Linux Audio

Check our new training course

Loading...
  1/*
  2 *  PowerPC version derived from arch/arm/mm/consistent.c
  3 *    Copyright (C) 2001 Dan Malek (dmalek@jlc.net)
  4 *
  5 *  Copyright (C) 2000 Russell King
  6 *
  7 * Consistent memory allocators.  Used for DMA devices that want to
  8 * share uncached memory with the processor core.  The function return
  9 * is the virtual address and 'dma_handle' is the physical address.
 10 * Mostly stolen from the ARM port, with some changes for PowerPC.
 11 *						-- Dan
 12 *
 13 * Reorganized to get rid of the arch-specific consistent_* functions
 14 * and provide non-coherent implementations for the DMA API. -Matt
 15 *
 16 * Added in_interrupt() safe dma_alloc_coherent()/dma_free_coherent()
 17 * implementation. This is pulled straight from ARM and barely
 18 * modified. -Matt
 19 *
 20 * This program is free software; you can redistribute it and/or modify
 21 * it under the terms of the GNU General Public License version 2 as
 22 * published by the Free Software Foundation.
 23 */
 24
 25#include <linux/sched.h>
 26#include <linux/slab.h>
 27#include <linux/kernel.h>
 28#include <linux/errno.h>
 29#include <linux/string.h>
 30#include <linux/types.h>
 31#include <linux/highmem.h>
 32#include <linux/dma-mapping.h>
 33#include <linux/export.h>
 34
 35#include <asm/tlbflush.h>
 36
 37#include "mmu_decl.h"
 38
 39/*
 40 * This address range defaults to a value that is safe for all
 41 * platforms which currently set CONFIG_NOT_COHERENT_CACHE. It
 42 * can be further configured for specific applications under
 43 * the "Advanced Setup" menu. -Matt
 44 */
 45#define CONSISTENT_BASE		(IOREMAP_TOP)
 46#define CONSISTENT_END 		(CONSISTENT_BASE + CONFIG_CONSISTENT_SIZE)
 47#define CONSISTENT_OFFSET(x)	(((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
 48
 49/*
 50 * This is the page table (2MB) covering uncached, DMA consistent allocations
 51 */
 52static DEFINE_SPINLOCK(consistent_lock);
 53
 54/*
 55 * VM region handling support.
 56 *
 57 * This should become something generic, handling VM region allocations for
 58 * vmalloc and similar (ioremap, module space, etc).
 59 *
 60 * I envisage vmalloc()'s supporting vm_struct becoming:
 61 *
 62 *  struct vm_struct {
 63 *    struct vm_region	region;
 64 *    unsigned long	flags;
 65 *    struct page	**pages;
 66 *    unsigned int	nr_pages;
 67 *    unsigned long	phys_addr;
 68 *  };
 69 *
 70 * get_vm_area() would then call vm_region_alloc with an appropriate
 71 * struct vm_region head (eg):
 72 *
 73 *  struct vm_region vmalloc_head = {
 74 *	.vm_list	= LIST_HEAD_INIT(vmalloc_head.vm_list),
 75 *	.vm_start	= VMALLOC_START,
 76 *	.vm_end		= VMALLOC_END,
 77 *  };
 78 *
 79 * However, vmalloc_head.vm_start is variable (typically, it is dependent on
 80 * the amount of RAM found at boot time.)  I would imagine that get_vm_area()
 81 * would have to initialise this each time prior to calling vm_region_alloc().
 82 */
 83struct ppc_vm_region {
 84	struct list_head	vm_list;
 85	unsigned long		vm_start;
 86	unsigned long		vm_end;
 87};
 88
 89static struct ppc_vm_region consistent_head = {
 90	.vm_list	= LIST_HEAD_INIT(consistent_head.vm_list),
 91	.vm_start	= CONSISTENT_BASE,
 92	.vm_end		= CONSISTENT_END,
 93};
 94
 95static struct ppc_vm_region *
 96ppc_vm_region_alloc(struct ppc_vm_region *head, size_t size, gfp_t gfp)
 97{
 98	unsigned long addr = head->vm_start, end = head->vm_end - size;
 99	unsigned long flags;
100	struct ppc_vm_region *c, *new;
101
102	new = kmalloc(sizeof(struct ppc_vm_region), gfp);
103	if (!new)
104		goto out;
105
106	spin_lock_irqsave(&consistent_lock, flags);
107
108	list_for_each_entry(c, &head->vm_list, vm_list) {
109		if ((addr + size) < addr)
110			goto nospc;
111		if ((addr + size) <= c->vm_start)
112			goto found;
113		addr = c->vm_end;
114		if (addr > end)
115			goto nospc;
116	}
117
118 found:
119	/*
120	 * Insert this entry _before_ the one we found.
121	 */
122	list_add_tail(&new->vm_list, &c->vm_list);
123	new->vm_start = addr;
124	new->vm_end = addr + size;
125
126	spin_unlock_irqrestore(&consistent_lock, flags);
127	return new;
128
129 nospc:
130	spin_unlock_irqrestore(&consistent_lock, flags);
131	kfree(new);
132 out:
133	return NULL;
134}
135
136static struct ppc_vm_region *ppc_vm_region_find(struct ppc_vm_region *head, unsigned long addr)
137{
138	struct ppc_vm_region *c;
139
140	list_for_each_entry(c, &head->vm_list, vm_list) {
141		if (c->vm_start == addr)
142			goto out;
143	}
144	c = NULL;
145 out:
146	return c;
147}
148
149/*
150 * Allocate DMA-coherent memory space and return both the kernel remapped
151 * virtual and bus address for that space.
152 */
153void *
154__dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
155{
156	struct page *page;
157	struct ppc_vm_region *c;
158	unsigned long order;
159	u64 mask = ISA_DMA_THRESHOLD, limit;
160
161	if (dev) {
162		mask = dev->coherent_dma_mask;
163
164		/*
165		 * Sanity check the DMA mask - it must be non-zero, and
166		 * must be able to be satisfied by a DMA allocation.
167		 */
168		if (mask == 0) {
169			dev_warn(dev, "coherent DMA mask is unset\n");
170			goto no_page;
171		}
172
173		if ((~mask) & ISA_DMA_THRESHOLD) {
174			dev_warn(dev, "coherent DMA mask %#llx is smaller "
175				 "than system GFP_DMA mask %#llx\n",
176				 mask, (unsigned long long)ISA_DMA_THRESHOLD);
177			goto no_page;
178		}
179	}
180
181
182	size = PAGE_ALIGN(size);
183	limit = (mask + 1) & ~mask;
184	if ((limit && size >= limit) ||
185	    size >= (CONSISTENT_END - CONSISTENT_BASE)) {
186		printk(KERN_WARNING "coherent allocation too big (requested %#x mask %#Lx)\n",
187		       size, mask);
188		return NULL;
189	}
190
191	order = get_order(size);
192
193	/* Might be useful if we ever have a real legacy DMA zone... */
194	if (mask != 0xffffffff)
195		gfp |= GFP_DMA;
196
197	page = alloc_pages(gfp, order);
198	if (!page)
199		goto no_page;
200
201	/*
202	 * Invalidate any data that might be lurking in the
203	 * kernel direct-mapped region for device DMA.
204	 */
205	{
206		unsigned long kaddr = (unsigned long)page_address(page);
207		memset(page_address(page), 0, size);
208		flush_dcache_range(kaddr, kaddr + size);
209	}
210
211	/*
212	 * Allocate a virtual address in the consistent mapping region.
213	 */
214	c = ppc_vm_region_alloc(&consistent_head, size,
215			    gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
216	if (c) {
217		unsigned long vaddr = c->vm_start;
218		struct page *end = page + (1 << order);
219
220		split_page(page, order);
221
222		/*
223		 * Set the "dma handle"
224		 */
225		*handle = page_to_phys(page);
226
227		do {
228			SetPageReserved(page);
229			map_page(vaddr, page_to_phys(page),
230				 pgprot_noncached(PAGE_KERNEL));
231			page++;
232			vaddr += PAGE_SIZE;
233		} while (size -= PAGE_SIZE);
234
235		/*
236		 * Free the otherwise unused pages.
237		 */
238		while (page < end) {
239			__free_page(page);
240			page++;
241		}
242
243		return (void *)c->vm_start;
244	}
245
246	if (page)
247		__free_pages(page, order);
248 no_page:
249	return NULL;
250}
251EXPORT_SYMBOL(__dma_alloc_coherent);
252
253/*
254 * free a page as defined by the above mapping.
255 */
256void __dma_free_coherent(size_t size, void *vaddr)
257{
258	struct ppc_vm_region *c;
259	unsigned long flags, addr;
260	
261	size = PAGE_ALIGN(size);
262
263	spin_lock_irqsave(&consistent_lock, flags);
264
265	c = ppc_vm_region_find(&consistent_head, (unsigned long)vaddr);
266	if (!c)
267		goto no_area;
268
269	if ((c->vm_end - c->vm_start) != size) {
270		printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
271		       __func__, c->vm_end - c->vm_start, size);
272		dump_stack();
273		size = c->vm_end - c->vm_start;
274	}
275
276	addr = c->vm_start;
277	do {
278		pte_t *ptep;
279		unsigned long pfn;
280
281		ptep = pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k(addr),
282							       addr),
283						    addr),
284					 addr);
285		if (!pte_none(*ptep) && pte_present(*ptep)) {
286			pfn = pte_pfn(*ptep);
287			pte_clear(&init_mm, addr, ptep);
288			if (pfn_valid(pfn)) {
289				struct page *page = pfn_to_page(pfn);
290
291				ClearPageReserved(page);
292				__free_page(page);
293			}
294		}
295		addr += PAGE_SIZE;
296	} while (size -= PAGE_SIZE);
297
298	flush_tlb_kernel_range(c->vm_start, c->vm_end);
299
300	list_del(&c->vm_list);
301
302	spin_unlock_irqrestore(&consistent_lock, flags);
303
304	kfree(c);
305	return;
306
307 no_area:
308	spin_unlock_irqrestore(&consistent_lock, flags);
309	printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
310	       __func__, vaddr);
311	dump_stack();
312}
313EXPORT_SYMBOL(__dma_free_coherent);
314
315/*
316 * make an area consistent.
317 */
318void __dma_sync(void *vaddr, size_t size, int direction)
319{
320	unsigned long start = (unsigned long)vaddr;
321	unsigned long end   = start + size;
322
323	switch (direction) {
324	case DMA_NONE:
325		BUG();
326	case DMA_FROM_DEVICE:
327		/*
328		 * invalidate only when cache-line aligned otherwise there is
329		 * the potential for discarding uncommitted data from the cache
330		 */
331		if ((start & (L1_CACHE_BYTES - 1)) || (size & (L1_CACHE_BYTES - 1)))
332			flush_dcache_range(start, end);
333		else
334			invalidate_dcache_range(start, end);
335		break;
336	case DMA_TO_DEVICE:		/* writeback only */
337		clean_dcache_range(start, end);
338		break;
339	case DMA_BIDIRECTIONAL:	/* writeback and invalidate */
340		flush_dcache_range(start, end);
341		break;
342	}
343}
344EXPORT_SYMBOL(__dma_sync);
345
346#ifdef CONFIG_HIGHMEM
347/*
348 * __dma_sync_page() implementation for systems using highmem.
349 * In this case, each page of a buffer must be kmapped/kunmapped
350 * in order to have a virtual address for __dma_sync(). This must
351 * not sleep so kmap_atomic()/kunmap_atomic() are used.
352 *
353 * Note: yes, it is possible and correct to have a buffer extend
354 * beyond the first page.
355 */
356static inline void __dma_sync_page_highmem(struct page *page,
357		unsigned long offset, size_t size, int direction)
358{
359	size_t seg_size = min((size_t)(PAGE_SIZE - offset), size);
360	size_t cur_size = seg_size;
361	unsigned long flags, start, seg_offset = offset;
362	int nr_segs = 1 + ((size - seg_size) + PAGE_SIZE - 1)/PAGE_SIZE;
363	int seg_nr = 0;
364
365	local_irq_save(flags);
366
367	do {
368		start = (unsigned long)kmap_atomic(page + seg_nr) + seg_offset;
369
370		/* Sync this buffer segment */
371		__dma_sync((void *)start, seg_size, direction);
372		kunmap_atomic((void *)start);
373		seg_nr++;
374
375		/* Calculate next buffer segment size */
376		seg_size = min((size_t)PAGE_SIZE, size - cur_size);
377
378		/* Add the segment size to our running total */
379		cur_size += seg_size;
380		seg_offset = 0;
381	} while (seg_nr < nr_segs);
382
383	local_irq_restore(flags);
384}
385#endif /* CONFIG_HIGHMEM */
386
387/*
388 * __dma_sync_page makes memory consistent. identical to __dma_sync, but
389 * takes a struct page instead of a virtual address
390 */
391void __dma_sync_page(struct page *page, unsigned long offset,
392	size_t size, int direction)
393{
394#ifdef CONFIG_HIGHMEM
395	__dma_sync_page_highmem(page, offset, size, direction);
396#else
397	unsigned long start = (unsigned long)page_address(page) + offset;
398	__dma_sync((void *)start, size, direction);
399#endif
400}
401EXPORT_SYMBOL(__dma_sync_page);
402
403/*
404 * Return the PFN for a given cpu virtual address returned by
405 * __dma_alloc_coherent. This is used by dma_mmap_coherent()
406 */
407unsigned long __dma_get_coherent_pfn(unsigned long cpu_addr)
408{
409	/* This should always be populated, so we don't test every
410	 * level. If that fails, we'll have a nice crash which
411	 * will be as good as a BUG_ON()
412	 */
413	pgd_t *pgd = pgd_offset_k(cpu_addr);
414	pud_t *pud = pud_offset(pgd, cpu_addr);
415	pmd_t *pmd = pmd_offset(pud, cpu_addr);
416	pte_t *ptep = pte_offset_kernel(pmd, cpu_addr);
417
418	if (pte_none(*ptep) || !pte_present(*ptep))
419		return 0;
420	return pte_pfn(*ptep);
421}