVAL;
1251
1252	if (copy_from_user(&data, buf, 4))
1253		return -EFAULT;
1254
1255	ret = spu_acquire(ctx);
1256	if (ret)
1257		return ret;
1258	ctx->ops->signal2_write(ctx, data);
1259	spu_release(ctx);
1260
1261	return 4;
1262}
1263
1264#if SPUFS_MMAP_4K
1265static int
1266spufs_signal2_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1267{
1268#if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1269	return spufs_ps_fault(vma, vmf, 0x1c000, SPUFS_SIGNAL_MAP_SIZE);
1270#elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1271	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1272	 * signal 1 and 2 area
1273	 */
1274	return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1275#else
1276#error unsupported page size
1277#endif
1278}
1279
1280static const struct vm_operations_struct spufs_signal2_mmap_vmops = {
1281	.fault = spufs_signal2_mmap_fault,
1282};
1283
1284static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
1285{
1286	if (!(vma->vm_flags & VM_SHARED))
1287		return -EINVAL;
1288
1289	vma->vm_flags |= VM_IO | VM_PFNMAP;
1290	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1291
1292	vma->vm_ops = &spufs_signal2_mmap_vmops;
1293	return 0;
1294}
1295#else /* SPUFS_MMAP_4K */
1296#define spufs_signal2_mmap NULL
1297#endif /* !SPUFS_MMAP_4K */
1298
1299static const struct file_operations spufs_signal2_fops = {
1300	.open = spufs_signal2_open,
1301	.release = spufs_signal2_release,
1302	.read = spufs_signal2_read,
1303	.write = spufs_signal2_write,
1304	.mmap = spufs_signal2_mmap,
1305	.llseek = no_llseek,
1306};
1307
1308static const struct file_operations spufs_signal2_nosched_fops = {
1309	.open = spufs_signal2_open,
1310	.release = spufs_signal2_release,
1311	.write = spufs_signal2_write,
1312	.mmap = spufs_signal2_mmap,
1313	.llseek = no_llseek,
1314};
1315
1316/*
1317 * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
1318 * work of acquiring (or not) the SPU context before calling through
1319 * to the actual get routine. The set routine is called directly.
1320 */
1321#define SPU_ATTR_NOACQUIRE	0
1322#define SPU_ATTR_ACQUIRE	1
1323#define SPU_ATTR_ACQUIRE_SAVED	2
1324
1325#define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire)	\
1326static int __##__get(void *data, u64 *val)				\
1327{									\
1328	struct spu_context *ctx = data;					\
1329	int ret = 0;							\
1330									\
1331	if (__acquire == SPU_ATTR_ACQUIRE) {				\
1332		ret = spu_acquire(ctx);					\
1333		if (ret)						\
1334			return ret;					\
1335		*val = __get(ctx);					\
1336		spu_release(ctx);					\
1337	} else if (__acquire == SPU_ATTR_ACQUIRE_SAVED)	{		\
1338		ret = spu_acquire_saved(ctx);				\
1339		if (ret)						\
1340			return ret;					\
1341		*val = __get(ctx);					\
1342		spu_release_saved(ctx);					\
1343	} else								\
1344		*val = __get(ctx);					\
1345									\
1346	return 0;							\
1347}									\
1348DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1349
1350static int spufs_signal1_type_set(void *data, u64 val)
1351{
1352	struct spu_context *ctx = data;
1353	int ret;
1354
1355	ret = spu_acquire(ctx);
1356	if (ret)
1357		return ret;
1358	ctx->ops->signal1_type_set(ctx, val);
1359	spu_release(ctx);
1360
1361	return 0;
1362}
1363
1364static u64 spufs_signal1_type_get(struct spu_context *ctx)
1365{
1366	return ctx->ops->signal1_type_get(ctx);
1367}
1368DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1369		       spufs_signal1_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1370
1371
1372static int spufs_signal2_type_set(void *data, u64 val)
1373{
1374	struct spu_context *ctx = data;
1375	int ret;
1376
1377	ret = spu_acquire(ctx);
1378	if (ret)
1379		return ret;
1380	ctx->ops->signal2_type_set(ctx, val);
1381	spu_release(ctx);
1382
1383	return 0;
1384}
1385
1386static u64 spufs_signal2_type_get(struct spu_context *ctx)
1387{
1388	return ctx->ops->signal2_type_get(ctx);
1389}
1390DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1391		       spufs_signal2_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1392
1393#if SPUFS_MMAP_4K
1394static int
1395spufs_mss_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1396{
1397	return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_MSS_MAP_SIZE);
1398}
1399
1400static const struct vm_operations_struct spufs_mss_mmap_vmops = {
1401	.fault = spufs_mss_mmap_fault,
1402};
1403
1404/*
1405 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1406 */
1407static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
1408{
1409	if (!(vma->vm_flags & VM_SHARED))
1410		return -EINVAL;
1411
1412	vma->vm_flags |= VM_IO | VM_PFNMAP;
1413	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1414
1415	vma->vm_ops = &spufs_mss_mmap_vmops;
1416	return 0;
1417}
1418#else /* SPUFS_MMAP_4K */
1419#define spufs_mss_mmap NULL
1420#endif /* !SPUFS_MMAP_4K */
1421
1422static int spufs_mss_open(struct inode *inode, struct file *file)
1423{
1424	struct spufs_inode_info *i = SPUFS_I(inode);
1425	struct spu_context *ctx = i->i_ctx;
1426
1427	file->private_data = i->i_ctx;
1428
1429	mutex_lock(&ctx->mapping_lock);
1430	if (!i->i_openers++)
1431		ctx->mss = inode->i_mapping;
1432	mutex_unlock(&ctx->mapping_lock);
1433	return nonseekable_open(inode, file);
1434}
1435
1436static int
1437spufs_mss_release(struct inode *inode, struct file *file)
1438{
1439	struct spufs_inode_info *i = SPUFS_I(inode);
1440	struct spu_context *ctx = i->i_ctx;
1441
1442	mutex_lock(&ctx->mapping_lock);
1443	if (!--i->i_openers)
1444		ctx->mss = NULL;
1445	mutex_unlock(&ctx->mapping_lock);
1446	return 0;
1447}
1448
1449static const struct file_operations spufs_mss_fops = {
1450	.open	 = spufs_mss_open,
1451	.release = spufs_mss_release,
1452	.mmap	 = spufs_mss_mmap,
1453	.llseek  = no_llseek,
1454};
1455
1456static int
1457spufs_psmap_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1458{
1459	return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_PS_MAP_SIZE);
1460}
1461
1462static const struct vm_operations_struct spufs_psmap_mmap_vmops = {
1463	.fault = spufs_psmap_mmap_fault,
1464};
1465
1466/*
1467 * mmap support for full problem state area [0x00000 - 0x1ffff].
1468 */
1469static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
1470{
1471	if (!(vma->vm_flags & VM_SHARED))
1472		return -EINVAL;
1473
1474	vma->vm_flags |= VM_IO | VM_PFNMAP;
1475	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1476
1477	vma->vm_ops = &spufs_psmap_mmap_vmops;
1478	return 0;
1479}
1480
1481static int spufs_psmap_open(struct inode *inode, struct file *file)
1482{
1483	struct spufs_inode_info *i = SPUFS_I(inode);
1484	struct spu_context *ctx = i->i_ctx;
1485
1486	mutex_lock(&ctx->mapping_lock);
1487	file->private_data = i->i_ctx;
1488	if (!i->i_openers++)
1489		ctx->psmap = inode->i_mapping;
1490	mutex_unlock(&ctx->mapping_lock);
1491	return nonseekable_open(inode, file);
1492}
1493
1494static int
1495spufs_psmap_release(struct inode *inode, struct file *file)
1496{
1497	struct spufs_inode_info *i = SPUFS_I(inode);
1498	struct spu_context *ctx = i->i_ctx;
1499
1500	mutex_lock(&ctx->mapping_lock);
1501	if (!--i->i_openers)
1502		ctx->psmap = NULL;
1503	mutex_unlock(&ctx->mapping_lock);
1504	return 0;
1505}
1506
1507static const struct file_operations spufs_psmap_fops = {
1508	.open	 = spufs_psmap_open,
1509	.release = spufs_psmap_release,
1510	.mmap	 = spufs_psmap_mmap,
1511	.llseek  = no_llseek,
1512};
1513
1514
1515#if SPUFS_MMAP_4K
1516static int
1517spufs_mfc_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1518{
1519	return spufs_ps_fault(vma, vmf, 0x3000, SPUFS_MFC_MAP_SIZE);
1520}
1521
1522static const struct vm_operations_struct spufs_mfc_mmap_vmops = {
1523	.fault = spufs_mfc_mmap_fault,
1524};
1525
1526/*
1527 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1528 */
1529static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
1530{
1531	if (!(vma->vm_flags & VM_SHARED))
1532		return -EINVAL;
1533
1534	vma->vm_flags |= VM_IO | VM_PFNMAP;
1535	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1536
1537	vma->vm_ops = &spufs_mfc_mmap_vmops;
1538	return 0;
1539}
1540#else /* SPUFS_MMAP_4K */
1541#define spufs_mfc_mmap NULL
1542#endif /* !SPUFS_MMAP_4K */
1543
1544static int spufs_mfc_open(struct inode *inode, struct file *file)
1545{
1546	struct spufs_inode_info *i = SPUFS_I(inode);
1547	struct spu_context *ctx = i->i_ctx;
1548
1549	/* we don't want to deal with DMA into other processes */
1550	if (ctx->owner != current->mm)
1551		return -EINVAL;
1552
1553	if (atomic_read(&inode->i_count) != 1)
1554		return -EBUSY;
1555
1556	mutex_lock(&ctx->mapping_lock);
1557	file->private_data = ctx;
1558	if (!i->i_openers++)
1559		ctx->mfc = inode->i_mapping;
1560	mutex_unlock(&ctx->mapping_lock);
1561	return nonseekable_open(inode, file);
1562}
1563
1564static int
1565spufs_mfc_release(struct inode *inode, struct file *file)
1566{
1567	struct spufs_inode_info *i = SPUFS_I(inode);
1568	struct spu_context *ctx = i->i_ctx;
1569
1570	mutex_lock(&ctx->mapping_lock);
1571	if (!--i->i_openers)
1572		ctx->mfc = NULL;
1573	mutex_unlock(&ctx->mapping_lock);
1574	return 0;
1575}
1576
1577/* interrupt-level mfc callback function. */
1578void spufs_mfc_callback(struct spu *spu)
1579{
1580	struct spu_context *ctx = spu->ctx;
1581
1582	if (!ctx)
1583		return;
1584
1585	wake_up_all(&ctx->mfc_wq);
1586
1587	pr_debug("%s %s\n", __func__, spu->name);
1588	if (ctx->mfc_fasync) {
1589		u32 free_elements, tagstatus;
1590		unsigned int mask;
1591
1592		/* no need for spu_acquire in interrupt context */
1593		free_elements = ctx->ops->get_mfc_free_elements(ctx);
1594		tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1595
1596		mask = 0;
1597		if (free_elements & 0xffff)
1598			mask |= POLLOUT;
1599		if (tagstatus & ctx->tagwait)
1600			mask |= POLLIN;
1601
1602		kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
1603	}
1604}
1605
1606static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
1607{
1608	/* See if there is one tag group is complete */
1609	/* FIXME we need locking around tagwait */
1610	*status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
1611	ctx->tagwait &= ~*status;
1612	if (*status)
1613		return 1;
1614
1615	/* enable interrupt waiting for any tag group,
1616	   may silently fail if interrupts are already enabled */
1617	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1618	return 0;
1619}
1620
1621static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
1622			size_t size, loff_t *pos)
1623{
1624	struct spu_context *ctx = file->private_data;
1625	int ret = -EINVAL;
1626	u32 status;
1627
1628	if (size != 4)
1629		goto out;
1630
1631	ret = spu_acquire(ctx);
1632	if (ret)
1633		return ret;
1634
1635	ret = -EINVAL;
1636	if (file->f_flags & O_NONBLOCK) {
1637		status = ctx->ops->read_mfc_tagstatus(ctx);
1638		if (!(status & ctx->tagwait))
1639			ret = -EAGAIN;
1640		else
1641			/* XXX(hch): shouldn't we clear ret here? */
1642			ctx->tagwait &= ~status;
1643	} else {
1644		ret = spufs_wait(ctx->mfc_wq,
1645			   spufs_read_mfc_tagstatus(ctx, &status));
1646		if (ret)
1647			goto out;
1648	}
1649	spu_release(ctx);
1650
1651	ret = 4;
1652	if (copy_to_user(buffer, &status, 4))
1653		ret = -EFAULT;
1654
1655out:
1656	return ret;
1657}
1658
1659static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
1660{
1661	pr_debug("queueing DMA %x %llx %x %x %x\n", cmd->lsa,
1662		 cmd->ea, cmd->size, cmd->tag, cmd->cmd);
1663
1664	switch (cmd->cmd) {
1665	case MFC_PUT_CMD:
1666	case MFC_PUTF_CMD:
1667	case MFC_PUTB_CMD:
1668	case MFC_GET_CMD:
1669	case MFC_GETF_CMD:
1670	case MFC_GETB_CMD:
1671		break;
1672	default:
1673		pr_debug("invalid DMA opcode %x\n", cmd->cmd);
1674		return -EIO;
1675	}
1676
1677	if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
1678		pr_debug("invalid DMA alignment, ea %llx lsa %x\n",
1679				cmd->ea, cmd->lsa);
1680		return -EIO;
1681	}
1682
1683	switch (cmd->size & 0xf) {
1684	case 1:
1685		break;
1686	case 2:
1687		if (cmd->lsa & 1)
1688			goto error;
1689		break;
1690	case 4:
1691		if (cmd->lsa & 3)
1692			goto error;
1693		break;
1694	case 8:
1695		if (cmd->lsa & 7)
1696			goto error;
1697		break;
1698	case 0:
1699		if (cmd->lsa & 15)
1700			goto error;
1701		break;
1702	error:
1703	default:
1704		pr_debug("invalid DMA alignment %x for size %x\n",
1705			cmd->lsa & 0xf, cmd->size);
1706		return -EIO;
1707	}
1708
1709	if (cmd->size > 16 * 1024) {
1710		pr_debug("invalid DMA size %x\n", cmd->size);
1711		return -EIO;
1712	}
1713
1714	if (cmd->tag & 0xfff0) {
1715		/* we reserve the higher tag numbers for kernel use */
1716		pr_debug("invalid DMA tag\n");
1717		return -EIO;
1718	}
1719
1720	if (cmd->class) {
1721		/* not supported in this version */
1722		pr_debug("invalid DMA class\n");
1723		return -EIO;
1724	}
1725
1726	return 0;
1727}
1728
1729static int spu_send_mfc_command(struct spu_context *ctx,
1730				struct mfc_dma_command cmd,
1731				int *error)
1732{
1733	*error = ctx->ops->send_mfc_command(ctx, &cmd);
1734	if (*error == -EAGAIN) {
1735		/* wait for any tag group to complete
1736		   so we have space for the new command */
1737		ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1738		/* try again, because the queue might be
1739		   empty again */
1740		*error = ctx->ops->send_mfc_command(ctx, &cmd);
1741		if (*error == -EAGAIN)
1742			return 0;
1743	}
1744	return 1;
1745}
1746
1747static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
1748			size_t size, loff_t *pos)
1749{
1750	struct spu_context *ctx = file->private_data;
1751	struct mfc_dma_command cmd;
1752	int ret = -EINVAL;
1753
1754	if (size != sizeof cmd)
1755		goto out;
1756
1757	ret = -EFAULT;
1758	if (copy_from_user(&cmd, buffer, sizeof cmd))
1759		goto out;
1760
1761	ret = spufs_check_valid_dma(&cmd);
1762	if (ret)
1763		goto out;
1764
1765	ret = spu_acquire(ctx);
1766	if (ret)
1767		goto out;
1768
1769	ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1770	if (ret)
1771		goto out;
1772
1773	if (file->f_flags & O_NONBLOCK) {
1774		ret = ctx->ops->send_mfc_command(ctx, &cmd);
1775	} else {
1776		int status;
1777		ret = spufs_wait(ctx->mfc_wq,
1778				 spu_send_mfc_command(ctx, cmd, &status));
1779		if (ret)
1780			goto out;
1781		if (status)
1782			ret = status;
1783	}
1784
1785	if (ret)
1786		goto out_unlock;
1787
1788	ctx->tagwait |= 1 << cmd.tag;
1789	ret = size;
1790
1791out_unlock:
1792	spu_release(ctx);
1793out:
1794	return ret;
1795}
1796
1797static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
1798{
1799	struct spu_context *ctx = file->private_data;
1800	u32 free_elements, tagstatus;
1801	unsigned int mask;
1802
1803	poll_wait(file, &ctx->mfc_wq, wait);
1804
1805	/*
1806	 * For now keep this uninterruptible and also ignore the rule
1807	 * that poll should not sleep.  Will be fixed later.
1808	 */
1809	mutex_lock(&ctx->state_mutex);
1810	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
1811	free_elements = ctx->ops->get_mfc_free_elements(ctx);
1812	tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1813	spu_release(ctx);
1814
1815	mask = 0;
1816	if (free_elements & 0xffff)
1817		mask |= POLLOUT | POLLWRNORM;
1818	if (tagstatus & ctx->tagwait)
1819		mask |= POLLIN | POLLRDNORM;
1820
1821	pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__,
1822		free_elements, tagstatus, ctx->tagwait);
1823
1824	return mask;
1825}
1826
1827static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1828{
1829	struct spu_context *ctx = file->private_data;
1830	int ret;
1831
1832	ret = spu_acquire(ctx);
1833	if (ret)
1834		goto out;
1835#if 0
1836/* this currently hangs */
1837	ret = spufs_wait(ctx->mfc_wq,
1838			 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
1839	if (ret)
1840		goto out;
1841	ret = spufs_wait(ctx->mfc_wq,
1842			 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1843	if (ret)
1844		goto out;
1845#else
1846	ret = 0;
1847#endif
1848	spu_release(ctx);
1849out:
1850	return ret;
1851}
1852
1853static int spufs_mfc_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1854{
1855	struct inode *inode = file->f_path.dentry->d_inode;
1856	int err = filemap_write_and_wait_range(inode->i_mapping, start, end);
1857	if (!err) {
1858		mutex_lock(&inode->i_mutex);
1859		err = spufs_mfc_flush(file, NULL);
1860		mutex_unlock(&inode->i_mutex);
1861	}
1862	return err;
1863}
1864
1865static int spufs_mfc_fasync(int fd, struct file *file, int on)
1866{
1867	struct spu_context *ctx = file->private_data;
1868
1869	return fasync_helper(fd, file, on, &ctx->mfc_fasync);
1870}
1871
1872static const struct file_operations spufs_mfc_fops = {
1873	.open	 = spufs_mfc_open,
1874	.release = spufs_mfc_release,
1875	.read	 = spufs_mfc_read,
1876	.write	 = spufs_mfc_write,
1877	.poll	 = spufs_mfc_poll,
1878	.flush	 = spufs_mfc_flush,
1879	.fsync	 = spufs_mfc_fsync,
1880	.fasync	 = spufs_mfc_fasync,
1881	.mmap	 = spufs_mfc_mmap,
1882	.llseek  = no_llseek,
1883};
1884
1885static int spufs_npc_set(void *data, u64 val)
1886{
1887	struct spu_context *ctx = data;
1888	int ret;
1889
1890	ret = spu_acquire(ctx);
1891	if (ret)
1892		return ret;
1893	ctx->ops->npc_write(ctx, val);
1894	spu_release(ctx);
1895
1896	return 0;
1897}
1898
1899static u64 spufs_npc_get(struct spu_context *ctx)
1900{
1901	return ctx->ops->npc_read(ctx);
1902}
1903DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
1904		       "0x%llx\n", SPU_ATTR_ACQUIRE);
1905
1906static int spufs_decr_set(void *data, u64 val)
1907{
1908	struct spu_context *ctx = data;
1909	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1910	int ret;
1911
1912	ret = spu_acquire_saved(ctx);
1913	if (ret)
1914		return ret;
1915	lscsa->decr.slot[0] = (u32) val;
1916	spu_release_saved(ctx);
1917
1918	return 0;
1919}
1920
1921static u64 spufs_decr_get(struct spu_context *ctx)
1922{
1923	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1924	return lscsa->decr.slot[0];
1925}
1926DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1927		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1928
1929static int spufs_decr_status_set(void *data, u64 val)
1930{
1931	struct spu_context *ctx = data;
1932	int ret;
1933
1934	ret = spu_acquire_saved(ctx);
1935	if (ret)
1936		return ret;
1937	if (val)
1938		ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
1939	else
1940		ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1941	spu_release_saved(ctx);
1942
1943	return 0;
1944}
1945
1946static u64 spufs_decr_status_get(struct spu_context *ctx)
1947{
1948	if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
1949		return SPU_DECR_STATUS_RUNNING;
1950	else
1951		return 0;
1952}
1953DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1954		       spufs_decr_status_set, "0x%llx\n",
1955		       SPU_ATTR_ACQUIRE_SAVED);
1956
1957static int spufs_event_mask_set(void *data, u64 val)
1958{
1959	struct spu_context *ctx = data;
1960	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1961	int ret;
1962
1963	ret = spu_acquire_saved(ctx);
1964	if (ret)
1965		return ret;
1966	lscsa->event_mask.slot[0] = (u32) val;
1967	spu_release_saved(ctx);
1968
1969	return 0;
1970}
1971
1972static u64 spufs_event_mask_get(struct spu_context *ctx)
1973{
1974	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1975	return lscsa->event_mask.slot[0];
1976}
1977
1978DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1979		       spufs_event_mask_set, "0x%llx\n",
1980		       SPU_ATTR_ACQUIRE_SAVED);
1981
1982static u64 spufs_event_status_get(struct spu_context *ctx)
1983{
1984	struct spu_state *state = &ctx->csa;
1985	u64 stat;
1986	stat = state->spu_chnlcnt_RW[0];
1987	if (stat)
1988		return state->spu_chnldata_RW[0];
1989	return 0;
1990}
1991DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
1992		       NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1993
1994static int spufs_srr0_set(void *data, u64 val)
1995{
1996	struct spu_context *ctx = data;
1997	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1998	int ret;
1999
2000	ret = spu_acquire_saved(ctx);
2001	if (ret)
2002		return ret;
2003	lscsa->srr0.slot[0] = (u32) val;
2004	spu_release_saved(ctx);
2005
2006	return 0;
2007}
2008
2009static u64 spufs_srr0_get(struct spu_context *ctx)
2010{
2011	struct spu_lscsa *lscsa = ctx->csa.lscsa;
2012	return lscsa->srr0.slot[0];
2013}
2014DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
2015		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
2016
2017static u64 spufs_id_get(struct spu_context *ctx)
2018{
2019	u64 num;
2020
2021	if (ctx->state == SPU_STATE_RUNNABLE)
2022		num = ctx->spu->number;
2023	else
2024		num = (unsigned int)-1;
2025
2026	return num;
2027}
2028DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
2029		       SPU_ATTR_ACQUIRE)
2030
2031static u64 spufs_object_id_get(struct spu_context *ctx)
2032{
2033	/* FIXME: Should there really be no locking here? */
2034	return ctx->object_id;
2035}
2036
2037static int spufs_object_id_set(void *data, u64 id)
2038{
2039	struct spu_context *ctx = data;
2040	ctx->object_id = id;
2041
2042	return 0;
2043}
2044
2045DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
2046		       spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
2047
2048static u64 spufs_lslr_get(struct spu_context *ctx)
2049{
2050	return ctx->csa.priv2.spu_lslr_RW;
2051}
2052DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
2053		       SPU_ATTR_ACQUIRE_SAVED);
2054
2055static int spufs_info_open(struct inode *inode, struct file *file)
2056{
2057	struct spufs_inode_info *i = SPUFS_I(inode);
2058	struct spu_context *ctx = i->i_ctx;
2059	file->private_data = ctx;
2060	return 0;
2061}
2062
2063static int spufs_caps_show(struct seq_file *s, void *private)
2064{
2065	struct spu_context *ctx = s->private;
2066
2067	if (!(ctx->flags & SPU_CREATE_NOSCHED))
2068		seq_puts(s, "sched\n");
2069	if (!(ctx->flags & SPU_CREATE_ISOLATE))
2070		seq_puts(s, "step\n");
2071	return 0;
2072}
2073
2074static int spufs_caps_open(struct inode *inode, struct file *file)
2075{
2076	return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
2077}
2078
2079static const struct file_operations spufs_caps_fops = {
2080	.open		= spufs_caps_open,
2081	.read		= seq_read,
2082	.llseek		= seq_lseek,
2083	.release	= single_release,
2084};
2085
2086static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
2087			char __user *buf, size_t len, loff_t *pos)
2088{
2089	u32 data;
2090
2091	/* EOF if there's no entry in the mbox */
2092	if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
2093		return 0;
2094
2095	data = ctx->csa.prob.pu_mb_R;
2096
2097	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2098}
2099
2100static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
2101				   size_t len, loff_t *pos)
2102{
2103	int ret;
2104	struct spu_context *ctx = file->private_data;
2105
2106	if (!access_ok(VERIFY_WRITE, buf, len))
2107		return -EFAULT;
2108
2109	ret = spu_acquire_saved(ctx);
2110	if (ret)
2111		return ret;
2112	spin_lock(&ctx->csa.register_lock);
2113	ret = __spufs_mbox_info_read(ctx, buf, len, pos);
2114	spin_unlock(&ctx->csa.register_lock);
2115	spu_release_saved(ctx);
2116
2117	return ret;
2118}
2119
2120static const struct file_operations spufs_mbox_info_fops = {
2121	.open = spufs_info_open,
2122	.read = spufs_mbox_info_read,
2123	.llseek  = generic_file_llseek,
2124};
2125
2126static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
2127				char __user *buf, size_t len, loff_t *pos)
2128{
2129	u32 data;
2130
2131	/* EOF if there's no entry in the ibox */
2132	if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
2133		return 0;
2134
2135	data = ctx->csa.priv2.puint_mb_R;
2136
2137	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2138}
2139
2140static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
2141				   size_t len, loff_t *pos)
2142{
2143	struct spu_context *ctx = file->private_data;
2144	int ret;
2145
2146	if (!access_ok(VERIFY_WRITE, buf, len))
2147		return -EFAULT;
2148
2149	ret = spu_acquire_saved(ctx);
2150	if (ret)
2151		return ret;
2152	spin_lock(&ctx->csa.register_lock);
2153	ret = __spufs_ibox_info_read(ctx, buf, len, pos);
2154	spin_unlock(&ctx->csa.register_lock);
2155	spu_release_saved(ctx);
2156
2157	return ret;
2158}
2159
2160static const struct file_operations spufs_ibox_info_fops = {
2161	.open = spufs_info_open,
2162	.read = spufs_ibox_info_read,
2163	.llseek  = generic_file_llseek,
2164};
2165
2166static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
2167			char __user *buf, size_t len, loff_t *pos)
2168{
2169	int i, cnt;
2170	u32 data[4];
2171	u32 wbox_stat;
2172
2173	wbox_stat = ctx->csa.prob.mb_stat_R;
2174	cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
2175	for (i = 0; i < cnt; i++) {
2176		data[i] = ctx->csa.spu_mailbox_data[i];
2177	}
2178
2179	return simple_read_from_buffer(buf, len, pos, &data,
2180				cnt * sizeof(u32));
2181}
2182
2183static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
2184				   size_t len, loff_t *pos)
2185{
2186	struct spu_context *ctx = file->private_data;
2187	int ret;
2188
2189	if (!access_ok(VERIFY_WRITE, buf, len))
2190		return -EFAULT;
2191
2192	ret = spu_acquire_saved(ctx);
2193	if (ret)
2194		return ret;
2195	spin_lock(&ctx->csa.register_lock);
2196	ret = __spufs_wbox_info_read(ctx, buf, len, pos);
2197	spin_unlock(&ctx->csa.register_lock);
2198	spu_release_saved(ctx);
2199
2200	return ret;
2201}
2202
2203static const struct file_operations spufs_wbox_info_fops = {
2204	.open = spufs_info_open,
2205	.read = spufs_wbox_info_read,
2206	.llseek  = generic_file_llseek,
2207};
2208
2209static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
2210			char __user *buf, size_t len, loff_t *pos)
2211{
2212	struct spu_dma_info info;
2213	struct mfc_cq_sr *qp, *spuqp;
2214	int i;
2215
2216	info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
2217	info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
2218	info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
2219	info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
2220	info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
2221	for (i = 0; i < 16; i++) {
2222		qp = &info.dma_info_command_data[i];
2223		spuqp = &ctx->csa.priv2.spuq[i];
2224
2225		qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
2226		qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
2227		qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
2228		qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
2229	}
2230
2231	return simple_read_from_buffer(buf, len, pos, &info,
2232				sizeof info);
2233}
2234
2235static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
2236			      size_t len, loff_t *pos)
2237{
2238	struct spu_context *ctx = file->private_data;
2239	int ret;
2240
2241	if (!access_ok(VERIFY_WRITE, buf, len))
2242		return -EFAULT;
2243
2244	ret = spu_acquire_saved(ctx);
2245	if (ret)
2246		return ret;
2247	spin_lock(&ctx->csa.register_lock);
2248	ret = __spufs_dma_info_read(ctx, buf, len, pos);
2249	spin_unlock(&ctx->csa.register_lock);
2250	spu_release_saved(ctx);
2251
2252	return ret;
2253}
2254
2255static const struct file_operations spufs_dma_info_fops = {
2256	.open = spufs_info_open,
2257	.read = spufs_dma_info_read,
2258	.llseek = no_llseek,
2259};
2260
2261static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
2262			char __user *buf, size_t len, loff_t *pos)
2263{
2264	struct spu_proxydma_info info;
2265	struct mfc_cq_sr *qp, *puqp;
2266	int ret = sizeof info;
2267	int i;
2268
2269	if (len < ret)
2270		return -EINVAL;
2271
2272	if (!access_ok(VERIFY_WRITE, buf, len))
2273		return -EFAULT;
2274
2275	info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
2276	info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
2277	info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
2278	for (i = 0; i < 8; i++) {
2279		qp = &info.proxydma_info_command_data[i];
2280		puqp = &ctx->csa.priv2.puq[i];
2281
2282		qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
2283		qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
2284		qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
2285		qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
2286	}
2287
2288	return simple_read_from_buffer(buf, len, pos, &info,
2289				sizeof info);
2290}
2291
2292static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
2293				   size_t len, loff_t *pos)
2294{
2295	struct spu_context *ctx = file->private_data;
2296	int ret;
2297
2298	ret = spu_acquire_saved(ctx);
2299	if (ret)
2300		return ret;
2301	spin_lock(&ctx->csa.register_lock);
2302	ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
2303	spin_unlock(&ctx->csa.register_lock);
2304	spu_release_saved(ctx);
2305
2306	return ret;
2307}
2308
2309static const struct file_operations spufs_proxydma_info_fops = {
2310	.open = spufs_info_open,
2311	.read = spufs_proxydma_info_read,
2312	.llseek = no_llseek,
2313};
2314
2315static int spufs_show_tid(struct seq_file *s, void *private)
2316{
2317	struct spu_context *ctx = s->private;
2318
2319	seq_printf(s, "%d\n", ctx->tid);
2320	return 0;
2321}
2322
2323static int spufs_tid_open(struct inode *inode, struct file *file)
2324{
2325	return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
2326}
2327
2328static const struct file_operations spufs_tid_fops = {
2329	.open		= spufs_tid_open,
2330	.read		= seq_read,
2331	.llseek		= seq_lseek,
2332	.release	= single_release,
2333};
2334
2335static const char *ctx_state_names[] = {
2336	"user", "system", "iowait", "loaded"
2337};
2338
2339static unsigned long long spufs_acct_time(struct spu_context *ctx,
2340		enum spu_utilization_state state)
2341{
2342	struct timespec ts;
2343	unsigned long long time = ctx->stats.times[state];
2344
2345	/*
2346	 * In general, utilization statistics are updated by the controlling
2347	 * thread as the spu context moves through various well defined
2348	 * state transitions, but if the context is lazily loaded its
2349	 * utilization statistics are not updated as the controlling thread
2350	 * is not tightly coupled with the execution of the spu context.  We
2351	 * calculate and apply the time delta from the last recorded state
2352	 * of the spu context.
2353	 */
2354	if (ctx->spu && ctx->stats.util_state == state) {
2355		ktime_get_ts(&ts);
2356		time += timespec_to_ns(&ts) - ctx->stats.tstamp;
2357	}
2358
2359	return time / NSEC_PER_MSEC;
2360}
2361
2362static unsigned long long spufs_slb_flts(struct spu_context *ctx)
2363{
2364	unsigned long long slb_flts = ctx->stats.slb_flt;
2365
2366	if (ctx->state == SPU_STATE_RUNNABLE) {
2367		slb_flts += (ctx->spu->stats.slb_flt -
2368			     ctx->stats.slb_flt_base);
2369	}
2370
2371	return slb_flts;
2372}
2373
2374static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
2375{
2376	unsigned long long class2_intrs = ctx->stats.class2_intr;
2377
2378	if (ctx->state == SPU_STATE_RUNNABLE) {
2379		class2_intrs += (ctx->spu->stats.class2_intr -
2380				 ctx->stats.class2_intr_base);
2381	}
2382
2383	return class2_intrs;
2384}
2385
2386
2387static int spufs_show_stat(struct seq_file *s, void *private)
2388{
2389	struct spu_context *ctx = s->private;
2390	int ret;
2391
2392	ret = spu_acquire(ctx);
2393	if (ret)
2394		return ret;
2395
2396	seq_printf(s, "%s %llu %llu %llu %llu "
2397		      "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2398		ctx_state_names[ctx->stats.util_state],
2399		spufs_acct_time(ctx, SPU_UTIL_USER),
2400		spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
2401		spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
2402		spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2403		ctx->stats.vol_ctx_switch,
2404		ctx->stats.invol_ctx_switch,
2405		spufs_slb_flts(ctx),
2406		ctx->stats.hash_flt,
2407		ctx->stats.min_flt,
2408		ctx->stats.maj_flt,
2409		spufs_class2_intrs(ctx),
2410		ctx->stats.libassist);
2411	spu_release(ctx);
2412	return 0;
2413}
2414
2415static int spufs_stat_open(struct inode *inode, struct file *file)
2416{
2417	return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
2418}
2419
2420static const struct file_operations spufs_stat_fops = {
2421	.open		= spufs_stat_open,
2422	.read		= seq_read,
2423	.llseek		= seq_lseek,
2424	.release	= single_release,
2425};
2426
2427static inline int spufs_switch_log_used(struct spu_context *ctx)
2428{
2429	return (ctx->switch_log->head - ctx->switch_log->tail) %
2430		SWITCH_LOG_BUFSIZE;
2431}
2432
2433static inline int spufs_switch_log_avail(struct spu_context *ctx)
2434{
2435	return SWITCH_LOG_BUFSIZE - spufs_switch_log_used(ctx);
2436}
2437
2438static int spufs_switch_log_open(struct inode *inode, struct file *file)
2439{
2440	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2441	int rc;
2442
2443	rc = spu_acquire(ctx);
2444	if (rc)
2445		return rc;
2446
2447	if (ctx->switch_log) {
2448		rc = -EBUSY;
2449		goto out;
2450	}
2451
2452	ctx->switch_log = kmalloc(sizeof(struct switch_log) +
2453		SWITCH_LOG_BUFSIZE * sizeof(struct switch_log_entry),
2454		GFP_KERNEL);
2455
2456	if (!ctx->switch_log) {
2457		rc = -ENOMEM;
2458		goto out;
2459	}
2460
2461	ctx->switch_log->head = ctx->switch_log->tail = 0;
2462	init_waitqueue_head(&ctx->switch_log->wait);
2463	rc = 0;
2464
2465out:
2466	spu_release(ctx);
2467	return rc;
2468}
2469
2470static int spufs_switch_log_release(struct inode *inode, struct file *file)
2471{
2472	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2473	int rc;
2474
2475	rc = spu_acquire(ctx);
2476	if (rc)
2477		return rc;
2478
2479	kfree(ctx->switch_log);
2480	ctx->switch_log = NULL;
2481	spu_release(ctx);
2482
2483	return 0;
2484}
2485
2486static int switch_log_sprint(struct spu_context *ctx, char *tbuf, int n)
2487{
2488	struct switch_log_entry *p;
2489
2490	p = ctx->switch_log->log + ctx->switch_log->tail % SWITCH_LOG_BUFSIZE;
2491
2492	return snprintf(tbuf, n, "%u.%09u %d %u %u %llu\n",
2493			(unsigned int) p->tstamp.tv_sec,
2494			(unsigned int) p->tstamp.tv_nsec,
2495			p->spu_id,
2496			(unsigned int) p->type,
2497			(unsigned int) p->val,
2498			(unsigned long long) p->timebase);
2499}
2500
2501static ssize_t spufs_switch_log_read(struct file *file, char __user *buf,
2502			     size_t len, loff_t *ppos)
2503{
2504	struct inode *inode = file->f_path.dentry->d_inode;
2505	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2506	int error = 0, cnt = 0;
2507
2508	if (!buf)
2509		return -EINVAL;
2510
2511	error = spu_acquire(ctx);
2512	if (error)
2513		return error;
2514
2515	while (cnt < len) {
2516		char tbuf[128];
2517		int width;
2518
2519		if (spufs_switch_log_used(ctx) == 0) {
2520			if (cnt > 0) {
2521				/* If there's data ready to go, we can
2522				 * just return straight away */
2523				break;
2524
2525			} else if (file->f_flags & O_NONBLOCK) {
2526				error = -EAGAIN;
2527				break;
2528
2529			} else {
2530				/* spufs_wait will drop the mutex and
2531				 * re-acquire, but since we're in read(), the
2532				 * file cannot be _released (and so
2533				 * ctx->switch_log is stable).
2534				 */
2535				error = spufs_wait(ctx->switch_log->wait,
2536						spufs_switch_log_used(ctx) > 0);
2537
2538				/* On error, spufs_wait returns without the
2539				 * state mutex held */
2540				if (error)
2541					return error;
2542
2543				/* We may have had entries read from underneath
2544				 * us while we dropped the mutex in spufs_wait,
2545				 * so re-check */
2546				if (spufs_switch_log_used(ctx) == 0)
2547					continue;
2548			}
2549		}
2550
2551		width = switch_log_sprint(ctx, tbuf, sizeof(tbuf));
2552		if (width < len)
2553			ctx->switch_log->tail =
2554				(ctx->switch_log->tail + 1) %
2555				 SWITCH_LOG_BUFSIZE;
2556		else
2557			/* If the record is greater than space available return
2558			 * partial buffer (so far) */
2559			break;
2560
2561		error = copy_to_user(buf + cnt, tbuf, width);
2562		if (error)
2563			break;
2564		cnt += width;
2565	}
2566
2567	spu_release(ctx);
2568
2569	return cnt == 0 ? error : cnt;
2570}
2571
2572static unsigned int spufs_switch_log_poll(struct file *file, poll_table *wait)
2573{
2574	struct inode *inode = file->f_path.dentry->d_inode;
2575	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2576	unsigned int mask = 0;
2577	int rc;
2578
2579	poll_wait(file, &ctx->switch_log->wait, wait);
2580
2581	rc = spu_acquire(ctx);
2582	if (rc)
2583		return rc;
2584
2585	if (spufs_switch_log_used(ctx) > 0)
2586		mask |= POLLIN;
2587
2588	spu_release(ctx);
2589
2590	return mask;
2591}
2592
2593static const struct file_operations spufs_switch_log_fops = {
2594	.owner		= THIS_MODULE,
2595	.open		= spufs_switch_log_open,
2596	.read		= spufs_switch_log_read,
2597	.poll		= spufs_switch_log_poll,
2598	.release	= spufs_switch_log_release,
2599	.llseek		= no_llseek,
2600};
2601
2602/**
2603 * Log a context switch event to a switch log reader.
2604 *
2605 * Must be called with ctx->state_mutex held.
2606 */
2607void spu_switch_log_notify(struct spu *spu, struct spu_context *ctx,
2608		u32 type, u32 val)
2609{
2610	if (!ctx->switch_log)
2611		return;
2612
2613	if (spufs_switch_log_avail(ctx) > 1) {
2614		struct switch_log_entry *p;
2615
2616		p = ctx->switch_log->log + ctx->switch_log->head;
2617		ktime_get_ts(&p->tstamp);
2618		p->timebase = get_tb();
2619		p->spu_id = spu ? spu->number : -1;
2620		p->type = type;
2621		p->val = val;
2622
2623		ctx->switch_log->head =
2624			(ctx->switch_log->head + 1) % SWITCH_LOG_BUFSIZE;
2625	}
2626
2627	wake_up(&ctx->switch_log->wait);
2628}
2629
2630static int spufs_show_ctx(struct seq_file *s, void *private)
2631{
2632	struct spu_context *ctx = s->private;
2633	u64 mfc_control_RW;
2634
2635	mutex_lock(&ctx->state_mutex);
2636	if (ctx->spu) {
2637		struct spu *spu = ctx->spu;
2638		struct spu_priv2 __iomem *priv2 = spu->priv2;
2639
2640		spin_lock_irq(&spu->register_lock);
2641		mfc_control_RW = in_be64(&priv2->mfc_control_RW);
2642		spin_unlock_irq(&spu->register_lock);
2643	} else {
2644		struct spu_state *csa = &ctx->csa;
2645
2646		mfc_control_RW = csa->priv2.mfc_control_RW;
2647	}
2648
2649	seq_printf(s, "%c flgs(%lx) sflgs(%lx) pri(%d) ts(%d) spu(%02d)"
2650		" %c %llx %llx %llx %llx %x %x\n",
2651		ctx->state == SPU_STATE_SAVED ? 'S' : 'R',
2652		ctx->flags,
2653		ctx->sched_flags,
2654		ctx->prio,
2655		ctx->time_slice,
2656		ctx->spu ? ctx->spu->number : -1,
2657		!list_empty(&ctx->rq) ? 'q' : ' ',
2658		ctx->csa.class_0_pending,
2659		ctx->csa.class_0_dar,
2660		ctx->csa.class_1_dsisr,
2661		mfc_control_RW,
2662		ctx->ops->runcntl_read(ctx),
2663		ctx->ops->status_read(ctx));
2664
2665	mutex_unlock(&ctx->state_mutex);
2666
2667	return 0;
2668}
2669
2670static int spufs_ctx_open(struct inode *inode, struct file *file)
2671{
2672	return single_open(file, spufs_show_ctx, SPUFS_I(inode)->i_ctx);
2673}
2674
2675static const struct file_operations spufs_ctx_fops = {
2676	.open           = spufs_ctx_open,
2677	.read           = seq_read,
2678	.llseek         = seq_lseek,
2679	.release        = single_release,
2680};
2681
2682const struct spufs_tree_descr spufs_dir_contents[] = {
2683	{ "capabilities", &spufs_caps_fops, 0444, },
2684	{ "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
2685	{ "regs", &spufs_regs_fops,  0666, sizeof(struct spu_reg128[128]), },
2686	{ "mbox", &spufs_mbox_fops, 0444, },
2687	{ "ibox", &spufs_ibox_fops, 0444, },
2688	{ "wbox", &spufs_wbox_fops, 0222, },
2689	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2690	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2691	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2692	{ "signal1", &spufs_signal1_fops, 0666, },
2693	{ "signal2", &spufs_signal2_fops, 0666, },
2694	{ "signal1_type", &spufs_signal1_type, 0666, },
2695	{ "signal2_type", &spufs_signal2_type, 0666, },
2696	{ "cntl", &spufs_cntl_fops,  0666, },
2697	{ "fpcr", &spufs_fpcr_fops, 0666, sizeof(struct spu_reg128), },
2698	{ "lslr", &spufs_lslr_ops, 0444, },
2699	{ "mfc", &spufs_mfc_fops, 0666, },
2700	{ "mss", &spufs_mss_fops, 0666, },
2701	{ "npc", &spufs_npc_ops, 0666, },
2702	{ "srr0", &spufs_srr0_ops, 0666, },
2703	{ "decr", &spufs_decr_ops, 0666, },
2704	{ "decr_status", &spufs_decr_status_ops, 0666, },
2705	{ "event_mask", &spufs_event_mask_ops, 0666, },
2706	{ "event_status", &spufs_event_status_ops, 0444, },
2707	{ "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2708	{ "phys-id", &spufs_id_ops, 0666, },
2709	{ "object-id", &spufs_object_id_ops, 0666, },
2710	{ "mbox_info", &spufs_mbox_info_fops, 0444, sizeof(u32), },
2711	{ "ibox_info", &spufs_ibox_info_fops, 0444, sizeof(u32), },
2712	{ "wbox_info", &spufs_wbox_info_fops, 0444, sizeof(u32), },
2713	{ "dma_info", &spufs_dma_info_fops, 0444,
2714		sizeof(struct spu_dma_info), },
2715	{ "proxydma_info", &spufs_proxydma_info_fops, 0444,
2716		sizeof(struct spu_proxydma_info)},
2717	{ "tid", &spufs_tid_fops, 0444, },
2718	{ "stat", &spufs_stat_fops, 0444, },
2719	{ "switch_log", &spufs_switch_log_fops, 0444 },
2720	{},
2721};
2722
2723const struct spufs_tree_descr spufs_dir_nosched_contents[] = {
2724	{ "capabilities", &spufs_caps_fops, 0444, },
2725	{ "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
2726	{ "mbox", &spufs_mbox_fops, 0444, },
2727	{ "ibox", &spufs_ibox_fops, 0444, },
2728	{ "wbox", &spufs_wbox_fops, 0222, },
2729	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2730	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2731	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2732	{ "signal1", &spufs_signal1_nosched_fops, 0222, },
2733	{ "signal2", &spufs_signal2_nosched_fops, 0222, },
2734	{ "signal1_type", &spufs_signal1_type, 0666, },
2735	{ "signal2_type", &spufs_signal2_type, 0666, },
2736	{ "mss", &spufs_mss_fops, 0666, },
2737	{ "mfc", &spufs_mfc_fops, 0666, },
2738	{ "cntl", &spufs_cntl_fops,  0666, },
2739	{ "npc", &spufs_npc_ops, 0666, },
2740	{ "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2741	{ "phys-id", &spufs_id_ops, 0666, },
2742	{ "object-id", &spufs_object_id_ops, 0666, },
2743	{ "tid", &spufs_tid_fops, 0444, },
2744	{ "stat", &spufs_stat_fops, 0444, },
2745	{},
2746};
2747
2748const struct spufs_tree_descr spufs_dir_debug_contents[] = {
2749	{ ".ctx", &spufs_ctx_fops, 0444, },
2750	{},
2751};
2752
2753const struct spufs_coredump_reader spufs_coredump_read[] = {
2754	{ "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
2755	{ "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
2756	{ "lslr", NULL, spufs_lslr_get, 19 },
2757	{ "decr", NULL, spufs_decr_get, 19 },
2758	{ "decr_status", NULL, spufs_decr_status_get, 19 },
2759	{ "mem", __spufs_mem_read, NULL, LS_SIZE, },
2760	{ "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
2761	{ "signal1_type", NULL, spufs_signal1_type_get, 19 },
2762	{ "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
2763	{ "signal2_type", NULL, spufs_signal2_type_get, 19 },
2764	{ "event_mask", NULL, spufs_event_mask_get, 19 },
2765	{ "event_status", NULL, spufs_event_status_get, 19 },
2766	{ "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
2767	{ "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
2768	{ "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
2769	{ "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
2770	{ "proxydma_info", __spufs_proxydma_info_read,
2771			   NULL, sizeof(struct spu_proxydma_info)},
2772	{ "object-id", NULL, spufs_object_id_get, 19 },
2773	{ "npc", NULL, spufs_npc_get, 19 },
2774	{ NULL },
2775};